-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by City Research Online

Sharma, A. & Agrawal, A. (2006). Non-paraxial Split-step Finite-difference Method for Beam
Propagation. Optical and Quantum Electronics, 38(1-3), pp. 19-34. doi: 10.1007/s11082-006-0019-
4

CITY UNIVERSITY City Research Online
LONDON

FST 1894

Original citation: Sharma, A. & Agrawal, A. (2006). Non-paraxial Split-step Finite-difference
Method for Beam Propagation. Optical and Quantum Electronics, 38(1-3), pp. 19-34. doi:
10.1007/s11082-006-0019-4

Permanent City Research Online URL.: http://openaccess.city.ac.uk/2473/

Copyright & reuse

City University London has developed City Research Online so that its users may access the
research outputs of City University London's staff. Copyright © and Moral Rights for this paper are
retained by the individual author(s) and/ or other copyright holders. All material in City Research
Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research
The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries
If you have any enquiries about any aspect of City Research Online, or if you wish to make contact
with the author(s) of this paper, please email the team at publications@city.ac.uk.


https://core.ac.uk/display/16272157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Non-Paraxial Split-Step Finite-Difference M ethod for
Beam Propagation

Anurag Sharma and Arti Agrawal
Physics Department, Indian I nstitute of Technology Delhi, New Delhi 110016, India

Email: asharma@physics.iitd.ac.in

Abstract

A method based on symmetrized splitting of the propagation operator in the finite difference
scheme for non-paraxial beam propagation is presented. The formulation allows the solution of
the second order scalar wave equation without having to make the slowly varying envelope and
one-way propagation approximations. The method is highly accurate and numerically efficient.
Unlike most Padé approximant based methods, it is non-iterative in nature and requires less
computation. The method can be used for bi-directional propagation as well.

1 I ntroduction

Modeling of practical guided-wave devices requires solution of the wave equation in a structure
that may have complicated refractive index distribution and/or several branches. In most such
structures, the paraxial approximation for beam propagation is not valid and its use may lead to
large error in simulations. Thus, non-paraxial solutions are required. Several schemes have
been suggested for wide-angle beam propagation through guided-wave devices (Yevick and
Glasner, 1990; Hadley,992; Yamauchi et al., 1996; Ili¢ et al., 1996, Shibayama et al.; 1999,

Ho and Lu, 2001; Lu and Ho, 2002; Lu and Wei, 2002; Luo and Law, 2002). Most methods for
non-paraxial beam propagation discussed in the literature approach this problem iteratively, in
which a numerical effort equivalent to solving the paraxial equation several times is involved.
Most of these methods neglect the backward propagating components and solve the one-way
wave equation. In these methods, the square root of the propagation operator involved in the
wave equation is approximated in various ways. One of the approximations used is based on the
Padé approximants (Yevick and Glasner, 1990; Hadley, 1992). Earlier, we proposed a new
method (Sharma and Agrawal, 2004) based on symmetrized splitting of the operator for non-
paraxial propagation using the collocation method (Sharma and Banerjee, 1989; Sharma, 1995).
Recently, we have shown that the split-step non-paraxial scheme can be efficiently

implemented in the finite-difference based propagation method (Sharma and Agrawal, 2005,



2006). In this paper, we describe the method in detail giving a comprehensive computational
scheme and a detailed comparison with the collocation based split-step method and the Padé

approximants based finite-difference methods.

2 Formulation
21  Split-Step Non-Paraxial Propagation (SSNP) Method

We consider, for simplicity, two-dimensional propagation; the scalar wave equation is then

given by
2 2
zx‘/z’ + 22‘/2’ +k2n?(x,2) w(x 2) = 0. (1)

where w(x,z) represents one of the Cartesian components of the electric field (generally
referred to as the scalar field) amd(x,z) defines the refractive index distribution of the
medium. The time dependence of the field has been assumedeip@et) andk, =@/c is

the free space wave number. We write Eq.(1) as
oD

— =H@ @), (2)
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where
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The operatoH can be written as a sum of two operators, one representing the propagation
through a uniform medium of index, say, and the other representing the effect of the index
variation of the guiding structure; thus,
0 1
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A formal solution of Eq. (2) after symmetrized splitting of operators can be written as (Sharma
and Agrawal, 2004, 2006)

D(z+Az) = PQ(2) P(2) + O((A2)°®) (5)



where P=e*""** and Q(2) =€e"*** . The operatolP represents propagation in the uniform
medium n_ over a distance ofAz/2, and hence, can be evaluated using any method like the

collocation, finite-difference or FFT methods. The concept of splitting of operators is

independent of the scheme used for propagation. The evaluat@m)atan be easily done due

to the special form of the matrid ,(z) as we shall see in the next subsection.

2.2  Finite-Difference I mplementation of the SSNP Method

In this paper, we use the finite difference scheme to implement the SSNP method. In the finite-

difference scheme, we have a sei9{z) =y (x;,2); j = 12---,N, specifying the field at different
nodes x;, at which the refractive index is defined a%(z)znz(xj ,Z). We shall use the
column vectory(z) to represent the field withr, (z) as its elements. The operat(z) can be

easily evaluated due to the specific form of the matrix and it can be seen that

I 0
Q) :A{_ R I] ©)

since[H,(2)]™ =0 for m>2 due to the form oH,(z). Here R(z) is a diagonal matrix with
R;(2)= njz(z) —n? as the diagonal elements. The evaluatiof® pbn the other hanémounts

to solving the wave equation, Eq. (1), for a medium with a constant refractive mdéijus,

we obtain (Sharma and Agrawal, 2004)

P _ M7 _ o E{ 0 I} _ cos(/SAz/2)  sinW/SAz/2)/VS @)
2 [—(So+kgn?1) 0 —JSsinW/SAz/2)  cosw/SAz/2)

wherel and0 arethe unit and null matrices, respectively, the oper&erS, +k;n?l andS,,

in the present case, is a finite-difference representatid@i/@ék’ . The operatoP represents
propagation in uniform medium of index over a distance oAz/2. It is thus a constant
square matrix and needs to be evaluated only once.

Next we consider the finite-difference representation of ah&x*. The differential
term can be written as (seeg, Khabaza, 1965)

L
ox>  Ax?
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wheres;y, =, — 2y, +y,, in the central difference scheme, and &ifeoperator can be

represented by a tri-diagonal matrix:

(-2 1 0 - 0]
1 -2 1 0
5?={0 1 -2 .- 0 |=D, (9)
|
0 0 0 1 -2]

By defining the 57 operator by the tri-diagonal matrix above, the series representing the

transverse operator can be evaluated explicitly. Using the series expansion on the R.H.S. of Eq.
(8) we obtain

L [ (] e[ Y & o
AX y—{ZSInh [Zﬂ _4Z£ZamaMm+l]( 4) —MZ::le ©2) (10
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(11)
a =1

Using the matrix form fow > from Eq. (9) and the expansion from Eq. (10), we obtain

1L 1 1 1 1
S=k’n’l +— b, DM =k’n?l +—|D,-—D2+—D3-—D%*+... 12
o szMZ::lMX ol o\ P 127 T e 50 (12)

Use of the first term (ordel) =1) in the series given by Eq. (12), corresponds to the
approximation made in the Crank-Nicholson scheme (truncation erx*fand the first two

terms (orderV = 2), to that in the Generalised Douglas (GD) scheme (truncation errot*of

see, e.g., Sun and Yip, 1993). As the number of terms in the series expansion is increased, the
matrix representation for the transverse derivative becomes denser and no longer remains tri-
diagonal, however, the accuracy &f/éx? increases. In the GD scheme based impicitep
methods (Yamauchi et al., 1996; Shibayama et al., 1999), each propagation step is divided into

p substeps and in each substep a syster ofinear equations is solved. By truncating the

saies for the transverse derivative at tha® term, the matrix for the system of equation
remains tri-diagonal and the efficient Thomas algorithm (Conte and deBoor, 1972) can be used
for its solution. However, retaining higher order terms in the series expansion of the transverse
derivative causes the system to have a matrix which has a bandwidth larger than three and the

Thomas algorithm can no longer be used; this makes the method computationally inefficient.



Therefore, to retain computational efficiency, these methods neglect higher order terms.
However, in the split-step method, the increase in matrix density does not alter the computation
speed or efficiency significantly as only matrix multiplications are involved.

Physically, increasing the number of terms in the series in Eq. (12) corresponds to an
increase in the number of nodal points which are involved in approxirn@%’yﬁij2 , leading to
a better representation of the derivative with respeat,tvithout having to adopt an iterative,
multi-step procedure required in the conventional Padé analysis. Further since the evaluation of
P has to be done only once, the increase in number of terms in the series expansion leads only
to increase in the one time computation Bf and does not noticeably increase the per-

propagation-step computation time. This we have demonstrated in the next section.
2.3  Computation Scheme

The propagation method described by Eq.(5) is implemented as follows:

®(z+N,AZ) = PQ(z+{N, -13AZ) P> Q(z+{N, —2}AZ) -+ +--- P>Q(z+A2) P’ Q(2) P®(2) (13)

where N, is the number of propagation steps. In the above equaRér; PP can be
computed along with? and stored for subsequent use to reduce the computational effort. Since
P is a2x 2 block matrix with each block being &, x N, matrix, we can write it as

P:[ cosW/SAz/2) sin(\/§Az/2)/\/§]E[P11 Plz)

—J/Ssin(W/SAz/2)  cosW/SAz/2) P, P/ a4

Obviously, the matrixP?* is also a similar block matrix. Furthe@ is also a block matrix as
defined in Eqg. (6) and its sub blocks include two unity matrices, a null matrix and a diagonal

matrix. The first propagation step requires the evaluation of the following matrix products:

I:'711‘!’ + P125_\Il 13
P®(2) = oz | H (15)
P, + |:)22ﬂ dz
oz
and
EAz
Z

The computation in Eqg. (15) involves 8 multiplications ofNgx N, matrix by a column

vector, sincey is complex. Each of these operations usEsmultiplications. Thus the total



number of multiplications in the step represented by Eq. (18Ni§. This remains the same

when one used? instead of P in subsequent propagation steps. On the other hand, the
evaluation of Eqg. (16) involves multiplication of a diagonal matrix with a complex column

vector, which uses only2N, multiplications. Further, two column vectors have to be
multiplied by Az. Thus, the total number of multiplications required in the evaluation of the
step given in Eqg. (16) i$N,. Therefore, the first step, and each subsequent step, requires
(BN, +6)N, multiplications. Since, generally the value bf is several hundred, one can
approximate the number of multiplications in each step8by’. Thus the multiplications

required to propagatdl, step would be nearlgN’N, .

An estimation of the computational effort in evaluating the maRriks not very simple
as this evaluation involves the computation of sine, cosine and square root of a matrix.
However, these operations are done on the m&riand are, therefore, independent of the
order, M , used in obtaining the matri®. On the other hand, the evaluation of the m&ixp
to orderM requiresM multiplications of N, x N, matrices and hence, the computation effort
increases monotonically (almost linearly) s increases. As an illustrative example, we have
given in Fig. 1, the timet,, for one-time evaluation of the matriR, and the timet,, for
propagating a single step as defined by Egs. (15) and (16), as a function of\ord&€hese
computations correspond to the waveguide and other parameters used in the example discussed

in Sec. 3.1. The figure clearly shows thais almost independent &fl , whereas, increases
with M . It also shows that, for M =1 is equal to the time taken in propagating about 200
steps. The increase ip is of the same order for each increase of order by one, particularly for

larger ordersM >10, which are generally used (see the next section). Thus, the evaluation of

the series in Eq. (12) is a major contributottto In our calculations, we have used MATLAB,
and have made no effort in using the fact that the mégixs sparse. This fact could be used

to economize on matrix multiplications involved in evaluating the series in Eq. (12). One could
also diagonalize the tri-diagonal matrix, and then evaluate the series. We are examining

these and other possibilities to economize the evaluation of the niattix make overall

propagation more efficient. The outcome of these investigations will be reported elsewhere.



3 Numerical Examples

In this section, we present results of some numerical examples to demonstrate the aeduracy a
stability of the method presented in the previous section, namely, the finite-difference based
split-step non-paraxial (FD-SSNP) method. In our examples, we have considered thre
waveguides, which have been used in the literature for similar studies. The index profiles and
other parameters of these waveguides are given in Table-l. Further, in our examples, we have
considered the tilted waveguide geometry, which is depicted in Fig. 2. In all the examples, we

launch atz=0, a mode along the tilted waveguide so that we know exactly the field at the

final distance,z=z,. Then, we compare the numerically propagated field with the expected

mode field atz = z, ; specifically we compute the correlation factoF:

. 2
- Ul//model//ca. d% (17)

U|‘//mode|2 dxr

where v . iS the modal field launched a=0 and is also the expected field a& z,, and

¥.. 1S the numerically propagated field at=z,. This definition of the correlation factor
includes the effects of both the dissipation in power as well as the loss of shape of the
propagating mode (Ili¢ et al., 1996). The error (ERR) in numerical propagation is given by
ERR=1-CF (18)
and is a measure of the accuracy of the method used for numerical propagation.
In a tilted waveguide, the fielg, ,(x) at z=0 would be the phase tilted modal field
and would be given by
Vimoad X) = ¥ (X) €0 5, XSINO) (19)
where @ is the tilt angle (see Fig. 2), ang (x)and g, are the modal field and the
propagation constant of the mode launched. The exact modal fietdsGtand z =z, would

differ by a constant phase factor, which would not alter the value @fRrend hence the same

field v ,4{(X) is used for the inputad=0) and the expectedz(= z, ) fields in definingCF. Of
course, the field az = z, is shifted along thex-axis by a distance, tané.

In our examples, we have propagated the if6de in the graded-index waveguide
(GRW) the modal field of which is defined as (Adams, 1981)

wo(X) =cosh™ (2x/w) (20)



where
W = (52 - 4z7n2 /22 ) w2 = [+ av 2)*2 —1], vV =mw(@nAn)2/A. (21)

In the examples with the step-index waveguides (SIW1 and SIW2), we have propagated the
TE; and Tho modes. The fields of these modes are well documented in several textbooks (see,

e.g. Adams, 1981; Ghatak and Thyagrajan, 1998) and hence, are not repeated here.
3.1  Effect of Order, M
We first show the effect of the ord®& on propagation. As a test case we consider the

propagation of the TfEmode in the graded-index waveguide (GRW) tilted at50° . Figure 3
shows the input field intensity and the expected and the numerically propagated field intensities

after propagation up ta, =100um; Az used is 0.05um. Sub-figures (a) to (e) show these

intensities for different ordergyl and the sub-figure (f) showsF as a function of ordenM .

From these results, we can see thatNbe=1 (sub-figure a), the propagated field is distorted

and does not get displaced in the transverse direction to the extent expected, and there is a large
error in propagation. With an increase in order, both the mode shape and mode
displacement improve dramatically. The value€&fis nearly unity (up to 3 decimal places) for

M > 20. This improvement in the accuracy is not accompanied by an increase in computation
time for propagation, but only the time for one-time computation of the mBtrircreases.

This fact is illustrated by the computation times shown in Fig.1, which shows separately the

time, t,, required for the one time computation Bf and the timet, required for propagation

of a single step. The figure shows the actual time in seconds for the computations which have
been done using MATLAB version 7 release 14 on a personal computer based on Intel Pentium

4, 3GHz processor with Windows XP Professional operating system.
3.2  Stability and Accuracy of Propagation

An important issue with all propagation methods is their stability. Figure 4 shows the stability
performance of the present method with respect to propagation step-size for a large propagation
distance (100@&m) for the untilted graded-index waveguide. From the figure it can be seen,
that even with a step-size as large asrl, the method remains stable and the error is very low,

of the order of 10. To the best of our knowledge, a step-size as largeuas has not been
reported earlier for the finite-difference based wide-angle propagation method. We have earlier
reported such a large step-size with the collocation based split-step non-paraxial (Coll SSNP)

method (Sharma and Agrawal, 2004). Such a large step-size makes the computation faster and



more efficient. In the results of Shibayaraa al. (1999), the largest step-size reported is

0.05um with a 3-step iterative process and 2000 points in a regular grid. This difference in the

step-size itself makes the present method 20 times faster.

As another example to demonstrate the stability of the method, we consider the
propagation of the TEmode in a step-index waveguide, namely, the benchmark waveguide
(SIW2). We have plotted in Fig. ERR as a function of propagation distance for the untilted
waveguide and for the waveguide tilted at an angle bfR2@m the figure it is clear that even
at 20 the propagation is stable for a large distance,5080and the error remains low, of the
order of 10%-10°. This demonstrates the stability and the accuracy of the method. It may be
pointed out that due to the relatively large index difference, we have taken a step-size

0.05um, which corresponds to 10000 steps of propagation.

3.3  Comparison with Other Methods

Next, we consider examples to compare the performance of the present method, the FD-SSNP,
with other methods. First we consider the propagation of themidtle in the graded index
waveguide (GRW) as a function of the tilt angle. Figure 6 shows the variatloRFowith tilt

angle of the waveguide for different propagation step-sizes for the finite difference (FD SSNP,
solid line) and collocation (Coll SSNP, dashed line) implementations. The figure shows that the

FD SSNP method is stable and accurate with a large step-sizeuwhlgiving an accuracy of
~10?, while it gives accuracy of the order of 1.010* with a step-size of 0.28m, which is
much better than those obtained by Shibayamnal. (1999) To illustrate the point, let us

consider the error for a tilt angle of 50’he error in the best results reported by Shibayeima
al. (1999) for the 3-step GD scheme is about 0.04 witt=0.05x¢m and 2000/1273 points

regular/adaptive grid, whereas in our method (FD SSNP) the error is less than 0.001 with

Az=0.25um and only 900 grid points. This would thus mean much faster and more accurate

propagation. From the figure we can also see that at lower angles for all step-sizes the Coll
SSNP shows lower error, while at higher angles the performance of both the FD and the
collocation implementations is similar or that of the FD implementation is better. This is

expected as the collocation method involves interpolation oMer points while FD

implementation involves fewer points in the transverse domain. The important point is that
even in the FD implementation, the present method performs much better than the Padé based
method (Shibayama et al.,, 1999) and is faster and easier to implement. The added
computational advantage is the flexibility to choose higher number of terms in the series



expansion for the transverse derivative for higher accuracy if required, and fewer terms if the
accuracy requirement is not as stringent.

We next consider the propagation of the;TifEode of the step-index waveguide
(SIW1). Figure 7 shows the variation in the error with the waveguide tilt angle for different

propagation step-sizes for the Coll SSNP and FD SSNP for a propagation distancgmf.100
We find that in the FD SSNP, with onld, =900 and A z=0.25um, the value ofCF at alll

angles from 0 to 50 degrees is about 0.995 or more which is significantly larger than ~0.92, the
best value reported by Yamaudhial. (1996) for the 3-step GD based method with a smaller
step-size, 0.1m and 1800 computation points. In the FD SSNP, with a propagation step-size
2.5 times larger and only half the number of transverse grid points, the edeisrsmaller by

an order of magnitude at 50t may be noted that the present method is non-iterative unlike the
method of Yamauchet al.(1996), which is a 3-step iterative process. In this example, both the
FD SSNP and Coll SSNP show similar errors and over all one can conclude that both perform
equally well.

Table Il shows the performance of the method for the mde in the benchmark
waveguide (SIW2). As the refractive index change from core to cladding is very large in thi
case, the propagation step-size is smaller than for the step index waveguide in the example
given above. In the FD SSNP, we have u$¢d=1200, Az=0.05¢um and M=60. At 40
waveguide tilt angle, the error in propagation is similar to that obtained by Yanetuahi
(1996) with N, =180C points and a 3-step GD based method. However, our method is
computationally more efficient. Comparing the Coll SSNP and FD SSNP, we can see that the
former is more accurate at lower angles, while the latter is better at larger angles.

The final example is that of the propagation of thegTEode in the benchmark
waveguide (SIW2) and we have obtained the power remaining in the guide after propagation
over 100um at a tilt angle of 20 Table Ill compares the two SSNP methods with other
methods reported by Nolting and Marz (1995). It is evident from the table that with smaller
N,, the SSNP methods show significantly higher accuracy. The FD SSNP is more accurate
than the Coll SSNP. This is probably because the former performs equally well or better than
the latter at larger angles. It may further be noted that in the Coll SSNP, the error does not
decrease much on increasing the number of steps from 1000 to 2000 (by h&bh)ing

changes only in the third decimal place.

1C



An important parameter to choose is the reference refractive imdexlthough, in
principle, its value can be arbitrarily chosen, its value may in general affect the accuracy.
Figure 8 shows thERRas a function o, for the Coll SSNP and the FD SSNP. These results

show that the accuracy is largely insensitive to the choiece @r both these methods.

4 Conclusions

A finite difference solution of the second order wave equation implemented in the split step
scheme has been presented. The formulation is non-iterative and allows arbitrary increase in
accuracy in approximating the transverse derivatives, without any significant increase in
computation. The method involves only simple matrix multiplication for propagation, and is
stable with larger step-sizes than reported in other existing methods. The method has excellent
efficiency in terms of increased accuracy, lower computation effort and easier implementation.
Comparison with other methods show that this method gives much better accuracy and
involves less computational effort in comparison to the generalized Douglas (GD) and Padé
approximants based fie-difference methods. However, in comparison to the previously
reported collocation based split-step non-paraxial method, the present method gives better
performance for larger tilt angles (typically more thaf) 2While the for smaller angles the

collocation method performs better.
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Figure1l Computation time for the one-time evaluation of the mérard for single step
propagation as a function of the ordérfor the graded-index waveguide (GRW) for
the details of the waveguide see Table-I and for other details see Sec 3.1.

Fig. 2 Geometry of the tilted waveguide
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Figure 3 (a-€) Plots of the TE mode propagated in the graded-index waveguide (GRW) foridf0at

50° with different ordersiM. The input field (rightmost curve), propagated field (dashed curve) and th
expected field (leftmost curve) are showf) Variation of the correlation facto€f) as a function if the
orderM.
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Figure4 ERRas a function of propagation distance for the graded-index
waveguide (GRW)N=900, order=35.
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Figure5 ERRas a function of propagation distance for the step-index waveguide (SIW2)
(Nolting and Mérz , 1995N=1200, order=60.
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Figure6 ERRas a function of waveguide tilt angle for the graded-index waveguide (GRW)
(Shibayamaet al, 1999) of length 10QzM . For the FD SSNR=900, order=35.
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Figure7 ERRas a function of waveguide tilt angle for the step-index waveguide (SIW1)
(Yamauchiet al.1996). .For the FD SSNIR=900, order=30.
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Figure8 Error in propagation with the reference refractive index for the beaidhm
step-index waveguide (SIW1) for propagation up to A60with step size
0.1umat 40.

Table-l1: Waveguide Profiles and Parameters

Waveguide Profile and Parameters
Graded-index waveguid{  n*(X) = nZ +2n,An sectt (2x/w)
GRW | (Shibayama et al1999) n=2.1455An=0.003,
w=5um, A=1.3um
Step index waveguide nee=1.002,n=1.000,

SIW1 | (Yamauchi et al.1996) w=15.092um, A=1.0pum

Step index waveguide
(benchmark waveguide
(Nolting and Marz, 1995

n(;0=3.30,nc|=3. 17,

SIW2 w=8.8umA=1.55um
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Table-ll: ERR at different angles for the T Enode in
the benchmark waveguide (SIW2) for 10
propagation. Results for Coll SSNP and FD SSNP
implementation are presented.

Angle ERR
(degreey FD SSNP Coll SSNP
0 1.06x 10* 2.82¢10°
10 8.0x 10° 6.80x 10°
20 4.64x10° 9.95<10°
30 4.14x10° 8.00x 10°
40 2.02x 10? 3.60x 10°
50 2.66x 102 2.24x 107
Table-l1l1l: Power remaining in the waveguide after

propagation through 1Qdm in the benchmark
waveguide (SIW2) for T modes using different

methods.
Method N, N, Power in waveguide at 20
FD SSNP 2000 320 ~0.99
Coll SSNP 2000 800 ~0.96
Coll SSNP 1000 800 ~0.96
AMIGO” 1429 1311 ~0.95
FD2BPM 1000 2048 ~0.95
FTBPM 1000 256 ~0.55
LETI-FD' 200 1024 ~0.15

* Results taken from Nolting and Méarz (1995).
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