
Bishop, P. G. & Cyra, L. (2012). Overcoming non-determinism in testing smart devices: how to build

models of device behaviour. Paper presented at the 11th International Probabilistic Safety

Assessment and Management Conference and the Annual European Safety and Reliability

Conference 2012 (PSAM11 & ESREL 2012), 25 - 29 June 2012, Helsinki, Finland.

City Research Online

Original citation: Bishop, P. G. & Cyra, L. (2012). Overcoming non-determinism in testing smart

devices: how to build models of device behaviour. Paper presented at the 11th International

Probabilistic Safety Assessment and Management Conference and the Annual European Safety and

Reliability Conference 2012 (PSAM11 & ESREL 2012), 25 - 29 June 2012, Helsinki, Finland.

Permanent City Research Online URL: http://openaccess.city.ac.uk/2464/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/16272149?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Overcoming Non-determinism in Testing Smart Devices:

How to Build Models of Device Behaviour

Peter G. Bishop

ab*
, Lukasz Cyra

c

a
Centre for Software Reliability, City University, London, United Kingdom

b
Adelard LLP, London, United Kingdom

c
European Commission Joint Research Centre, IPSC, Security Technology Assessment Unit, Ispra, Italy

Abstract: Justification of smart instruments has become an important topic in the nuclear industry. In

practice, however, the publicly available artefacts are often the only source of information about the device.

Therefore, in many cases independent black-box testing may be the only way to increase the confidence in

the device. In this paper we provide a set of recommendations, which we consider to be the best practices for

performing black-box assessments. We present our method of testing smart instruments, in which we use the

publicly available artefacts only. We present a test harness and describe a method of test automation. We

focus on the analysis of test results, which is made particularly complex by the inherent non determinism in

the testing of analogue devices. In the paper we analyse the sources of non-determinism, which for instance
may arise from inaccuracy in an analogue measurement made by the device when two alternative actions are

possible. We propose three alternative ideas on how to build models of device behaviour, which can cope

with this kind of non-determinism. We compare and contrast these three solutions, and express our

recommendations. Finally, we use a case study, in which a black box assessment of two similar smart

instruments is performed to illustrate the differences between the solutions.

Keywords: Smart Sensor, Testing, Non-Determinism, Test Automation.

1. INTRODUCTION

Smart instruments have operational and safety benefits as they are more accurate and require less calibration,

but since they are programmable devices, there is a potential for software defects within the device, which

could result in unpredictable behaviour. Nonetheless, smart instruments have been successfully used in many

industries and some of the devices available on the market have hundreds of thousands of hours of

operational experience. This makes them very attractive for the nuclear industry, but for safety related

purposes additional safety justification and evidence often needs to be developed (Bishop et al., 2005).

Unfortunately, in many cases the manufacturers are not willing to share their development documentation

with their clients, and the only way to develop additional evidence is to perform an assessment using the

publicly available artefacts solely, e.g. the user manuals for operation and maintenance and the device itself.

We call this kind of assessment a black-box assessment.

The primary part of the black-box assessment is functional, statistical testing. To gain sufficient confidence

in the smart device functionality, hundreds of thousands of test cases need to be performed, so the test

execution and result analysis must be automated.

In this paper we present the approach we have used to automate black box assessments of smart instruments.

We begin with presenting our test harness in section 2. In section 3 we discuss the problem of non

deterministic responses to test inputs, which makes automated testing and analysis difficult. Non

deterministic behaviour can occur in any physical implementation of a computing function where there is
uncertainty about the input values used by the smart device. Then in section 4 we give general

recommendations on how to approach the problem and what we consider to be some good practices. In

section 5 we focus on the most difficult part of the analysis, which is the development of the model of device

behaviour that takes account of the non-determinism. We give three alternative solutions for analysing

non-deterministic behaviour, and discuss their advantages and disadvantages. We continue the comparison in

section 6, where we describe a case study, in which we applied two of the models to analyse results of testing

two smart instruments for our client from the nuclear industry. Finally, we provide conclusions in section 7.

While this paper uses a specific type of device as an example, the test approach should be applicable to a

wide range of smart devices. In the paper, specific test recommendations are highlighted in bold italic text.

2. TEST AUTOMATION

Smart instruments can implement a range of different functions. They typically make measurements using

either analogue or digital interfaces, perform some form of computation and output processed values through

analogue outputs, digital outputs or relays. Smart devices can generally be configured to make adjustments to

processing function that is preformed.
This paper describes the testing of a typical smart device, namely a programmable alarm, the main features

of which are shown in Figure 1.

Figure 1. Model of smart instrument

This smart instrument has several alarm outputs and each alarm output controls a relay.

− Each alarm can be configured independently.

− The alarms can be configured to operate when the value exceeds or is below a certain limit. We call

them respectively trip point high and low alarms.

− The alarm trip point is configurable.

− Alarms have configurable deadbands, to avoid “jitter”. Once the alarm is activated, it is only turned off

when the input value moves outside the deadband region.

− Alarms have configurable delays, i.e. the value must remain in the alarm range for a certain amount of

time to trigger the alarm.

− Alarms can be latching and non-latching, i.e. once set they do or do not require a manual reset.

The test environment used to automate the tests consisted of three separate elements:

1. An off-line test data generator, which generates a file with test cases.

2. An on-line test execution system, which takes the file specifying the test cases and generates a file

containing the test cases and the corresponding test results.

3. An off-line result checker, which takes the result file and detects discrepancies between the test results

and the model of behaviour it uses.

This design makes it possible to:

− Use different types of test generator, such as direct plant measurements, simulators, or specification

derived tests

− Execute the device tests only once (a very time consuming part of the process)

− Analyse the test results stored in a file many times using different versions of the result checker. For

example a flaw in the checker can be fixed and the results rechecked without performing more tests on

the physical device

− Furthermore, this design makes it possible to rerun exactly the same sequence of tests many times to

check, e.g. if the identified discrepancies are repeatable.

We recommend splitting the test harness into three elements as presented above.

Figure 2. Model of the on-line test execution system

We implemented the off-line test generator as a Java application which generates transients, i.e. signals

starting at a random level below the trip point, then rising with a random slope to a random value above the

trip point, and decreasing back with a random slope to a random value below the trip point. Also noise was

added to the signal. We recommend adding noise to test signals as “the most interesting” situations happen

when the input changes slightly around the trip point.
The model of the on-line test execution system is presented in Figure 2. We implemented it as a LabView
application. The application executes the test cases in a cycle. As we did not use a real time operating system,

but a generic purpose one, we experienced occasionally “unexpected” delays in the execution. This is not a

problem if we know when the delay happens and how long it takes. Therefore, our test result file includes

both test results and detailed time readings. In practice this means taking a sequence of readings as follows:

record the time – read a new test case from the file – record the time – send a new input to the device –

record the time – wait x seconds – etc. We recommend taking time readings after every micro-step of the

execution so that once we detect a delay we know exactly when it occurred.
Finally, we implemented the off-line result checker. This application has a built in model of behaviour of the

device. This apparently straightforward task is more complicated than it first appears (Bishop and Cyra, 2010)

as the device can generate different, but equally valid responses to the same test input sequence. The causes

of the non-deterministic behaviour, and alternative means of checking the tests in the presence of

non-determinism are discussed in detail in the following sections of this paper.

3. NON-DETERMINISM

Non-determinism is unavoidable in testing analogue devices. It arises from a number of different sources:

− Smart device accuracy

− Smart device sampling rates

− Smart device response lags

− Lack of knowledge about the internal design of the device

− Inaccuracy of the test harness.

3.1. Smart device accuracy

The input provided to the smart device is read with

certain accuracy. This leads to non-determinism when

the input value is close to a decision point, e.g. an

alarm trip point, as presented in Figure 3. The

measurement inaccuracy is represented by the thick

grey line (1). If the input is close to the limit (2) we

cannot know whether the alarm was set on or not,

which means that two alternative alarm states are

possible (3). This situation, in turn, leads to non

determinism in the following part of the diagram (4),

as the state of the alarm depends on its state in the

past. Finally, the state of the alarm becomes

deterministic again once we are sure that the input

value left the deadband (5).

3.2. Smart device sampling rates

The input provided to the smart device is sampled

using a certain sampling rate, as presented in Figure 4.

Two alternative ways of taking samples are presented

using solid (1) and dashed (2) lines. Depending on the

way of sampling used the device will or will not notice

the short excursion of the input above the alarm limit

(3). This means that the output will be non

deterministic (4) until the input value is definitely

outside the deadband region (5).

Alarm state

Off

On

Measured input

Alarm Limit

Deadband

Time

Non-deterministic

value

Either

alarm

state

possible

Time

1

2

4

5

3

 Figure 3. Non-determinism due to inaccuracy

Alarm state

Off

On

Measured input

Alarm Limit

Deadband

Time

Smart device input

sample interval

Either

alarm

state

possible

Time

1

2

3

4

5

Figure 4. Non-determinism due to sample rate

3.3. Smart device response lags

There is uncertainty about when the expected response

will appear at the smart device output. This is

illustrated in Figure 5.

When the input exceeds the limit (1) we expect the
alarm to be set on. This, however, can happen almost

immediately (2) or with a certain delay (3), which is

usually defined in the user manual as the maximal

response time of the device. So for a certain period of

time the output is non-deterministic.

Alarm state

Off

On

Measured input

Alarm Limit

Deadband

Time

Smart device input

sample interval

Either

alarm

state
possible

Time

Output

response

lag(s)

1

2
3

Figure 5. Non-determinism due to response lags

3.4. Lack of knowledge about internal design of

device

Furthermore, when we consider the device as the

whole, with the analogue output and several relays it

may turn out that we do not know enough about the

internal design of the device to know what the correct

output in a certain situation is.

In Figure 6 we see a non-deterministic output caused

by the inaccuracy of the input value (1). There are two

alarms that have identical configuration settings. The

question is whether the alarm 1 activation state (2) can

be different from the alarm 2 state (3). As we do not

know the internal design of the device (e.g. there could

be a different processor for each alarm), we have to

accept inconsistent alarms as a legitimate result.

Alarm 2 state

Off

On

Measured input

Alarm Limit

Deadband

Time

Non-deterministic

value Time

1

3

Alarm 1 state

Off

On

Time

2

Either

alarm

state

possible

Either

alarm

state

possible

Figure 6. Uncertainty about internal design

3.5. Inaccuracy of test harness

Finally, the test harness introduces additional non-determinism to the measurement. It increases the non-

determinism by:

(1) increasing the inaccuracy of the input value by generating inaccurate test signals,

(2) increasing the inaccuracy of the output value by recording inaccurate test responses, and

(3) increasing the inaccuracy of time measurements.

4. MODELLING DEVICE BEHAVIOUR: GENERAL RULES

To develop the model of device behaviour we need to refer to the publicly available documentation of the

device. The relevant information includes:

− Description of the functionality of the device

− Accuracy of the analogue input

− Accuracy of the analogue output

− Response time for the analogue output

− Response time for the relays

− Response time for the reset button

− Timing accuracy of the delays

To build the model of device behaviour we need to understand the functionality of the smart instrument in

any imaginable situation. This is not a trivial task as there are many situations which, without an explicitly

stated specification, do not have the right intuitive solution. For instance, let us consider Figure 3. Assuming

that this is a latching alarm and in (2) the alarm was set on, should the alarm be cancelled when reset is

pressed while the input state is at (4), i.e. within the deadband? We recommend careful reading of the

specification of the device to understand the expected behaviour of the system. If specification of certain

behaviours is missing we should assume that the result is non-deterministic.
To build the model of the device behaviour we need to know the characteristics of the device, i.e. accuracy

and response time in different situations. In most cases we can find this information in the documentation of

the smart instrument. We recommend, however, checking all these characteristics oneself using an

oscilloscope. Firstly, some of the characteristics may be missing from the documentation but we still need
them to develop the model of behaviour. Secondly, even if defined, the documented characteristics do not

always correspond to the reality or are defined in an ambiguous way.

Once we know all this information we need to decide the strategy for testing. There are two main approaches

we can choose from:

1. Avoiding non-determinism by selecting test input values sufficiently far from the decision points and

introducing sufficiently long delays (we can easily do it once we know the characteristics of the device).

Using this approach we can still build confidence that the behaviour of the device is not significantly

different from the expected one.

2. Taking input values from the whole range of legitimate input values, so that the non-deterministic

situations are also covered. For this approach we still recommend avoiding non determinism due to

response lags by introducing sufficiently long delays.
The first approach is much easier to perform as the model of device behaviour is much simpler. It is not

necessary to implement all the intricacies needed to address non-determinism. However, this approach

precludes the use of realistic test scenarios (e.g. from plant simulations). In addition, the most interesting

situations almost always happen around trip points and the likelihood of finding flaws in device functionality

is much higher when we follow this approach. We strongly recommend, using the second approach.

It is also possible that a flaw may only be detectable under very specific input sequences that only occur in a

small fraction of test cases. We recommend performing many thousands of test cases to increase

confidence that the device is operating correctly.
Last but not least, the implementation of the result checker is the major challenge. The possible ways of

implementing the model of device behaviour are discussed in the next section. No matter which approach is

adopted; errors should be avoided in the result checking software.

− We recommend keeping the design of the result checker as simple as possible.

− Best practice methods should be used in developing and verifying the checker. In particular automated

unit and integration testing of the checker should be applied.

− We recommend thorough testing. Once the implementation of the result checker is completed it is a

good idea to test it on large sets of data with random modifications, e.g. of the states of relays. This
helps identify bugs and builds confidence in the correctness of the implementation.

5. MODELLING DEVICE BEHAVIOUR: ALTERNATIVE STRATEGIES

In our research we have tried three different ways of modelling smart instrument behaviour that take account

of non-determinism:

1. Parallel state machines (each has a different state)

2. A single state machine (operating on a range of possible states)

3. A selective checker that only checks the response when the result is expected to be deterministic

5.1. Parallel state machines

This modelling approach uses simple state machine logic to represent the behaviour of the device. However

when the input uncertainty spans a decision threshold, parallel copies of the logic with different states are

created representing the alternative execution paths (termed “threads”) that can be taken given the

uncertainty. This is illustrated in Figure 7.

For deterministic situations we give a new input to the model (1) and obtain the state of the outputs (2). Then

we can compare the calculated outputs with the real state of the alarms, and in case there is a discrepancy

report it.

Alarm state

Device input

value

Alarm Limit

Deadband

Time

Non-deterministic input values

Time

Off

On

One or more threads to represent

possible device states

1

2

3

4

5

6

7

Figure 7. Modelling all possible threads of interpretation

The situation is more complicated for non deterministic inputs. For a new input condition like case (3), the

checker detects that this input leads to a non-deterministic output (4). So an additional copy (or several

copies) of the state machine is created to represent each possible thread of execution within the smart device

(such as states 5 and 6). The outputs of all threads are compared with the output obtained in testing. We keep

all threads which agree with the actual test output and discard all the others, as they represent interpretations

of the input which did not take place. If following this procedure we discard all the parallel state machines it

means that we detected a discrepancy (as none of the threads could explain the output obtained during

testing).

This checking strategy should work in theory, but in practice it can quickly lead to exhaustion of resources.

For certain alarm configurations, it is possible to create millions of parallel threads. To minimise this state

explosion, we have to check whether different state machine threads have equivalent states and merge them

back into a single thread, For example, at point (7) in the input sequence, threads representing different delay

trigger times have all expired so the timeout states and relay output states agree and can be merged.

There is one problem with this approach. Namely, interpretation of the input may change between one test

input and the next. Typically this is because the smart device scans its analogue input several times before a

new test value is presented, and each time it is read there is measurement uncertainty that can result in a

slightly different interpretation of the test value. However, we can easily modify the behaviour modelling

approach to address this problem by increasing the resolution of the analysis. We can divide the interval

between test value changes into several sub-steps modifying the logic rules accordingly. With this

modification it is possible to model the behaviour of the device on a contemporary PC with 60 sub-steps per

test interval step.

5.2. Non-deterministic state machine

This modelling approach uses a non-deterministic state machine to represent the behaviour of the device.

This means that for a certain input the model can generate a set of correct test results. If the recorded output

is not in the set, a discrepancy is reported.

As the model has to handle sets of different states simultaneously, this is a potentially complex task. To

minimise complexity, a layered implementation approach was adopted as shown in Figure 8.

Figure 8. Implementation of the non-deterministic machine

+ deadbands

+ delays

+ latching

+ trip point low

trip point high alarm

A layered model of alarms is a clean solution, as it divides the problem of modelling the alarm into a set of

simple, self-contained sub problems, each of which uses exclusively the model in the hierarchy located

directly below itself.

At the bottom of the hierarchy there is a very simple model of an alarm with maximally reduced

configuration options. Then a set of more sophisticated alarm models is built on top of that. All of them are,
however, internally simple as each of them adds one configuration parameter only and reuses the

functionality modelled by the alarm in the layer below.

The lowest layer state machine models a trip point high alarm with a configurable limit. This model is very

simple as it only checks if the input value is in the uncertainty band. If so the model returns ‘UNCERTAIN’,

otherwise it returns ‘ON’ or ‘OFF’ depending on whether the input is above or below the limit.

The next layer adds deadbands to the model. This is simple again as we can define two trip point high

alarms: one with the same limit as the considered alarm, and the other with the limit set to (limit –

deadband). We check what the outputs for a given input from both models are and based on this information

we can easily infer the proper output for the model with the deadband.

The next layer adds delays. To create this model we use a model with deadbands, we store the previous

alarm state, and the length of time the alarm was in the alarm state (a range from minimum to maximum).

Using this information we infer the new state of the alarm.

Latching is similar. Again we need to remember the previous alarm state and based on this information and

the state of the reset button we pass the value from the bottom layer or we set ‘ON’ as the output.

A similar layered model could have been constructed for the low trip function. But this was not necessary

because a low trip can be simulated by applying a symmetrical transformation to the high trip model. Each

input x is replaced by (RANGE – x), where RANGE is the maximum acceptable input value, and each

decision point setting y is replaced by (RANGE – y).

For modelling the exact functionality of a smart instrument defined in section 2 we recommend layers

defined as in Figure 8.

5.3. Selective (rule-based) verification

In contrast to the previous approaches, this result checking method is selective because it ignores test cases

where the input sequence could result in a non deterministic output.

The basic idea is to specify a set of rules about the expected device behaviour. The rules are similar to the

trace specifications used in temporal logic (e.g. Alur and Henzinger, 1994). Each rule specifies a sequence of

inputs over time that meets certain constraints and the expected (deterministic) result if the sequence

conditions are met. During the result checking, each rule is checked to see if the trace condition is true and if

so, the expected result is checked. A discrepancy is reported if any of the applicable rules are violated.

Each rule is a statement of the form:

{init:}input_trace � expected-response

Figure 9. Rule form

where:

− init is an optional initial device state (like configuration settings and device output states)

− input-trace is a sequence of constraints on the input value over some period of time.

− expected-response is a condition expressed in terms of one or more output values that should be true if

the input trace condition is true.

Some example rules are shown in Figure 10.

Rule 1: [input >> limit] >> delay � alarm=on
Rule 2: (input << limit) & reset � alarm=off

Figure 10. Examples of rules of behaviour

Rule 1 states that whenever the input is above the limit and the alarm has been in the alarm state for at least

the configured delay-time, the alarm should be set on. The “>>” operator takes account of the measurement

uncertainty and can be interpreted as “definitely above”. The square brackets denote the time interval where

the condition is true and the “>>” operator applied to the time-range tests that the range has definitely

exceeded some limit (given known timing uncertainties).

Rule 2 states that whenever the input is below the limit and the reset button is pressed the alarm should be set

off. This rule has no time-range, i.e. it is true for a particular test step. However there is an implicit time

range which is the interval between test steps. A more formal definition of a rule is shown in Figure 11

below.

rule {init:} input-trace � expected_result
init output_expr
 output_expr && config_expr
input-trace trace-step {; trace-step… }
trace-step [input-expr] >> time-lim
 [input-expr] << time-lim
 input-expr
input-expr (input-expr && input-expr)
 (input-expr || input-expr)
 not (input-expr)
 comparison
output_expr comparison
comparison analogval >> limit
 analogval << limit
 digval = binary-value
expected_result result_cond {&& result_cond …}
result_cond digval = binary-value

Figure 11. The elements of a rule

Note that the construct {; trace-step… } indicates an optional sequence of additional terms of the same type.

Additional entries on additional lines are alternative expansions of the left-hand term, and the expansion can

be recursive if the term also appears on the right hand side. The “&&” and “||” terms denote the boolean

AND and OR operations.

Ideally the rules should be expressed directly in this format and translated into a form suitable for checking.
In practice, we implemented the rules directly as Perl functions that are still relatively easy to define and

understand. For example Rule 1 in Figure 10 is actually expressed as:

whenever(above($hi_lim)); exceeds($timelim); expect($hi_trip==1);

Figure 12. Perl implementation of Rule 1

The above function checks the analogue test value against a limit (taking account of measurement

inaccuracy). The whenever function measures the time this condition is true over a series of test inputs, and

exceeds checks whether this time exceeds the limit (taking account of timing inaccuracy). Finally expect
checks the expected output state when the trace condition is satisfied.

The rule checker also requires parameters to be set that mirror the configuration of the actual device, and

appropriate measurement and timing accuracy values have to be defined for use in the Perl checking

functions (exceeds, above, below, etc).

5.4. Assessment of the options

Of the model-based approaches, we consider the non-deterministic state machine to be better than the

parallel state machine method because:

− The modelling makes fewer assumptions about the internal design (like some possibly unknown input

sampling interval) by permitting different interpretations of the input to occur at any point within a time
range.

− The implementation is more efficient (fewer resources are needed).

The non-deterministic state machine provides a complete model of behaviour of the device. This means that

every output is checked for correctness and it also means that the validity of the outputs is checked to the

maximum extent possible. The disadvantage of this approach, however, is that a relatively high level of

effort is required to implement and validate the model. We quite often found that apparent discrepancies

were actually due to some implied assumption in the model, which had to be removed.

By contrast the main advantages of the rule-based verification method are

− The behaviour description does not have to be complete. The rules can focus on the most important

properties of the device.

− The rules are independent. So it is easy to add new rules and check if they are valid.

The main disadvantage is that the rule coverage is not necessarily complete, so some deterministic cases

could be omitted. For example, if the input trace just touches the trip limit, Rule 1 in Figure 9 will not match

because it does not “definitely exceed” the limit. A model-based checker would observe (for example) that

the device had tripped on a particular input and update its internal model of the device state, so if the alarm

subsequently cleared in the deadband, it would detect this as a discrepancy. The coverage of a rule-based

checker can be increased by including an initial device output condition. For example, a rule that detects the

device alarm has activated, can then detect an anomalous alarm clearance in the deadband. But typically a

rule based checker is better-suited to situations where we are more interested in checking certain properties

of device rather than thoroughly analysing all possible responses.

We recommend using the non-deterministic state machine in situations when we want to prove

correctness of the whole data set.

We recommend using the rule-based verification in situations in which partial results are satisfactory, e.g.

we want to be sure that the alarm will always be activated under specified conditions.

6. CASE STUDIES

In this section we present a case study that compares the application of model-based and rule-based checking

to a smart device. Both types of checking were applied to two different programmable alarms (AL1 and

AL2) which had nominally identical alarm functionality.

Both alarms were tested with a large number of test values (in excess of 100 000 tests at 2 second intervals)

over a period of several days. This test sequence included many thousands of test cases that would trigger the

high and low trip alarms in the device.

These test result files were analysed using both checkers. The non-deterministic state machine used the five

layers described in section 5.2. The rule based checker had 6 rules defined for the high trip and an equivalent

set of 6 rules for the low trip. Both checkers analysed all the test results in less than a minute.

The non-deterministic model checker reported no discrepancies for AL1 but a large number of discrepancies

for AL2. By contrast, rule-based checking of exactly the same test result files reported no discrepancies in

either programmable alarm.

Upon investigation we found there was a subtle difference in the functional behaviour of the two devices.

With device AL1 the input trace has to be above the limit for the whole of the delay interval before the alarm

activates, as shown in Figure 13 below.

Start
Timer

Alarm

Off
Alarm

On

Delay interval

Limit

Deadband

Figure 13. Alarm response of device AL1

Start

Timer

Alarm
Off

Alarm

On

Delay interval

Figure 14. Alarm response of device AL2

For device AL2, the input trace has to be above the limit at the start of the delay interval. After that, it only

needs to be above the deadband limit. The response to exactly the same input trace is shown in Figure 14..

Both responses were consistent with the informal alarm response definition provided in the device manuals,

but it can be seen that the AL2 response is slightly more “trigger happy” than AL1 as it can be activated by a

small noise spike transiently exceeding the limit.

The non-deterministic model checker was originally developed to test device AL1, and used the

interpretation of the alarm behaviour shown in Figure 13. As a result, when the checker was applied to AL2,

discrepancies were generated when the AL2 alarm was activated earlier than expected.

By contrast, the rule-based checker had no rule for checking the early alarm scenario shown in Figure 14, but

there were rules to check that the alarm was definitely off when below the deadband and definitely on when

above the limit, so both devices satisfied these rules.
Once this difference in device behaviour was identified, it was easy to add an extra rule (activated by the

observed output state of the alarm) to the rule-based checker that corresponded to the more “trigger happy”

behaviour of device AL2. With this rule-set, no discrepancies were detected with device AL2, but

discrepancies were reported for device AL1 as the new rule checks for alarm operation in the “trigger happy”

region. This shows that a rule-based checker can differentiate between small variations in device behaviour

given sufficient rules.

6. CONCLUSIONS

In this paper we presented a method of black-box testing of smart instruments. The test approach presented

should be applicable to a wide range of smart devices. We made practical recommendations that summarise

the important lessons learnt from the black box assessments we have performed. We believe that this paper is

a good starting point for anybody wishing to perform a similar analysis of a computer-based system that

makes decisions based on inputs that are subject to measurement uncertainty.

In the paper we focused particularly on the most difficult part of the black-box testing, which is the analysis

of test results. Out of three different ways of building result checkers we recommended two, and their

performance is compared in a case study.

Based on our current experience it is not obvious that any of the checking methods, i.e. the non deterministic

state machine and the rule-based verification, is the best in all circumstances. The application context will

determine which is the most suitable. For example, if there is an application requirement that the device must

operate within some time constraint when some input limit is reached, then a rule-based check is the most

appropriate. Such generic checks can be applied to diversely implemented devices and can tolerate minor

differences in device behaviour. On the other hand, if we want to test for exact compliance of a device to its

specification, a model-based checker is more appropriate.

In the next stage of the research we plan to apply our analysis to other smart instruments. This should help us

better understand the suitability of alternative result checking methods. Further experience should also help

to refine the recommendations we have made on the implementation of the test environment.

Acknowledgements

The authors wish to acknowledge the support of the UK Control and Instrumentation Nuclear Industry

Forum (CINIF) who funded the research presented in this paper.

References

[1] Bishop, PG. Bloomfield, RE, Guerra, ASL and Tourlas, K, 2005. Justification of Smart Sensors for

Nuclear Applications. In Winther, R., Gran, B.A., Dahll, G. (Eds.), SAFECOMP 2005. LNCS, vol.

3688, Springer, Heidelberg: 194–207.

[2] Alur, R. and Henzinger, T. 1994. A Really Temporal Logic. Journal of the ACM (JACM) 41(1): 181–

203.

[3] Bishop, PG and Cyra, L. 2010. Overcoming Non-determinism in Testing Smart Devices: A Case

Study, In Schoitsch, E. (Eds.), SAFECOMP 2010, LNCS, vol. 6351, Springer, Heidelberg: 237–250.

