
Sun, H., Xu, H., Meskarian, R. & Wang, Y. (2013). Exact penalization, level function method, and

modified cutting-plane method for stochastic programs with second order stochastic dominance

constraints. SIAM Journal on Optimization (SIOPT), 23(1), pp. 602-631. doi: 10.1137/110850815

City Research Online

Original citation: Sun, H., Xu, H., Meskarian, R. & Wang, Y. (2013). Exact penalization, level

function method, and modified cutting-plane method for stochastic programs with second order

stochastic dominance constraints. SIAM Journal on Optimization (SIOPT), 23(1), pp. 602-631. doi:

10.1137/110850815

Permanent City Research Online URL: http://openaccess.city.ac.uk/2414/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/16272104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

EXACT PENALIZATION, LEVEL FUNCTION METHOD AND

MODIFIED CUTTING-PLANE METHOD FOR STOCHASTIC

PROGRAMS WITH SECOND ORDER STOCHASTIC DOMINANCE

CONSTRAINTS

HAILIN SUN∗, HUIFU XU† , RUDABEH MESKARIAN‡ , AND YONG WANG§

Abstract. Level function methods and cutting plane methods have been recently proposed
to solve stochastic programs with stochastic second order dominance (SSD) constraints. A level
function method requires an exact penalization setup because it can only be applied to the objective
function, not the constraints. Slater constraint qualification (SCQ) is often needed for deriving
exact penalization. It is well known that SSD usually does not satisfy SCQ and various relaxation
schemes have been proposed so that the relaxed problem satisfies the SCQ. In this paper, we show
that under some moderate conditions the desired constraint qualification can be guaranteed through
some appropriate reformulation of the constraints rather than relaxation. Exact penalization schemes
based on L1-norm and L∞-norm are subsequently derived through Robinson’s error bound on convex
system and Clarke’s exact penalty function theorem. Moreover, we propose a modified cutting
plane method which constructs a cutting plane through the maximum of the reformulated constraint
functions. In comparison with the existing cutting plane methods, it is numerically more efficient
because only a single cutting plane is constructed and added at each iteration. We have carried out a
number of numerical experiments and the results show that our methods display better performances
particularly in the case when the underlying functions are nonlinear w.r.t. decision variables.

Key words. Slater constraint qualification, exact penalization, modified cutting-plane method,
level function method

AMS subject classifications. 90-08, 90C15, 90C30, 90C90

1. Introduction. Stochastic dominance is a fundamental concept in decision
theory and economics. A random outcome a(ω) is said to dominate another random
outcome b(ω) in the second order, written as a(ω) ≽2 b(ω), if E[v(a(ω))] ≥ E[v(b(ω))]
for every concave nondecreasing function v(·), for which the expected values are finite,
see monograph [17] for the recent discussions of the concept.

In their pioneering work [4], Dentcheva and Ruszczyński introduced a stochastic
programming model with second order stochastic dominance constraints :

min
x

E[F (x, ξ(ω))]

s.t. G(x, ξ(ω)) ≽2 Y (ξ(ω)),
x ∈ X ,

(1.1)

where X is a closed convex subset of IRn, ξ : Ω → Ξ is a vector of random variables
defined on probability space (Ω,F , P) with support set Ξ ⊂ IRq, F : IRn × Ξ → IR is
convex continuous function w.r.t. x, G : IRn ×Ξ → IR is concave continuous function
w.r.t. x and E[·] denotes the expected value with respect to the distribution of ξ(ω).

∗Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China
(mathhlsun@gmail.com).

†School of Engineering and Mathematical Sciences, City University London, London,
EC1V 0HB, London, UK; School of Maritime and Transportation, Ningbo University, China.
(Huifu.Xu.1@city.ac.uk).

‡School of Mathematics, University of Southampton, Southampton, SO17 1BJ, UK
(rm3g08@soton.ac.uk).

§Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China
(mathwy@hit.edu.cn).

1

2 H. SUN, H. XU, R. MESKARIAN AND Y. WANG

Here we make a blanket assumption that the expected value of the random function
is well defined.

A simple economic interpretation of the model can be given as follows. Let
G(x, ξ(ω)) be a profit function which depends on decision vector x and a random
variable ξ(ω), let F = −G and Y (ξ(ω)) be a benchmark profit. Then (1.1) can be
viewed as an expected profit maximization problem subject to the constraint that the
profit dominates the benchmark profit in second order.

Let F1(X; η) denote cumulative distribution function of random variable X, that
is,

F1(X; η) := P (X ≤ η),

and

F2(G(x, ξ(ω)); η) :=

∫ η

−∞

F1(G(x, ξ(ω)); t)dt.

G(x, ξ(ω)) is said to dominate Y (ξ(ω)) in first order, denoted by G(x, ξ(ω)) ≽1

Y (ξ(ω)), if for all η ∈ IR,

F1(G(x, ξ(ω)); η) ≤ F1(Y (ξ(ω)); η).

G(x, ξ(ω)) is said to dominate Y (ξ(ω)) in second order, denoted by G(x, ξ(ω)) ≽2

Y (ξ(ω)), if

F2(G(x, ξ(ω)); η) ≤ F2(Y (ξ(ω)); η), ∀η ∈ IR. (1.2)

It is easy to observe that first order stochastic dominance implies second order s-
tochastic dominance. It is well known that second order dominance constraint in
(1.1) can be reformulated as

E[(η −G(x, ξ(ω)))+] ≤ E[(η − Y (ξ(ω)))+], ∀η ∈ IR, (1.3)

where (x)+ = max(0, x); see [6]. Ogryczak and Ruszczyński [18] investigated the
relationship between stochastic second order dominance and mean-risk models. In a
more recent development [5, Theorem 3.1], the second order dominance is shown to
be equivalent to a continuum of conditional value at risk constraints: one for each
probability level. Using the reformulation of the second order dominance constraints,
Dentcheva and Ruszczyński [6] reformulated (1.1) as:

min
x

E[F (x, ξ(ω))]

s.t. E[(η −G(x, ξ(ω)))+] ≤ E[(η − Y (ξ(ω)))+], ∀η ∈ IR,
x ∈ X .

(1.4)

To ease notation, we will use ξ to denote the random vector ξ(ω) and a deterministic
vector, depending on the context. It is well known that (1.4) does not satisfy the well
known Slater constraint qualification, a condition that is often needed for deriving
first order optimality conditions of the problem and developing a numerically stable
method for solving the problem. Subsequently, a so-called relaxed form of (1.4) is
proposed:

min
x

E[F (x, ξ)]

s.t. E[(η −G(x, ξ))+] ≤ E[(η − Y (ξ))+], ∀η ∈ [a, b],
x ∈ X ,

(1.5)

STOCHASTIC PROGRAMS WITH DOMINANCE CONSTRAINTS 3

where [a, b] is a closed interval in IR. Over the past few years, Dentcheva and
Ruszczyński have developed comprehensive theory of optimality and duality for (1.5),
see [4, 5, 6].

Unfortunately, problem (1.5) is difficult to solve since it is a stochastic semi-
infinite nonsmooth programming problem. In the case when G(x, ξ) and F (x, ξ) are
linear w.r.t. x and ξ has finitely many scenarios, Dentcheva and Ruszczyński [5]
reformulated problem (1.5) as a linear programming (LP) problem by introducing
new variables which represent positive parts in each constraint of problem (1.5). The
reformulation effectively tackles the nonsmoothness in the second order constraints
and the approach can easily be used to the case when G and F are nonlinear. This
reformulation, however, introduces many new variables particularly when the random
variable ξ has many distributional scenarios. Apparently this does not have significant
impact on numerical implementation as the existing solvers for LP are very powerful
(can deal with millions of variables). However, the impact will be much more signifi-
cant when F and G are nonlinear and this is indeed one of the key issues this paper
is to address.

Rudolf and Ruszczyński [22] and Fábián et al [8] proposed cutting-plane methods
for solving a stochastic program with second order stochastic dominance constraints.
A crucial element of the method in [8] is based on an observation that when F and
G are linear w.r.t. x and probability space Ω is finite, the constraint function in
the second order dominance constraint is the convex envelope of a finitely many lin-
ear functions, which is called cutting-plane representation and observed by Haneveld
and van der Vlerk in [11]. Subsequently, an iterative scheme which exploits the fun-
damental idea of classical cutting-plane method is proposed where at each iterate
“cutting-plane” constraints are constructed and added. This also effectively tackles
the nonsmoothness issue caused by the plus function. While the method displays
strong numerical performance, it relies on discreteness of the probability space as well
as the linearity of F and G. Hu, Homem-de-Mello and Mehrotra [10] and Homem-
de-Mello and Mehrotra [9] also proposed a cut generation algorithm for solving a
sample average approximation (SAA) problem of stochastic program with multivari-
ate stochastic dominance constraints. Different from the cutting plane method in
[22] and [8], they reformulated every subproblem as linear programming problem by
introducing some new variables when F and G are linear.

In this paper we consider problem (1.4) with a focus on the case when ξ has a
discrete distribution, that is,

min
x

N
∑

i=1

piF (x, ξ
i)

s.t.

N
∑

i=1

pi(η −G(x, ξi))+ ≤
N
∑

i=1

pi(η − Y (ξi))+, η ∈ IR,

x ∈ X .

(1.6)

Here the random variable ξ has a finite distribution, that is, P (ξ = ξi) = pi, for
i = 1, · · · , N . When pi = 1

N
, problem (1.6) can be viewed as a sample average

approximation of problem (1.4). We investigate the Slater constraint qualification of
the problem and its reformulation, exact penalization schemes and numerical methods.
Specifically, we make the following contributions.

• We develop penalization schemes for problem (1.6). We do so by exploiting
Clarke’s exact penalty function theorem [2, Proposition 2.4.3] and Robinson’s

4 H. SUN, H. XU, R. MESKARIAN AND Y. WANG

error bound [19]. The latter requires SCQ. Unfortunately, problem (1.6) or
its reformulation (2.5) does not satisfy the constraint qualification (see dis-
cussions by Dentcheva and Ruszczyński at pages 558-559 in [4]). Here we
propose an alternative way to reformulate the constraints of problem (2.5).
We then demonstrate that the newly reformulated problem (see (2.7)) satisfies
the SCQ under some moderate conditions (see Theorem 2.1). Two exact pe-
nalization schemes based on L1-norm and L∞-norm are subsequently derived
and are shown that they are exact penalization of problem (2.5) although the
latter does not satisfy SCQ (see Theorems 3.1 and 3.2). Note that Liu and
Xu [14] proposed an exact penalization scheme with L∞-norm for the relaxed
problem (1.5). A crucial condition is the SCQ of problem (1.5) which relies
on the relaxation because the original problem (1.4) may not satisfy the SCQ.
Our penalization schemes in this paper differ from Liu and Xu’s in that they
are proposed for the original problem rather than for the relaxed problem,
which means that they are established without the SCQ of the original prob-
lem. This makes the penalization scheme more appealing given the fact that
the original problem usually does not satisfy the SCQ particularly in the case
when ξ satisfies discontinuous distribution. Based on the exact penalization
formulations, we apply a well known level function method in nonsmooth
optimization [13, 25] to the penalized problems. An obvious advantage of
this approach is that we can effectively deal with excessive number of con-
straints, nonsmoothness in the constraints and nonlinearity of the underlying
functions.

• We also propose a modified cutting-plane method to solve the problem. The
cutting-plane method differs from those in the literature [22] in that it ap-
plies to the maximum of the constraint functions rather than each constraint
function. This saves considerable computation time because at each itera-
tion, our cutting-plane method requires to add a couple of linear constraints
whereas the cutting-plane method in [22] requires to add N constraints (N is
the cardinality of the support set Ξ). The approach also differs from that in
[9, 10] because our modified cutting-plane method uses the cutting-plane rep-
resentation proposed in [11]. The idea of applying the cutting-plane method
to the maximum of the constraint functions is similar to the idea in algorithm
proposed by Fábián, Mitra and Roman, see the algorithm at page 48 in [8].
Note that Fábián, Mitra and Roman’s algorithm is applied to linear models
while Algorithm 4.1 is applicable to nonlinear case. Therefore we may regard
our algorithm as an extension of theirs.

• We have carried out extensive numerical tests on our proposed methods in
comparison with the cutting plane method in [8]. The numerical results
show that our proposed methods are more efficient. Specifically, we have
discovered that level function method based on exact penalization scheme
with L∞-norm is most efficient in terms of computation time; the modified
cutting-plane method (Algorithm 4.1) performs also efficiently.

It might be interesting to extend the proposed penalty schemes and algorithms
to the stochastic problem with multivariate dominance constraints when the random
variables in the problem have finite support sets, we will do this in our follow-up work
[15]. Another interesting extension will be to develop similar schemes and algorithms
of second order dominance programs with continuous distributions although we may
apply them to the sample average approximated problems [9, 23]. A potential advan-

STOCHASTIC PROGRAMS WITH DOMINANCE CONSTRAINTS 5

tage of doing this is to apply stochastic approximation methods (e.g. [7]) other than
SAA.

The rest of the paper is organized as follows. In section 2, we discuss the SCQ of
problem (1.6) and its reformulation. In section 3, we propose two exact penalization
schemes for problem (2.5) and apply a level function method to solve them. In section
4, a modified cutting-plane method has been proposed for solving the problem and
finally in section 5, we report some numerical test results.

Throughout this paper, we use the following notation. xT y denotes the scalar
product of two vectors x and y, ∥ · ∥, ∥ · ∥1 and ∥ · ∥∞ denote the Euclidean norm, L1-
norm and L∞-norm of a vector and a compact set of vectors respectively. We also use
∥ · ∥ to denote the infinity norm of a continuous function space and its induced norm
of a linear operator. d(x,D) := infx′∈D ∥x − x′∥, d1(x,D) := infx′∈D ∥x − x′∥1 and
d∞(x,D) := infx′∈D ∥x−x′∥∞ denote the distance from point x to set D in Euclidean
norm, L1-norm and L∞-norm respectively. For a real valued-function h(x), we use
∇h(x) to denote the gradient of h at x.

2. Slater constraint qualification. In the literature of stochastic programs
with second order dominance constraints, SCQ has been used as a key condition for
deriving optimality conditions and exact penalization, see for instances [4, 14].

Recall that problem (1.6) is said to satisfies the SCQ if there exists x0 ∈ X such
that

N
∑

i=1

pi(η −G(x0, ξ
i))+ −

N
∑

i=1

pi(η − Y (ξi))+ < 0, η ∈ IR. (2.1)

Unfortunately, this kind of constraint qualification is not satisfied. To see this, let

Y (Ξ) := {Y (ξi) : i = 1, · · · , N}

and

y := min{Y (ξ1), · · · , Y (ξN)}. (2.2)

For any η ≤ y, it is easy to verify that E[(η − Y (ξ))+] = 0. For those η, the feasible
constraint of problem (1.5) reduces to

E[(η −G(x, ξ))+]− E[(η − Y (ξ))+] = 0

because the term at the left hand side of the equation is non-negative. This means
that there does not exist a feasible point x0 ∈ X such that (2.1) holds.

Dentcheva and Ruszczyński [4] observed this issue and tackled it by considering a
relaxed problem (1.5) which effectively restricts η to take value from a specified [a, b].
In other words, the feasible region of the original problem (1.6) is enlarged. In this
context, their relaxation scheme can be written as follows:

min
x

N
∑

i=1

piF (x, ξ
i)

s.t.

N
∑

i=1

pi(η −G(x, ξi))+ ≤
N
∑

i=1

pi(η − Y (ξi))+, η ∈ [a, b],

x ∈ X .

(2.3)

6 H. SUN, H. XU, R. MESKARIAN AND Y. WANG

Under some circumstance, it is possible to choose a proper value a such that problem
(2.3) satisfies the SCQ. For instance, if there exists a point x0 ∈ X such that

G(x0, ξ) ≽1 Y (ξ)

and for every ξ ∈ Ξ, G(x0, ξ) > y, then x0 is a feasible point of problem (2.3) and

∫ η

−∞

F1(G(x0, ξ); t)dt <

∫ η

−∞

F1(Y (ξ); t)dt

for all η > y. In such a case, it is easy to verify that the SCQ holds for any a > y.
Note that problem (2.3) is a relaxed problem of (1.6) which depends on [a, b] and
when [a, b] contains Y (Ξ), the SCQ fails.

Hu, Homem-de-Mello and Mehrotra [10] proposed an alternative approach to deal
with the SCQ issue by considering ϵ-feasible solutions:

min
x

E[F (x, ξ(ω))]

s.t. E[(η −G(x, ξ(ω)))+] ≤ E[(η − Y (ξ(ω)))+] + ϵ, ∀η ∈ IR,
x ∈ X .

(2.4)

where ϵ is a small positive number. It is easy to observe that the relaxed problem
satisfies the SCQ for any positive ϵ as long as the original problem is feasible. A
theoretical issue to be addressed in the aforementioned relaxation schemes is to show
that the feasible solution set of the relaxed problem approximates the feasible solution
set of the original problem, which often in turn requires the original problem to satisfy
certain regularity conditions (to ensure lower semicontinuity of the feasible solution
set of the relaxed problems).

In this section, we propose an alternative way to address the issue of SCQ of
problem (1.6) without relaxation. To this end, let us use [4, Proposition 3.2] to
reformulate problem (1.6) as follows:

min
x

N
∑

i=1

piF (x, ξ
i)

s.t.
N
∑

i=1

pi(Yj −G(x, ξi))+ ≤ γj , j = 1, . . . , N,

x ∈ X ,

(2.5)

where Yj := Y (ξj), γj :=
∑N

i=1 pi(Yj − Yi)+. Like the original problem (1.6), the
reformulated problem (2.5) does not satisfy SCQ.

We consider the power set of {1, . . . , N}, that is, a collection of all subsets of
{1, . . . , N} including empty set and itself. For the simplicity of notation, let N denote
the power set excluding the empty set and for j = 1, . . . , N,

ψj(x) := max
J∈N

∑

i∈J

pi(Yj −G(x, ξi))− γj . (2.6)

Consider problem

min
x

∑N

i=1 piF (x, ξ
i)

s.t. ψj(x) ≤ 0, for j = 1, . . . , N,
x ∈ X .

(2.7)

STOCHASTIC PROGRAMS WITH DOMINANCE CONSTRAINTS 7

Note that (2.7) is similar to the cutting plane representation in [8, 22]. The key
difference is that here J is restricted to take a nonempty subset of {1, . . . , N}, which
allows maxJ∈N

∑

i∈J pi(Yj − G(x, ξi)) to take a negative value (otherwise the term
is nonnegative as

∑

i∈J pi(Yj −G(x, ξ
i)) = 0 for J = ∅). This paves the way for (2.7)

to satisfy the SCQ in later discussions. In what follows, we will show that problem
(2.7) is equivalent to problem (2.5) but, under some circumstance, the former satisfies
the SCQ.

Lemma 2.1. For j = 1, · · · , N , let

φj(x) := max
J∈N

∑

i∈J

pi(Yj −G(x, ξi)).

Then

N
∑

i=1

pi(Yj −G(x, ξi))+ = max{φj(x), 0}. (2.8)

Proof. We prove the claim by going through two cases: 1. φj(x) ≤ 0; 2. φj(x) > 0.
Case 1. Since φj(x) ≤ 0, then max{φj(x), 0} = 0 and Yj − G(x, ξi) ≤ 0 for

j ∈ {1, . . . , N}. The latter implies

N
∑

i=1

pi(Yj −G(x, ξi))+ = 0

and hence (2.8).
Case 2. Since φj(x) > 0, then there exists a nonempty subset J ⊆ {1, . . . , N}

such that

φj(x) =
∑

i∈J

pi(Yj −G(x, ξi)) > 0.

It suffices to show that

∑

i∈J

pi(Yj −G(x, ξi)) =
N
∑

i=1

pi(Yj −G(x, ξi))+

or equivalently J contains every index i with Yj −G(x, ξ
i) > 0. Indeed, if J does not

include such an index, then adding it to J would increase the quantity
∑

i∈J pi(Yj −
G(x, ξi)) and this contradicts the fact that φj(x) is the maximum. Likewise, J does
not contain an index i with Yj −G(x, ξ

i) < 0, because, otherwise, removing the index
will also increase the quantity

∑

i∈J pi(Yj −G(x, ξi)). This completes the proof. �

We are now ready to state the main result in this section.
Theorem 2.1. Let G(x, ξ) and Y (ξ) be defined as in problem (1.6) and ψj be

defined as in (2.6). Then
(i) G(x, ξ) ≽2 Y (ξ) if and only if

ψj(x) ≤ 0, ∀j = 1, . . . , N ; (2.9)

(ii) problems (2.5) and (2.7) are equivalent;
(iii) if there exists a feasible point x0 such that G(x0, ξ) ≽1 Y (ξ) and G(x0, ξ) > y

for all ξ ∈ Ξ, then the system of inequalities (2.9) satisfies the SCQ.

8 H. SUN, H. XU, R. MESKARIAN AND Y. WANG

Proof. Part (i). By [4, Proposition 3.2], G(x, ξ) ≽2 Y (ξ) if and only if

N
∑

i=1

pi(Yj −G(x, ξi))+ ≤ γj , j = 1, . . . , N, (2.10)

or equivalently for j = 1, · · · , N ,

max

{

N
∑

i=1

pi(Yj −G(x, ξi))+ − γj , 0

}

= 0.

By (2.8)

max

{

N
∑

i=1

pi(Yj −G(x, ξi))+ − γj , 0

}

= max{max{φj(x), 0} − γj , 0}.

Note that for any number a ∈ IR and r > 0, it is easy to verify that

max{max{a, 0} − r, 0} = max{a− r, 0}. (2.11)

Using (2.11), we have that

max{max{φj(x), 0} − γj , 0} = max{φj(x)− γj , 0} = max{ψj(x), 0}.

The last equality is due to the definition of ψj . The discussion above demonstrates
that (2.10) is equivalent to (2.9) and hence the conclusion.

Part (ii) follows straightforwardly from Part (i) in that the feasible set of the two
problems coincide, i.e.,

{

x ∈ X :
N
∑

i=1

pi(Yj −G(x, ξi))+ − γj ≤ 0

}

= {x ∈ X : ψj(x) ≤ 0}.

Part (iii). Let γy :=
∑N

i=1 pi(y − Y (ξi))+, where y is defined in (2.2). By the
definition of y, the right hand side equals to 0. Therefore γy = 0. Likewise, the

assumption G(x0, ξ) > y for ξ ∈ Ξ implies

∑

i∈J

pi(y −G(x0, ξ
i)) < 0

for every nonempty index set J ⊆ {1, . . . , N}. This shows

max
J∈N

∑

i∈J

pi(y −G(x0, ξ
i))− γy < 0. (2.12)

Assume without loss of generality that the N elements in set Y (Ξ) satisfies the fol-
lowing order

Y1 ≤ Y2 ≤ · · · ≤ YN .

By the definition of ψj(x) (see (2.9), inequality (2.12) means that

ψ1(x0) = max
J∈N

∑

i∈J

pi(Y1 −G(x0, ξ
i))−

N
∑

i=1

pi(Y1 − Y (ξi))+ < 0.

STOCHASTIC PROGRAMS WITH DOMINANCE CONSTRAINTS 9

In what follows, we show ψj(x0) < 0, for j = 2, · · · , N . By definition

ψj(x0) = max
J∈N

∑

i∈J

pi(Yj −G(x0, ξ
i))−

N
∑

i=1

pi(Yj − Y (ξi))+

≤ max

{

max
J∈N

∑

i∈J

pi(Yj −G(x0, ξ
i)), 0

}

−
N
∑

i=1

pi(Yj − Y (ξi))+

=

N
∑

i=1

pi((Yj −G(x0, ξ
i))+ − (Yj − Y (ξi))+)

=

∫ Yj

−∞

(

F1(G(x0, ξ), t)− F1(Y (ξ), t)
)

dt. (2.13)

The second last equality follows from Lemma 2.1 and the last equality is due to the
equivalent representation of second order dominance between (1.2) and (1.3).

Assume without loss of generality that Y2 > Y1 (otherwise ψ2(x0) = ψ1(x0) < 0).
Let η̄ ∈ (Y1,min{min

ξ∈Ξ
G(x0, ξ), Y2}). Note that, by assumption, Y1 < min{min

ξ∈Ξ
G(x0, ξ), Y2},

η̄ exists. Then

∫ Yj

−∞

F1(G(x, ξ), t)− F1(Y (ξ), t)dt =

∫ η̄

−∞

F1(G(x, ξ), t)− F1(Y (ξ), t)dt

+

∫ Yj

η̄

F1(G(x, ξ), t)− F1(Y (ξ), t)dt.

Note that
∫ η̄

−∞

F1(G(x, ξ), t)− F1(Y (ξ), t)dt = 0− p1(η̄ − Y1) < 0

where p1 is the probability that Y (ξ) takes value Y1. On the other hand, G(x0, ξ) ≽1

Y (ξ) implies

∫ Yj

η̄

(F1(G(x0, ξ), t)− F1(Y (ξ), t))dt ≤ 0.

This shows

∫ Yj

−∞

(

F1(G(x0, ξ), t)− F1(Y (ξ), t)
)

dt < 0, for j = 2, · · · , N. (2.14)

The conclusion follows by combining (2.12), (2.13) and (2.14). �

Theorem 2.1 says that although problems (1.6) and (2.5) do not satisfy SCQ,
the reformulated problem (2.7) may do under some circumstance. The fundamental
reason behind this has to do with the plus function (·)+. Consider a single variate
function a(x) = x. It is easy to see that the single inequality a(x) ≤ 0 satisfies
SCQ but (a(x))+ ≤ 0 does not although the two inequalities represent the same set
(−∞, 0]. Clearly, the constraint qualification is closely related to the function which
represents the feasible set. In problem (2.7), we give an alternative presentation of
the feasible constraints of (1.6) and (2.5) without the plus function (which could
potentially destroy the SCQ).

10 H. SUN, H. XU, R. MESKARIAN AND Y. WANG

It might be helpful to discuss how strong the conditions in part (iii) of Theorem
2.1 are. Assume that ξ has a finite distribution, that is, Ξ = {ξ1, ...ξN}. If there
exists a point x0 ∈ X such that G(x0, ξ

i) ≥ Y (ξi) for each i and

min
i∈{1,...,N}

G(x0, ξ
i) > min

i∈{1,...,N}
Y (ξi),

then the conditions are satisfied. In the context of portfolio optimization, this means
there exists a feasible strategy which exhibits a return not worse than the benchmark
strategy in any scenario, and the worst outcome of the return based on this feasible
strategy is strictly better than the worst outcome that the benchmark strategy could
possibly generate.

3. Exact penalization schemes and level function method. Problem (2.7)
is an ordinary nonlinear programming problem with finite number of constraints. This
means that we can apply any existing NLP code to solve it. However, from numerical
point of view, problem (2.7) is difficult to solve because every constraint ψj(x) is a
maximum function of 2N −1 functions. That means problem (2.7) contains (2N −1)N
constraints which depends on N , the cardinality of support set Ξ, and this may make
the problem difficult to solve by well-known NLP methods such as the active set
method even when N is not very large.

This motivates us to consider an exact penalty function method which is well
known in nonlinear programming. Liu and Xu [14] proposed an L∞-norm based
penalization scheme for the relaxed problem (1.5). In this context, their penalization
scheme can be written as follows:

min
x

N
∑

i=1

piF (x, ξ
i) + ρ max

η∈[a,b]

(

N
∑

i=1

pi((η −G(x, ξi))+ − (η − Y (ξi))+)

)

+

. (3.1)

Justification of the penalty scheme (the equivalence of problem (1.5) and (3.1)) re-
quires SCQ but the constraint qualification is not satisfied when Y (ξ) ⊂ [a, b].

In this section, we apply the penalty function method to problem (2.7). There
are essentially two ways to apply the penalty function method in this paper. One
is to apply an exact penalty function method with L∞-norm to problem (2.7). The
other is to use an exact penalty function method with L1-norm. In this section, we
consider both of them.

To this end, we need the following technical result.
Lemma 3.1. Let f : IRn → IR be a continuous function and g : IRn → IRm be a

continuous vector-valued function whose components are convex. Let X ⊆ IRn be a
compact and convex set. Consider the following constrained minimization problem

min f(x)
s.t. g(x) ≤ 0,

x ∈ X.
(3.2)

(i) If g(x) satisfies SCQ, that is, there exists a point x0 and a real number δ > 0
such that

δB ⊂ g(x0) +K,

and the feasible set, denoted by S, is bounded, then

d(x, S) ≤ δ−1Dd1(0, g(x) +K)

STOCHASTIC PROGRAMS WITH DOMINANCE CONSTRAINTS 11

and

d(x, S) ≤ δ−1Dd∞(0, g(x) +K),

where B denotes the closed unit ball in IRm and K := [0,+∞)m, and D
denotes the diameter of S.

(ii) If f(x) is Lipschitz continuous on X with modulus κ, then for

ρ > κδ−1D,

the set of optimal solutions of (3.2) coincides with the set of optimal solutions
of problem

min f(x) + ρ∥(g(x))+∥1
s.t. x ∈ X,

(3.3)

and that of

min f(x) + ρ∥(g(x))+∥∞
s.t. x ∈ X.

(3.4)

Proof. Part (i) follows from Robinson’s error bound for convex systems [19] and Part
(ii) follows from Part (i) and Clarke’s exact penalty function theorem [2, Proposition
2.4.3]. �

3.1. Exact penalization with L1-norm. A popular exact penalty scheme in
optimization is based on L1-norm. Here we consider the penalization scheme for (2.7):

min
x

N
∑

i=1

piF (x, ξ
i) + ρ̄

N
∑

j=1

(ψj(x))+

s.t. x ∈ X ,

(3.5)

and for (2.5):

min
x

ϑρ̄(x) :=
N
∑

i=1

piF (x, ξ
i) + ρ̄

N
∑

j=1

(
N
∑

i=1

pi(Yj −G(x, ξi))+ − γj)+

s.t. x ∈ X .

(3.6)

In what follows, we show that the two penalty schemes are equivalent, and es-
timate the penalty parameter. As we discussed in the preceding section, (2.5) does
not satisfy the SCQ, but (2.7) does under some moderate conditions. A key point we
want to make here is that exact penalization function scheme (3.6) is justified despite
(2.5) does not satisfy the SCQ.

We need the following assumption on the underlying random functions of problem
(1.6).

Assumption 3.1. F (x, ξi), G(x, ξi) are continuously differentiable w.r.t. x in
an open neighborhood of X , for i = 1, · · · , N . Moreover, they are globally Lipschitz
over X , that is, there exists κ(ξ) < +∞ such that

max(∥∇xF (x, ξ
i)∥, ∥∇xG(x, ξ

i)∥) ≤ κ(ξi)

for i = 1, · · · , N .
Theorem 3.1. Assume: (a) problem (2.7) satisfies SCQ, (b) Assumption 3.1

holds; (c) the feasible set of problem (2.7) is bounded. Then

12 H. SUN, H. XU, R. MESKARIAN AND Y. WANG

(i) problems (3.5) and (3.6) are equivalent;
(ii) there exist positive constants δ̄ and D̄ such that when

ρ̄ >
N
∑

i=1

piκ(ξ
i)δ̄−1D̄,

the set of optimal solutions of (2.7) coincides with that of (3.5), and the set
of optimal solutions of (2.5) coincides with that of (3.6).

Proof. Part (i). Through Lemma 2.1 and (2.11), it is easy to verify that

N
∑

j=1

(ψj(x))+ =
N
∑

j=1

(φj(x)− γj)+ =
N
∑

j=1

(
N
∑

i=1

pi(Yj −G(x, ξi))+ − γj)+, (3.7)

where φj(·) is defined in Lemma 2.1. The conclusion follows from (3.7).
Part (ii). Let

Φ(x) := (ψ1(x), · · · , ψN (x))T

and Q be the feasible set of problem (2.7). Since Q is bounded,
∑N

i=1 piF (x, ξ
i) is

Lipschitz continuous with modulus
∑N

i=1 piκ(ξ
i), problem (2.7) is a convex program-

ming problem and satisfies SCQ, by Lemma 3.1, there exists real numbers δ̄ > 0 and
D̄ > 0 such that when

ρ̄ >

N
∑

i=1

piκ(ξ
i)δ̄−1D̄,

the set of optimal solutions of problem (2.7) coincides with that of (3.5). Moreover,
since problem (2.5) and (2.7) are equivalent, while problem (3.5) and (3.6) are e-
quivalent, the set of optimal solutions of problem (2.5) coincides with that of (3.6).
�

Theorem 3.1 shows that the exact penalization (with L1-norm) of problem (2.5)
can be derived although it does not satisfy SCQ. This is achieved through problem
(2.7). Since the reformulation of (2.5) depends on the distribution of random variable
ξ, it is unclear whether Theorem 3.1 can be generalized to the case when ξ satisfies
continuous distribution.

3.2. Exact penalization with L∞-norm. Another popular penalty scheme in
optimization is based on L∞-norm. Here we consider the penalization scheme for
(2.7)

min
x

N
∑

i=1

piF (x, ξ
i) + ρ̂ max

j∈{1,...,N}
(ψj(x))+

s.t. x ∈ X ,

(3.8)

and for (2.5)

min
x

ϑ̂ρ̂(x) :=

N
∑

i=1

piF (x, ξ
i) + ρ̂ max

j∈{1,...,N}
(

N
∑

i=1

pi(Yj −G(x, ξi))+ − γj)+

s.t. x ∈ X .

(3.9)

STOCHASTIC PROGRAMS WITH DOMINANCE CONSTRAINTS 13

Similar to the discussions in the preceding subsection, we need to show that the two
penalty schemes are equivalent and give an estimate of the penalty parameter ρ̄.

Theorem 3.2. Assume: (a) problem (2.7) satisfies SCQ, (b) Assumption 3.1
holds; (c) the feasible set of problem (2.7) is bounded. Then

(i) problems (3.8) and (3.9) are equivalent;

(ii) there exist positive constants δ̂ and D̂ such that when

ρ̂ >
N
∑

i=1

piκ(ξ
i)δ̂−1D̂,

the set of optimal solutions of (2.7) coincides with that of (3.8), and the set
of optimal solutions of (2.5) coincides with that of (3.9).

Proof. The proof is similar to Theorem 3.1, we omit details here. �

Analogous to the comments following Theorem 3.1, we note that a main contri-
bution of Theorem 3.2 is to show exact penalization scheme with L∞-norm can be
established for problem (2.5) despite it does not satisfy SCQ. The observation makes
the exact penalization schemes more appealing because they can be applied to a fairly
large class of problems.

Note that our exact penalty schemes are established through Clarke’s penalty
function theorem [2, Proposition 2.4.3] and Robinson’s error bound [19] for convex
systems. The latter requires SCQ as a key condition. It is unclear if the exact
penalization schemes can be derived through other avenues. For instance, Dentcheva
and Ruszczyński [4] observed that first order optimality conditions of (2.5) may be
established without SCQ. It might be interesting to explore whether this can be
exploited to derive the error bound and exact penalization. We leave this for our
future research.

3.3. Level function methods. Level function method is popular numerical
approach for solving deterministic nonsmooth optimization problems. It is proposed
by Lemaréchal et al [13] for solving nonsmooth convex optimization problems and
extended by Xu [25] for solving quasiconvex optimization problems. Meskarian et al
[16] recently applied a level function method to (3.1) where the distribution of ξ is
discrete. In this subsection, we apply the level function method in [25] to problems
(3.6) and (3.9).

Let v : IRn → IR be a locally Lipschitz continuous function. Recall that the
Clarke generalized derivative of v at a point x in direction d is defined as

vo(x, d) := lim sup
y→x,t↓0

v(y + td)− v(y)

t
.

The Clarke generalized gradient (also known as Clarke subdifferential) is defined as

∂v(x) := {ζ : ζT d ≤ vo(x, d)}.

See [2, Chapter 2] for the details of the concepts. In the case when v is convex, the
Clarke subdifferential coincides with the usual convex subdifferential [20]. It is well
known [25] that a subgradient of the convex function can be used to construct a level
function.

In what follows, we apply the level function method to the exactly penalized
problems (3.6) and (3.9). Let ϑρ̄(x) and ϑ̂ρ̂(x) be defined as in (3.6) and (3.9) respec-
tively. In the algorithm to be stated below, we need to calculate an element of the
subdifferential of ∂ϑρ̄(x) and ∂ϑ̂ρ̂(x) at each iteration.

14 H. SUN, H. XU, R. MESKARIAN AND Y. WANG

Algorithm 3.1. (Level function method for penalized problem (3.6) (or (3.9)))
Step 1. Let ϵ > 0 be a constant and select a constant τ ∈ (0, 1) and a starting

point x0 ∈ X ; set k := 0.
Step 2. Calculate ζk ∈ ∂xϑρ̄(xk) (for problem (3.9), ζk ∈ ∂xϑ̂ρ̂(xk)). Set

σxk
(x) = ζTk (x− xk)/||ζk||

and

σk(x) = max{σk−1(x), σxk
(x)}

where σ−1(x) := −∞. Let

xk = argmin{ϑ(xj) : j ∈ 0, . . . , k}

and

xk+1 ∈ π(xk, Qk),

where

Qk = {x ∈ X : σk(x) ≤ −τ∆(k)}, ∆(k) = −min
x∈X

σk(x),

and π(x,Qk) is the Euclidean projection of the point x on a set Q.
Step 3. If ∆(k) ≤ ϵ, stop; otherwise, set k := k + 1; go to step 2.
Theorem 3.3. Let {xk} be generated by Algorithm 3.1. Assume that F (x, ξ) and

G(x, ξ) are Lipschitz continuous function with modulus LF (ξ) and LG(ξ) respectively,
where E[LF (ξ)] < +∞, E[LG(ξ)] < +∞ and that the sequence of level functions
{σxk

(x)} is uniformly Lipschitz with constant M . Then,

∆(k) ≤ ϵ, for k > M2Υ2ϵ−2τ−2(1− τ2)−1,

where Υ represents the diameter of X, ϵ and τ are given in Algorithm 3.1.
Proof. It is easy to observe that the Lipschitz continuity of G(x, ξ) w.r.t. x with
modulus LG(ξ) implies the Lipschitz continuity of ψj(x) with the same Lipschitz mod-
ulus E[LG(ξ)]. Along with the Lipschitzness of F (x, ξ), this shows ϑρ̄(x) is Lipschitz
continuous with modulus E[LF (ξ)] + ρ̄E[LG(ξ)]. Similar conclusion can be drawn for

ϑ̂ρ̂(x). On the other hand, since ϑρ̄(x) and ϑ̂ρ̂(x) are convex, then the function σxk
(x)

constructed at each iterate is a level function with modulus 1. The rest follows from
Xu [25, Theorem 3.3]. �

In Algorithm 3.1, the penalty parameters in ϑρ̄(x) and ϑ̂ρ̂(x) are fixed. In some
cases, it might be difficult to compute/estimate these parameters. A simple way to
tackle this issue is to start with an estimate of the penalty parameter and solve the
resulting penalized problem with Algorithm 3.1. We then check the feasibility of the
obtained solution: if it is infeasible, then increase the penalty parameter and repeat
the process, otherwise it is an optimal solution. This kind of procedure in known
as Simple Penalty Function Method in the literature of optimization, see for instance
[24, Algorithm 10.2.3]. We describe the aforementioned procedure formally in the
following algorithm for the penalized problem (3.6). Similar scheme can be applied
to (3.9)).

Algorithm 3.2. (Simple Penalty Function Method for penalized problem (3.6)).

STOCHASTIC PROGRAMS WITH DOMINANCE CONSTRAINTS 15

Step 1. Let ϵ̄ be a positive number. Let ρ0 be an intial estimate of the penalty
parameter. Set t := 0.

Step 2. For ρ̄ := ρt, apply Algorithm 3.1 to solve problem (3.6). Let xt denote
the solution obtained from solving the problem.

Step 3. If maxj∈{1,...,N}(
∑N

i=1 pi(Yj −G(xt, ξ
i))+−γj)+ ≤ ϵ̄, stop; otherwise, set

xt+1 := xt, ρt+1 := 10ρt and t := t+ 1, go to step 2.
Algorithm 3.2 terminates in a finite number of iterations in that the exact penalty

parameters for problems (3.6) and (3.9) are finite, see Theorems 3.1 and 3.2.
An alternative way to deal with the issue of penalty parameters is to solve the

following problem

min
x∈X

max
j∈{1,...,N}

(
N
∑

i=1

pi(Yj −G(x, ξi))+ − γj). (3.10)

This can be achieved by applying Algorithm 3.1 directly. The optimal value of (3.10)

effectively gives an upper bound for parameters δ̂ and δ̄ (see the definition in Theorems
3.1 and 3.2). To see this argument clearly, we refer readers to Lemma 3.1. From the
error bound established in the lemma and the penalty parameter estimated there, it
is evident that a smaller δ gives a tighter error bound and hence a small lower bound
for the penalty parameter. Problem (3.10) is to find an optimal interior point x0 in
the feasible set of (2.7) which minimizes the constant δ.

4. A modified cutting plane method. Rudolf and Ruszczyński [22] and
Fábián et al [8] proposed cutting plane methods for solving stochastic programs with
second order stochastic dominance constraints when the underlying random variables
satisfy finite distribution. The methods are extension of the cutting-plane method de-
veloped by Haneveld and van der Vlerk in [11] for integrated chance constraints (ICC).
Here we revisit the cutting-plane methods [22, 8] by considering a modification of the
procedure where a cut is constructed.

The cutting plane methods in [8, 22] are essentially based on the reformulation
of problem (2.5) as follows:

min
x

N
∑

i=1

piF (x, ξ
i)

s.t. max
J⊆{1,...,N}

∑

i∈J

pi(Yj −G(x, ξi))− γj ≤ 0, ∀j = 1, . . . , N,

x ∈ X .

(4.1)

At iteration t, the authors considered a collection of subsets (events)

{Jj,t ⊆ {1, . . . , N} : j = 1, . . . , N},

which depend on the t-th iterate, denoted by xt, and solve subproblem

min
x

N
∑

i=1

piF (x, ξ
i)

s.t.
∑

i∈Jj,l

pi(Yj −G(x, ξi))− γj ≤ 0, for j = 1, . . . , N and l = 1, . . . , t,

x ∈ X .

(4.2)

16 H. SUN, H. XU, R. MESKARIAN AND Y. WANG

Specifically, in [8], constraints

∑

i∈Jj,t

pi(Yj −G(x, ξi))− γj ≤ 0, for j = 1, . . . , N (4.3)

are added at iteration t (each of which corresponds to a cut) to the N × (t − 1)
constraints

∑

i∈Jj,l

pi(Yj −G(x, ξi))− γj ≤ 0, for j = 1, . . . , N and l = 1, . . . , t− 1,

inherited from the previous iterations. Here Jj,t is the index set such that

∑

i∈Jj,t

pi(Yj −G(xt, ξ
i)) = max

J⊆{1,...,N}

∑

i∈J

pi(Yj −G(xt, ξ
i)).

It is observed that such Jj,t can be identified as follows:

Jj,t = {i : Yj −G(xt, ξ
i) > 0, for i = 1, · · · , N},

see a comment at page 45 in [8]. Note that Fábián, Mitra and Roman’s [8] did not
propose a detailed algorithm, instead, they observed that the cutting plane method
due to Haneveld and Vlerk [11] can be easily applied to (4.1). To distinguish this
method from the classical cutting method and Rudolf and Ruszczyński’s cut gen-
eration method [22], we call it generalized cutting-plane method although this is
fundamentally similar to the latter.

In [22], Jj,t = Jĵ,t for j = 1, · · · , N , where ĵ is any j ∈ {1, . . . , N} such that

N
∑

i=1

pi(Yj −G(xt, ξ
i))+ − γj > 0.

This differs from the previous approach because here the index set Jĵ,t is constructed

for the ĵ-th constraint which is violated at xt, rather than for every j-th constraint.
The focus of [8, 22] is on the case when F and G are linear functions of x and

subsequently subproblem (4.2) is a linear programming problem. In the case when G
is nonlinear w.r.t. x, (4.2) is a nonlinear program and therefore the approach is not
a cutting plane method in the classical sense.

In what follows, we reformulate problem (2.7) as follows:

min
x,y

y

s.t. ψ(x) := max
j∈{1,...,N}

ψj(x) ≤ 0,
∑N

i=1 piF (x, ξ
i)− y ≤ 0,

x ∈ X , y ∈ Y ,

(4.4)

where Y is a closed convex compact set such that

{

N
∑

i=1

piF (x, ξ
i) : x ∈ X

}

⊂ Y.

Existence of Y is due to the fact that F (x, ξi), i = 1, · · · , N , is a continuous function
and X is a compact set. Note that G(x, ξ) is concave and F (x, ξ) is convex w.r.t. x,

STOCHASTIC PROGRAMS WITH DOMINANCE CONSTRAINTS 17

which implies that ψ(x) is convex w.r.t. x and
∑N

i=1 piF (x, ξ
i) − y is convex w.r.t.

(x, y). Moreover problem (4.4) is equivalent to problem (2.7). We apply the classical

cutting-plane method [12] to both ψ(x) and
∑N

i=1 piF (x, ξ
i) − y. Specifically, we

propose the following algorithm.
Algorithm 4.1 (A modified cutting plane method). Define the current problem

CPt at iteration t as

min
x,y

y

s.t. x ∈ X , y ∈ Y

(x, y) ∈ St := {(x, y) ∈ X × Y : (a
j∗l−1

l)Tx ≤ b
j∗l−1

l , dTl x+ ely ≤ kl, l = 1, . . . , t, },
(4.5)

set t := 0, S0 := X × Y . For each t, carry out the following.
Step 1. Solve the LP problem (4.5) and let (xt, yt) denote the optimal solution.

If problem (4.5) is infeasible, Stop: the original problem is infeasible.
Step 2. Find j∗t such that

j∗t = argmax{ψj(xt), j = 1, . . . , N}

and construct an index set

Jt := {i : Yj∗t −G(xt, ξ
i) > 0}.

Step 3. If

N
∑

i=1

pi(Yj∗t −G(xt, ξ
i))+ − γj∗t ≤ 0

and

N
∑

i=1

piF (xt, ξ
i)− yt ≤ 0,

stop: (xt, yt) is the optimal solution. Otherwise, construct feasible cuts

(a
j∗t
t+1)

Tx ≤ b
j∗t
t+1

and

dTt+1x+ et+1y ≤ kt+1,

where

a
j∗t
t+1 := −

∑

i∈Jt

pi∇xG(xt, ξ
i),

b
j∗t
t+1 :=

∑

i∈Jt

pi(−∇xG(xt, ξ
i)Txt +G(xt, ξ

i)− Yj∗t) + γj∗t ,

dt+1 :=
N
∑

i=1

pi∇xF (xt, ξ
i),

et+1 := −1,

kt+1 :=
N
∑

i=1

pi(∇xF (xt, ξ
i)Txt − F (xt, ξ

i)).

18 H. SUN, H. XU, R. MESKARIAN AND Y. WANG

and set

St+1 := St ∩
{

(x, y) ∈ X × Y : (a
j∗t
t+1)

Tx ≤ b
j∗t
t+1, d

T
t+1x+ et+1y ≤ kt+1

}

.

Proceed with iteration t+ 1.
Remark 4.1. We make a few comments on Algorithm 4.1.
(i) The main difference between Algorithm 4.1 and the cutting plane methods in

[22] is in the way how feasible cuts are constructed. In [22], N constraints/cuts
are added at iteration t, see (4.3). These constraints/cuts are not necessar-
ily the extreme support (tangent plane) of ψ(x) at xt. In Algorithm 4.1,
we exclude all those non-support constraints because we believe a cut at the
extreme support (to ψ(x) at xt) is most effective and a single linear cut is
adequate to ensure the convergence as we will demonstrate in Theorem 4.1;
all other non-support constraints/cuts may potentially reduce numerical effi-
ciency. Our approach is similar to the algorithm proposed by Fábián, Mitra
and Roman, see the algorithm at page 48 in [8]. Note that Fábián, Mitra and
Roman’s algorithm is applied to linear models while Algorithm 4.1 is appli-
cable to nonlinear case. Therefore we may regard the latter as an extension
of the former.

(ii) In order to apply Algorithm 4.1 to problem (4.4), we need to identify index
j∗t where

j∗t = argmax{ψj(xt) : j = 1, . . . , N}

at iteration t. This requires to evaluate ψj(xt) for j ∈ {1, . . . , N} and identify
the index corresponding to the maximum. The procedure is also needed to
verify the feasibility of xt.

(iii) At Step 2, if there exists more than one index j∗t such that the maximum is
achieved, then we just pick up anyone of them. In such a case, the graph of
function ψ(x) has a kink at x∗t . Our algorithm requires to construct a support
plane to one of the active piece (note that ψ(x) is piecewise smooth) and such
a support plane is also a support to ψ(x) at xt.

(iv) When F is linear w.r.t. x, there is no need to introduce additional variable y
because the objective is linear.

(v) Note that although problem (2.5) does not satisfy the SCQ, under some mod-
erate conditions, problem (2.7) may satisfy it (Theorem 2.1). Moreover, since
each subproblem (4.5) is a relaxation of problem (2.7), it also satisfies the SC-
Q.

The following theorem states convergence of the algorithm.
Theorem 4.1. Let {(xt, yt)} be a sequence generated by Algorithm 4.1. Let

S := {(x, y) ∈ X × Y : ψ(x) ≤ 0,E[F (x, ξ)]− y ≤ 0} ⊂ X × Y,

where ψ(x) is defined in problem (4.4) and ξ has finite support set. Assume: (a)
F (x, ξ) is continuously differentiable and convex and G(x, ξ) is continuously differen-
tiable and concave w.r.t. x for almost every ξ; (b) X × Y ∈ IRn is a compact set;
(c) there exists a positive constant L such that the Lipschitz modulus of E[F (x, ξ)]
and ψ(x) are bounded by L on X × Y; (d) S is nonempty. Then {(xt, yt)} contains
a subsequence which converges to a point (x∗, y∗) ∈ S, where (x∗, y∗) is the optimal
solution and y∗ is the optimal value of (4.4).

STOCHASTIC PROGRAMS WITH DOMINANCE CONSTRAINTS 19

Proof. The proof is similar to [12, Theorem]. Note that in every iteration t > 0,

a
j∗t
t+1 ∈ ∂xψ(xt), dt+1 = ∇E[F (xt, ξ)] and et+1 = ∇y(E[F (xt, ξ)] − yt) = −1. Then

(a
j∗t
t+1)

Tx − b
j∗t
t+1 and dTt+1x + et+1y − kt+1 are the extreme support to the graphs of

ψ(x) and E[F (x, ξ)] − y at point (xt, yt) respectively. By condition (a), ψ(x) and
E[F (x, ξ)] − y are convex and continuous functions w.r.t. (x, y). Thus, if (x, y) ∈ S
and max(ψ(x),E[F (x, ξ)]− y) ≤ 0, then

max
(

(a
j∗t
t+1)

Tx− b
j∗t
t+1, d

T
t+1x+ et+1y − kt+1

)

≤ 0.

On the other hand, for (xt, yt) /∈ S,

max{(a
j∗t
t+1)

Txt − b
j∗t
t+1, d

T
t+1xt + et+1yt − kt+1} = max{ψ(xt),E[F (xt, ξ)]− yt} > 0.

Thus, when (xt, yt) /∈ S, the set S and the point (xt, yt) lie on opposite sides of the

cutting angle max{(a
j∗t
t+1)

Tx− b
j∗t
t+1, d

T
t+1x+ et+1y − kt+1} = 0.

Note that from the definition of St and (xt, yt), we know that S ⊂ St ⊂ St−1,
(xt, yt) minimizes y in St and yt−1 ≤ yt. In the case when (xt, yt) ∈ S, it is easy to
verify that (xt, yt) is the optimal solution of problem (4.4). Indeed, since (xt, yt) is
an optimal solution, for every (x, y) ∈ St, we have y ≥ yt. Since S ⊂ St, then y ≥ yt
for (x, y) ∈ S, which implies optimality of (xt, yt) over S.

In the rest of proof, we focus on the case when (xt, yt) ̸∈ S for all t. Since X ×Y
is a compact set, the sequence {(xt, yt)} contains a subsequence which converges to
(x∗, y∗) ∈ X × Y . Assume without loss of generality that (xt, yt) → (x∗, y∗). Let
S∗ = ∩tSt. Since St is compact and S ⊂ St, we have S ⊂ S∗ and (x∗, y∗) ∈ S∗. On
the other hand, since

y ≥ yt, ∀(x, y) ∈ St,

then

y ≥ y∗, ∀(x, y) ∈ S∗. (4.6)

Indeed, if this is not true, then there exists (x̂, ŷ) ∈ S∗ such that ŷ < y∗. Since
yt → y∗, there exists some sufficiently large t such that ŷ < yt.

This is not possible because (xt, yt) is an optimal solution in St while (x̂, ŷ) ⊂
S∗ ⊂ St is a feasible solution! This shows (4.6) holds. Since S ⊂ S∗, the inequality
also holds for all (x, y) ∈ S, which implies (x∗, y∗) is an optimal solution of problem
(4.4) if (x∗, y∗) ∈ S.

In what follows, we want to show that (x∗, y∗) ∈ S. Observe that (xt, yt) mini-
mizes y in St, that is, it satisfies the inequalities:

(a
j∗l
l+1)

Tx− b
j∗l
l+1 ≤ 0, (4.7)

and

dTl+1x+ el+1y − kl+1 ≤ 0, (4.8)

for l = 0, . . . , t − 1 and by condition (c), max{||(a
j∗l
l+1)||, ||dl+1||} ≤ L for all l.

For the simplicity of notation, let {xt, yt} denote the subsequence. We claim that
{max(ψ(xt),E[F (xt, ξ)]− yt)} converges to 0. Note that since

b
j∗l
l+1 =

∑

i∈Jl
pi(−∇xG(xl, ξ

i)Txl +G(xl, ξ
i)− Yj∗

l
) + γj∗

l

= (a
j∗l
l+1)

Txl − ψj∗
l
(xl)

= (a
j∗l
l+1)

Txl − ψ(xl),

20 H. SUN, H. XU, R. MESKARIAN AND Y. WANG

then (4.7) implies

ψ(xl) + (a
j∗l
l+1)

T (x− xl) ≤ 0.

Likewise, by the definition of el+1, kl+1, we have from (4.8) that

E[F (xl, ξ)] + dTl+1(x− xl)− y ≤ 0.

Assume for the sake of a contradiction that the desired convergence does not occur.
Then there exists an r > 0 independent of t such that

r ≤ max(ψ(xl),E[F (xl, ξ)]− yl)

≤ max((a
j∗l
l+1)

T (xl − xt), d
T
l+1(xl − xt)− (yl − yt))

≤ (L+ 1)||(xl, yl)− (xt, yt)||,

for all 0 ≤ l ≤ t− 1, which means {(xt, yt)} does not converge, a contradiction! This
shows {max(ψ(xt),E[F (xt, ξ)] − yt)} converges to 0 and hence (x∗, y∗) ∈ S is the
optimal solution and y∗ is the optimal value of (4.4). �

5. Numerical tests. In this section, we investigate the numerical performance
of Algorithms 3.1 and 4.1 along with the generalized cutting-plane method. We do
so by applying them to an academic problem, a practical portfolio selection problem
and a supply chain problem.

The tests are carried out in MATLAB 7.10 installed on a HP Notebook PC with
Windows 7 operating system, Intel Core i7 processor. We use IBM ILOG CPLEX
Studio 12.4 to solve the subproblems within the Algorithm 3.1 and the Algorithm
4.1, while the subproblem within the generalized cutting-plane method is solved by
“fmincon” due to nonlinearity. Furthermore, Algorithm 3.2 is integrated in the Al-
gorithm 3.1, to find a suitable penalty parameter. The initial penalty parameter is
set as 100. For Algorithm 3.1, we use the stopping criteria parameters ϵ = 10−4 and
τ = 0.5. Moreover, the Algorithm 4.1 and the generalized cutting-plane method pro-
posed in [8] terminates when the solution of any subproblem become a feasible point
of the original problem, see Step 3 of Algorithm 4.1 for details.

Example 5.1. Consider problem (2.5) with F (x, ξ) = −xξ, G(x, ξ) = xξ − 1
2x

2,
Y (ξ) = G(1, ξ), X = [0, 50], where ξ is a random variable with finite distribution
P (ξ = 2 + i−1

N
) = 1

N
for i = 1, · · · , N and N = 101. The problem can be specifically

presented as:

min
x

−
1

101

101
∑

i=1

x(2 +
i− 1

101
),

s.t.
1

101

101
∑

i=1

(η − x(2 +
i− 1

101
) +

1

2
x2)+ ≤

1

101

101
∑

i=1

(η − (2 +
i− 1

101
) +

1

2
)+, ∀η ∈ IR,

x ∈ X .
(5.1)

It is difficult to work out the feasible set precisely. Here we only need to find out
the optimal solution of problem (5.1). For x ∈ [1, 3],

P (G(x, ξ) ≤ η) ≤ P (Y (ξ) ≤ η), for all η ∈ IR,

which means G(x, ξ) ≽1 G(1, ξ), and hence G(x, ξ) ≽2 G(1, ξ). When x > 3,

N
∑

i=1

pi(1.5−G(x, ξi))+ >
N
∑

i=1

pi(1.5− Y (ξi))+,

STOCHASTIC PROGRAMS WITH DOMINANCE CONSTRAINTS 21

which implies G(x, ξ) ̸≽2 G(1, ξ). This shows that any point in the interval [1, 3] is a
feasible point of problem (5.1) whereas any point x with x > 3 is infeasible. It is easy
to see that x∗ = 3 is the optimal solution (with corresponding optimal value −7.5)
because the objective function is linear w.r.t. x.

We apply the L1-norm based penalty scheme (3.6) and L∞-norm based penalty
scheme (3.9) to problem (5.1) respectively. To justify the application, we examine the
SCQ of problem (5.1) and estimate the penalty parameter ρ. Consider formulation
(2.7) for problem (5.1). Let y := minNi=1 Y (ξi). It is easy to show that y = Y (2). For

x0 = 2, it is a feasible point. Moreover, G(x0, ξ) ≽1 Y (ξ), and G(x0, ξ
i) > y for all

i = 1, · · · , N . This verifies the conditions of Theorem 2.1. Hence formulation (2.7) of
problem (5.1) satisfies the SCQ.

Next we estimate the penalty parameter ρ through Theorem 3.1. We need to
work out κ, δ and D defined in Lemma 3.1. Observe first that the objective function
of problem (5.1) is Lipschitz continuous function with modulus κ = 3. Let

δ := − max
j∈{1,...,N}

(

1

N
max
J∈N

∑

i∈J

(Yj −G(x0, ξ
i))−

1

N

N
∑

i=1

(Yj − Y (ξi))+

)

.

It is easy to calculate that δ = 0.005. On the other hand, it is easy to verify that the
feasible set of problem (5.1) is contained in [0, 3]. Let D = 3. We obtain an estimate
of penalty parameter ρ, that is, ρ > κδ−1D = 1800.

We have carried out numerical tests on four algorithms for problem (5.1): Algo-
rithm 3.1 based on exact penalization with L1-norm (Algorithm 3.1 (L1) for short),
Algorithm 3.1 based on exact penalization with L∞-norm (Algorithm 3.1 (L∞) for
short), Algorithm 4.1 and the generalized cutting-plane method.

The numerical results are displayed in Table 5.1. A few words about the notation.
Opt.Sol denotes the numerical optimal solution and Opt.Val denotes the corresponding
optimal value. To check the efficiency of the algorithms, we have recorded the CPU
time (in minutes) for each of the algorithms.

Table 5.1
Numerical results for (5.1), Example 5.1.

CPU Time Opt.Sol Opt.Val
Algorithm 3.1 (L1) 0.0374 3.000 -7.4850
Algorithm 3.1 (L∞) 0.0148 3.000 -7.4850

Generalized cutting-plane method 0.0463 3.003 -7.5099
Algorithm 4.1 0.0196 3.000 -7.4850

The results show that all four algorithms perform efficiently albeit Algorith-
m 3.1 (L1) and generalized cutting-plane method takes slightly more CPU time. To
further investigate the performance of the algorithms, we propose to run a portfolio
optimization problem of larger size.

Example 5.2. Consider a portfolio optimization problem with nonlinear trans-
action cost where short selling is allowed. Let rj : Ω → IR, denote the random return
rate of asset j for j = 1, · · · , n, and R := (r1, . . . , rn). We assume that E[|rj |] < ∞.
Denoting by xj the fraction of the initial capital invested in asset j, we can easily
derive the total return rate:

R(ω)Tx = r1(ω)x1 + r2(ω)x2 + · · ·+ rn(ω)xn,

22 H. SUN, H. XU, R. MESKARIAN AND Y. WANG

and the total return with transaction costs:

G(x,R) := R(ω)Tx− 0.01× (|x1|+ |x2|+ · · ·+ |xn|), (5.2)

where the number 0.01 is the unit transaction cost. Here xi may take a negative value
due to the practice of short selling which allows an investor to borrow some shares
of stock from a broker and sell them. The investor must return the same shares by
purchasing them back from the market over a specified time period (in hope that the
share price would drop). This is also known as covering the short position. See [1].

Our aim is to investigate the optimal investment policy for a fixed capital in
the n assets with some desirable characteristics of the portfolio using second order
stochastic dominance model.

LetG(x,R) be defined as in (5.2), associated with the decision vector x ∈ X ⊂ R
n,

where X is a compact and convex set. In the literature of portfolio optimization, x is
known as a portfolio and X is the set of feasible portfolios.

Let Y (R) denote the benchmark return. Our aim is to find an optimal portfolio
x such that G(x,R) dominates Y (R) in second order and E[G(x,R)] is maximized.
We formulate the decision making problem as a stochastic minimization problem
with second order dominance constraints, namely (1.4), with F (x, ξ) = −G(x,R),
G(x, ξ) = G(x,R) and Y (ξ) = Y (R). The main issue here is that we don’t know the
distribution of random vector R(ω). To get around the difficulty, we use historical
data (sample) and consider the following approximation problem:

min
x

−
1

N

N
∑

i=1

(xTRi − 0.01∥x∥1)

s.t.
1

N

N
∑

i=1

(

(Yj − xTRi + 0.01∥x∥1)+ − (Yj − Yi)+
)

≤ 0, j = 1, . . . , N,

x ∈ X ,

(5.3)

where ∥x∥1 = |x1|+ . . .+ |xn|, {R
1, . . . , RN} is a set of historical data and {Yi}

N
i=1 is

the set of the benchmark return.
Problem (5.3) is also known as a sample average approximation of problem (1.4).

Taking into account the short selling policy, we set an upper bound 2 and a lower
bound −1 for each xi, consequently

X = {x :
n
∑

i=1

xi = 1, xi ∈ [−1, 2], for i = 1, · · · , n}.

Note that the problem (5.3) is different from the portfolio optimization problem in-
vestigated in [8, 26] in that the underlying function G(x,R) is nonlinear w.r.t. x.

We have carried out numerical tests on the four algorithms for problem (5.3).
We have collected 300 daily returns of 93 FTSE100 assets prior to March 2011. The
first 200 of them are used to construct the portfolio strategy and set up a backtest in
order to investigate the performance of the portfolio in-sample. The remaining 100
are used to carry out an out-of-sample test to examine the efficiency of the portfolio
out-of-sample.

Table 5.2 displays the test results of the four algorithms in terms of CPU time
and optimal return based on the first 200 data. The four algorithms generate almost
identical optimal portfolio and return. The numerical efficiency, however, seems dif-
ferent in terms of CPU time: generalized cutting-plane method apparently requires

STOCHASTIC PROGRAMS WITH DOMINANCE CONSTRAINTS 23

more computational time. This is because the subproblem of generalized cutting-
plane method is a nonlinear program in this example and the MATLAB optimization
solver “fmincon” cannot solve them efficiently particularly when the problem size is
large.

Table 5.2
Numerical results for (5.3), Example 5.2.

CPU Time Opt.Return

Algorithm 3.1 (L1) 1.3474 0.0057
Algorithm 3.1 (L∞) 1.0084 0.0057

Generalized cutting-plane method 35.4953 0.0057
Algorithm 4.1 1.4439 0.0057

In order to investigate the performance of the selected portfolio, we have carried
out a backtest and an out-of-sample test for each of the algorithms. Figures 5.1-5.2
depict the cumulative distribution functions (CDF) of the returns based on optimal
portfolios obtained through Algorithm 3.1 (L1) and Algorithm 3.1 (L∞) respectively,
in comparison with the benchmark return (FTSE100 Index). The performance of the
portfolio strategies generated by the generalized cutting-plane method and Algorith-
m 4.1 are displayed in Figures 5.3-5.4.

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Profit

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Algorithm 3.1 (L∞)

FTSE 100 Index
Algorithm 3.1 (L

1
)

Fig. 5.1. The cumulative distribution functions of Algorithm 3.1 (L1) and Algorithm 3.1
(L∞) in comparison with FTSE100 index for backtest.

From Figures 5.1-5.4, it is easy to observe that the returns of optimal portfolio
constructed through the 4 algorithms are almost identical and they dominate the
benchmark return in first order (and hence in second order) in both backtest and
out-of-sample test.

Table 5.3 displays the returns and risks based on the selected portfolios and the
benchmark one both in-sample and out-of-sample. Here we use the Value-at-Risk
(VaR) as the risk measure, which is one of the most commonly used measures of risk

24 H. SUN, H. XU, R. MESKARIAN AND Y. WANG

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

0.2

0.4

0.6

0.8

1

Profit

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Algorithm 3.1 (L∞)

FTSE 100 Index
Algorithm 3.1 (L

1
)

Fig. 5.2. The cumulative distribution functions of Algorithm 3.1 (L1) and Algorithm 3.1
(L∞) in comparison with FTSE100 index for out-of-sample test.

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Profit

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Algorithm 4.1
FTSE 100 Index
Generalized cutting−plane method

Fig. 5.3. The cumulative distribution functions of the optimal portfolio returns of
generalized cutting-plane method and Algorithm 4.1 in comparison with FTSE100 index for
Backtest.

in finance. It is defined as

VaRα(−G(x,R)) := min
η∈IR

{η : Prob{−G(x,R) ≤ η} ≥ α},

where α ∈ (0, 1) and −G(x,R) is the loss function. In this context, the formulation
above means that with the probability less than 1 − α, the loss −G(x,R) will be
greater than VaRα(−G(x,R)) or equivalently, the return G(x,R) will be less than
−VaRα(−G(x,R)). For a fixed α, a smaller VaRα(−G(x,R)) means smaller risk.
Three values of α are commonly considered: 0.90, 0.95, 0.99. In our analysis, we

STOCHASTIC PROGRAMS WITH DOMINANCE CONSTRAINTS 25

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Profit

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Algorithm 4.1
FTSE 100 Index
Generalized cutting−plane method

Fig. 5.4. The cumulative distribution functions of the optimal portfolio returns of
generalized cutting-plane method and Algorithm 4.1 in comparison with FTSE100 index for
Backtest.

consider α = 0.95. From Table 5.3, we can see that the optimally selected portfolios
generate higher returns with lower risks in comparison with those of the benchmark
portfolio both in-sample and out-of-sample. We have also carried out some sensitivity

Table 5.3
Comparison of the selected portfolio to the benchmark portfolio, Example 5.2.

Data Portfolio Return VaR

In-sample
Selected portfolio 0.0057 -0.0252

Benchmark portfolio 0.0031 0.0008

Out-of-sample
Selected portfolio 0.0036 -0.0103

Benchmark portfolio -0.0071 0.0023

analysis of the four algorithms with respect to the change of problem size and number
of scenarios. Figure 5.5 depicts CPU time of the four algorithms as the number of
assets increase from 10 to 2500. It shows that Algorithm 3.1 (L∞) and Algorithm 4.1
require considerably less CPU times as the number of assets increases. The underlying
reason that Algorithm 3.1 (L∞) outperforms Algorithm 3.1 (L1) is that the former
requires to calculate a subgradient of a single nonsmoth function while the latter
requires to calculate a subgradient of the sum of N nonsmooth functions which takes
more times as problem size increases.

Although generalized cutting-plane method is proposed to solve linear problems
and in this nonlinear setting, it performs reasonably well with respect to large number
of assets considered. Figure 5.6 displays similar phenomena. As the size of scenar-
ios increases, generalized cutting-plane method have more nonlinear constraints while
Algorithm 3.1 (L1) takes more time to calculate a subgradient. There seems to be
no significant impact on the other two algorithms. Since the difference between Al-
gorithm 3.1 (L∞) and Algorithm 4.1 is not clear in Figure 5.6, we enlarge them in

26 H. SUN, H. XU, R. MESKARIAN AND Y. WANG

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

No.Assets

C
P

U
 T

im
e

(m
in

s)

Algorithm 3.1 (L
1
)

Algorithm 3.1 (L∞)

Algorithm 4.1
Generalized cutting−plane method

Fig. 5.5. Computational time versus the number of assets for a fixed number of obser-
vations, Example 5.2.

Figure 5.7.

0 500 1000 1500 2000 2500
0

10

20

30

40

50

No. Observations

C
P

U
 T

im
e

(m
is

)

Algorithm 3.1 (L
1
)

Algorithm 3.1 (L∞)

Algorithm 4.1
Generalized cutting−plane method

Fig. 5.6. Computational time versus the number of observations for a fixed number of
assets, Example 5.2.

It is important to note, as one of the referees suggested, that the out-of-sample
experiments implicitly assume the empirical samples approximate the true distribu-
tion of the return and there is a limitation of such an approach when sample size
is small. It might be interesting to discuss the reliability of such approximation in
terms of sample size but this is beyond the scope of this paper. We refer interested
readers to the asymptotic analysis of the sample average approximation for second
order dominance problems in [10] and [23].

The last example we have tested is a supply chain problem recently considered
by Dentcheva and Martinez [3, Section 4].

Example 5.3. (Dentcheva and Martinez [3]) A company has a set F of factories
that produce and supply perishable product to a set O of stores. Assume that demand
at each store is stochastic and the goods are supplied before the demand is observed.
If the demand is not met, the customers buy the product elsewhere and the sales are

STOCHASTIC PROGRAMS WITH DOMINANCE CONSTRAINTS 27

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

No.Observations

Algorithm 3.1 (L∞)

Algorithm 4.1

Fig. 5.7. Computational time versus the number of observations for a fixed number of
assets, Example 5.2.

lost. If the stock of the store is larger than the demand, then the remaining products
need to be disposed of. Assume that the disposal cost is a deterministic quantity and
that each factory has a limited capacity to produce goods. Furthermore, we assume
that a benchmark of the acceptable cost distribution is available. The objective is
to determine a production and shipping plan for each factory in order to minimize
the expected cost of the company. Denote by xij the quantity of goods delivered by
factory i to store j, Dj the demand at store j, wi the quantity produced by factory i,
zj the number of sales at store j, and yj the amount disposed at store j. The shipping
cost from factory i to store j is denoted by cij ; the production cost of one unit of
product at store i is ai; the capacity of store i is Ci. The disposal cost on site j is dj
and the price store j sets for the product is bj .

Dentcheva and Martinez proposed a two-stage stochastic program with stochastic
ordering constraint model for this problem, see [3, Section 4] for details. Here, we
formulate the problem as a one-stage stochastic problem with SSD constraints as
follows:

min
F
∑

i=1

O
∑

j=1

cijxij +
F
∑

i=1

aiwi +
S
∑

s=1

psQ(x,Ds)

s.t. −Q(x,D) ≽2 −Y,

wi =
O
∑

j=1

xij , i = 1, . . . , F,

0 ≤ wi ≤ Ci, i = 1, . . . , F,
xij ≥ 0, i = 1, . . . , F ; j = 1, . . . , O.

(5.4)

Here D := (D1, . . . , DO) where each Dj has S scenarios,

Q(x,Ds) :=
O
∑

j=1

(dj(xj −Ds
j)+ − bj(D

s
j − (Ds

j − xj)+)),

xj =
∑F

i=1 xij and Y is a benchmark with S scenarios.
We assume that each component Dj of the demand D satisfies the γ-distribution

with parameters (2, 3), j = 1, . . . , J . Each data set is generated through i.i.d. sam-
pling with size S and ps := 1

S
, for s = 1, . . . , S. The benchmark is constructed from

28 H. SUN, H. XU, R. MESKARIAN AND Y. WANG

500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

Sample size

Algorithm 3.1 (L
1
)

Algorithm 3.1 (L∞)

Algorithm 4.1
Generalized cutting−plane method

Fig. 5.8. Computational time versus the number of observations for F = 10 and O = 10,
Example 5.3.

solving the problem without SSD constraints. We have carried out a number of nu-
merical tests on the four algorithms for problem (5.4). Our tests are concentrated on
CPU time against increment of sample size and problem size. There are two cases
which may lead to the change of problem size: increase of the number of factories
F and increase of the number of stores O. Figure 5.8 depicts CPU time of the four
algorithms as the size increases from 10 to 3000, whereas Figures 5.9 and 5.10 depict
the sensitivity of CPU time against the change of F and O respectively.

We have made a few observations from the numerical tests. First, the four algo-
rithms perform well as sample size increases particularly when the size goes beyond
2000, see Figure 5.8. This is primarily because the sample size does not increase the
size of problem (5.4) albeit it increases the number of terms in both the objective and
constraint functions. Second, Algorithm 3.1 (L∞) performs better than than other
algorithms in most cases. An underlying reason is that it constructs a single level
function instead of adding two or more cutting planes as in the Algorithm 4.1 and
the generalized cutting-plane method. Similar comments apply to L1 penalization
method (3.6) although it is not as efficient as Algorithm 3.1 (L∞). Third, increase
of the number of stores O has more significant impact on on both the number of
iterations and the CPU time in all of the four algorithms than does the increase of
the number of factories F , see Figures 5.9 and 5.10. This is primarily due to the
fact that increasing O results in more nonsmooth terms in the constraint functions
while increasing F does not have such consequence, see the composition of Q(x,Ds).
Finally, in comparison with Dentcheva and Martinez’s test results, our algorithms are
less sensitive to the increase of sample size because we don’t introduce new variables
to deal with plus functions, on the other hand, our algorithm are more sensitive to the
increase of O whereas their algorithms deal with such a problem through introduction
of a new variable per scenario to get around the nonsmoothness of the plus function.

Acknowledgments. The authors would like to thank Casba Fábián for his com-
ments on an earlier version of the paper which helped us clarify the cutting plane
algorithms in [8]. They are also grateful to the two anonymous referees and the asso-
ciate editor, Darinka Dentcheva, for insightful comments which helped us improve the

STOCHASTIC PROGRAMS WITH DOMINANCE CONSTRAINTS 29

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

Size of F

C
P

U
 T

im
e

(m
in

s)

Algorithm 3.1 (L
1
)

Algorithm 3.1 (L∞)

Algorithm 4.1
Generalized cutting−plane method

Fig. 5.9. Computational time versus the number of factories F with O = 10 and
S = 300, Example 5.3.

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

Size of O

C
P

U
 T

im
e

(m
in

s)

Algorithm 3.1 (L
1
)

Algorithm 3.1 (L∞)

Algorithm 4.1
Generalized cutting−plane method

Fig. 5.10. Computational time versus the number of stores O, with F = 10 and S = 300,
Example 5.3.

presentation of the paper. Finally they thank Darinka Dentcheva and Gabriela Mar-
tinez for providing us with reference [3] and subsequent discussions about Example
5.3.

REFERENCES

[1] Z. Bodie, A. Kane and A. Marcus, Investments, 6th. ed., McGraw-Hill, Now York, 2005.
[2] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[3] D. Dentcheva and G. Martinez, Two-stage stochastic optimization problems with stochastic

ordering constraints on the recourse, European J. Oper. Res., 219 (2012), pp. 1–8.
[4] D. Dentcheva and A. Ruszczyński, Optimization with stochastic dominance constraints,

SIAM J. Optim., 14 (2003), pp. 548–566.
[5] , Portfolio optimization with stochastic dominance constraints, J. Banking Financ, 30

30 H. SUN, H. XU, R. MESKARIAN AND Y. WANG

(2006), pp. 433–451.
[6] , Optimality and duality theory for stochastic optimization with nonlinear dominance

constraints, Math. Program., 99 (2004), pp. 329–350.
[7] Y. Ermoliev, Stochastic quasi-gradient methods and their application to system optimization,

Stochastics, 9 (1983), pp. 1–36.
[8] C. Fábián, G. Mitra and D. Roman, Processing second-order stochastic dominance models

using cutting-plane representations. Math. Program., 130 (2011), pp. 33–57.
[9] T. Homem-de-Mello and S. Mehrotra, A cutting surface method for uncertain linear pro-

grams with polyhedral stochastic dominance constraints, SIAM J. Optim., 20 (2009), p-
p. 1250-1273.

[10] J. Hu, T. Homen-De-Mello and S. Mehrotra, Sample average approximation of stochastic
dominance constrained programs, Math. Program., 133 (2012), pp. 171–201.

[11] W. Klein Haneveld and M. van der Vlerk, Integrated chance constraints: reduced forms
and an algorithm, Comput. Manag. Sci., 3 (2006), pp. 245–269.

[12] J. E. Kelley, The cutting-plane method for solving convex programs, SIAM J. Appl. Math.,
8 (1960), pp. 703-712.

[13] C. Lemarechal, A. Nemirovskii and Y. Nesterov, New variants of bundle methods, Math.

Program., 69 (1995), pp. 111–147.
[14] Y. Liu and H. Xu, Stability and senstivity analysis of stochastic programs with second order

dominance constrains, Mathematical Programming, Series A, online publication 2012.
[15] R. Meskarian, J. Fliege and H. Xu, Stochastic programming with multivariate second or-

der stochastic dominance with applications in portfolio optimization, Preprint, School of
Mathematics, University of Southampton, June 2012.

[16] R. Meskarian, H. Xu and J. Fliege, Numerical methods for stochastic programs with second
order dominance constraints with applications to portfolio optimization, European J. Oper.

Res., 216 (2011), pp. 376–385.
[17] A. Müller and M. Scarsini, Eds., Stochastic Orders and Decision under Risk, Institute of

Mathematical Statistics, Hayward, CA, 1991.
[18] W. Ogryczak and A. Ruszczyński, From stochastic dominance to mean-risk models: Semide-

viations as risk measures, European J. Oper. Res., 116 (1999), pp. 33–50.
[19] S. M. Robinson, An application of error bounds for convex programming in a linear space,

SIAM J. Control Optim., 13 (1975), pp. 271–273.
[20] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1982.
[21] D. Roman and G. Mitra, Portfolio selection models: A review and new directions, Wilmott

Journal, 1 (2009), pp. 69–85.
[22] G. Rudolf and A. Ruszczyński, Optimization problems with second order stochastic domi-

nance constraints: duality, compact formulations, and cut generation methods, SIAM J.

Optim., 19 (2008), pp. 1326–1343.
[23] H. Sun and H. Xu, Convergence analysis of stationary points in sample average approximation

of stochastic programs with second order stochastic dominance constraints. To appear in
Math. Program. Ser. B, 2012.

[24] W. Sun and Y. Yuan, Optimization Theory and Methods, Springer, New York, 2006.
[25] H. Xu, Level function method for quasiconvex programming, J. Optim. Theory Appl., 108

(2001), pp. 407–437.
[26] H. Xu and D. Zhang, Smooth sample average approximation of stationary points in nonsmooth

stochastic optimization and applications, Math. Program., 119 (2009), pp. 371–401.

