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Abstract

There is an ongoing discussion in the community concerning the wave-averaged momentum equations in

the hybrid vertically Lagrangian and horizontally Eulerian (VL) framework and, in particular, the form

stress term (representing the residual effect of pressure perturbations) which is thought to restrict the

handling of higher order waves in terms of a perturbation expansion. The present study shows that the

traditional pressure-based form stress term can be transformed into a set of terms that do not contain

any pressure quantities but do contain the time derivative of a wave-induced velocity. This wave-induced

velocity is referred to as the pseudomomentum in the VL framework, as it is analogous to the generalized

pseudomomentum in Andrews and McIntyre. This enables the second expression for the wave-averaged

momentum equations in the VL framework (this time for the development of the total transport velocity

minus the VL pseudomomentum) to be derived together with the vortex force. The velocity-based

expression of the form stress term also contains the residual effect of the turbulent viscosity, which is

useful for understanding the dissipation of wave energy leading to transfer of momentum from waves to

circulation. It is found that the concept of the virtual wave stress of Longuet-Higgins is applicable to

quite general situations: it does not matter whether there is wind forcing or not, the waves can have

slow variations, and the viscosity coefficient can vary in the vertical. These results provide a basis for

revisiting the surface boundary condition used in numerical circulation models.
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1. Introduction1

Wave-averaged momentum equations for the effect of surface gravity waves on circulation in the upper2

ocean have been derived in either the three-dimensional Eulerian mean framework (e.g. McWilliams et3

al. 2004; Lane et al., 2007) or the three-dimensional Lagrangian mean framework (e.g. Pierson, 1962;4

Andrews and McIntyre, 1978, hereafter AM78; Ardhuin et al., 2008b). An ongoing discussion in recent5

studies is whether or not the corresponding equations can be obtained from the vertically Lagrangian and6

horizontally Eulerian (VL) mean framework that was introduced in prototype form by Mellor (2003) and7

Broström et al. (2008). Despite the discussion by Lane et al. (2007) and Ardhuin et al. (2008a), how to8

derive the wave-averaged momentum equations with the so-called vortex force “using the VL framework”9

remains an open question in the oceanographic community. On the other hand, as noted by Aiki and10

Greatbatch (2012, hereafter AG12), the VL framework offers a concise treatment of the viscous boundary11

condition at the sea surface, since the viscosity term of the wave-averaged momentum equations in the12

VL framework is written in a flux-divergence form. Thus, as shown in AG12, the VL framework can be13

used as an alternative to the three-dimensional Lagrangian framework of Pierson (1962) for explaining14

the virtual wave stress (VWS) of Longuet-Higgins (1953, 1960) [not to be confused with the radiation15

stress of Longuet-Higgins and Stewart (1964)]. To our knowledge the VWS has not been explained using16

the three-dimensional Lagrangian framework of AM78 in previous studies, apart from the attempt by17

Ardhuin et al. (2008b). The goal of the present study is to clarify the relationship between the VL18

framework and the three-dimensional Lagrangian framework. We show that the traditional pressure-19

based expression of the form stress term in the VL framework can be rewritten as a velocity-based20

expression, which we argue is the cornerstone for settling the discussion regarding both the vortex force21

in the VL framework and the relevance of the VWS to quite general situations.22

The work of Lagrange (1788), who developed two different expressions for the momentum equations23
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in Lagrangian coordinates, is highly relevant to the present study. Let (xε, yε, zε) be the instantaneous24

position of a fluid particle in the Eulerian-Cartesian coordinates and (u, v, w) ≡ (dxε/dt, dyε/dt, dzε/dt)25

be velocity where d/dt is the material derivative operator. Each fluid particle can be labelled by ei-26

ther its initial position (Lagrange, 1788; Lamb, 1932) or its low-pass filtered position (AM78), and is27

here symbolized as (a, b, c). The first expression (hereafter referred to as the direct expression) for the28

momentum equations in the three-dimensional Lagrangian coordinates reads,29 
ρdu/dt−Qu

ρdv/dt−Qv

ρdw/dt−Qw

 = −


xεa yεa zεa

xεb yεb zεb

xεc yεc zεc



−1
pa

pb

pc

 , (1)30

where ρ is density, (Qu, Qv, Qw) is the sum of the effects of viscosity, gravitational acceleration, and the31

rotation of the Earth. In order to obtain an expression in the three-dimensional Lagrangian coordinates,32

the pressure gradient in the Eulerian coordinates (pxε , pyε , pzε) has been rewritten using the pressure33

gradient in the three-dimensional Lagrangian coordinates (pa, pb, pc) based on the standard chain-rule34

between partial differentials [see Eq. (C) on page 445 of Lagrange (1788)].1 The Lagrangian average of35

(1) yields development equations for the Lagrangian mean (LM) velocity which is the sum of the Eulerian36

mean (EM) velocity and the Stokes-drift velocity (Stokes, 1847). Although the pressure gradient term of37

(1) is complicated, the forcing term is simpler than that in the second expression shown below, so that38

the direct expression has been often used in the studies of viscous surface waves [Chang, 1969; Ünlüata39

and Mei, 1970; Weber, 1983; Jenkins, 1987; Piedra-Cueva, 1995; Ng, 2004; all of these studies used Eq.40

(9) of Pierson (1962), see our Table 1].41

1The chain rule is


∂a

∂b

∂c

 =


xεa yεa zεa

xεb yεb zεb

xεc yεc zεc




∂xε

∂yε

∂zε

.
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The second expression (hereafter referred to as the transformed expression) for the momentum equa-42

tions in the three-dimensional Lagrangian coordinates is obtained by multiplying (1) with the coordinate43

transformation matrix associated with the chain rule to yield [see Eq. (D) on page 446 of Lagrange44

(1788)],45 
xεa yεa zεa

xεb yεb zεb

xεc yεc zεc




ρdu/dt−Qu

ρdv/dt−Qv

ρdw/dt−Qw

 = −


pa

pb

pc

 . (2)46

Although the lhs is complicated, AM78 have presented a straightforward manipulation to render the47

Lagrangian average of (2) into development equations for the difference2 between the LM velocity and48

the generalized pseudomomentum (or wave momentum, see Section 3 in AM78). Using this result of49

AM78, Leibovich (1980) has presented wave-averaged momentum equations that include the so-called50

vortex force,51

(∂tε + V
ε · ∇ε + wε∂zε)V

ε
= −∇εP + VStokes × (∇ε ×V

ε
), (3a)52

(∂tε + V
ε · ∇ε + wε∂zε)w

ε = −∂zεP− g + VStokes · (∂zεV
ε −∇εwε), (3b)53

where V
ε

and wε are the horizontal and vertical components of the EM velocity, respectively, VStokes is54

the horizontal component of the Stokes-drift velocity associated with surface gravity waves, ∂tε , ∇ε =55

(∂xε , ∂yε), and ∂zε are the temporal, horizontal, and vertical gradient operators, respectively, in the56

Eulerian-Cartesian coordinates (see Table 2), g is gravitational acceleration, and P symbolizes the sum57

2For irrotational wave motions in the vertical plane, the analytical expression of the generalized pseudomomentum

of AM78 is identical to that of the Stokes-drift velocity at the leading order in terms of an asymptotic expansion, with

a consequence that “the LM velocity minus the generalized pseudomomentum” approximates to the EM velocity. This

is why (3a)-(3b) have been written for the development of the EM velocity. The LM velocity minus the generalized

pseudomomentum has been referred to as the quasi-EM velocity in Jenkins (1989) and Ardhuin et al. (2008a,b).
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of the Lagrangian average of nonhydrostatic pressure p and other scalar quantities (associated with58

the so-called Bernoulli head). Equations (3a)-(3b) omit the Coriolis term and the viscosity term for59

simplicity. The last term of each of (3a)-(3b) is the vortex force. The vortex force represents the60

interaction between an EM shear flow and the Stokes-drift flow associated with surface waves, and is61

appropriate to describe the maintenance of Langmuir Circulations (LCs, Langmuir, 1938). LCs play an62

important role in the vertical mixing of the surface mixed layer of the ocean (e.g. Skyllingstad et al.,63

1995; Polton and Belcher, 2007; Kukulka et al., 2010). Some prototypes of the vortex force have been64

derived by Craik and Leibovich (1976, hereafter CL76) using EM vorticity equations and by Garrett65

(1976) using EM depth-integrated momentum equations. Besides the theory of LCs, the vortex force has66

also been used in the modeling of the circulation in an inner coastal shelf region (e.g. McWilliams et al.,67

2004; Tang et al., 2007: Ardhuin et al., 2008b).68

It can be said that the thickness-weighted-mean (TWM) momentum equations of Mellor (2003),69

Broström et al. (2008), and AG12 correspond to the Lagrangian average of (1) which is the direct70

expression of the Lagrangian momentum equations. This is because (i) the TWM momentum equations71

are written for the development of the TWM velocity whose role corresponds to that of the LM velocity72

in the three-dimensional Lagrangian framework and (ii) the TWM momentum equations contain the73

form stress term representing the residual effect of pressure perturbations. Nevertheless, in contrast to74

the Lagrangian average of (1), the TWM momentum equations contain the horizontal Reynolds stress75

term, which originates from the fact that the VL framework is Eulerian in the horizontal direction.76

No previous study has attempted to derive the transformed expression for the TWM momentum77

equations corresponding to the Lagrangian average of (2). This is why, so far, the vortex force has not78

been obtained from the family of equations in the VL framework despite the discussion relating to this79

issue in the literature (cf. Jenkins and Ardhuin, 2004; Lane et al., 2007; Ardhuin et al., 2008a; Broström80
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et al., 2008). A key step is the derivation of a new expression for the form stress written entirely using81

velocity variables, the subject of Section 2 of the present study. In Section 3 we show that the velocity-82

based expression of the form stress term contains the time derivative of a wave-induced velocity, resulting83

in the transformed expression for the TWM momentum equations, namely the expression rewritten for84

the development of the EM velocity, that contain the vortex force. We then introduce turbulent viscosity85

in Section 4 to show that the velocity-based expression of the form stress term also contains the residual86

effect of viscosity, and is useful for understanding the issue of how the dissipation of wave energy leads87

to the transfer of momentum from waves to circulation. Our finding is that the VWS of Longuet-Higgins88

(1953, 1960) is applicable in quite general situations and needs to be taken into account when considering89

the boundary conditions used in numerical circulation models. Section 5 presents a brief summary.90

2. Mathematical development91

We consider incompressible inviscid water of constant, uniform density in a non-rotating frame (ro-92

tation and viscosity are introduced in Section 4).93

a. The thickness-weighted-mean equations of Aiki and Greatbatch (2012)94

The incompressible condition and the momentum equations in the VL coordinates, (x, y, z, t), of AG1295

are96

(zεz)t +∇ · (zεzV) + (zεz$)z = 0, (4a)97

(∂t + V · ∇+$∂z)z
ε = w, (4b)98

(∂t + V · ∇+$∂z)V = −∇(p+ η) + pzε∇zε, (4c)99

(∂t + V · ∇+$∂z)w = −pzε , (4d)100
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where zε = zε(x, y, z, t) is the instantaneous height of fluid particles in the standard Eulerian-Cartesian101

coordinates. The symbol ε, rather than c as used in AG12 and Aiki and Greatbatch (2013 - hereafter102

AG13), is used in the present study in order to preserve consistency with (1) and (2). In addition103

the symbol w∗ in AG12 and AG13 has been replaced by the new symbol $ in the present study for104

convenience. The vertical coordinate, z ≡ zε, is a low-pass filtered height coordinate and zεz is the105

thickness. The horizontal coordinates x and y are the same as the Eulerian-Cartesian coordinates. The106

quantity V = (u, v) is the horizontal velocity vector, w is the vertical component of velocity, $ represents107

water flux through the surfaces of fixed z, ∇ ≡ (∂x, ∂y) is the lateral gradient operator along the surfaces108

of fixed z, and ∇z = 0 is understood. The quantity p is the sum of the oceanic non-hydrostatic and109

atmospheric pressure and η is the instantaneous sea surface height. Table 2 presents a list of the symbols110

used in the text. All variables and quantities (such as x, y, z, t, u, v, w,$, zε, p, and η) in the present111

manuscript have been non-dimensionalized, as in Appendix A of AG13. The non-dimensionalization is112

not essential but serves to simplify the mathematics.113

The difference between the three-dimensional Lagrangian coordinates of AM78 and the VL coordi-114

nates is illustrated in Fig. 1. As the wave propagates rightward, the control cell of the three-dimensional115

Lagrangian coordinates (blue) rotates clockwise and returns to its original position. The movement of the116

control cell captures only high-frequency fluid motion (rather than the full motion of each fluid particle),117

which is why the control cell does not drift away despite the Stokes-drift and even though there could118

also be a background EM flow present in the horizontal and vertical directions. The control cell of the119

VL coordinates (red) moves like a piston whose thickness stretches and shrinks.120

Momentum equations in a flux-divergence form can be obtained by multiplying each of (4c) and (4d)121
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by the thickness zεz and then using (4a) to give122

(zεzV)t +∇ · (zεzVV) + (zεz$V)z = −zεz∇(p+ η) + pz∇zε, (5a)123

(zεzw)t +∇ · (zεzVw) + (zεz$w)z = −pz. (5b)124

where zεzpzε = pz is understood. Low-pass temporal filtering each of (4a), (5a), and (5b) yields TWM125

equations3 for incompressibility and the horizontal and vertical components of momentum,126

∇ · V̂ + $̂z = 0, (6a)127

V̂t +∇ · (V̂V̂) + ($̂V̂)z + RSV = −∇(p+ η) + FSV, (6b)128

ŵt +∇ · (V̂ŵ) + ($̂ŵ)z + RSw = −pz, (6c)129

where zεz ≡ 1 (i.e. zε ≡ z) has been used. The hat symbol is the TWM operator (Â ≡ zεzA for an130

arbitrary quantity A). The symbols RSV and RSw in (6b)-(6c) are the Reynolds stress terms defined by131

RSA ≡ ∇ · (zεzV′′A′′) + (zεz$
′′A′′)z, (7)132

for A = u, v, and w. The double-prime symbol is the deviation from the TWM (A′′ ≡ A− Â, compared133

at fixed z). The last term of (7) is given by $′′ (not w′′) and thus is nearly zero. The fact that $′′ is134

nearly zero is attributed to the way the VL coordinates have been designed so that $ represents fluid135

motions associated with low-frequency fluid motions and not with the waves themselves. In particular136

AG12 have shown that $′′ = V′′ · ∇η at the sea surface, which implies that the Reynolds stress vector137

(zεzV
′′A′′, zεz$

′′A′′) is aligned along the mean slope of the sea surface. The symbol FSV in (6b) is the138

3The TWM equations originate from studies on mesoscale eddies (cf. Gallimore and Johnson, 1981; Andrews, 1983;

Bleck, 1985; de Szoeke and Bennett, 1993; Greatbatch, 1998; Iwasaki, 2001; Greatbatch and McDougall, 2003; Aiki and

Richards, 2008; Young, 2012).
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form stress term defined by139

FSV ≡ −z′′′z ∇(p′′′ + η′′′) + p′′′z ∇z′′′140

= −[z′′′∇(p′′′ + η′′′)]z +∇(z′′′p′′′z ), (8)141

where the triple-prime symbol is the deviation from the unweighted mean (A′′′ ≡ A − A, compared at142

fixed z). It should be noted that z′′′ ≡ zε − zε = zε − z.143

For low-pass filtered quantities, the VL coordinates (x, y, z, t) correspond to the standard Eulerian-144

Cartesian coordinates (Jacobson and Aiki, 2006). A nice feature of the total transport velocity (V̂, $̂)145

in (6a)-(6c) is that both the incompressible condition (6a) and the kinematic boundary condition ($̂ =146

ηt+V̂ ·∇η at the sea surface, see AG12) are always satisfied without relying on an asymptotic expansion147

approach. The incompressibility condition allows us to rewrite the TWM momentum equations (6b)-(6c)148

in the form149

D̂tV̂ + RSV = −∇(p+ η) + FSV, (9a)150

D̂tŵ + RSw = −pz, (9b)151

where D̂t ≡ ∂t + V̂ · ∇ + $̂∂z is the material derivative operator based on the total transport velocity.152

The quantities ŵ and $̂ are not the same mathematically but the difference is negligible as far as the153

present study is concerned, as is demonstrated in Section 3.154

The wave-induced velocity in Mellor (2003) can be called the quasi-Stokes velocity following Mc-155

Dougall and McIntosh (2001). The quasi-Stokes velocity (Vqs, wqs) refers to the difference between the156

total transport velocity (V̂, $̂) and the EM velocity (V
ε
, wε),157

Vqs ≡ V̂ −V
ε
(= V + z′′′z V′′′ −V

ε
), (10a)158

wqs ≡ $̂ − wε(= w −V′′′ · ∇z′′′ − wε), (10b)159
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where (4b) has been used.4 The expressions in brackets will prove useful in Section 3. As noted in AG12,160

the quasi-Stokes velocity and the Stokes drift are closely related.161

b. A new expression of the form stress term162

The form stress term in (8) is based on the pressure fluctuation p′′′ so that it is not useful for some163

analytical treatments (Ardhuin et al., 2008a,b). Our view is that writing the form stress term in the164

TWM momentum equation (6b) in terms of pressure (i.e. as in (8)) implies a wave-averaged equation165

which corresponds to the Lagrangian average of equation (1): the direct expression for the momentum166

equation in the three-dimensional Lagrangian coordinates with the complicated pressure gradient term.167

We now show that the pressure-based form stress term in (8) can be transformed into a new expression168

where the pressure fluctuation p′′′ does not appear and which, in turn, provides a link to the Lagrangian169

average of the transformed expression for the Lagrangian momentum equation (2).170

Substitution of zε = z + z′′′ and Dt ≡ ∂t + V · ∇+$∂z to (4a)-(4d) yields,171

DtV = −∇(p+ η)− (Dtw)︸ ︷︷ ︸
−pzε

∇z′′′, (11a)172

Dtw = −pz − (Dtw)z′′′z , (11b)173

Equation (11b) has been derived by multiplying (4d) with 1+z′′′z and noting that (1+z′′′z )pzε = zεzpzε = pz.174

4 Appendix D of AG13 provides an approximate expression for the EM quantities based on a Taylor expansion in the

vertical direction with a continuous treatment of the vertical profile (i.e. no singular treatment of the vicinity of the sea

surface), and is free from the traditional issue of how to handle regions above the surface troughs.
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Using (11a)-(11b), we rewrite the form stress term (8) to give175

FSV = −z′′′z ∇(p′′′ + η′′′) + (∇z′′′)p′′′z176

= −z′′′z ∇(p+ η) + (∇z′′′)pz177

= z′′′z (DtV + (Dtw)∇z′′′)−∇z′′′(1 + z′′′z )(Dtw)178

= z′′′z (DtV)−∇z′′′(Dtw)179

= z′′′z (DtV)′′′ −∇z′′′(Dtw)′′′, (12)180

where no p′′′ appears at the last line. This expression has not, to our knowledge, been shown before181

the present study5 and is the cornerstone of the present study. Note that (12) has been derived from a182

nonlinear equation system and thus is applicable to finite-amplitude waves including the Doppler effect183

by mean flows.184

c. Manipulation of the velocity-based form stress term185

In order to expand the velocity-based form stress term (12), we need to derive variants of (4a)-(4b).186

Using zεz = 1 + z′′′z and A′′ ≡ A− Â for an arbitrary quantity, (4a) may be written187

Dtz
′′′
z = −zεz [∇ · (V̂ + V′′) + ($̂ +$′′)z]188

= −zεz(∇ ·V′′ +$′′z ), (13)189

5Apart from the simplified version shown by AG13 at their Eq. (26).
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where (6a) has been used to derive the second line. The material derivative operator may be expanded190

as,191

Dt ≡ ∂t + V · ∇+$∂z192

= ∂t + (V̂ + V′′) · ∇+ ($̂ +$′′)∂z193

= D̂t + V′′ · ∇+$′′∂z. (14)194

Substitution of (14) to (13) yields195

D̂tz
′′′
z = −∇ · (zεzV′′)− (zεz$

′′)z. (15)196

On the other hand, (4b) may be written using (14) and zε = z + z′′′, as197

w = (∂t + V · ∇+$∂z)z
ε

198

= D̂tz
ε + (V′′ · ∇+$′′∂z)z

ε
199

= D̂tz
′′′ + $̂ + V′′ · ∇z′′′ +$′′zεz . (16)200

The unweighted average of (16) yields201

w = $̂ + V′′ · ∇z′′′. (17)202

Combining (17) and (16) then yields203

w′′′ = D̂tz
′′′ + (V′′ · ∇z′′′)′′′ +$′′zεz . (18)204

The quantity $′′ is sufficiently small (as we shall see later), that all terms containing $′′ in the above205

are neglected in what follows.206

We are now ready to expand the terms that make up the last line of (12). Using (14) and (15), the207
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first term on the last line of (12), letting A be either u or v, can be written208

z′′′z (DtA)′′′ = z′′′z (DtA)209

= z′′′z (D̂tA+ V′′ · ∇A)210

= D̂t(z′′′z A)− (D̂tz′′′z )A+ z′′′z V′′ · ∇A211

= D̂t(z′′′z A) + [∇ · (zεzV′′)]A+ z′′′z V′′ · ∇A212

= D̂t(z′′′z A) +∇ · (zεzV′′A)− zεzV′′ · ∇A+ z′′′z V′′ · ∇A213

= D̂t(z′′′z A) +∇ · (zεzV′′A)−V′′ · ∇A214

= D̂t(z′′′z A) +∇ · (zεzV′′A)− (V′′′ − z′′′z V′′′) · ∇A215

= D̂t(z′′′z A
′′′) + RSA −V′′′ · ∇A′′′ + z′′′z V′′′ · ∇A, (19)216

where V′′ ≡ V − V̂ = (V + V′′′) − V̂ = V′′′ − z′′′z V′′′ has been used to derive the second last line, and217

∇ · [zεzV′′(Â+ A′′)] = ∇ · (zεzV′′A′′) = RSA has been used to derive the last line.218

Turning now to the second term on the last line of (12), we use (14) and (18), letting subscript X219

correspond to either ∂x or ∂y, to write220

−z′′′X(Dtw)′′′ = −z′′′X(Dtw)221

= −z′′′X(D̂tw + V′′ · ∇w)222

= −D̂t(z′′′Xw) + (D̂tz′′′X)w − z′′′XV′′ · ∇w223

= −D̂t(z′′′Xw) + w′′′Xw − V̂X · (∇z′′′)w − $̂Xz′′′z w − (V′′ · ∇z′′′)′′′Xw − z′′′XV′′ · ∇w224

= −D̂t(z′′′Xw)− πX − V̂X · (∇z′′′)w − $̂Xz′′′z w + (V′′ · ∇z′′′)w′′′X − z′′′XV′′ · ∇w225

= −D̂t(z′′′Xw
′′′)− πX − V̂X · (∇z′′′)w′′′ − $̂Xz′′′z w

′′′ − z′′′XV′′ · ∇w + V′′ · (w′′′X∇z′′′ − z′′′X∇w′′′),(20)226

where π ≡ −w′′′w′′′/2 + (V′′ · ∇z′′′)w′′′ is the Bernoulli head. Equation (20) has been developed from227

AM78 (Appendix A). On the other hand, with the vertical component of the momentum equation in228
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mind, we substitute A = w to (19) and X = z to (20), and take the sum of the two equations to give229

0 = RSw −V′′′ · ∇w′′′ + z′′′z (V′′′ −V′′) · ∇w − πz230

−V̂z · (∇z′′′)w′′′ − $̂zz′′′z w
′′′ + V′′ · (w′′′z ∇z′′′ − z′′′z ∇w′′′). (21)231

The overall transformation in this section has been done without restricting the characteristics of the232

waves, and thus allows for finite-amplitude inhomogeneous unsteady waves.233

3. Deriving the pseudomomentum in the VL framework234

In this section, we show that the velocity-based expression for the form stress derived in the previous235

section contains the time derivative of a wave-induced velocity which might be called the pseudomo-236

mentum in the VL framework, as it is analogous to the generalized pseudomomentum in AM78. When237

the velocity-based expression of the form stress term is combined with the TWM momentum equations238

(6b,c), we obtain an expression for the time development of “the total transport velocity minus the VL239

pseudomomentum” which might be called the quasi-EM velocity in the VL framework.240

Since our aim in this section is to show that our equation for the time development of the quasi-EM241

velocity in the VL framework includes the vortex force, we adopt the same scaling for the waves and the242

low-pass filtered flow (i.e. LCs) as in CL76. Let α� 1 be a measure of the surface slope of waves. CL76243

assumed that (i) O(α) waves are steady and monochromatic, (ii) the strength of the low-pass filtered244

flow is O(α2), (iii) there is no separation between the wavelength of the waves and the horizontal scale245

of variation of the low-pass filtered flow, and that (iv) the time development of the low-pass filtered flow246

is two orders, in terms of α, slower than the phase cycle of the waves. The time derivative operator247

may then be decomposed as ∂t = ∂τ + α2∂T where ∂τ and ∂T operates on wave and low-pass filtered248

quantities, respectively. These conditions are summarized in Table 3. Throughout the remainder of the249

manuscript we assume an infinitely deep ocean. [We have confirmed that the machinery of the present250
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study is also applicable to a flat-bottomed ocean (not shown). See also footnote 6.]251

a. Asymptotic expansion252

To be consistent, the mean component of all quantities is scaled at O(α2) except for p and η which are253

scaled at O(α4),254

zε ≡ z, (22a)255

η = α4η4 +O(α5), (22b)256

p = α4p4 +O(α5), (22c)257

V = α2V2 +O(α3), (22d)258

w = α2w2 +O(α3), (22e)259

$̂ = α2$̂2 +O(α3). (22f)260

The numeric subscripts represent the order of an asymptotic expansion, which is as in AG12 and AG13.261

Then we specialize to the O(α2) terms in the TWM incompressibility equation (6a) as well as the O(α4)262

terms in the TWM momentum equations (9a)-(9b) to yield,263

∇ · V̂2 + $̂2z = 0, (23a)264

D̂T V̂2 + RSV
4 = −∇(p4 + η4) + FSV

4 , (23b)265

D̂T ŵ2 + RSw4 = −p4z, (23c)266

where D̂T ≡ ∂T + V̂2 · ∇+ $̂2∂z is the material derivative operator based on the total transport velocity267

at O(α2). On the other hand, the fluctuation component of all quantities is expanded from O(α), except268
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for $′′ which is expanded from O(α5),269

z′′′ = αz′′′1 + α2z′′′2 + α3z′′′3 +O(α4), (24a)270

η′′′ = αη′′′1 + α2η′′′2 + α3η′′′3 +O(α4), (24b)271

p′′′ = αp′′′1 + α2p′′′2 + α3p′′′3 +O(α4), (24c)272

V′′′ = αV′′′1 + α2V′′′2 + α3V′′′3 +O(α4), (24d)273

w′′′ = αw′′′1 + α2w′′′2 + α3w′′′3 +O(α4), (24e)274

$′′ = O(α5). (24f)275

The scaling of $′′ stems from the scaling of mean sea surface height η. This is because the kinematic276

boundary condition at the sea surface is $′′ = V′′ ·∇η (AG12) so that to the leading order, $′′5 = V′′1 ·∇η4277

(or $′′′5 = V′′′1 · ∇η4 because V′′′1 = V′′1).6 Therefore the asymptotic expansion for $′′ starts from O(α5),278

allowing us to formally ignore the last term of (7) to give279

RSV
4 = ∇ · (V′′V′′)4 +∇ · (z′′′z V′′V′′)4, (25a)280

RSw4 = ∇ · (V′′w′′)4 +∇ · (z′′′z V′′w′′)4. (25b)281

The numeric subscript attached to the brackets represents summation of terms at a given order of α (see282

Table 4 for a template). To obtain the O(α4) form stress term for use in (23b), we use the velocity-based283

6In contrast to the present study, the quantity $′′(= w∗′′) has been scaled at O(α2) in AG13 because they considered

waves in shallow water on a bottom slope of O(α). See Eqs. (6a-c) of AG13 for the explicit expressions of the kinematic

boundary conditions at a sloping bottom in the VL framework (which should be compared with bottom boundary conditions

in the three-dimensional Lagrangian framework in a future study). As shown by AG13, it is certainly possible to manipulate

$′′(= w∗′′) even if it has been scaled at O(α2). However, for simplicity, the present study assumes an infinitely deep ocean

(or a flat-bottomed ocean) and thus neglects $′′ from (19) and thereafter.
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expression (12) to give284

FSV
4 = [z′′′z (DtV)′′′ −∇z′′′(Dtw)′′′]4. (26)285

To summarize both the Reynolds stress term and the form stress term consist of the effect of waves up286

to O(α3), as can be seen from Table 4.287

Substitution of (22a)-(22f) and (24a)-(24f) to (4a)-(4d) yields288

z′′′1zτ +∇ ·V′′′1 = 0, (27a)289

z′′′1τ = w′′′1 , (27b)290

V′′′1τ = −∇(p′′′1 + η′′′1 ), (27c)291

w′′′1τ = −p′′′1z, (27d)292

at O(α) and293

z′′′2zτ +∇ · (V′′′2 + z′′′1zV
′′′
1 ) = 0, (28a)294

z′′′2τ + V′′′1 · ∇z′′′1 = w′′′2 , (28b)295

V′′′2τ + V′′′1 · ∇V′′′1 = −∇(p′′′2 + η′′′2 )− w′′′1τ∇z′′′1 , (28c)296

w′′′2τ + V′′′1 · ∇w′′′1 = −p′′′2z − w′′′1τz′′′1z, (28d)297

at O(α2). Note that since the first order waves are steady and horizontally homogeneous, it follows from298

(28a)-(28d) that the second order waves are also steady and horizontally homogeneous. The effect of the299

low-pass filtered flow, e.g. LCs, on the waves appears in equations for O(α3) waves, to be explained later300

in the manuscript.301
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b. First and second order waves302

As assumed above, O(α) waves are monochromatic and steady: η′′′1 = A cos θ where A is wave amplitude,303

θ = kx + ly − στ is wave phase with k and l being wavenumbers in the x− and y−direction, and σ is304

wave frequency. These parameters are constant on the time and spatial scales of waves (i.e. ∂τA = 0305

and ∇A = 0 for A = A, k, l, σ) which leads to306

∂τ (A′′′1 B
′′′
1 ) = 0, A′′′1 B

′′′
1τ = −A′′′1τB′′′1 , (29a)307

∇(A′′′1 B
′′′
1 ) = 0, A′′′1 ∇B′′′1 = −(∇A′′′1 )B′′′1 , (29b)308

where A′′′1 and B′′′1 are wave variables at O(α). The sea surface is located at zε = η+ η′′′ in the Eulerian-309

Cartesian coordinates, and is located at z = η = α4η4 + O(α5) in the VL coordinates. As far as up to310

O(α3) waves are concerned, z = 0 can be used as the label of sea surface in the VL coordinates. With311

the boundary conditions of V′′′1 = 0 at z = −∞ and p′′′1 = 0 at z = 0, we solve (27a)-(27d) to yield,312

σ2 = κ, κ ≡
√
k2 + l2, (30a)313

φ′′′1 ≡ (A/κ)(expκz) cos θ, (30b)314

V′′′1 = ∇φ′′′1τ = σ(∇θ)φ′′′1 , (30c)315

w′′′1 = φ′′′1zτ = −σφ′′′1zθ, (30d)316

z′′′1 = φ′′′1z, (30e)317

p′′′1 = σ2φ′′′1 − η′′′1 , (30f)318

where ∇φ′′′1 = (∇θ)φ′′′1θ, φ′′′1τ = −σφ′′′1θ, ∇θ = (k, l) and η′′′1 = z′′′1 |z=0 are understood. The above solution319

is given in the VL coordinates. Then we compute the quasi-Stokes velocity using (10a)-(10b). For an320
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arbitrary quantity A, the TWM and the EM at O(α2) can be written as321

Â2 = A2 + z′′′1zA
′′′
1 , (31a)322

A
ε

2 = A2 − z′′′1 A′′′1z, (31b)323

where (31b) is given by a Taylor expansion in the vertical direction.4 Substitution of (30c)-(30e) and324

(31a)-(31b) to (10a)-(10b) yields,325

Vqs
2 = z′′′1zV

′′′
1 + z′′′1 V′′′1z = (z′′′1 V′′′1 )z = (φ′′′1zφ

′′′
1 )zσ∇θ, (32a)326

wqs2 = −V′′′1 · ∇z′′′1 + z′′′1 w
′′′
1z = −∇ · (z′′′1 V′′′1 ) = 0, (32b)327

which has been shown by Mellor (2003) and Smith (2006), except that these authors did not refer to the328

term “quasi-Stokes velocity”. Equation (32b) indicates that the condition of horizontally homogeneous329

waves leads to wqs2 = 0, namely $̂2 = wε2.330

Substitution of the O(α) solution (30c)-(30e) to O(α2) momentum equations (28c)-(28d) yields,331

V′′′2τ = −∇(p′′′2 + η′′′2 ), (33a)332

w′′′2τ = −∂z(p′′′2 + η′′′2 ), (33b)333

which indicates that O(α2) velocity (as well as O(α) velocity) satisfies an apparent7 irrotational condition334

in the VL coordinates:335

∇×V′′′i = 0, ∇w′′′i − ∂zV′′′i = 0, (34)336

for i = 1 and 2, where here, ∇×V′′′ = (v′′′x −u′′′y )z and z is a unit vector in the upwards vertical direction.337

7Although (34) is sufficient for us to derive the vortex force, the standard vorticity defined in the three-dimensional

Eulerian coordinates reads ∇ε ×V = (zεz∇×V −∇zε ×Vz)/z
ε
z and ∇εw −Vzε = (zεz∇w − wz∇zε −Vz)/z

ε
z .
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c. Substitution of the velocity-based form stress term338

The condition of horizontally homogeneous and steady waves is limited to up to O(α2). The Doppler339

effect by both the horizontal and vertical circulations associated with the low-pass filtered flow appears340

when considering the waves at O(α3). However it is rather difficult to derive (i) an analytical solution341

for O(α3) waves and (ii) a depth-dependent wave crest equation. It is the depth-independent wave342

crest equation that has been used in Garrett (1976) and Smith (2006). Leibovich (1980) avoids these343

difficulties using the Lagrangian mean framework, an approach we mimic here. In fact the two terms344

on the last line of (12) have been expanded using (4a) and (4b), respectively, to give (19) and (20) (see345

Section 2c). We pick up the O(α4) terms of (19)-(20) and delete some terms, using the phase relationship346

of O(α) waves in (30c)-(30e), to give347

FSu4 = D̂T (z′′′1zu
′′′
1 − z′′′1xw′′′1 ) + z′′′1zV

′′′
1 · ∇u2 − V̂2x · (∇z′′′1 )w′′′1 + RSu4 − π4x − (V′′′ · ∇u′′′)4, (35a)348

FSv4 = D̂T (z′′′1zv
′′′
1 − z′′′1yw′′′1 ) + z′′′1zV

′′′
1 · ∇v2 − V̂2y · (∇z′′′1 )w′′′1 + RSv4 − π4y − (V′′′ · ∇v′′′)4, (35b)349

where π4 ≡ −(w′′′2)4/2 + [(V′′ · ∇z′′′)w′′′]4 is the Bernoulli head (to be updated later in the manuscript).350

8 Substitution of (35a)-(35b) to (23b) yields351

D̂T (u2 + z′′′1xw
′′′
1 ) = −(p4 + η4 + π4)x + z′′′1zV

′′′
1 · ∇u2 − V̂2x · (∇z′′′1 )w′′′1 − (V′′′ · ∇u′′′)4, (36a)352

D̂T (v2 + z′′′1yw
′′′
1 ) = −(p4 + η4 + π4)y + z′′′1zV

′′′
1 · ∇v2 − V̂2y · (∇z′′′1 )w′′′1 − (V′′′ · ∇v′′′)4, (36b)353

where the effect of O(α3) waves appear in both the Bernoulli head π4 and the last term of each equation.354

The last term of (36a)-(36b) is the legacy of the Reynolds stress term, and is absent in the three-355

dimensional Lagrangian framework of AM78. It should be noted that the D̂T V̂2 term on the lhs of356

8The last term on the last line of (20) becomes v′′(∇w′′′ ×∇z′′′) in the case of X = x, and −u′′(∇w′′′ ×∇z′′′) in the

case of X = y. When taking an asymptotic expansion of these terms, ∇w′′′i ×∇z′′′j = 0 for (i, j) = (1, 1), (1, 2), and (2, 1).

This is because ∇w′′′i ∝ ∇θ and ∇z′′′i ∝ ∇θ according to the analytical solution of O(α) and O(α2) waves.
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(23b) has been partially cancelled by the D̂T terms on the rhs of (35a)-(35b) using V̂2 = V2 + z′′′1zV
′′′
1357

which follows from (31a). This is the first indication of the appearance of the pseudomomentum, to be358

discussed in detail in the next subsection.359

A nice feature of AM78 is that the Bernoulli head is present in both the horizontal and vertical360

components of the wave-averaged momentum equations, and there is no need to treat the Bernoulli361

head and nonhydrostatic pressure separately (cf. Craik, 1985; Dingemans, 2009). The sum of the362

Bernoulli head and nonhydrostatic pressure can be obtained by solving a Poisson equation based on the363

incompressibility condition of circulation (as is always the case in nonhydrostatic numerical models).364

Eventually there is no need to derive the analytical solution for O(α3) waves. It is therefore very useful365

to mimic this feature of AM78 – the Bernoulli head appearing next to nonhydrostatic pressure in both366

the horizontal and vertical components of the wave-averaged momentum equations. So far the Bernoulli367

head in our analysis appears only in the horizontal component of the TWM momentum equations (36a)-368

(36b). However, it is straightforward to write the vertical momentum equation in a form that includes369

the Bernoulli head. Indeed, we have derived (21) which allows us to transform the Reynolds stress term370

in the vertical component of the momentum equation (23c), into the sum of the vertical gradient of the371

Bernoulli head and the other terms, as follows,372

D̂T (w2 + z′′′1zw
′′′
1︸ ︷︷ ︸

ŵ2

) = −(p4 + π4)z − V̂2z · (∇z′′′1 )w′′′1 + [V′′ · (w′′′z ∇z′′′ − z′′′z ∇w′′′)′′′]4 − (V′′′ · ∇w′′′)4, (36c)373

where the expression for ŵ2 uses (31a). Note that O(α3) waves appear in both the Bernoulli head π4374

and the last term. The second last term of (36c) consists of waves up to O(α2) that are horizontally375

homogeneous (so that, as we shall show later, the term can be absorbed into the Bernoulli head without376

affecting the horizontal component of the momentum equations).377
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d. The pseudomomentum in the VL framework378

Interestingly the three-dimensional components of velocity on the lhs of (36a)-(36c) have a symmetry,379

and can be written as the difference of the total transport velocity and a wave-induced velocity,380 
u2 + z′′′1xw

′′′
1

v2 + z′′′1yw
′′′
1

w2 + z′′′1zw
′′′
1

 =


û2

v̂2

$̂2


︸ ︷︷ ︸

total transport velocity

−


+z′′′1z 0 −z′′′1x

0 +z′′′1z −z′′′1y

−z′′′1x −z′′′1y −z′′′1z




u′′′1

v′′′1

w′′′1


︸ ︷︷ ︸

pseudomomentum

, (37)381

where (31a) and (17) have been used. The wave-induced velocity on the rhs may be called the pseu-382

domomentum in the VL framework, as it is analogous to the generalized pseudomomentum in AM78383

(Appendix A). By substituting (30c)-(30e) to the last term of (37), we confirm that the content of the384

pseudomomentum is identical to the quasi-Stokes velocity in (32a)-(32b). This association of the pseudo-385

momentum in (37) to the quasi-Stokes velocity in (32a)-(32b) stems from the conditions of (i) “apparent”386

irrotational wave motions as given by (34) and (ii) horizontally homogeneous and steady waves as given387

by (29a)-(29b). In fact388

Vqs
2 = z′′′1zV

′′′
1 + z′′′1 V′′′1z389

= z′′′1zV
′′′
1 + z′′′1 ∇w′′′1390

= z′′′1zV
′′′
1 − (∇z′′′1 )w′′′1 , (38a)391

wqs2 = −V′′′1 · ∇z′′′1 + z′′′1 w
′′′
1z392

= −V′′′1 · ∇z′′′1 + z′′′1 z
′′′
1zτ393

= −V′′′1 · ∇z′′′1 − w′′′1 z′′′1z, (38b)394

where (27b) has been used in (38b). The last line of each of (38a)-(38b) is identical to the definition of the395

pseudomomentum in (37). Recall that the difference of the total transport velocity and the quasi-Stokes396
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velocity is the EM velocity. Hence the lhs of (36a)-(36c) is the same as D̂Tu
ε
2, D̂Tv

ε
2, and D̂Tw

ε
2: the397

material derivative of the EM velocity.398

To summarise, in this section we have shown how to extract the pseudomomentum in the VL frame-399

work from the expression for the form stress written in terms of velocity rather than pressure. It is now400

straightforward, although mathematically laborious, to derive the expression for the vortex force in the401

VL framework. This is done in Appendix B.402

4. The effect of viscosity403

So far the analysis in the present study has been done for waves in a nonrotating inviscid fluid. As404

shown below, the velocity-based expression of the form stress term (12) is modified by the introduction405

of the Coriolis term and the viscosity term.406

a. The form stress term for a rotating viscid fluid407

Inclusion of the new terms to the momentum equations (11a)-(11b) in the VL coordinates yields,408

DtV + fz×V = −∇(p+ η)− (Dtw − Fw)︸ ︷︷ ︸
−pzε

∇z′′′ + FV, (39a)409

(1 + z′′′z )︸ ︷︷ ︸
zεz

Dtw = −pz + (1 + z′′′z )︸ ︷︷ ︸
zεz

Fw, (39b)410

where (1 + z′′′z )pzε = zεzpzε = pz is understood. The symbols FV and Fw represent the effect of turbulent411

mixing on V and w, respectively. These terms are parameterized using a conventional symmetric tensor412

in Eulerian-Cartesian coordinates, as in Eq. (28) of AG12. The Coriolis parameter f as well as the413

coefficient of turbulent viscosity ν (to appear later) have been nondimensionalized following the approach414

of AG13.9415

9The nondimensionalization is written by f́ = (ǵ/∆́)1/2f and ν́ = (∆́3ǵ)1/2ν using the notation in Appendix A of AG13.
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The TWM equation system (6a)-(6c) becomes416

∇ · V̂ + $̂z = 0, (40a)417

V̂t +∇ · (V̂V̂) + ($̂V̂)z + fz× V̂ + RSV = −∇(p+ η) + FSV + F̂V, (40b)418

ŵt +∇ · (V̂ŵ) + ($̂ŵ)z + RSw = −pz + F̂w, (40c)419

where the Coriolis term includes fz×Vqs which corresponds to the Coriolis-Stokes force of Hasselmann420

(1970) and Huang (1979). The Reynolds and form stress terms in (40b)-(40c) are the same as (7) and421

(8), respectively. The velocity-based expression of the form stress term (12) is revised as follows,422

FSV = −z′′′z ∇(p+ η) + (∇z′′′)pz423

= z′′′z [DtV + fz×V + (Dtw − Fw)∇z′′′ − FV]−∇z′′′(1 + z′′′z )(Dtw − Fw)424

= z′′′z (DtV)′′′ −∇z′′′(Dtw)′′′ + fz× z′′′z V′′′ − z′′′z (FV)′′′ + (∇z′′′)(Fw)′′′, (41)425

where (39a)-(39b) have been used.426

b. Asymptotic expansion427

The derivation leading to (41) was obtained without approximation. We now specialize to small ampli-428

tude waves.429

Jenkins (1987) investigated the problem of how the presence of surface waves modifies the classical430

Ekman spiral solution, and obtained an interesting result when the viscosity coefficient varies in the431

vertical direction (to be explained later). We wish to make the link to the work of Jenkins (1987), and432

thus retain the last three terms of (41) as follows. Some scalings typical for the ocean are f/σ ∼ O(α4)433

and νκ2/σ ∼ O(α4) (see Table 2 of AG12 for the dimensional values of f , σ, κ, and ν). Thus the Coriolis434

parameter and the viscosity coefficient may be scaled as f = α4f4 and ν = α4ν4, which indicates that the435

form stress term (41) should be written at O(α6). For simplicity, we consider circulation whose variation436
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is scaled as m = n in Appendix C, and is associated with the equation system (C4a)-(C4c). Noting that437

the form stress term in (C4b) is written at O(αn+2), we obtain m = n = 4, namely ∂t = ∂τ + α4∂T and438

∇ = ∇̇+α4∇ where ∇̇ and ∇ are the lateral gradient operator for wave and low-pass filtered quantities,439

respectively. See Appendix C for details. These conditions are summarized in Table 3.440

In what follows we consider depths below the base of the thin viscous surface boundary layer (of441

a few centimeters depth) associated with waves (hereafter TVSBL). Thus the O(α) quantities are the442

solution of inviscid waves (30a)-(30f). As in Section 3, O(α) waves are assumed to be monochromatic,443

except that slow variations in both the horizontal direction and in time are allowed as in (C1a)-(C1b) (see444

footnote C1). We first note that the viscosity term of the TWM momentum equation (40b) is written by445

F̂V
6 = ∂z(ν4V

ε

2z), indicating that the viscosity acts on the EM velocity rather than the TWM velocity.446

This has been shown by Eqs. (30) and (44) of AG12 and note that the result holds even if the viscosity447

coefficient varies in the vertical.448

Coming back to the velocity-based form stress term, we substitute (19)-(20) to (41), and then pick-up449

O(α6) terms to yield,450

FSV
6 = ∂TVqs

2 + RSV
6 −

1

2
∇(|V′′′1 |2 − w′′′1

2)− [(∇×V′′′)×V′′′]6 + f4z× z′′′1zV′′′1451

−z′′′1z(FV)′′′5 + (∇̇z′′′1 )(Fw)′′′5 , (42)452

where (38a) and (B5a) have been used. The symbols (FV)′′′5 and (Fw)′′′5 are the viscosity terms that are453
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written using the solution of O(α) waves,454

(F u)′′′5 = [2ν4u
′′′
1x]x + [ν4(v

′′′
1x + u′′′1y)]y + [ν4(w

′′′
1x + u′′′1z)]z455

= kσ[2ν4∇̇2φ′′′1 + (2ν4φ
′′′
1z)z], (43a)456

(F v)′′′5 = [ν4(u
′′′
1y + v′′′1x)]x + [2ν4v

′′′
1y]y + [ν4(w

′′′
1y + v′′′1z)]z457

= lσ[2ν4∇̇2φ′′′1 + (2ν4φ
′′′
1z)z], (43b)458

(Fw)′′′5 = [ν4(u
′′′
1z + w′′′1x)]x + [ν4(v

′′′
1z + w′′′1y)]y + [ν42w

′′′
1z]z459

= [2ν4∇̇2w′′′1 + (2ν4w
′′′
1z)z], (43c)460

where the second line of each has been derived using (30b)-(30d) and ∂xν4 = ∂yν4 = 0. The viscosity461

coefficient ν4 is allowed to vary in the vertical direction, which is similar to Jenkins (1987).462

We now consider how to calculate the fourth term on the rhs of (42) which consists of waves up to463

O(α5). The solution of higher order waves may be decomposed into that associated with the nonlinear464

terms of (39a)-(39b) and that associated with the effect of the Coriolis and viscosity terms. The former465

solution is written in terms of the harmonics of O(α) waves (not shown) and averages to zero and thus466

is not discussed further (this approach follows Section 4b of AG13). Hereafter we focus on the latter467

solution which is derived from the linear terms of (39a) to read,468

∂τV
′′′
5 + ∂TV′′′1 + f4z×V′′′1 = −∇̇p′′′5 −∇p′′′1 + (FV)′′′5 . (44)469

We take the curl of (44) to yield,470

∇̇ × (∂τV
′′′
5 ) + ∇̇ × (f4z×V′′′1 ) = −∇̇ ×∇(p′′′1 + η′′′1 )471

= ∇× ∇̇(p′′′1 + η′′′1 )472

= −∇× (∂τV
′′′
1 ), (45)473

where the last term of (44) has canceled out because (FV)′′′5 ∝ ∇̇θ = (k, l) which follows from (43a)-474

(43b). The last line of (45) has been derived using (27c). Using (45), ∇̇ ·V′′′1 + w′′′1z = 0 and w′′′1 = z′′′1τ ,475

27



we show476

[(∇×V′′′)×V′′′]6 = (∇̇ ×V′′′5 )×V′′′1 + (∇×V′′′1 )×V′′′1477

=

∫ τ

[∇̇ × (∂τV
′′′
5 ) +∇× (∂τV

′′′
1 )]dτ ×V′′′1478

= −
∫ τ

∇̇ × (f4z×V′′′1 )dτ ×V′′′1479

=

∫ τ

f4zw
′′′
1zdτ ×V′′′1480

= f4z× z′′′1zV′′′1 , (46)481

where the first line has been derived using ∇̇ ×V′′′i = 0 for i = 1, 2, 3, 4. Equation (46) indicates that482

the fourth and fifth terms on the rhs of (42) cancel each other.483

We then calculate the viscosity terms of (42). The last two terms of (42) may be rewritten using484

z′′′1z = φ′′′1zz = κ2φ′′′1 = (∇̇θ · ∇̇θ)φ′′′1 = (1/σ)(V′′′1 · ∇̇θ) and ∇̇z′′′1 = (∇̇θ)z′′′1θ = (−1/σ)(∇̇θ)w′′′1 to yield485

−z′′′1z(FV)′′′5 + (∇̇z′′′1 )(Fw)′′′5 = − 1

σ
(V′′′1 · ∇̇θ)(FV)′′′5 −

∇̇θ
σ
w′′′1 (Fw)′′′5486

= −∇̇θ
σ

[
V′′′1 · (FV)′′′5 + w′′′1 (Fw)′′′5

]
︸ ︷︷ ︸

FluxDiv−Dissipation

, (47)487

where the last line has been derived using (FV)′′′5 = (2σ∇̇θ)[ν4∇̇2φ′′′1 + (ν4φ
′′′
1z)z] which follows from488

(43a)-(43b). Substitution of (46)-(47) to (42) yields,489

FSV
6 = ∂TVqs

2 + RSV
6 −

1

2
∇(|V′′′1 |2 − w′′′1

2)− ∇̇θ
σ

[
V′′′1 · (FV)′′′5 + w′′′1 (Fw)′′′5

]
︸ ︷︷ ︸

FluxDiv−Dissipation

, (48)490

where the last term is the product between −(∇̇θ)/σ and the viscosity term of the depth-dependent491

energy equation, the latter of which may be separated into two terms: one is the vertical divergence of492

a viscosity-induced flux (noted as FluxDiv) and one is dissipation at depths below z = η − δ (noted as493

Dissipation) where δ(> 0) is the thickness of the TVSBL. This separation, in particular the identification494

of the dissipation term in the wave energy equation, is based on Phillips (1977, page 52). See Appendix D495
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of the present manuscript for details. Substitution of (48) to either (40b) or the rotating viscid version496

of (C4b) yields,497

∂TV
ε

2 + f4z× V̂2 = −∇[p2 + η2 + (|V′′′1 |2 − w′′′1
2)/2] + ∂z(ν4V

ε

2z)︸ ︷︷ ︸
F̂V
6

+ ∂z(−ν4Vqs
2z)︸ ︷︷ ︸

(−∇̇θ/σ)FluxDiv

+ ν4V
qs
2zz︸ ︷︷ ︸

(∇̇θ/σ)Dissipation

, (49)498

where the last two terms have been derived using (32a) and (D1a)-(D1b).499

The last term in (49) originates from the dissipation term in the wave energy equation (D2) and acts500

like a depth-dependent body force, indicating that the dissipation of wave kinetic energy leads to transfer501

of momentum from waves to circulation (Fig. 2). The second to last term of (49) is associated the vertical502

flux of kinetic energy in the depth-dependent wave energy equation. It is important to remember from503

the outset that the last two terms on the rhs of (49) originate from the form stress term. As such they504

represent the effect of the waves on circulation, and have a vertical structure. In contrast to the present505

study, the explanation in Smith (2006) and Weber et al. (2006) is based on depth-integrated equations.506

Once the last two terms of (49) are merged, the equation is identical to Eq. (5.1) of Jenkins (1987)507

who obtained it from the three-dimensional Lagrangian framework of Pierson (1962). Indeed, when the508

viscosity varies in the vertical, merging the last two terms of (49) leads to the “additional source of509

momentum” in the water column noted by Jenkins (1987). Nevertheless, the surface boundary condition510

derived by Jenkins (1987) is different from that appropriate to our study (see Section 4c below). As511

explained in footnote B1 of AG12, we believe the boundary condition used by Jenkins (1987) (and also512

by Weber (1983)) is not correct.513

c. The virtual wave stress of Longuet-Higgins (1953, 1960)514

We now consider the surface boundary condition of the momentum equation (49), assuming that the net515

momentum flux through the TVSBL is vertically uniform. In doing so, we implicitly make use of the516

29



fact that the TVSBL, being only centimeters thick, is much thinner than the Ekman layer associated517

with the rotation of the Earth, typically measurable in meters, or even 10’s of metres - see Table 2 in518

AG12.519

Combining the vertical flux of momentum associated with the second and third last terms of (49)520

yields ν4(V
ε

2 − Vqs
2 )z at the base of the base of the TVSBL (z = η − δ). This momentum flux should521

match the skin viscous stress applied at the top of the TVSBL, namely the ocean surface (z = η).10 If522

there is no wind, the skin stress at the ocean surface is zero. Therefore the viscosity-induced momentum523

flux at the base of the TVSBL is also zero: ν4(V
ε

2 −Vqs
2 )z = 0 at z = η − δ. The result that V

ε

2z = Vqs
2z524

is consistent with Longuet-Higgins (1953, 1960) who found that the vertical gradient of the LM velocity525

at the base of the TVSBL is twice that of the Stokes-drift velocity. It follows that the viscosity-induced526

stress ν4V
qs
2z corresponds to the VWS. The explanation in the present study makes it clear that this527

result of Longuet-Higgins is more general than it might appear. In particular, the role played by the528

VWS has emerged without the explicit use of the analytical solution of waves in the TVSBL, and thus529

is easily applicable to various types of problem. It does not matter whether there is wind forcing or not,530

the waves can have slow variations, and the viscosity coefficient can vary in the vertical - the result is531

quite general. Indeed, (49) represents an extension beyond the approach of Ünlüata and Mei (1970),532

Weber (1983), Xu and Bowen (1994), Ng (2004), and AG12 based on the analytical solution of waves533

including the TVSBL. The above explanation of the VWS also works for the scaling for the vortex force534

equations in Section 3 (not shown).535

Furthermore, (49) provides a prescription for including surface wave effects in ocean circulation536

10The skin stress at the sea surface corresponds to the mean tangential stress τ in AG12 (noting that τ in the present

study has a different meaning and represents the time measure associated with the phase cycle of the waves). The definitions

of the skin stress and the wave stress are partly related and require care, a topic we shall discuss in a later paper.
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models. At the sea surface (z = η), the net momentum flux from air (i.e. wind) to water (i.e. ocean537

circulation and waves) is given by the sum of the skin stress and the wave stress (Fig. 2), the latter of538

which represents the residual effect of both the normal stress and the tangential stress associated with539

the waves (not shown, cf. Fan et al., 2010; Donelan et al., 2012; Appendix B of AG12). The former540

(the skin stress) represents the direct transfer of momentum from wind to ocean circulation, and should541

match ν4(V
ε

2 − Vqs
2 )z at the base of the TVSBL (z = η − δ). The latter (the wave stress) represents542

the transfer of momentum from wind to waves. The momentum of waves is eventually transferred to543

circulation when/where waves are dissipated by the turbulent viscosity, as is shown by the last term of544

(49). To summarize ν4(V
ε

2 − Vqs
2 )z = [the skin stress] is the surface boundary condition applicable to545

numerical circulation models. The net momentum input to ocean circulation is given by the sum of the546

skin stress and the vertical integral of the last term of (49) associated with the wave dissipation. The547

net momentum input to traditional ocean circulation models (that is models that do not include wave548

effects) is given by the wind stress based, for example, on the Large and Pond (1981) parameterization,549

and should be compared with the sum of the skin stress and the depth integral of the wave dissipation550

term mentioned above.551

5. Summary and discussion552

The fundamentals of the vertically Lagrangian and horizontally Eulerian (VL) framework have been553

developed in the present study concerning the effect of surface waves on circulations in the upper ocean.554

We suggest that the thickness-weighted-mean (TWM) momentum equations of Mellor (2003), Broström555

et al. (2008), and AG12 correspond to the Lagrangian average of (1) which is the direct expression of the556

Lagrangian momentum equations. To our knowledge, no previous study has shown (i) how to derive the557

transformed expression for the TWM momentum equations corresponding to the Lagrangian average of558

(2) and (ii) how to introduce the concept of pseudomomentum to the VL framework, as can be seen in,559
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for example, the discussion between Ardhuin et al. (2008a) and Mellor (2008b).560

In Section 2 we have shown that the traditional pressure-based form stress term can be transformed561

into a set of terms that do not contain any pressure quantities. The transformation in the present study is562

applicable to a nonlinear equation system, which is an improvement over AG13 who utilised a version of563

the transformation based on a linear equation system for the waves. An important byproduct is that the564

velocity-based form stress term includes the time derivative of a wave-induced velocity which is referred565

to as the pseudomomentum in the VL framework, as it is analogous to the generalized pseudomomentum566

in AM78. The result is that the transformed expression of the TWM momentum equations (i.e. for the567

development of the quasi-EM velocity, namely the total transport velocity minus the VL pseudomomen-568

tum vector) has been obtained in Section 3. As shown in Appendix B, it is possible to derive the vortex569

force using the VL framework, using an approach that is a hybrid of Leibovich (1980) and CL76. We570

also noted that the twin expressions for the Lagrangian mean momentum equations (and hence also for571

the TWM momentum equations) may be traced back to the work of Lagrange (1788), which has been572

little mentioned in previous studies.573

A nice feature of the VL framework is the treatment of the turbulent viscosity term near the sea574

surface. The traditional explanation for the viscosity-induced transfer of momentum from waves to575

circulation has been based on depth-integrated equations (e.g. Smith, 2006; Weber et al., 2006; Fan et576

al., 2010), whereas our explanation in Section 4 is based on depth-dependent equations with a vertically577

nonuniform viscosity coefficient, and thus is useful for revisiting the surface boundary condition used in578

numerical circulation models. We have shown that the velocity-based expression of the form stress term579

contains the residual effect of viscosity [see (48)]. In the transformed expression of the TWM momentum580

equations, the effect of viscosity appears as the sum of a flux-divergence term (which is associated with581

the skin stress applied by wind) and a body-force (which represents transfer of momentum from waves582
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to circulation associated with the dissipation of wave kinetic energy) [see (49)]. This allows us to explain583

the concept of the virtual wave stress (VWS) of Longuet-Higgins (1953, 1960), without relying on the584

explicit use of the analytical solution of waves in the thin viscous boundary layer at the sea surface as in585

the work of Ünlüata and Mei (1970), Xu and Bowen (1994), Ng (2004) and AG12. Our explanation may586

be regarded as a recipe for a future study to reexplain the VWS using the three-dimensional Lagrangian587

framework of AM78, which has not been achieved in previous studies despite the utility of AM78 to allow588

a general spectrum of waves (cf. Ardhuin et al., 2008b).589
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A. Analogy to Andrews and McIntyre (1978)594

The vector (Ξ1,Ξ2,Ξ3) in AM78 represents the position of a fluid particle in the Eulerian-Cartesian595

coordinates,A1 corresponding to (xε, yε, zε) in the present study. Likewise (x1, x2, x3) in AM78 represents596

the position of a fluid particle in the three-dimensional Lagrangian coordinates,A2 corresponding to597

(x, y, z) in the present study. Thus the fluctuation of the position (ξ1, ξ2, ξ3) ≡ (Ξ1,Ξ2,Ξ3)− (x1, x2, x3)598

in AM78 corresponds to (0, 0, z′′′) in the present study. Noting that ξj = Ξj − xj and using the notation599

of AM78, their equations (B.1)-(B.4) may be rewritten,600

ξj,iD
L
(uξj) = D

L
(ξj,iu

ξ
j)− u

ξ
j{(D

L
ξj),i − uLk,iξj,k}601

= D
L
(ξj,iu

ξ
j)− (uLj + ulj)u

l
j,i + uLk,iξj,ku

ξ
j , (A1a)602

pi ≡ −ξj,iulj
L

= −ξj,iuξj
L

, (A1b)603

−ξj,iD
L
(uξj)

L

= D
L
(pi) + ulj(u

l
j,i)

L
+ uLk,i(pk), (A1c)604

where D
L
ξj = ulj = uξj − uLj is understood. The quantity pi is the generalized pseudomomentum for605

waves in a non-rotating frame (AM78). The first term on the rhs of (A1c) is analogous to −D̂t(z′′′Xw
′′′)606

in (20). The second term of (A1c) is analogous to +w′′′Xw
′′′ in (20). The third term of (A1c) is analogous607

to −V̂X · (∇z′′′)w′′′ in (20).608

B. The derivation of the vortex force609

In Section 3c, the TWM momentum equations are rewritten for the development of the equivalent610

of the quasi-EM velocity, namely the total transport velocity minus the VL pseudomomentum vector.611

A1Numeric subscripts in AM78 represent axes in Cartesian coordinates, and should not be confused with numeric sub-

scripts in the present study representing the order of an asymptotic expansion.
A2This has been written (a, b, c) in Section 1 of the present study. In AM78, the coordinate transformation matrix has

been written as Ξj,i ≡ ∂Ξj/∂xi.
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The last term of each of (36a)-(36c) is (the legacy of) the lateral Reynolds stress term, which can be612

expanded using the recipe of CL76, as shown below.613

a. The proto-type vortex force equations614

In order to manipulate (36a)-(36c), we use several identities derived from the condition of horizontally615

homogeneous waves (29b). The first identity is616

∇Â2 = ∇A2 = ∇Aε2, (B1)617

where A2 is an arbitrary quantity at O(α2), and (31a)-(31b) have been used. The second identity is that618

the vertical component of the quasi-Stokes velocity is zero, as shown by (32b), which leads to619

D̂T = D
ε

T + Vqs
2 · ∇+ wqs2 ∂z620

= D
ε

T + Vqs
2 · ∇, (B2)621

where D
ε

T ≡ ∂T + V
ε · ∇+wε∂z is the material derivative operator based on the EM velocity. The third622

identity is623

−(∇z′′′1 )w′′′1 = z′′′1 V′′′1z, (B3)624

which has been derived using (29b) and (34), and is the relationship found in the second term on the625

rhs of (38a). Using (B1)-(B3), we rewrite (36a)-(36c) as626

D
ε

TV
ε

2 = −∇(p4 + η4 + π4)− (∇×V
ε

2)× z′′′1 V′′′1z − (V′′′ · ∇V′′′)4, (B4a)627

D
ε

Tw
ε
2 = −∂z(p4 + π4)−Vqs

2 · ∇wε2 + V̂2z · z′′′1 V′′′1z628

+[V′′ · (w′′′z ∇z′′′ − z′′′z ∇w′′′)]4 − (V′′′ · ∇w′′′)4. (B4b)629
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These equations contain a prototype of the vortex force.B1 The analysis up to this point was sufficient630

for Leibovich (1980) to derive the vortex force. This is because he used the three-dimensional Lagrangian631

framework of AM78. By contrast we still have the last term of each of (B4a)-(B4b) to work on further,632

because the VL framework is Eulerian in the horizontal direction. In order to deal with these terms, we633

use the fact that the lateral advection of velocity in the VL coordinates can be written as634

V′′′ · ∇V′′′ =
1

2
∇|V′′′|2 + (∇×V′′′)×V′′′, (B5a)635

V′′′ · ∇w′′′ =
1

2
∂z|V′′′|2 + (∇w′′′ −V′′′z ) ·V′′′, (B5b)636

where here ∇×V′′′ = (v′′′x − u′′′y )z, and manipulate the last term of (B5a)-(B5b) using the approach of637

CL76, as shown below.638

b. Vorticity equations: application of Craik and Leibovich (1976)639

First we rewrite the momentum equations (11a)-(11b) in the VL coordinates as640

Vt + (∇×V)×V +$Vz = −∇(p+ η + |V|2/2)− (Dtw)∇z′′′, (B6a)641

wt + (∇w −Vz) ·V +$wz = −∂z(p+ |V|2/2)− (Dtw)z′′′z , (B6b)642

where another version of (B5a)-(B5b) has been used to rewrite the advection terms. Because both O(α)643

and O(α2) wave motions satisfy the apparent irrotational condition (34) and $′′ is sufficiently small,644

momentum equations for O(α3) waves may be written,645

V′′′3τ + (∇×V2)×V′′′1 + $̂2V
′′′
1z = −∇(p+ η + |V|2/2)′′′3 − [(Dtw)∇z′′′]′′′3 , (B7a)646

w′′′3τ + (∇w2 −V2z) ·V′′′1 + $̂2w
′′′
1z = −∂z(p+ |V|2/2)′′′3 − [(Dtw)z′′′z ]′′′3 . (B7b)647

B1Note that in (B4a), the cross-product operator is the vector invariant cross-product. This is because for low-pass filtered

quantities, the VL coordinates correspond to the standard Eulerian-Cartesian coordinates as pointed out by Jacobson and

Aiki (2006).
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Cross-derivative of the above equations yields648

(∇×V′′′3 )τ +∇φ′′′1τ︸ ︷︷ ︸
cos θ

·∇(∇×V2)− (∇×V2)φ
′′′
1zzτ︸ ︷︷ ︸
sin θ

+∇$̂2 ×∇φ′′′1zτ︸ ︷︷ ︸
cos θ

= − [∇(Dtw)×∇z′′′]′′′3︸ ︷︷ ︸
0

,(B8a)649

(w′′′3x − u′′′3z)τ + [(∇×V2) φ
′′′
1yτ︸︷︷︸

cos θ

]z + (∇w2 −V2z)x · ∇φ′′′1τ︸ ︷︷ ︸
cos θ

+(∇w2 −V2z) · ∇φ′′′1xτ︸ ︷︷ ︸
sin θ

650

+$̂2x φ
′′′
1zzτ︸ ︷︷ ︸
sin θ

−$̂2z φ
′′′
1xzτ︸ ︷︷ ︸
cos θ

= [(Dtw)zz
′′′
x − (Dtw)xz

′′′
z ]′′′3︸ ︷︷ ︸

sin θ

, (B8b)651

(w′′′3y − v′′′3z)τ − [(∇×V2) φ
′′′
1xτ︸︷︷︸

cos θ

]z + (∇w2 −V2z)y · ∇φ′′′1τ︸ ︷︷ ︸
cos θ

+(∇w2 −V2z) · ∇φ′′′1yτ︸ ︷︷ ︸
sin θ

652

+$̂2y φ
′′′
1zzτ︸ ︷︷ ︸
sin θ

−$̂2z φ
′′′
1yzτ︸ ︷︷ ︸
cos θ

= [(Dtw)zz
′′′
y − (Dtw)yz

′′′
z ]′′′3︸ ︷︷ ︸

sin θ

, (B8c)653

where (V′′′1 , w
′′′
1 ) = (∇φ′′′1τ , φ′′′1zτ ) and ∇2φ′′′1 +φ′′′1zz = 0 have been used. The rhs of (B8a) vanishes because654

both O(α) and O(α) waves are proportional to ∇θ = (k.l) (a similar discussion appears in footnote 8).655

We now use again the fact that O(α) and O(α2) waves satisfy the apparent irrotational condition656

(34) to write the last term of (B5a)-(B5b) at O(α4) as657

[(∇×V′′′)×V′′′]4 = (∇×V′′′3 )×V′′′1658

= −(∇×V′′′3 )τ ×∇φ′′′1659

= −(∇×V2)× φ′′′1zzτ∇φ′′′1660

= (∇×V
ε

2)× z′′′1zV′′′1 , (B9a)661

where the second line has been derived by first substituting for (∇×V′′′3 )τ using (B8a) and then retaining662
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terms labelled sin θ in (B8a) because ∇φ′′′1 is proportional to sin θ, and663

[(∇w′′′ −V′′′z ) ·V′′′]4 = (∇w′′′3 −V′′′3z) ·V′′′1664

= −(∇w′′′3 −V′′′3z)τ · ∇φ′′′1665

= −(∇w2 −V2z) · (∇φ′′′1τ )(φ′′′1xx + φ′′′1yy)666

+∇$̂2 · (∇φ′′′1 )φ′′′1zzτ667

−[(Dtw)z∇z′′′ − z′′′z ∇(Dtw)]3 · ∇φ′′′1668

= −V2z · z′′′1zV′′′1669

−[(Dtw)z∇z′′′ − z′′′z ∇(Dtw)]3 · ∇φ′′′1 , (B9b)670

where the second line has been derived by first substituting for (∇w′′′3 −V′′′3z)τ using (B8b)-(B8c) and then671

retaining terms labelled sin θ in (B8b)-(B8c) because ∇φ′′′1 is proportional to sin θ. The above procedure672

is based on CL76. The last line of (B9b) has been derived using ∇w2 = ∇$̂2 which follows from (17)673

and (B1).674

Substitution of (B9a)-(B9b) to (B4a)-(B4b), using (B5a)-(B5b), then yields675

D
ε

TV
ε

2 = −∇(p4 + η4 + Π4)− (∇×V
ε

2)×Vqs
2 , (B10a)676

D
ε

Tw
ε
2 = −∂z(p4 + Π4)− (∇wε2 −V

ε

2z) ·V
qs
2677

+
1

2
∂z(|Vqs

2 |2 − |z′′′1zV′′′1 |2)678

+[V′′ · (w′′′z ∇z′′′ − z′′′z ∇w′′′)]4679

+∇φ′′′1 · [(Dtw)′′′z ∇z′′′ − z′′′z ∇(Dtw)′′′]3, (B10b)680

where the third last term of (B10b) has been derived using (31a)-(32a),B2 and681

Π4 ≡
1

2
(|V′′′|2 − w′′′2)4 + [(V′′ · ∇z′′′)w′′′]4, (B10c)682

B2(V̂2 −V
ε

2)z · (z′′′1 V′′′1z) + (V2 −V
ε

2)z · (z′′′1zV′′′1 ) = Vqs
2z ·V

qs
2 − (z′′′1zV

′′′
1 )z · (z′′′1zV′′′1 ).
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is the revised Bernoulli head. The last three terms of (B10b) consist of waves up to O(α2). Because O(α)683

and O(α2) waves are horizontally homogeneous, these three terms can be absorbed to the Bernoulli head684

in (B10c) without affecting the horizontal component of wave-averaged momentum equation (B10a).685

Looking at (B10a)-(B10c), O(α3) waves appear only in the first term of the Bernoulli head (B10c).686

C. Discussion on the different scaling for the variation of circulations687

The utility of the velocity-based expression of the form stress term (as well as the pseudomomentum in688

the VL framework) is not limited to the scaling of LCs in CL76. There are various choices for the scaling689

of the temporal and horizontal variations of circulation, as argued in Lane et al. (2007) and AG13, and are690

briefly explained in this section using a generalized expression for the scaling. Let consider circulations691

whose time development is m orders (in terms of α, where m = 0, 1, 2, ...) slower than the phase cycle of692

waves, and the horizontal scale of circulations is n orders (in terms of α, where n = 0, 1, 2, ...) larger than693

wavelength. The time derivative operator may be decomposed as ∂t = ∂τ + αm∂T where ∂τ operates on694

wave quantities and ∂T operates on the low-pass filtered quantities (i.e. circulations as well as the slow695

time evolution of the wave quantities). Likewise the lateral gradient operator may be decomposed as696

∇ = ∇̇ + αn∇ where ∇̇ operates on wave quantities and ∇ operates on the low-pass filtered quantities697

(i.e. circulations as well as on the large spatial-scale variation of the wave quantities).C1 To summarize,698

∂τA = 0 and ∂TA 6= 0 (this is as in Section 3), likewise ∇̇A = 0 and ∇A 6= 0 for an arbitrary quantity699

C1 Note that ∂tA
′′′ = ∂τA

′′′ +αm∂TA
′′′ and ∂tA = αm∂TA for arbitrary wave and mean quantities A′′′ and A. Likewise

∇A′′′ = ∇̇A′′′ + αn∇A′′′ and ∇A = αn∇A. It should be also noted that the amplitude, wavenumber, and frequency of

O(α) waves are constant on the time and horizontal scales of waves (i.e. ∂τA = 0 and ∇̇A = 0 for A = A, k, l, σ) but

may vary on the time and horizontal scales of low-pass filtered quantities (i.e. ∂TA 6= 0 and ∇A 6= 0 for A = A, k, l, σ).

These rules and notations are the same as that in AG13.
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A, leading to700

∂τ (A′′′1 B
′′′
1 ) = 0, and ∂T (A′′′1 B

′′′
1 ) 6= 0, (C1a)701

∇̇(A′′′1 B
′′′
1 ) = 0, and ∇(A′′′1 B

′′′
1 ) 6= 0, (C1b)702

where A′′′1 and B′′′1 are arbitrary quantities at O(α).703

The set of wave-averaged momentum equations that contain the vortex force may be derived if704

m = n+ 2. Substitution of n = 0 recovers the scaling for the low-pass filtered flow used in Section 3 and705

is the same scaling as used in CL76. Substitution of n = 2 recovers the scaling of circulation in an inner706

coastal shelf region in McWilliams et al. (2004). The TWM equation system (6a)-(6c) is written as707

∇ · V̂2 + ∂z$̂n+2 = 0, (C2a)708

(∂T + V̂2 · ∇+ $̂n+2∂z)V̂2 + RSV
n+4 = −∇(p4 + η4) + FSV

n+4, (C2b)709

(∂T + V̂2 · ∇+ $̂2∂z)ŵ2︸ ︷︷ ︸
present only when n=0

+RSw4 = −p4z, (C2c)710

where the material derivative term in (C2c) is present only when n = 0. The horizontal and vertical711

momentum equations have been written at O(αn+4) and O(α4), respectively. Using the recipe of the712

present study, the Reynolds stress term and the form stress term in the horizontal momentum equation713

(C2b) can be transformed to the horizontal component of the vortex force, Vqs
2 × (∇×V

ε

2), or its variant714

which is O(αn+4). Likewise the Reynolds stress term in the vertical momentum equation (C2c) can be715

transformed to the vertical component of the vortex force, Vqs
2 · (∂zV

ε

2 − ∇wε2), or its variant which is716

O(α4). Another consequence is that the TWM momentum equations (C2b)-(C2c) are to be rewritten717

for the development of the EM velocity.718

An alternative and classical form of the wave-averaged momentum equations includes the so-called719

radiation stress (e.g. Longuet-Higgins and Stewart, 1964, hereafter LHS64; Bühler and Jacobson, 2001;720

Mellor, 2003). The depth-integrated radiation stress of LHS64 has been written by these authors as the721
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product of O(α) wave quantities. The sum of the Reynolds stress term (7) and (the negative of) the722

form stress term (8) then appears at O(αn+2) and when integrated over the water depth reads,723

∫ η

−∞
[RSV

n+2 − FSV
n+2] dz = ∇ ·

∫ η

−∞
V′′′1 V′′′1 dz +

1

2
∇η′′′1

2 −∇
∫ η

−∞
(z′′′1 p

′′′
1z)dz724

= ∇ ·
∫ η

−∞
V′′′1 V′′′1 dz︸ ︷︷ ︸
S
(1)
xx

+∇
∫ η

−∞
(−w′′′1

2) dz︸ ︷︷ ︸
S
(2)
xx

+∇ 1

2
η′′′1

2︸ ︷︷ ︸
S
(3)
xx

, (C3)725

where z′′′1 p
′′′
1z = −z′′′1 w′′′1τ = z′′′1τw

′′′
1 has been used following (C1a), and S

(1)
xx , S

(2)
xx , and S

(3)
xx are the nota-726

tion in LHS64. The stress terms, RSV
n+2 and FSV

n+2, are part of the horizontal component of the TWM727

momentum equations written at O(αn+2). In order for the tendency term of the wave-averaged mo-728

mentum equations to be written at O(αn+2), the time derivative operator needs to be decomposed as729

∂t = ∂τ + αn∂T which means that m = n. Namely LHS64 consider circulations whose time development730

is n orders slower (in term of α) than the phase cycle of the waves, which is two orders faster than that731

in the previous paragraph (i.e. the vortex force regime). The TWM equation system (6a)-(6c) becomes732

∇ · V̂2 + ∂z$̂n+2 = 0, (C4a)733

∂T V̂2 + RSV
n+2 = −∇(p2 + η2) + FSV

n+2, (C4b)734

0 = −p2z. (C4c)735

AG13 have specialized to the case of n = 1 (but the result holds for n = 2, 3, ..) and show that the736

depth-dependent radiation stress term is rewritten as737

RSV
n+2 − FSV

n+2 = −∂TVqs
2 +∇1

2
(|V′′′1 |2 − w′′′1

2), (C5)738

which contains no singular treatment at the sea surface, in contrast to Mellor (2008a). Substitution739

of (C5) to (C4b) yields a wave-averaged momentum equation written for the development of the EM740

velocity. The last term of (C5) vanishes in the present study because of the use of deep water waves,741
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however the term has been kept in order for readers to see correspondence to ζ̂ in McWilliams et al.742

(2004), J in Smith (2006), and SJ in Ardhuin et al. (2008b).743

The difference of the incompressibility conditions of the total transport velocity, (C2a) or (C4a), and744

the EM velocity, ∇ ·Vε

2 + ∂zw
ε
n+2 = 0, yields745

∇ ·Vqs
2 + ∂zw

qs
n+2 = 0, (C6)746

which indicates that, in the presence of the slow horizontal variations of waves, the vertical component747

of the quasi-Stokes velocity is nonzero and scaled at O(αn+2) (cf. Tamura et al., 2012).748

D. Viscosity term in the energy equation749

The last line of (47) is the product between −(∇̇θ)/σ and the viscosity term of the depth-dependent750

energy equation as we now show. As noted by Phillips (1977), Weber et al. (2006), and AG12, the751

viscosity term of the depth-dependent energy equation may be separated into two terms: one is the752

vertical divergence of a viscosity-induced flux (noted as FluxDiv) and one is dissipation at depths excluding753

the thin viscous boundary layers at the sea surface (noted as Dissipation). These two terms can be754
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obtained by substituting (43a)-(43c) into the FluxDiv-Dissipation part of (47) to give755

FluxDiv = [ν4V′′′1 · (∇̇w′′′1 + V′′′1z) + 2ν4w′′′1 w
′′′
1z]z756

= [ν4(|V′′′1 |2 + w′′′1
2)z]z757

= σ2[ν4(κ2φ′′′1
2 + φ′′′1zθ

2)z]z758

= σ2[ν4(κ2φ′′′1
2 + φ′′′1z

2)z]z759

= σ2[ν4(φ′′′1 φ
′′′
1z)zz]z, (D1a)760

Dissipation = 2ν4[u′′′1x
2 + v′′′1y

2 + w′′′1z
2] + ν4[(v′′′1x + u′′′1y)

2 + (w′′′1x + u′′′1z)
2 + (w′′′1y + v′′′1z)

2]761

= 2ν4[u′′′1x
2 + v′′′1y

2 + w′′′1z
2] + 4ν4[u′′′1y

2 + v′′′1z
2 + w′′′1x

2]762

= 2ν4σ
2[(k4 + l4)φ′′′1θ

2 + κ4φ′′′1θ
2] + 4ν4σ

2[(kl)2φ′′′1θ
2 + κ2φ′′′1z

2]763

= 4κ2ν4σ
2[κ2φ′′′1θ

2 + φ′′′1z
2]764

= ν4σ
2(φ′′′1 φ

′′′
1z)zzz, (D1b)765

where the second line of each equation has been derived using (34),D1 and the third line of each equation766

has been derived using (30c)-(30d). It should be noted that to connect to (49), use is made of (32a).767

The above two terms are part of the depth-dependent wave energy equation, which may be derived768

D1The expression of the dissipation rate as given by the last line of (D1b) is associated with only irrotational wave

motions in the vertical plane, in particular at depths below the base of the TVSBL. In the present study (Section 4), the

coefficient of turbulent viscosity (or νκ2/σ) has been scaled at O(α4) and thus the dissipation rate inside the TVSBL can

be neglected, which follows Phillips (1977, page 52) and Appendix B of AG12. However, if we consider breaking waves

under high wind conditions, the coefficient of turbulent viscosity (or νκ2/σ) might be scaled at O(α2) or O(α3) in the

vicinity of the sea surface (Drazen et al., 2008; Tian et al., 2010). Then the dissipation rate associated with rotational

wave motions inside the TVSBL (which is no longer thin) should be retained by revisiting (43a)-(43c) and (D1a)-(D1b), a

topic we shall discuss in a later paper.
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taking the sum of Eqs. (A6a) and (A6b) of AG12 and then picking-up O(α6) terms to yield,769

1

2
∂T (|V′′′1 |2 + w′′′1

2) + ∂z[z′′′1T (p′′′1 + η′′′1 )] +∇ · [V′′′1 (p′′′1 + η′′′1 )]770

= −∂z[z′′′τ (p′′′ + η′′′)]6 + FluxDiv − Dissipation, (D2)771

which indicates that the vertical flux of energy is given by the first two terms on the rhs, one is induced by772

pressure and one is induced by viscosity. Thus, if we consider the vertical integral of (D2) from z = −∞773

to z = η−δ (where δ is the thickness of the TVSBL), the source of wave energy is given by the combined774

vertical flux −[z′′′τ (p′′′ + η′′′)]6 + σ2ν4(φ′′′1 φ
′′′
1z)zz evaluated at z = η − δ. When there is no wind forcing,775

we obtain [z′′′τ (p′′′ + η′′′)]6 = σ2ν4(φ′′′1 φ
′′′
1z)zz at z = η − δ, with a consequence that the vertical integral of776

the first two terms on the rhs of (D2) cancel each other. Wave energy is then gradually decreased by777

the last term of (D2). Nevertheless the viscosity-induced momentum flux, ν4V
qs
2z, at z = η − δ in (49) is778

nonzero, so that it remains to control the boundary condition of the EM velocity in (49).779
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Table 1: Classification of previous studies based on the form of the Lagrangian momentum equations that is used.

Direct Expression Transformed Expression

Lagrange (1788, Eq. C on page 445) Lagrange (1788, Eq. D on page 446)

Lamb (1932, 2nd Eq. on page 13)

Pierson (1962, Eqs. 5, 9) Pierson (1962, Eqs. 4, 10)

Andrews & McIntyre (1978, Eq. 8.7a) Andrews & McIntyre (1978, Eq. 3.8)

Mellor (2003), Aiki & Greatbatch (2012) Aiki & Greatbatch (2013, simplified), this study (nonlinear)
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Table 2: List of symbols, where A is an arbitrary quantity. (xε, yε, zε, tε) and $ are the same as (xc, yc, zc, tc) and w∗ in

Jacobson and Aiki (2006), AG12, and AG13.

(xε, yε, zε) Eulerian-Cartesian coordinates

(a, b, c) Three-dimensional Lagrangian coordinates

(x, y, z) Vertically Lagrangian and horizontally Eulerian (VL) coordinates

A
ε

Time-mean in Eulerian-Cartesian coordinates

Â ≡ zεzA Thickness-weighted time-mean in the VL coordinates

A Unweighted time-mean in the VL coordinates

A′ ≡ A−Aε Deviation from the Eulerian mean, compared at fixed zε (A′
ε

= 0)

A′′ ≡ A− Â Deviation from the thickness-weighted mean, compared at fixed z (zεzA
′′ = 0)

A′′′ ≡ A−A Deviation from the unweighted mean, compared at fixed z (A′′′ = 0)

∇ ≡ (∂x, ∂y) Lateral gradient in the VL coordinates (∇z = 0,∇zε = ∇z′′′)

∇ε ≡ (∂xε , ∂yε) Horizontal gradient in Eulerian-Cartesian coordinates (∇ε = ∇− (∇zε)∂zε)

V ≡ (u, v) Horizontal component of velocity

w Vertical component of velocity

$ ≡ (w − zεt −V · ∇zε)/zεz Vertical velocity associated with volume flux through surface of fixed z

(V̂, ŵ) Thickness-weighted-mean (TWM) velocity

(V̂, $̂) Total transport velocity (∇ · V̂ + $̂z = 0)

(Vqs, wqs) ≡ (V̂ −V
ε
, $̂ − wε) Quasi-Stokes velocity (∇ ·Vqs + wqsz = 0)

η Sea surface height

p Sum of oceanic nonhydrostatic pressure and atmospheric sea surface pressure

FSV Divergence of form stress ≡ −[z′′′∇(p′′′ + η′′′)]z +∇(z′′′p′′′z )

RSA for A = u, v and w Divergence of the Reynolds stress ≡ ∇ · (zεzV′′A′′) + (zεz$
′′A′′)z

Dt ≡ ∂t + V · ∇+$∂z Introduced in (11a)-(11b)

D̂t ≡ ∂t + V̂ · ∇+ $̂∂z Introduced in (9a)-(9b)

D̂T ≡ ∂T + V̂2 · ∇+ $̂2∂z Introduced in (23b)-(23c)

D
ε

T ≡ ∂T + V
ε

2 · ∇+ wε2∂z Introduced in (B2)

A Amplitude of O(α) wave

α Surface slope of O(α) wave

κ ≡
√
k2 + l2 Horizontal wavenumber of O(α) wave

σ Frequency of O(α) wave

θ ≡ kx+ ly − στ Phase of O(α) wave

∂τ Time derivative operator for wave quantities

∂T Time derivative operator for mean quantities (∂t = ∂τ + αm∂T )

∇̇ Lateral gradient for wave quantities

∇ Lateral gradient for mean quantities (∇ = ∇̇+ αn∇)
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Table 3: Comparison of the scalings of the low-pass filtered equations where α� 1 is the surface slope of waves.

Section 3 Appendix C Appendix C Section 4

Equation system Eqs. (23a-c) Eqs. (C2a-c) Eqs. (C4a-c) Eqs. (C4a,c) & (49)

Coefficient of ∂T α2 αn+2 αn α4

Coefficient of ∇ - αn αn α4

V̂, V, V
ε

α2 α2 α2 α2

$̂, ŵ, w, wε α2 αn+2 αn+2 α6

Horizontal momentum equation α4 αn+4 αn+2 α6

Vertical momentum equation α4 α4 α2 α2

∇η α4 αn+4 αn+2 α6

$′′ α5 αn+5 αn+3 α7

f/σ - - - α4

νκ2/σ - - - α4
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Table 4: The rule of numeric subscript in the present study, which represents summation for a given order of asymptotic

expansion in terms of α.

(AB)2 = A1B1

(AB)3 = A1B2 +A2B1

(AB)4 = A1B3 +A2B2 +A3B1

(ABC)4 = A2B1C1 +A1B2C1 +A1B1C2
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List of Figures901

1 Illustration of the phase cycle of a wave propagating in the direction of the xε-axis. A902

control volume element in (a) the generalized-Lagrangian-mean (GLM) coordinates of903

AM78 and (b) the vertically Lagrangian (VL) coordinates of the present study is shaded in904

blue and red, respectively, with its low-pass filtered height, as measured in each coordinate905

system, being indicated by horizontal lines, and the reference horizontal position being906

indicated by vertical lines. Each color line indicates a material surface which is formed907

by connecting the instantaneous position of water particles whose three-dimensionally908

Lagrangian low-pass filtered height is a given value. Adapted from AG13. . . . . . . . . 57909

2 Schematic of momentum transfer between wind, surface waves, and ocean circulation. . 58910
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Figure 1: Illustration of the phase cycle of a wave propagating in the direction of the xε-axis. A control volume element in

(a) the generalized-Lagrangian-mean (GLM) coordinates of AM78 and (b) the vertically Lagrangian (VL) coordinates of

the present study is shaded in blue and red, respectively, with its low-pass filtered height, as measured in each coordinate

system, being indicated by horizontal lines, and the reference horizontal position being indicated by vertical lines. Each

color line indicates a material surface which is formed by connecting the instantaneous position of water particles whose

three-dimensionally Lagrangian low-pass filtered height is a given value. Adapted from AG13.
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Figure 2: Schematic of momentum transfer between wind, surface waves, and ocean circulation.
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