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Abstract 

 

The volcanic rocks of the Rhön area (Central European Volcanic Province, Germany) belong to a 

moderately alkali basaltic suite that is associated with minor tephriphonolites, phonotephrites, 

tephrites, phonolites and trachytes. Based on isotope sytematics (
87

Sr/
86

Sr: 0.7033-0.7042; 

143
Nd/

144
Nd: 0.51279-0.51287; 

206
Pb/

204
Pb: 19.1-19.5), the inferred parental magmas formed by 

variable degrees of partial melting of a common asthenospheric mantle source (EAR: European 

Asthenospheric Reservoir of Cebria and Wilson, 1995). Tephrites, tephriphonolites, phonotephrites, 

phonolites and trachytes show depletions and enrichments in some trace elements (Sr, Ba, Nb, Zr, 

Y) indicating that they were generated by broadly similar differentiation processes that were 

dominated by fractionation of olivine, clinopyroxene, amphibole, apatite and titaniferous magnetite 

± plagioclase ± alkalifeldspar. The fractionated samples seem to have evolved by two distinct 

processes. One is characterized by pure fractional crystallization indicated by increasing Nb (and 

other incompatible trace element) concentrations at virtually constant 
143

Nd/
144

Nd  ~ 0.51280 and 

87
Sr/

86
Sr ~ 0.7035. The other process involved an assimilation-fractional crystallization process 

(AFC) where moderate assimilation to crystallization rates produced evolved magmas characterized 

by higher Nb concentrations at slightly lower 
143

Nd/
144

Nd down to 0.51275. Literature data for 

some of the evolved rocks show more variable 
87

Sr/
86

Sr ranging from 0.7037-0.7089 at constant 

143
Nd/

144
Nd ~ 0.51280. These features may result from assimilation of upper crustal rocks by highly 

differentiated low-Sr (< 100 ppm Sr) lavas. However, based on the displacement of the 

differentiated rocks from this study towards lower 
143

Nd/
144

Nd ratios and modeled AFC processes 

in 
143

Nd/
144

Nd vs. 
87

Sr/
86

Sr and 
207

Pb/
204

Pb vs. 
143

Nd/
144

Nd space assimilation of lower crustal rocks 

seems more likely. The view that assimilation of lower crustal rocks played a role is confirmed by 

high-precision double-spike Pb isotope data  that reveal higher 
207

Pb/
204

Pb ratios (15.62-15.63) in 

the differentiated rocks than in the primitive basanites (15.58-15.61). This is compatible with 

incorporation of radiogenic Pb from lower crustal xenoliths (
207

Pb/
204

Pb: 15.63-15.69) into the melt. 

However, 
206

Pb/
204

Pb ratios are similar for the differentiated rocks (19.13-19.35) and the primitive 

basanites (19.12-19.55) implying that assimilation involved an ancient crustal end member with a 

higher U/Pb ratio than the mantle source of the basanites. In addition, alteration-corrected 
18

O 

values of the differentiated rocks range from c. 5 to 7 ‰ which is the same range as observed in the 
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primitive alkaline rocks. This study confirms previous interpretations that highlighted the role of 

AFC processes in the evolution of alkaline volcanic rocks in the Rhön area of the Central European 

Volcanic Province. 

 

Index terms: Igneous petrology, geochemical modeling, radiogenic isotope geochemistry, stable 

isotope geochemistry, intraplate processes 

 

 1. Introduction 

 

Geochemical studies of continental alkaline suites have shown that a particular suite of alkaline 

rocks commonly evolves along either a strongly silica-undersaturated basanite to phonolite lineage 

or a less silica-undersaturated alkali basalt to trachyte lineage (e.g., Wilson et al., 1995; Panter et 

al., 1997). Petrogenetic studies of closely associated silica-undersaturated and silica-saturated rock 

suites usually invoke complex open system processes to explain their origin from a common parent 

(Freundt and Schmincke, 1995) and specifically, the assimilation of crust by mantle-derived silica-

undersaturated melts to produce oversaturated alkaline magmas (e.g. Foland et al., 1993; 

Macdonald et al., 1995). Although Foland et al. (1993) favoured a process in which the 

oversaturated magmas develop from undersaturated felsic parent magmas by AFC processes, they 

acknowledged that the transition to oversaturation could occur much earlier in the differentiation 

sequence, with different magmatic lineages bifurcating from a common undersaturated alkaline 

mafic parent magma. In this study, we use new major and trace element geochemical data, 

combined with Sr-Nd-Pb-O isotope data, to investigate the processes which led to the contrasting 

compositions of coexisting highly differentiated alkaline (weakly silica-oversaturated and silica-

undersaturated) magma series from the Tertiary Rhön area (Germany). Jung and Hoernes (2000) 

and Jung et al. (2005) have previously demonstrated that crustal contamination was important in the 

evolution of the mafic rocks. New isotope data in conjunction with major and trace element and rare 

earth element (REE) data for the most extreme differentiated rocks (trachytes, phonolites) provide 

additional constraints on the nature of the likely AFC process that affected the phonolites and 

trachytes. 
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2. Geological setting 

 

The Rhön area (Hessia, Bavaria, Thuringia; Germany) extends over ca. 1500 km
2
 and lies within 

the Central European Volcanic Province. In Germany, this province includes (from west to east) the 

Eifel, the Westerwald, the Vogelsberg, the Hessian Depression, the Rhön area, the Heldburger dyke 

swarm, and the Oberpfalz area (Fig. 1A). The eruptive centers of these volcanic provinces are 

aligned perpendicularly to the main NNE-SSW trending rift system of the Upper Rhine valley. This 

geometry may be interpreted as the result of alpine tectonism further south (Ziegler, 1992). In 

Germany and elsewhere in Central Europe, Tertiary basin development provides evidence for 

continental rifting although the huge masses of basaltic rocks in the Vogelsberg area (approximately 

500 km
3
) and the Cantal (Massif Central, France) cannot be attributed to continental extension 

alone. The rift segmentation is usually attributed to some minor plume activity because most 

Tertiary rift faults cross-cut older (Variscan) structures. However, basement uplift is not coeval with 

the rift development, starting 20-40 Ma after the beginning of rifting (Ziegler, 1992). Whereas some 

of the Cenozoic volcanism is located mainly on Hercynian fault bounded blocks (e.g. Eifel, 

Westerwald, Heldburg), the Tertiary volcanic activity in the Rhön area, the Hessian Depression and 

the Vogelsberg area is restricted to graben-like structures that transect these Hercynian fault 

bounded blocks. Some of these rift structures (e.g. Rhön area, Hessian Depression) are not 

associated with basement uplift.  

The Rhön area (Fig. 1B) lies at the south-eastern margin of the Hessian Depression which 

can be interpreted as the northern extension of the Rhine valley. Geophysical data indicate that the 

Cenozoic rifts are associated with a marked uplift of the Moho discontinuity in which the maximum 

crustal thinning coincides with the trace of the northern Rhine graben (Ziegler, 1990). Crustal 

thickness is estimated to be less than 30 km (Prodehl et al., 1992). Babuska and Plomerová (1992) 

estimated a lithosphere thickness of 100-140 km prior to the Cenozoic rifting and suggested a 

present-day depth of less than 60 km for the asthenosphere/lithosphere boundary beneath the 

Rhenish Massif (Fig.1C). Principally, the region has a number of features similar to continental rift 

zones, being essentially an extensional region with variable but high heat flow and generally thin 

crust and lithospheric mantle. 
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Volcanism throughout the entire province is restricted mainly to the Cenozoic; in the Rhön 

area volcanism started during the Late Oligocene, continued into the Middle Miocene (26-11 Ma; 

Lippold, 1982) and culminated between 22 and 18 Ma with the voluminous eruption of mainly 

alkali basalts followed by phonolites, tephrites, basanites and nephelinites, some of them 

hornblende-bearing. The majority of the phonolites and trachytes and some less strongly 

differentiated rocks (i.e., tephrites) occur in the western sector of the Rhön area. Wedepohl et al. 

(1994) proposed a large crustal magma reservoir as the source of these highly differentiated rocks 

because of their small range in age and composition. However, the large distance (ca. 30 km) 

between some of the phonolite occurrences renders this suggestion unlikely. In the western sector of 

the Rhön phonolites are abundant but the predominant basalt types are amphibole-bearing basanites. 

The latter may represent the parental basalt prior to differentiation. The Hercynian basement into 

which the alkaline volcanic rocks intruded consists mainly of greenschist to amphibolite-facies 

metapelites, metabasites and orthogneisses of the Mid German Crystalline Rise and is overlain by 

Mesozoic and Cenozoic sandstones, carbonates and clays. Sample locations are given in Table 1. 

 

3. Analytical techniques 

 

Whole rock samples were prepared by crushing in an agate shatterbox in order to obtain ca. 250 g 

of the macroscopically freshest material. Fused lithium-tetraborate glass beads prepared from 

powder aliquots were analyzed for major and trace elements using standard XRF techniques at the 

Mineralogisch-Petrographisches Institut, Universität Hamburg. Chromium, Ni, Co and Pb were 

determined by flameless atomic absorption spectrometry using the graphite furnace technique and 

Rb was determined by flame atomic absorption spectrometry at the Mineralogisches Institut der 

Universität Marburg. The precision of each technique is better than 5-10% for all trace elements 

and the agreement between XRF and atomic absorption spectrometry is generally better than 5%. 

REE were analyzed by inductively coupled plasma emission spectrometry following separation of 

the matrix elements by ion exchange (Heinrichs and Herrmann, 1990). Loss on ignition (LOI) was 

determined gravimetrically at 1050oC (Lechler and Desilets, 1987). 

Some Sr and Nd isotope analyses (samples 9, 14, 16, 17) were carried out at the Max-Planck-

Institut für Chemie, Mainz using thermal ionization mass spectrometry (TIMS) on a Finnigan MAT 
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261 multiple sample, multicollector mass spectrometer operating in static mode. The Sr and Nd 

isotope composition of some samples (samples 3, 8, 13, 15, 26) was measured at the Institut für 

Mineralogie, Universität Münster on a Finnigan TRITON multicollector mass spectrometer. Whole 

rock chips were leached in 6N HCl for at least 6 hours. The leachate was decanted, saved and 

measured separately. The residues were thoroughly rinsed three times with Millipore
®
 water. For 

the Rb-Sr and Sm-Nd isotope analyses, the samples were spiked with a 
149

Sm/
150

Nd and a 
85

Rb/
84

Sr 

tracer after leaching. In Mainz, Sr and REE were separated using standard cation exchange columns 

with a DOWEX
®
 AG 50 W-X 12 resin and 2.5N HCl for Sr and 6N HCl for the REE. Nd was 

separated from the other REE using HDEHP coated Teflon
®
 columns and 0.12 N HCl. In Münster, 

Sr and REE were extracted as above but Nd was collected using 0.17 N HCl from similar HDEHP 

coated Teflon
®
 columns. Neodymium isotopes were normalized to 

146
Nd/

144
Nd = 0.7219 at both 

institutes. Repeated measurements of the La Jolla Nd standard gave 
143

Nd/
144

Nd = 0.511848 ± 

0.000021 (2 ; n = 28) for Mainz and 0.511863 ± 0.000006 (2 ; n = 33) for Münster. Strontium 

fractionation was corrected to 
86

Sr/
88

Sr = 0.1194. The value of the Sr standard (NBS 987) at the 

Max-Planck-Institut in Mainz is 
87

Sr/
86

Sr = 0.710224 ± 0.000024 (2 ; n = 14) and 0.710203 ± 

0.000023 (2 ; n = 64) at the Institut für Mineralogie in Münster. In Mainz and Münster, total 

blanks for Sr and Nd were below 300 ppb and 100 ppb, respectively. 

Oxygen isotopes for samples 9, 14, 16, 17 were analyzed at the University of Bonn on 8-10 

mg aliquots of powdered whole-rock samples, using purified F2 gas for O2 extraction, followed by 

conversion to CO2 (Clayton and Mayeda, 1963). 
18

O/
16

O measurements were made on a SIRA-9 

triple-collector mass spectrometer by VG-Isogas. Analytical uncertainties are < 0.2‰. Other 

samples (3, 8, 13, 5, 26) were analyzed at the Universität Göttingen. Here, O-isotope analyses were 
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conducted by infrared (IR) laser fluorination in combination with gas chromatography isotope ratio 

monitoring gas mass spectrometry (GC-irmMS) (Jones et al., 1999; Sharp, 1990). The gas 

extraction technique is described in Pack et al. (2007). In brief, 1.0 – 1.3 mg of sample material was 

loaded along with MORB glass and NBS-28 quartz into a 18-pit nickel sample holder. After 

evacuation overnight and pre-fluorination, samples were reacted in a ~20 mbar atmosphere of 

purified F2 gas (Asprey, 1976) by means of heating with a SYNRAD 50 W CO2-laser. Liberated O2 

was cleaned of excess F2 by reacting with NaCl (110°C). In contrast to Pack et al. (2007), who 

conducted analyses using the dual inlet system of a Finigan DELTA+ gas mass spectrometer, 

analyses were conducted in continuous flow mode. A fraction of purified sample O2 was expanded 

into a stainless steel capillary and transported with He carrier gas through a second trap, where O2 

was again cryofocused at –196°C on a molecular sieve. Sample O2 was then released at 100°C back 

into the He carrier gas stream and transported through a 5 Å molecular sieve GC column of a 

Thermo Gasbench-II. Sample O2 was injected via an open split valve of the GasBench-II into the 

source of a THERMO MAT 253 gas mass spectrometer. The signals of 
16

O
16

O and 
18

O
16

O were 

simultaneously monitored on Faraday cups. Sample peaks (m/z = 32) had an amplitude of 20 –

 30 V and a full width at half maximum of ~50 s. Reference O2 was injected before the sample 

through a second open split valve of the GasBench-II. The external error of a single analysis was 

±0.2‰. 

 

4. Mineralogy of lavas  

 

Most differentiated lavas from the Rhön are porphyritic, with ~ 20% phenocrysts in the 

phonotephrites and tephriphonolites, ~ 25% in the trachytes and ~ 15% in the phonolites. It is 

therefore probable that some of the scatter in major element variation diagrams arises from crystal 

accumulation. Plagioclase is a common groundmass phase in the tephriphonolites and 

phonotephrites. Kaersutitic amphibole is a common phenocryst phase in the intermediate magmas 

(phonotephrites and tephriphonolites), and occurs with calcic plagioclase, clinopyroxene, magnetite 

and apatite. Trachytes are dominated by feldspars, some of which have plagioclase cores and 

orthoclase rims. They contain also green salitic clinopyroxene. In some trachytes, biotite occurs as a 

phenocryst phase, together with zircon and apatite. Phonolites are characterized by a fine-grained 
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groundmass of K-feldspar and sodic plagioclase, pale green clinopyroxene and opaque phases. 

Phenocrysts include orthoclase, green sodic clinopyroxene, amphibole, biotite, apatite and zircon.  

 

5. Summary of compositional features of the parental alkali basalts 

 

The basanites and nephelinites that are parental to the more differentiated rocks treated in 

this contribution have been the subject of previous studies (Jung and Hoernes, 2000; Jung et al., 

2005). Additional data can be found in Freerck-Parpatt (1990), Ehrenberg et al. (1994), Wedepohl 

et al. (1994), Wedepohl and Baumann (1999). Most nephelinites and basanites are primitive 

volcanic rocks whereas others show decreasing Cr, Ni, MgO and TiO2 contents and CaO/Al2O3 

ratios but increasing Al2O3 and incompatible elements (Sr, Zr, Nb, Y, Ce) with increasing SiO2 

indicating fractionation of mainly olivine, clinopyroxene and amphibole. Nephelinites are products 

of variable degrees of melting as is shown by their decreasing Al2O3 and incompatible element 

content but increasing CaO/TiO2 ratio with increasing SiO2. Some chemical features of the 

primitive members, i.e. high and decreasing CaO/Al2O3 ratios and decreasing La but increasing Yb 

abundances in the sequence nephelinite-basanite-hornblende basalt can be explained by different 

degrees of melting of a garnet-bearing source in which garnet is progressively eliminated during 

melting. Negative anomalies of Rb and K in primitive mantle-normalized diagrams and Rb/K vs. K 

covariations suggest that amphibole was the major OH-bearing mineral phase.  

 The 
87

Sr/
86

Sr and 
143

Nd/
144

Nd ratios of nephelinites and basanites have a restricted range 

from 0.70325 to 0.70396 and from 0.51279 to 0.51287, respectively. Hornblende-basalts have a 

larger spread in 
87

Sr/
86

Sr ratios but a similar spread in 
143

Nd/
144

Nd ratios which vary between 

0.70339 and 0.70420 and 0.51279  and 0.51284, respectively. Strontium isotope compositions of 

the hornblende basalts are positively correlated with SiO2 indicating that they interacted with crustal 

rocks during fractionation. The range of alteration-corrected 
18

O values is between 5.2 and 7.4 ‰. 

The negative correlation of 
18

O values with Nd isotope compositions suggests that the higher 
18

O 

values are the result of crustal contamination. However, pristine values of 5.2 and 5.8 ‰ indicate 

variable mantle endmembers with respect to the O-isotope composition or some crustal 

contamination of the mafic magmas. Basanites and nephelinites display a large range in their Os 

isotope composition whereas Pb and Hf isotopes are rather uniform. For the most primitive 
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basanites, Pb (
206

Pb/
204

Pb: 19.18 to 19.33; 
207

Pb/
204

Pb: 15.58 to 15.60) as well as Os and Hf isotope 

compositions (
187

Os/
188

Os: 0.132-0.150;  Hf: +6.4 to +8.9) fall within the range of most OIB. Other 

basanites and nephelinites, although of still primitive composition as suggested by their high MgO, 

Ni, and Cr contents, have distinctly more radiogenic Os isotope compositions (
187

Os/
188

Os: 0.160-

0.469). Hafnium and Pb isotopes (Hf: +6.4 to +8.7; 
206

Pb/
204

Pb: 19.12 to 19.55; 
207

Pb/
204

Pb: 15.59 

to 15.61) are broadly similar to the most primitive basanites. The samples with the lowest Os 

isotopic compositions (
187

Os/
188

Os(23 Ma): 0.132-0.135) have the highest Os concentrations (70-93 

ppt). Low Os concentrations (6-43 ppt) of the samples with high
187

Os/
188

Os ratios suggest that their 

melts may have been contaminated by continental crust material thereby overprinting their mantle 

signatures. Model calculations suggest that the isotope signatures of the samples with very 

radiogenic Os ratios (initial 
187

Os/
188

Os up to 0.469) were produced by assimilation of two different 

lower crustal components; most likely resembling mafic and felsic lower crust. 

 

6. Geochemistry 

 

6.1 Major and trace elements 

 

Major and trace elements are reported in Table 2. Usually, fractionation trends observed for alkali 

basalts and differentiated rocks diverge from a single alkali basaltic parent with increasing silica 

content towards a phonolitic or rhyolitic endmember composition (e.g. Wilson et al. 1995, Panter et 

al. 1997). In the case of the Rhön lavas, the highly evolved rocks straddle the trachyte-phonolite 

boundary in the total alkalis-SiO2 diagram (Fig. 2). The ends of the fractionation trends are defined 

by trachytes and phonolites. With increasing SiO2 content, TiO2, MgO, FeO(total) and CaO decrease 

progressively, whereas Al2O3, K2O and Na2O generally increase (Fig. 3). The most evolved rocks 

have the lowest TiO2 contents. P2O5 is higher in the intermediate rocks than in the more mafic end 

members but decreases progressively towards the phonolites and trachytes (e.g., Panter et al., 1997). 

Apatite fractionation clearly controls the concentration of P2O5, which is low (<0.2 wt%) in 

phonolites and trachytes but high in tephriphonolites and phonotephrites (0.80-1.80 wt%).  

Concentrations of Ni, Cr, Sc and V in the intermediate magmas (tephrites, phonolites, 

trachytes) are all low and near the detection limit of the XRF analyses. Primitive mantle normalized 
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trace element variation diagrams for tephrites, phonolites and trachytes are plotted in Fig. 4. 

Tephrites show broadly similar patterns to the more primitive rocks (Jung and Hoernes, 2000) with 

distinct troughs at Rb, K, Pb and Ti. Although the data are limited, some of the phonolites and 

trachytes show distinctive negative anomalies for Sr, Ba, P and Ti. Zirconium shows a positive 

anomaly.  

The REE patterns of tephrites show an increase in LREE and HREE compared to the 

inferred parental hornblende-bearing basanite or nephelinite (Fig. 5a). Absolute REE abundances in 

the tephrites are higher than in the primitive basanites and alkali basalts and significant Eu 

anomalies, positive or negative, are absent. Phonolitic tephrites have similar REE pattern to 

tephrites but the tephritic phonolite tend to have a REE pattern with MREE depletion (Fig. 5b). 

Phonolites are slightly MREE-depleted with high La/Yb ratios and small negative Eu anomalies 

(Fig. 5c). Trachytes are LREE-enriched with little or no depletion in MREE and no negative Eu 

anomaly.  

 

6.2 Sr, Nd, Pb and O isotopes 

 

Strontium, Nd, Pb and O isotope data are reported in Table 3. Figure 6 shows the variation 

of initial 
143

Nd/
144

Nd vs initial 
87

Sr/
86

Sr, the latter obtained on leached residues for differentiated 

rocks from this study. Data for phonolites from Wedepohl et al. (1994) are also shown. The 

tephrites, phonotephrites, phonolites, trachytes and the tephriphonolite from this study plot in the 

´depleted field´ relative to Bulk Earth in the Sr-Nd isotope diagram similar to other alkaline rocks 

from central Europe (Wörner et al., 1986; Wilson and Downes, 1991; Wedepohl et al., 1994; Jung 

and Masberg, 1998; Jung and Hoernes, 2000; Bogaard and Wörner, 2003; Haase et al., 2004; Jung 

et al., 2006) but slightly below the inferred parental mafic melts. Figure 7 shows the variation of 

initial 
143

Nd/
144

Nd vs. MgO for primitive and evolved samples from the Rhön area. 

The tephrite, phonolite and trachyte samples analyzed in this study display a narrow range in 

initial 
87

Sr/
86

Sr ratios (0.7034-0.7040) and initial 
143

Nd/
144

Nd ratios (0.51276-0.51280). On the 

other hand, the data set presented by Wedepohl et al. (1994) shows a large range in initial 
87

Sr/
86

Sr 

ratios at almost constant initial 
143

Nd/
144

Nd ratios.  
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Initial Pb isotope compositions of the basanites are variable, defining a linear array 

subparallel to the Northern Hemisphere Reference Line (NHRL). This trend ranges from 

moderately high 
206

Pb/
204

Pb ratios (~ 19.0) to slightly more radiogenic values (~ 19.5) similar to 

other volcanic provinces from the Central European Volcanic Province (Jung et al. 2005; Fig. 8). 

The differentiated lavas have similar 
206

Pb/
204

Pb ratios but more radiogenic 
207

Pb/
204

Pb ratios that 

extend towards the Pb isotope composition of lower crust as represented by lower crustal xenoliths 

from the Hercynian Belt (Fig. 8). 

Since O-isotopes are very sensitive to weathering, only those values (reported as 
18

O 

relative to SMOW) obtained from rocks with H2O < 1 % can be considered magmatic (Kyser et al., 

1982). Some of the rocks have high LOI values which are positively correlated with the 
18

O value 

(Fig. 9) suggesting that the 
18

O are not primary and the high values are probably due to low-

temperature alteration. We have therefore decided to correct the measured 
18

O values according to  

the procedure outlined by Ferrara et al. (1985). This procedure gives an extrapolation of the 

modified values to the H2O contents of unaltered rocks which are assumed to have 0.5 wt% H2O in 

the present case (Fig. 9). Harmon et al. (1987) reviewed the primary H2O content of alkaline melts 

which ranges from 0.5 to 2 wt%. They consider an average value of 0.9 wt% H2O as being primary 

for alkaline melts; however, the extrapolation to 0.5 wt% will not greatly affect the interpretations. 

The mafic alkaline rocks show moderately high alteration-corrected O-isotope values that range 

from 5.1 to 7.3 ‰ that are negatively correlated with 
143

Nd/
144

Nd istope ratios (Jung and Hoernes, 

2000). Most of these values are within the range for continental basalts (6.4±1.1‰; Harmon and 

Hoefs 1995); however the higher values are a clear indication that crustal contamination also 

affected the lavas (Jung et al., 2005). Uncorrected oxygen-isotope values for the differentiated rocks 

are high (7.2-9.2 ‰; Table 3), however, alteration-corrected O-isotope values range from 5.4 to 7.2 

‰ which is essentially the same range as observed in the more primitive alkaline rocks. 

 

7. Discussion 

 

7.1 Fractional crystallisation (FC) processes 

 

 Although the major and trace element variations within the alkaline magmas could be 
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explained by fractional crystallization processes alone, it is clear on the basis of the Sr-Nd-Pb 

isotope data that crustal contamination must be important in the petrogenesis of the rocks (Figs. 6 

and 8). The decrease in MgO, FeO, CaO, Ni and Cr indicates that the fractionating assemblage in 

the mafic magmas must include both olivine and clinopyroxene. Green sodic clinopyroxene is the 

most abundant mafic phenocryst in the tephriphonolites and phonotephrites, however, biotite and 

amphibole are also present in the evolved rocks albeit in small amounts. The most evolved rocks 

have the lowest TiO2 contents which are mostly controlled by the fractionation of ilmenite or 

magnetite. The variation of TiO2 vs. SiO2 further indicates that probably some of the alkali basalts 

with high TiO2 contents are the parental rocks of the more differentiated members since the least 

differentiated tephrites have higher TiO2 abundances than some more primitive basanites. Because 

TiO2 behaves compatibly the tephrites cannot be derived from these low-TiO2 alkali basalts by 

fractional crystallization processes. The high-TiO2 members are confined to the hornblende-bearing 

basanites and nephelinites (e.g., Jung and Hoernes, 2000). Variation of P2O5 among the fractionated 

samples indicates that apatite fractionation clearly controls the concentration of P2O5, which is low 

(<0.2 wt%) in phonolites and trachytes but high in tephriphonolites and phonotephrites (0.80-1.80 

wt%). Al2O3 concentrations increase with fractionation throughout the series from basanite to 

phonolite, but they tend to decrease towards the most differentiated phonolites and trachytes. There 

is unsystematic scatter in Al2O3 among the most fractionated samples, i.e., the tephritic phonolite 

and the two trachytes and two phonolites. Within this group one trachyte and one phonolite have 

low Al2O3 but the remaining three samples (one phonolite, one trachyte and the tephritic phonolite) 

have high Al2O3. 

 Low Ni, Cr, Sc and V concentrations are compatible with a fractionating assemblage of 

olivine, clinopyroxene, amphibole and magnetite from the inferred parental hornblende-bearing 

basanites and nephelinites. The tephritic phonolite and the two trachytes have high Sr (631-1914 

ppm) and high Ba (1370-2131 ppm) but the two phonolites have low Sr (94-247 ppm) and low Ba 

(237-366 ppm) concentrations. The two phonolites and the two trachytes have similar moderately 

negative Eu anomalies (Eu/Eu* ≈ 0.68-0.72) whereas the tephritic phonolite has no Eu anomaly 

(Eu/Eu* ≈ 0.97). In addition, the tephritic phonolite and all the phonolites and one trachyte show a 

significant depletion in MREE which is shown by higher total REE abundances but similar MREE 

abundances relative to the moderately fractionated tephrites. Amphibole may be the fractionating 
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phase that generates the pronounced MREE depletion in the more evolved magmas (e.g. Wörner 

and Schmincke, 1984; Wilson et al., 1995). In conclusion, feldspar fractionation may have exerted 

the major control on the abundances of Ba, Sr and Eu in the most differentiated samples; the 

concomitant fractionation of amphibole and green sodic clinopyroxene had a competing effect on 

the Al2O3 systematics. Finally, the Rb, Ba and K troughs in primitive mantle-normalized element 

diagrams are probably inherited features from the mafic parent rocks but the distinctive negative 

anomalies for Sr, Ba, P and Ti among the phonolites and trachytes are consistent with fractionation 

of plagioclase, K-feldspar, apatite and Ti-magnetite. 

 

7.2 Assimilation Fractional Crystallisation (AFC) processes 

 

Isotope data presented earlier (Wedepohl et al., 1994) clearly indicate the importance of 

combined assimilation and fractional crystallization (AFC) processes in the petrogenesis of 

differentiated volcanic rocks from the Central European Volcanic Province. Based on the apparent 

negative correlation between Nd and Sr isotopes, Wedepohl et al. (1994) suggested that the crustal 

contaminant must be characterized by radiogenic Sr and unradiogenic Nd. In this model, crustal 

contamination is probably caused by partial melting of the wall rocks of the magma chamber 

producing granitic (or tonalitic) partial melts depending on the felsic (or mafic) composition of the 

wall rocks, respectively. The lower crust beneath the Central European Volcanic Province in 

Germany is mainly composed of mafic and felsic granulites in which mafic granulites, interpreted 

as basaltic cumulates, predominate over felsic granulites (Mengel, 1990; Mengel et al., 1991; Sachs 

and Hansteen, 2000). Comprehensive isotope data are only available for lower crustal xenoliths 

from the Eifel area (Stosch & Lugmair, 1984; Stosch et al., 1986, 1992; Loock et al., 1990; Rudnick 

& Goldstein, 1990). These granulites have Sr-Nd isotope compositions that extend from Bulk Earth 

values towards more unradiogenic 
143

Nd/
144

Nd but more radiogenic 
87

Sr/
86

Sr isotope compositions 

(Liew and Hofmann, 1988). 

To model the Nd-Sr isotope variation quantitatively, several parameters must be known 

including the Sr and Nd contents and isotopic compositions of the parent magma, the bulk 

distribution coefficients of both Sr and Nd (D
Sr

 and D
Nd

), the ratio of the mass assimilated to the 

mass of material fractionated (r) and the isotopic composition of the assimilated material (DePaolo, 
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1981). Taylor (1980) has estimated that the ratio (r) between the mass of assimilated material and 

the mass of crystals in an upper crustal basaltic magma chamber with an initial wall rock 

temperature of ~150 
o
C is about 0.3. On the other hand, DePaolo (1981) assumes that this ratio 

approaches 1 in magma chambers of the lower crust with an initial wall rock temperature of ~1000 

o
C. Clearly, clinopyroxene, plagioclase and olivine (and amphibole in the present case) will control 

the magnitude of the respective bulk distribution coefficients, which will commonly range between 

0.2 and 0.5 for Nd and between 0.2.and 1 for Sr.  

For the samples analysed in this study, initial 
143

Nd/
144

Nd ratios are slightly less radiogenic 

(from ~0.51280 to ~0.51276) than the basalts (Fig. 6) and initial 
87

Sr/
86

Sr ratios range from ~0.7034 

to ~0.7040. This may indicate a contaminant characterized by a relatively low time-integrated Rb/Sr 

signature. The decrease in radiogenic Nd broadly correlates with sample differentiation and 

decreasing MgO from basanite to trachyte and phonolite (Fig. 7), as it would be expected during 

AFC processes. We have modeled the Sr-Nd isotope variation (Fig. 6) with the following 

parameters for the contaminant based on the granulite sample S 1 from Stosch and Lugmair (1984): 

87
Sr/

86
Sr: 0.704922, 691 ppm Sr, D

Sr
: 0.5, 

143
Nd/

144
Nd: 0.512608, 43 ppm Nd, D

Nd
: 0.5. Note that 

the parameters are fundamentally different to those used by Wedepohl et al. (1994). In addition, the 

most important change in the parameters is the value of r which was set at 0.4 to allow for 

moderately high rates of assimilation relative to fractional crystallization which results in a steeper 

AFC curve. From Fig. 6, it is apparent that the differentiated rocks have undergone assimilation of 

c. 40%. For the phonolites from the Rhön, Wedepohl et al. (1994) observed an unusual style of 

contamination that produces high 
87

Sr/
86

Sr ratios up to 0.7090. These phonolites have low Sr 

abundances (average 59 ppm with Eu/Eu*: 0.65) suggesting the involvement of plagioclase during 

fractionation and consequently upper crustal contamination was inferred. A similar case with 

different 
87

Sr/
86

Sr ratios was presented by Wörner et al. (1985) for the Laacher See Tephra 

Sequence of the East Eifel and was interpreted to represent shallow assimilation late in the 

magmatic history. Here, the evolution from high-Sr samples with 300 ppm Sr towards low-Sr 

samples with 4 ppm Sr was also accompanied by an increase in 
87

Sr/
86

Sr from 0.705 to 0.711. The 

samples treated in our study show higher Sr (94-1914 ppm; Eu/Eu*: 0.72-0.68) and unradiogenic 

87
Sr/

86
Sr ratios. It is obvious that the observed distinct style of contamination is due to differences in 

the Sr content corresponding to distinct degrees of differentiation involving distinct amounts of 
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plagioclase. This may indicate contamination at different crustal levels. 

The isotope variations imply that the trachytes and phonolites have undergone some 

assimilation of lower crustal rocks during fractional crystallization (AFC processes). Some 

incompatible trace element concentrations predicted by fractional crystallization curves at c. 20-

30% magma remaining (Fig. 10) are similar to measured values of phonolitic and trachytic 

compositions. Hypothetical lower crustal rocks are inferred to be less radiogenic in 
143

Nd/
144

Nd 

than the alkali basalts and the differentiated rocks. Panter et al. (1997) have suggested that 

assimilation of lower crustal rocks by highly differentiated magmas may occur at low mass 

assimilation to mass crystallization rates and low F values producing melts with low 
143

Nd/
144

Nd 

ratios and high abundances of incompatible elements. Using Nb as an example, an AFC 

evolutionary path cannot extend below the Nb content of the inferred initial mafic magma (~ 74 

ppm), assuming that D
Nb

 is < 1. Thus, assimilation by differentiated magmas will produce 

compositions that evolve away from the field of the parental magmas towards lower 
143

Nd/
144

Nd 

and higher Nb concentrations (Fig. 10). Neodymium behaves incompatibly during differentiation 

and its abundance in basaltic melts is roughly similar to that of the contaminant. Hence, in AFC 

model calculations, basaltic magmas are displaced towards the Nd isotopic composition of the 

lower crustal wallrock much more efficiently than are contaminated, highly evolved magmas. On a 

graph of 
143

Nd/
144

Nd versus a highly incompatible element (Fig. 10), AFC curves will be steeper for 

less evolved magmas and flatten out for more evolved compositions. This effect is accentuated with 

changes in the rate of assimilation to crystal fractionation (r). F values (where F=fraction of melt 

remaining) in our model extend to 0.5 indicating a moderate degree of fractionation. In Fig. 10, the 

calculated AFC path shows an apparent small misfit between the computed and measured values. 

For the calculation of the AFC curve we have used values from the same xenolith (sample S 1 from 

Stosch and Lugmair, 1984) that was used to model the AFC path in Sr-Nd-Pb space. Small 

deviations of computed to measured values can be expected since it is very unlikely that one single 

xenolith is representative in term of its Sr-Nd-Pb isotope composition and Sr, Nd, Pb and 

incompatible trace element concentrations. High r-values (> 0.7) are suggested for basaltic AFC 

whereas low r paths (< 0.5) fit more evolved compositions (i.e. Panter et al., 1997). This may be 

explained by differentiation of basaltic magmas at deep levels in the crust, where high ambient 

wallrock temperatures and hot basic magmas facilitate higher rates of assimilation (Davidson and 
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Wilson, 1989; Shaw et al., 1993; Reiners et al., 1995).  

The Pb isotope data of the parental basanites plot on the Northern Hemisphere Reference 

Line (NHRL) whereas the Pb isotope compositions of the xenoliths plot above the NHRL in 

207
Pb/

204
Pb vs. 

206
Pb/

204
Pb and 

208
Pb/

204
Pb vs. 

206
Pb/

204
Pb space (Fig. 8). The differentiated lavas 

have 
206

Pb/
204

Pb ratios similar to the basanites but have distinctly more radiogenic 
207

Pb/
204

Pb ratios 

suggesting assimilation of an ancient crustal component having a high U/Pb history. Using Pb 

isotope and concentration data for xenolith sample S 1 (
207

Pb/
204

Pb: 15.66, 5.1 ppm Pb) from 

Rudnick and Goldstein (1990), AFC modelling produces a fair match of the sample data with the 

modelled AFC curve (Fig. 11). 

It has been shown above that crustal contamination via an AFC process is monitored by 

decreasing 
143

Nd/
144

Nd isotope ratios with decreasing MgO (Fig. 7). Similarly, alteration-corrected 


18

O values (Fig. 9) are higher than upper mantle values which may be caused by AFC processes, 

hydrous alteration or both. Whether or not the correction procedure of Ferrara et al. (1985) can be 

applied to the samples studied here is debatable. Clearly, hydrous alteration must have played a role 

but the results from recent studies in the Siebengebirge (Fig. 1) have shown that there is a clear 1:1 

correlation of O isotope values obtained on mineral separates with the alteration-corrected 
18

O 

values of the respective whole rocks (Jung et al. in 2012). This shows that the alteration correction 

may work in this case; whether it is applicable to other volcanic series needs to be tested.  

The complex geochemical variations of the Rhön volcanic rocks are best modeled by 

magmatic differentiation along two major lineages: (1) fractional crystallization of alkali basalt or 

probably hornblende-bearing basanite to produce the high Nb-trachytes and phonolites and (2) 

assimilation of crust by basanite or nephelinite and concurrent crystal fractionation evolving to 

trachyte with high Nb contents but unradiogenic 
143

Nd/
144

Nd and radiogenic 
207

Pb/
204

Pb (Figs. 6, 10 

and 11). The ascent of alkali basalts sensu lato through the lithosphere was probably arrested at a 

level where reaction with crust could occur at moderately high assimilation to fractional 

crystallization rates. Based on isenthalpic AFC calculations, Reiners et al. (1995) determined that 

high r values can result during early stages of basalt contamination when country rock temperatures 

are between 400 and 800°C.  

 

8. Summary and conclusion 
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Previous geochemical and isotopic studies on mafic alkali basalts (nephelinites, basanites) from the 

Rhön area have shown that most of these represent near-primary asthenosphere- or lower 

lithosphere derived melts produced by a few percent partial melting of garnet peridotite containing 

residual amphibole (Jung and Hoernes, 2000). The intermediate to evolved magmas 

(tephriphonolites, phonotephrites, phonolites, trachytes) of the alkaline suite of the Rhön have 

distinct major and trace element and isotope characteristics that provide important constraints on 

their petrogenesis. The differentiated rocks evolved from parental probably hornblende-bearing 

basanites along a differentiation trend that is controlled by separation of olivine, clinopyroxene, 

amphibole, ± plagioclase, ± K-feldspar, apatite and magnetite. Depletion of MREE in some samples 

points to amphibole fractionation whereas depletion of Ba, Sr and Eu is caused by fractionation of 

feldspars. Previous studies on differentiated alkaline rocks (i.e., Wilson et al., 1995) have shown 

that such suites may evolve by AFC processes in which assimilation may cease after 55-65% 

fractional crystallization but further differentiation may occur beyond this point. The alkaline suite 

from the Rhön follow two isolated paths; one is characterized by AFC and the other path reflects 

pure fractional crystallization, both from slightly different parental alkali basalts. Model 

calculations indicate that the Sr and Nd isotope composition of the inferred contaminant had little 

obvious effect on the Sr and Nd isotope composition of the lavas. On the other hand, the effect for 

the Pb isotope composition is significant. Therefore, qualitative constraints on the composition of 

the contaminant require ancient granulite facies lower crustal rocks with low Rb/Sr, low Sm/Nd 

coupled with moderate Nd concentrations and elevated U/Pb ratios coupled with moderate to high 

Pb concentrations. In addition, this study places important constraints on distinct contamination 

scenarios at different levels within the crust. This study shows that deep crustal assimilation is 

hardly detectable in high-Sr phonolites and trachytes (Sr >> 100 ppm) but may be recognized by 

subtle variations in Nd, Pb and O isotope compositions. Other studies (e.g. Wedepohl et al., 1994) 

indicated that low-Sr phonolites (Sr << 100 ppm) are probably more prone to show effects of 

crustal contamination due to the strong contrast in Sr concentrations and isotope compositions 

between these phonolites and lower or upper crustal country rocks. On a regional scale, isotope 

studies on differentiated alkaline rocks from the Central European Volcanic Province have shown 

that evolved lavas from the Eifel do not show elevated 
207

Pb/
204

Pb ratios (Jung et al., 2005) whereas 
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differentiated lavas from the Westerwald (Haase et al., 2004) and the Siebengebirge (Jung et al. 

2012; Kolb et al., 2012) have high 
207

Pb/
204

Pb up to 15.68.  Hence, crustal contamination is a 

common phenomenon in evolved alkaline lavas and substantial variation in lower crustal 

compositions beneath the different volcanic fields of the Central European Volcanic Province may 

exist.  
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Figure captions: 

 

Figure 1(A): Distribution of Cenozoic volcanic rocks in Central Europe (slightly modified from 

Wedepohl et al., 1994). Numbers denote K-Ar ages from Lippolt (1982). (B): Location of the Rhön 

volcanic province. (C): Contour map of lithosphere thickness in Europe (Wedepohl et al., 1994). 

 

Figure 2: Total Alkali-Silica (TAS) diagram for the alkaline rocks from the Rhön area. 

 

Figure 3: Major oxide and trace element Harker diagrams showing the distribution of the alkaline 

rocks from the Rhön area. 

 

Figure 4: Primitive mantle-normalized incompatible element patterns of tephrites, phonolites and 

trachytes. Grey shaded fields denotes trace element abundances of basanites and nephelinites (Jung 

and Hoernes, 2000 and upublished data). Normalization values from Sun and McDonough (1989). 

 

Figure 5: Chondrite-normalized REE diagram of (a) tephrites, (b) phonolitic tephrites and tephritic 

phonolite and (c) phonolites and trachytes. Normalization values from Boynton (1984). Grey field 

denotes REE abundances of basanites and nephelinites (Jung and Hoernes, 2000 and upublished 

data). 

 

Figure 6: 
143

Nd/
144

Nd vs. 
87

Sr/
86

Sr diagram showing data for alkali basalts (Jung and Hoernes, 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2000) and phonolites (Wedepohl et al., 1994) from the Rhön area. Also shown is a modelled AFC 

path with the following parameters for the inferred parental basanite  (51 ppm Nd; 
143

Nd/
144

Nd = 

0.512851, 890 ppm Sr; 
87

Sr/
86

Sr: 0.70342; sample 1a from Jung and Hoernes, 2000) and the 

hypothetical lower crustal rock (42.6 ppm Nd, 
143

Nd/
144

Nd: 0.512608; 691 ppm Sr, 
87

Sr/
86

Sr: 

0.704921: sample S 1 from Stosch and Lugmair, 1984). Bulk Kds for Nd and Sr were 0.5, 

respectively. R (the ratio of mass assimilated to mass fractionated) was set at 0.4 to allow for lower 

crustal melting at elevated temperatures. Small white circles on the AFC curve represent 10% 

increments of assimilation. Dark grey area represents Eifel peridotite xenolith data from Witt-

Eickschen et al. (1998, 2003) and Stosch and Lugmair (1986). Stippled area represent Sr and Nd 

isotope data from Tertiary Central European Volcanic Province alkali basalts compiled by Lustrino 

and Wilson (2007). Light grey field represents Eifel lower crustal xenolith data (Loock et al., 1990; 

Stosch and Lugmair, 1984). 

 

Figure 7: 
143

Nd/
144

Nd vs. MgO for tephrites, phonolites and trachytes. Also shown are data for 

alkali basalts from Jung and Hoernes (2000). 

 

Figure 8: Plot of (a) 
207

Pb/
204

Pb and (b) 
208

Pb/
204

Pb versus 
206

Pb/
204

Pb for the alkali basalts from the 

Rhön. NHRL is the Northern Hemisphere Reference Line (Hart, 1984).  Fields for mantle and 

crustal xenoliths and mafic alkaline lavas as in Fig. 6. 

 

Figure 9: Measured O-isotope compositions (shown as 
18

O values relative to SMOW) vs. LOI for 

tephrites, phonolites and trachytes. Using the correction procedure outlined by Ferrara et al. (1985), 

LOI-corrected 
18

O values of between 5.5 and 7.2 ‰ for LOI=0.5 are calculated. Also shown are 

the corrected values of the alkali basalts from Freerck-Parpatt (1990) and Jung & Hoernes (2000) 

for comparison. These data have also been recalculated for a LOI value of 0.5% to allow for 

comparison with the data for the more differentiated rocks. 

 

Figure 10: (a) Nb, (b) Zr, (c) Pb, (d) Rb and (e) Li vs. 
143

Nd/
144

Nd ratio for tephrites, phonolites and 

trachytes (this study) and alkali basalts from Jung and Hoernes (2000). Note that the distribution of 

the differentiated rocks follow two different paths. One path is characterized by constant 
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143
Nd/

144
Nd and increasing Nb, Zr, Pb, Rb and Li concentrations and is interpreted to result from 

fractional crystallization processes. The other path is consistent with an assimilation-fractional 

crystallization paths with decreasing 
143

Nd/
144

Nd and increasing Nb, Zr, Pb, Rb and Li 

concentrations. For the fractional crystallization (FC) calculations, model parameters are 84 ppm 

Nb, 250 ppm Zr, 5 ppm Pb, 40 ppm Rb, 10 ppm Li and 
143

Nd/
144

Nd: 0.512800 (45 ppm Nd) for a 

hypothetical starting basanite. For the AFC calculation, model parameters are 74 ppm Nb, 237 ppm 

Zr, 5 ppm Pb, 34 ppm Rb, 10 ppm Li and 
143

Nd/
144

Nd: 0.512824 (46 ppm Nd) for the starting 

basanite (sample 18 from Jung, 1995 and Jung and Hoernes, 2000) and 29 ppm Nb and 
143

Nd/
144

Nd: 

0.512608 (42.6 ppm Nd) for the lower crustal contaminant (sample S 1; Stosch and Lugmair, 1984). 

Nb concentration data are not available from granulite sample S 1 but were estimated using 2.02 

ppm Ta from sample S 1 (Loock et al. 1990) and an inferred Nb/Ta ratio of 14.4 which is the 

average of 13 lower crustal xenoliths with subchondritic Nb/Ta ratios given by Mengel (1990). 

Lithium and Zr abundances for S 1 are not available and we chose 6 ppm Li and 130 ppm Zr for the 

lower crustal contaminant. These estimates are close to or within the range of lower crustal 

xenoliths from world-wide studies (Li: 3.3-11 ppm; Zr: 68-206 ppm; Rudnick and Gao, 2004) and 

from the CEVP (7-21 ppm Li, 93-164 ppm Zr; Mengel et al., 1990). Concentrations of Pb and Rb 

for S 1 are taken Rudnick and Goldstein (1990) and Stosch and Lugmair (1984). Bulk Kds for Nb, 

Zr, Pb, Rb and Li are 0.18, 0.19, 0.35, 0.12 and 0.18, resp. and were calculated using an estimated 

fractionating mineral assemblage (13.5 % olivine, 24 % clinopyroxene, 12.5 % amphibole, 24 % 

plagioclase, 6.75 % magnetite, 0.2 % ilmente and 1.2 % apatite) from Wedepohl et al. (1994). 

Distribution coefficients for Nb, Zr, Pb, Rb and Li were those from Adam et al. (1993) and Adam 

and Green (2006) for olivine, clinopyroxene and amphibole, Matsui et al. (1997), Ewart and Griffin 

(1994) and Villemant et al. (1981) for plagioclase, Ewart and Griffin (1994) and Zack and Brumm 

(1998) for magnetite/ilmenite and Mahood and Stimac (1993) for apatite. Model calculations 

indicate up to 60% assimilation of these hypothetical lower crustal rocks. 

 

Figure 11:
 143

Nd/
144

Nd vs. 
207

Pb/
204

Pb for alkali basalts differentiated alkaline lavas from the Rhön. 

Lines show the results of AFC calculations according to DePaolo (1981). Model parameters are 51 

ppm Nd, 
143

Nd/
144

Nd = 0.512851, 5 ppm Pb; 
207

Pb/
204

Pb: 15.60 for the parental basanite (sample 1a 

from Jung and Hoernes, 2000 and Jung et al. 2005) and 42.6 ppm Nd, 
143

Nd/
144

Nd: 0.512608, 5.1 
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ppm Pb, 
207

Pb/
204

Pb: 15.66 for the hypothetical lower crustal rock (sample S 1 from Rudnick and 

Goldstein, 1990). Bulk Kds for Nd and Pb were 0.5 and 1.0, respectively. r (the ratio of mass 

assimilated to mass fractionated) was set at 0.4.  
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Table 1. Sample locations of differentiated alkaline rocks from the Rhön area 

 

Sample no. Rock type Map No Map name 

 

Locality Latitude (N) Longitude (E) 

       

11.F Tephrite 5325 Spahl Suchenberg 50
o
39'56128 09

o
50'35640 

11.G Tephrite 5325 Spahl Suchenberg 50
o
39'56128 09

o
50'35632 

8 Tephrite 5225 Geisa Dachsberg 50
o
42'56227 09

o
50'35628 

14 Tephrite 5424 Fulda Farrod 50
o
35'56073 09

o
50'35588 

27 Tephrite 5525 Gersfeld Steinwand 50
o
29'55955 09

o
40'35613 

28 Tephrite 5525 Gersfeld Steinwand 50
o
29'55955 09

o
50'35613 

29 Tephrite 5525 Gersfeld Steinwand 50
o
29'55955 09

o
50'35613 

9 Ph.Tephrite 5225 Geisa Kirchberg 50
o
42'56219 09

o
50'35645 

13 Ph.Tephrite 5325 Spahl Seelesberg 50
o
39'76102 09

o
50'35685 

26 Teph. Phon. 5525 Gersfeld Steinwand 50
o
29'55955 09

o
50'35613 

15 Phonolite 5425 Kleinsassen Hohlstein 50
o
30'56038 09

o
50'35637 

3 Phonolite 5425 Kleinsassen Kesselberg 50
o
30'56024 09

o
50'35668 

16 Trachyte 5425 Kleinsassen Sternkuppel 50
o
30'56997 09

o
50'35640 

17 Trachyte 5424 Fulda Alschberg 50
o
30'55991 09

o
45'35577 
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-Table 2: Major and trace element composition of tephrites (T), tephritic phonolites (TP), phonolitic tephrites 
(PT), phonolites (P) and trachytes (Tr) from the Rhön area. LOI: Loss on ignition. Standard values for JB 3 
are from Govindaraju (1984) and REE values for an in-house standard (alkaline basalt BB) are from 
Engelhardt (1990) calibrated against several international rock standards. 

 
Sample 
No. 11.F 11.G 8 14 27 28 29 9 13 26 15 3 16 17 

JB3 
(rec.) 

JB 3 

Rock type T T T T T T T PT PT TP P P Tr Tr 
  

SiO2 
45.9
0 

44.5
0 

46.5
2 

43.9
1 

45.8
0 

45.6
0 

46.7
0 

51.2
4 

51.3
8 

55.4
0 

60.9
4 

59.8
0 

58.8
8 

59.4
1 

51.03 51.04 

TiO2 2.62 2.89 2.43 2.75 2.40 2.40 2.60 1.80 1.61 0.80 0.47 0.24 0.71 0.63 
1.43 1.45 

Al2O3 
15.6
5 

14.5
3 

16.8
3 

14.7
3 

16.2
0 

15.9
0 

15.9
0 

17.9
4 

17.9
1 

19.7
0 

18.8
3 

19.6
8 

19.6
2 

18.5
6 

17.37 16.89 

Fe2O3 5.68 6.78 4.79 5.69 5.40 5.20 5.20 3.71 3.43 2.40 2.19 1.89 3.02 2.67 
11.93 11.88 

FeO 4.91 5.53 5.36 6.42 5.30 5.80 5.90 3.98 3.70 1.60 0.59 0.45 0.73 0.75 
n.d. n.d. 

MnO 0.26 0.23 0.25 0.23 0.20 0.30 0.20 0.30 0.30 0.30 0.24 0.36 0.22 0.29 
0.18 0.16 

MgO 3.92 5.22 3.31 4.82 4.70 4.90 4.90 2.32 2.10 0.90 0.46 0.20 0.68 1.08 
5.16 5.20 

CaO 9.87 9.90 8.78 9.93 8.80 9.60 8.90 6.94 6.26 4.50 1.75 1.16 2.94 1.86 
9.77 9.86 

Na2O 4.31 3.67 4.36 3.26 3.90 3.10 2.90 5.45 5.18 5.30 6.71 7.78 5.86 5.43 
2.77 2.82 

K2O 2.49 1.53 2.69 2.50 2.60 2.30 2.10 2.90 3.31 4.70 5.72 5.48 4.52 5.59 
0.76 0.78 

P2O5 1.48 1.28 1.74 1.64 1.10 1.20 1.30 0.76 0.76 0.10 0.02 0.04 0.20 0.12 
0.28 0.29 

LOI 1.99 3.10 2.41 3.13 3.10 3.10 2.60 1.98 4.19 3.80 1.45 3.11 2.85 3.14 
n.d. n.d. 

Sum 
99.0
8 

99.1
6 

99.4
7 

99.0
1 

99.5
0 

99.4
0 

99.2
0 

99.3
2 

100.
1 

99.5
0 

99.3
7 

100.
2 

100.
2 

99.5
3 

100.7
1 

100.3
7 

                 

Li 19 14 14 13 22 15 16 18 21 25 25 30 13 33   

Rb 68 38 59 69 73 58 58 84 72 127 148 149 131 179 16 13 

Zn 173 157 163 160 147 141 148 183 159 162 175 180 163 197 109 106 

Co 27 37 16 33 28 28 28 9 15 3 2 2 2 2 36 36.3 

Cu 13 21 3 18 13 24 24 3 6 3 3 3 3 3 151 198 

Ni 3 10 3 8 31 29 29 3 3 3 3 3 3 3 33 38.8 

Pb 13 8 6 8 8 7 6 12 11 15 13 9 9 23 5 5.5 

Sr 142
9 

127
3 

215
8 

184
2 

193
1 

197
7 

171
0 

202
5 

223
8 

162
9 

94 247 631 191
4 

411 395 

V 211 255 117 223 181 187 154 71 96 42 8 5 13 24 367 383 

Ba 108
1 

979 112
8 

978 126
9 

117
5 

104
4 

127
1 

184
6 

213
1 

366 237 186
1 

137
0 

226 251 

Y 49 40 50 48 40 38 34 45 47 42 33 46 43 61 25 27 

Cr 6 10 3 13 31 30 27 4 3 3 3 3 3 3 58 60.4 

Zr 594 485 448 496 410 371 385 681 537 746 100
0 

110
1 

720 773 93 98.3 

Nb 150 125 112 130 101 92 140 166 136 157 184 235 186 262 5 2.3 

Sc 12 13 6 12 8 12 13 4 4 1 1 1 1 1 32 33.3 

               

BB 
(rec.) 
rec 

BB 

La 117 99 108 99 89 87 54 140 105 140 140 127 150 166 48.0 47.2 

Ce 226 189 224 200 167 185 104 265 212 245 240 233 279 327 92.0 91.0 

Nd 94 79 93 93 71 78 49 106 89 73 55 82 103 98 43.0 42.4 

Sm 18.1
0 

15.2
0 

18.6
0 

15.2
0 

14.1
0 

12.3
0 

7.50 15.6
0 

15.2
0 

13.0
0 

8.10 15.3
0 

14.0
0 

10,1 8.4 8.1 

Eu 5.33 3.92 5.58 3.51 3.77 3.07 2.31 5.10 4.09 3.21 
 

1.81 2.88 3.80 3.11 2.5 2.5 

Gd 15.5
0 

12.4
0 

13.8
0 

10.7
0 

9.50 9.20 7.10 11.4
3 

13.2
0 

7.80 6.60 10.7
0 

13.0
0 

9.30 6.8 6.9 

Dy 10.4
0 

8.10 9.90 7.00 6.00 5.70 4.90 9.80 7.10 4.60 5.60 8.20 10.0
0 

7.50 4.7 4.5 

Er 4.50 3.60 3.50 3.30 2.10 2.30 1.90 3.90 3.60 3.10 3.70 4.50 3.60 4.40 2.1 2.2 

Yb 3.90 2.90 2.30 2.00 1.90 1.80 1.60 2.50 2.30 2.60 4.20 4.80 2.40 4.10 1.7 1.8 

Lu 0.46 0.40 0.29 0.30 0.27 0.31 0.23 0.33 0.33 0.40 0.51 0.54 0.30 0.50 0.23 0.22 
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Table 3: Initial Sr, Nd, Pb and O isotope (in ‰ relative to SMOW) composition of tephrites, phonolites and trachytes 

from the Rhön area. Errors are 2 s (mean) in the last two digits. Pb isotopes were recalculated using U/Pb = 0.15 and 

Th/U = 4 for tephrites and U/Pb = 0.54 and Th/U = 3.3 for phonolites (Wedepohl et al. 1994). All initial ratios were 

recalculated using an age of 23 Ma which is within the range of 27-21 Ma for the age of volcanism quoted by Wedepohl 

et al. (1994). (m): measured, (i): initial, (l): leachate, (u): unleached, (r): residue; (corr.): corrected. n.d.: not determined. 

Initial 
87

Sr/
86

Sr ratios were recalculated using measured 
87

Rb/
86

Sr ratios and 
87

Sr/
86

Sr ratios obtained on the residue. Rb 

and Sr concentrations were measured by isotope dilution on the residues after leaching. Neodymium isotopes were 

corrected for 
143

Nd/
144

Nd=0.512850 for the LaJolla standard and Sr isotopes were corrected for 
87

Sr/
86

Sr=0.710240 for 

NBS987. 

Sample 8 14 9 13 26 3 15 16 17  

Rock type  Tephrite Tephrite 

ph. 

Theprite 

ph. 

Tephrite 

teph. 

Phonolite Phonolite Phonolite Trachyte Trachyte  

Laboratory U Münster MPI Mainz MPI Mainz U Münster U Münster U Münster U Münster MPI Mainz MPI Mainz  
143Nd/144Nd (m) 0.512804 0.512787 0.512776 0.512775 0.512808 0.512816 0.512812 0.512770 0.512799  

error 0.000004 0.000012 0.000013 0.000002 0.000004 0.000004 0.000002 0.000013 0.000013  

Sm (ppm) 19.6 20.2 19.6 18.2 13.0 15.3 10.1 20.0 20.2  

Nd (ppm) 83.0 93.0 101 82.0 73.0 82.0 55.0 103 98.0  
147Sm/144Nd 0.138 0.143 0.127 0.146 0.117 0.123 0.121 0.128 0.135  
143Nd/144Nd (i) 0.512784 0.512771 0.512761 0.512758 0.512794 0.512798 0.512797 0.512757 0.512798  
87Sr/86Sr (l) 0.704143 0.704336 0.704322 0.704241 0.704255 0.710446 0.705140 0.705141 0.703875  

error 0.000011 0.000011 0.000014 0.000010 0.000012 0.000011 0.000015 0.000012 0.000013  
87Sr/86Sr (u) 0.703866 0.703980 0.703968 0.704011 0.703827 0.706972 0.705081 0.704548 0.703757  

error 0.000010 0.000014 0.000012 0.000011 0.000014 0.000012 0.000014 0.000013 0.000011  
87Sr/86Sr (r) 0.703879 0.703669 0.703620 0.703773 0.703711 0.704502 0.704864 0.704001 0.703729  

error 0.000009 0.000012 0.000013 0.000007 0.000012 0.000007 0.000012 0.000012 0.000013  

Rb (ppm) 59 69 84 72 127 149 148 131 179  

Sr (ppm) 2158 1842 2025 2238 1629 247 94 631 1914  
87Rb/86Sr 0.076 0.103 0.115 0.089 0.215 1.666 4.349 0.573 0.258  
87Sr/86Sr(i)  0.703854 0.703635 0.703583 0.703744 0.703641 0.703958 0.703443 0.703814 0.703645  

18O (m) 7.4 8.7 7.9 8.1 8.9 8.9 7.2 8.4 9.2  

LOI (%) 2.41 3.13 1.98 3.19 3.80 3.11 1.45 2.85 3.14  

18O (corr.) 6.0 6.7 6.8 5.4 6.4 7.0 6.4 6.2 7.2  
206Pb/204Pb (i) 19.099 19.313 n.d. 19.086 19.077 19.130 19.104 19.098 19.072  

error 0.001 0.001 n.d. 0.002 0.001 0.001 0.001 0.002 0.001  
207Pb/204Pb (i) 15.619 15.630 n.d. 15.621 15.621 15.627 15.618 15.622 15.625  

error 0.001 0.001 n.d. 0.001 0.001 0.001 0.002 0.002 0.001  
208Pb/204Pb (i) 38.937 39.135 n.d. 38.927 38.928 38.967 38.925 38.915 38.903  

error 0.003 0.003 n.d. 0.004 0.004 0.002 0.005 0.005 0.003  
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Fig 5 
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Fig 10 
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Highlights 

 

 

Some differentiated alkaline rocks may evolve by FC or AFC but not both 

Analyses of acid-leached samples necessary to detect unsupported 87Sr 

Crustal contamination hardly detectable in high-Sr lavas but obvious in low-Sr lavas 

Deep crustal contamination confirmed by high-precision Pb double-spike data 

Positively correlated 87Sr/86Sr ratios - 18O values also indicate crustal contamination 

 


