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Prevalence of strong bottom currents in the greater Agulhas system
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[1] Deep current meter data and output from two high-
resolution global ocean circulation models are used to
determine the prevalence and location of strong bottom
currents in the greater Agulhas Current system. The two
models and current meter data are remarkably consistent,
showing that benthic storms, with bottom currents greater
than 0.2ms ', occur throughout the Agulhas retroflection
region south of Africa more than 20% of the time.
Furthermore, beneath the mean Agulhas Current core and
the retroflection front, bottom currents exceed 0.2ms™ '
more than 50% of the time, while away from strong
surface currents, bottom currents rarely exceed 0.2ms .
Implications for sediment transport are discussed and the
results are compared to atmospheric storms. Benthic
storms of this strength (0.2ms™ ") are comparable to a
9ms~' (Beaufort 5) windstorm, but scaling shows that
benthic storms may be less effective at lifting and
transporting sediment than dust storms. Citation: Cronin, M. F.,
T. Tozuka, A. Biastoch, J. V. Durgadoo, and L. M. Beal (2013),
Prevalence of strong bottom currents in the greater Agulhas system,
Geophys. Res. Lett., 40, 1772-1776, doi:10.1002/grl.50400.

1. Introduction

[2] While the mean ocean circulation can be thought of as
wind-driven gyres in the upper ocean and creeping thermo-
haline flow in the deep ocean, strong currents and benthic
storms do occur at the bottom of the ocean, particularly
beneath strong surface currents such as found in western
boundary regions [4rbic et al., 2009; Savidge and Bane,
1999; Kontar and Sokov, 1997]. In this study, we investigate
the prevalence of strong bottom currents in the greater
Agulhas system, where the western boundary current of
the South Indian Ocean gyre, the Agulhas Current, flows
past the African landmass terminus and retroflects to become
the eastward flowing Agulhas Return Current (ARC).

[3] Strong bottom currents have important dynamical and
practical implications. Prevailing winds can cause a buildup
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of energy within the ocean that must be dissipated in order to
maintain global energy balance [Ferrari and Wunsch, 2009].
Because dissipation scales as velocity cubed, strong benthic
currents are very effective at dissipating this energy. Strong
bottom currents can also affect the topography of the
seafloor by lifting and transporting sediment and organic
matter off the seabed and by affecting the sedimentation
rate of detritus raining down from above. Sediment layers
thus provide a record of the paleo-climate and bottom
currents extending back millions of years [Schliiter and
Uenzelmann-Neben, 2007]. Furthermore, implementation
plans for observing the deep ocean [Garzoli et al., 2010]
and its sediment bed [Zahn et al., 2010] depend upon the
range of current speeds that might be encountered at the
bottom of the ocean.

[4] We use the term “benthic storm” here to refer to any
strong bottom current event, except those that occur more
than 50% of the time and are unidirectional. These are asso-
ciated with a bottom “mean jet.” Energetic currents at the
bottom of the ocean have been linked to a number of pro-
cesses: to the barotropic component of a surface jet (particu-
larly for western boundary currents flowing poleward along
a shallow continental slope) [Beal and Bryden, 1999], insta-
bilities on the upper ocean jet [Cronin and Watts, 1996],
form drag associated with variability in the thermocline
[Hogg, 1983], topographic Rossby waves [Thompson and
Luyten, 1976], and a spectrum of processes near seamounts
[Lavelle and Mohn, 2010]. On shorter time scales, deep flow
can be associated with near-inertial waves that are generated
at the surface and propagate into the deep ocean [Park et al.,
2010], and with tides. Benthic storms have been observed
beneath meanders within nearly all strong current systems,
including the Gulf Stream, where bottom currents reach
more than 0.4ms~ ' [Savidge and Bane, 1999], and the
Antarctic Circumpolar Current as it flows through Drake
Passage, where bottom currents reach more than 0.6ms '
[Chereskin et al., 2009]. We expect the Agulhas system’s
strong surface currents, rich eddy field, and large topo-
graphic relief [Beal et al., 2011; Biastoch et al., 2008;
Boebel et al., 2003] combine to make for potentially a very
energetic bottom flow field. In this study, we use current
meter data augmented with output from two high-resolution
ocean general circulation models (OGCMs) to investigate
the prevalence of strong bottom currents in the greater
Agulhas system. By doing this analysis on two different
OGCMs, in conjunction with in situ observations, we are able
to illustrate robustness in our results.

2. Methodology and Data

[s] Previous studies of the bottom flow field have gene-
rally focused on the mean of the flow, its eddy kinetic energy
[Scott et al., 2010], and the cubic bottom speed [Arbic et al.,
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Figure 1. Map of percentage of record with currents greater than threshold values (a and b) for surface
currents >0.5ms ™" and (c and d) for bottom currents >0.2ms™'. Figures la and lc show values from the
OFES model; Figures 1b and 1d are from the INALTO1 model. Surface currents across the Agulhas Current
near 30°E (indicated by filled circles in Figures la and 1b) were measured by Acoustic Doppler Current
Profilers (ADCPs) on the Agulhas Current Time-Series (ACT) moorings. Values from historical current meters
(CM) located within 1000 m of the bottom are indicated by large filled circles in Figures 1¢ and 1d, while small
filled circles indicate values from current meters located more than 1000 m above the bottom. Vectors indicate
simulated mean surface (Figures 1a and 1b) and bottom (Figures 1c and 1d) currents. Thick, medium, and thin
solid contours represent isobaths of 1500, 3000, and 4500 m, respectively. Dashed lines highlight locations of
the 18.2°E and 40.1°S sections shown in Figure 2.

2009], which is proportional to dissipation rate. The metric  of the prevalence of strong bottom currents and is an important
we consider is percentage of record with speeds greater than  metric for sediment transport and engineering design studies.
some threshold value, in this case 0.2ms ' for deep flows Our choice of threshold values is somewhat arbitrary, being
and 0.5ms ™" for surface flows. This provides a simple measure ~ based on engineering tolerances for ocean-observing platforms.
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Figure 2. Cross-section along 18.2°E (left) and 40.1°S (right) of percentage of record with currents
>0.2 m s~ ' for OFES (top) and INALTO1 (bottom). Filled circles show values from historical current

meters located near sections (see Figure 1).

For example, a moored surface buoy (http:/www.pmel.noaa.
gov/OCS/ARC), recently deployed in the ARC, could tolerate
strong surface currents but broke away from its anchor when
this was combined with a deep current >0.3 ms ™.

[6] Threshold bottom velocities are also used for deter-
mining sediment transport: Below a threshold shear, the
lifting force is insufficient to dislodge noncohesive particles
off the sediment bed, and likewise, suspended matter of this
size and larger will be deposited. In particular, using a
bottom drag coefficient value of 0.0025 (the value used in
one of the models here), the 0.2 ms ™" threshold bottom veloc-
ity can be converted into a threshold frictional velocity, which,
according to the Miller et al. [1977] Shield’s diagram, is capa-
ble of lifting noncohesive quartz-density particles smaller than
70 um. Consequently, particles smaller than 70 um (e.g., very
fine sand) are unlikely to be found in regions that frequently
have benthic currents greater than 0.2ms ' and contourites
[Schliiter and Uenzelmann-Neben, 2007] can be expected
downstream in regions of decelerated flow.

[7] Because our primary objective is to document the ex-
istence of strong benthic flow, regardless of time scale or
source, the analysis is performed on unfiltered current meter
data and model output. The analysis uses recently recovered
current meters from the Agulhas Current Time-Series (ACT)
experiment (http://act.rsmas.miami.edu) and historic current
meter data found in the WOCE Kepler database (http://kepler.
oce.orst.edu). In particular, three data sets are used here:
5 ACT moorings, 10 moorings that were deployed in the
Agulhas Retroflection region from 1985 to 1987 [Luyten
et al., 1990], and 5 moorings deployed, as part of WOCE
SCMOY, near the Prince Edward Islands just south of the ARC
from 1993 to 1995 [Read and Pollard, 1999]. All moorings
in the study domain were in water depth greater than 1500 m
and had current meters 46-1325m off the bottom. The
five ACT moorings also included upward-looking Acoustic
Doppler Current Profiler (ADCP) measurements from which
surface currents could be inferred.

[8] Two high-resolution OGCMs are used in this analysis:
the Japanese Ocean model For the Earth Simulator (OFES)
[Masumoto et al., 2004] and the German INALTO1 (updated
AGO1) [Biastoch et al., 2009] model. Both were run in

hindcast mode under prescribed atmospheric forcing for
multiple decades. OFES, based on the Modular Ocean
Model (MOM3) [Pacanowski and Griffies, 1999], has hori-
zontal grid spacing of 1/10° and 54 vertical levels varying
from 5 m at the surface to up to 330 m at the bottom in the
deepest regions of the nearly global domain. INALTO1 is a
nested configuration based on the NEMO code v3.1.1
[Madec, 2008]. It consists of a high-resolution 1/10° nest
covering the western South Indian and the entire South
Atlantic basins (8°N-50°S, 70°W-70°E) embedded in a
two-way mode (AGRIF) [Debreu et al., 2008] within a
global ocean—sea ice 1/2° base model. Both the high-
resolution and global components of the INALTO1 model
have 46 z levels and, like the OFES model, partially filled
bottom cells. The partial cell method allows for more realis-
tic horizontal pressure gradients associated with bottom
topography [Pacanowski and Gnanadesikan, 1998] and,
consequently, more realistic representation of flow associ-
ated with topography, such as topographic Rossby waves.
Both OFES and INALTOl have model topography
constructed from 1/30° bathymetry data sets, created by
the OCCAM project at Southampton Oceanography Centre
in the former case and ETOPO-2 in the latter.

[¢] Simulated bottom currents were taken from the bottom
cell of each OGCM. The bottom cell was up to 330
and 250m thick for OFES and INALTOI, respectively.
Thus, neither OGCM resolved the benthic Ekman layer.
Likewise, except for one current meter that was placed
46 m above the bottom, all current meter sensors were
placed well above the benthic boundary layer (i.e., up to
1325 m above the bottom). Currents within 1000 m of the
bottom are considered bottom currents, while those more
than 1000 m above the bottom are considered deep currents.
When the analysis was repeated using one or two bins above
the bottom bin, the OGCM results were qualitatively
unchanged. Bottom friction is estimated using a drag coeffi-
cient value of 0.0025 in OFES. While the INALTO1 value
is smaller, 0.001, it is applied to the squared bottom
currents increased by a value of 0.0025m?s 2 to account
for bottom turbulent kinetic energy due to tides and other
unresolved currents.
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Figure 3. Scatter plot of percentage of record with observed versus simulated bottom currents >0.2 m/s
from the (a) OFES and (b) INALTOI models. The overall cross-correlation between the observed and

simulated values is 0.7 for both models.

[10] Neither model assimilated observations, which has
been shown to improve simulations in the deep ocean [Scott
et al., 2010]. OFES model was forced from 1950 to 2007
with daily mean fluxes derived from NCEP/NCAR
reanalysis [Kalnay et al., 1996], and 3 day snapshots from
1980 to 2006 were used in the OFES analysis here.
INALTO! was forced from 1948 to 2007 with CORE2b
atmospheric forcing fields [Large and Yeager, 2009] at
six-hourly resolution. Thus INALTOI, to a certain extent,
supports inertial oscillations and internal waves. Neither
model, however, simulated tides, which could lead to higher
bottom currents near seamounts and shallow topography.

3. Results

[11] Bottom currents exceed 0.2ms ' more than 50% of
the time in narrow regions beneath the Agulhas Current
and below the mean retroflection front, indicative of mean
deep jets (Figure 1). The shelf region east of South Africa
is moderately productive and thus has sediment enriched
with organic and particulate carbon. Where these bottom jets
flow off the continental shelf, we expect export of carbon
into the abyss (see Figures S1 and S2). Benthic storms, with
currents that exceed 0.2ms™ ', occur 20% of the time in
broad areas of the retroflection region and beneath the
ARC (Figure 1). The slightly stronger bottom currents in
INALTOl may be due to its smaller drag coefficient in
regions of strong currents. To investigate the effects of
missing tides and high-frequency forcing on bottom
currents, we low-pass filtered the current meter data from
the retroflection region and found that the values shown in
Figure 1 were reduced by no more than 2%, suggesting that
the peak bottom currents are relatively insensitive to inertial
oscillations and tides.

[12] The position of the surface currents relative to these
bottom currents can be seen in Figure 1, where the preva-
lence of surface currents greater than 0.5ms ' illustrates
the path of the Agulhas Current, its retroflection, and the
eastward flowing ARC. Away from the strong upper ocean
currents, the deep ocean is quiescent, with bottom currents
rarely or never exceeding 0.2ms ™', even close to topogra-
phy. Curiously, bottom currents are very weak in a narrow
(~50 km) band along the flanks of the Agulhas Plateau, even

though the surface currents are intense (>0.5ms~' more

than 50% of the time). This may be because the necessary
conditions for baroclinic instability are not met due to the
influence of sloping topography [Gill et al., 1974]. Northeast
of the Agulhas Plateau, in the Transkei basin where the bot-
tom currents converge into a region of relatively quiescent
flow, contourites have been observed in the sedimentary
record [Schliiter and Uenzelmann-Neben, 2007]. Favorable
conditions for contourites can also be seen where the ener-
getic bottom flow extends into the Cape Basin, and similarly
where it abuts the southwest flank of the Agulhas Plateau.
For regional details of Figures 1c and 1d, see Figures S1-S7.

[13] In general, currents are surface intensified. However,
as shown in Figure 2, bottom intensified currents are com-
mon, particularly near seamounts and ridges [Lavelle and
Mohn, 2010; Bishop et al., 2012]. Bottom intensification is
not seen in the current meter records, probably due to the
lack of vertical resolution on these moorings. Bottom inten-
sification may also explain the discrepancy between the
simulations and observations along 23°E in Figure 1: The
current meters are located more than 1000 m above the bot-
tom. However, even with these height discrepancies, the
scatter between the observed values and the OGCM bottom
bin values is modest, with a cross-correlation of 0.7 for both
models (Figure 3).

4. Discussion and Conclusion

[14] The relatively good agreement between the two
OGCMs and the current meter measurements lends confi-
dence that our results are robust. In order to gain intuition
about these benthic storms, we compare our results to a sim-
ilar analysis of the prevalence of sea winds >20ms '
(Beaufort 9 strong gale force winds) [Sampe and Xie,
2007]. The wind analysis shows that strong gale force
winds occur only 10-20% of the time in the Northern and
Southern Hemisphere storm tracks during winter, much less
frequently than the strong bottom currents in our analysis
(Figure 1), suggesting that their 20ms ™' wind threshold is
more stringent than our threshold.

[15] The Rossby deformation radius for the atmosphere
and ocean is L,~1400km and L, ~30km, respectively
[Bluestein, 1992; Chelton et al., 1998]. Thus, for
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comparable Rossby numbers (ratio of the inertial force to the
Coriolis force), the oceanic and atmospheric velocities scale
as Uy/Uy.~La/Loc ~1400km/30 km ~47. In other words, a
0.2ms ' benthic storm would be comparable to a 9ms "
(Beaufort 5) windstorm. However, a mere 5ms~ ' wind is
sufficient to lift a 70 um noncohesive particle (corresponding
to the threshold benthic flow of ~0.2ms ") [Bagnold, 1941;
Miller et al., 1977]. Windstorms thus appear to be more
effective than benthic storms at lifting noncohesive particles.
This is due in part to the fact that a windstorm with the same
Rossby number as the benthic storm will have a larger
particle Reynold’s number (ULy./v) due to the relative
magnitudes of the atmospheric and oceanic molecular
viscosities (Va/Voe~1.4 x 10 °m*s™ /1.8 x 10 °m?s ™" ~8).
It should be noted that for a dust storm to form, the resulting
lifting must be combined with large vertical motion and thus
must have a large Rossby number, i.e., horizontal scales much
smaller than the Rossby deformation radius. The effective
viscosity may be much larger than the molecular viscosity,
and other processes may play a role. An interesting follow-
on study would be to compare the prevalence of thick
nepheloid layers to thick dust storms.

[16] Our results show the prevalence of strong bottom
currents beneath the Agulhas System surface currents,
suggesting that in western boundary current regions, energy
can be effectively transferred to the deep ocean where it is
dissipated through friction, making these regions important
in the global energy balance. Arbic et al. [2009] estimated
that the global bottom drag dissipation rate is in the range of
0.14-0.65 TW and therefore represents a substantial sink for
the 1 TW of wind power that is transformed into geostrophic
motions. The linkage between benthic storms and surface
currents, demonstrated here, leads to serious engineering
design constraints for oceanic observing systems but points
to the potential for sediment analyses to provide important
clues not only to paleo-bottom currents but also to paleo-
surface currents. We hope that this study will inspire further
research on these dynamic and powerful deep currents.
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