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Abstract 

There are few experimental data of a fundamental nature that clearly 

demonstrate the similarities and differences in burning rates between single phase 

and two phase combustion, either in laminar or turbulent conditions. Such data are 
essential towards a better understanding of the spray combustion phenomena as well 

as a whole system. In the present study, experimental investigations of combustion 

of droplet and vapour air mixtures under quiescent and turbulence conditions have 

been conducted in a fan stirred combustion vessel. Aerosols were generated by 

expansion of gaseous pre-mixture to produce a homogeneously distributed 

suspension of fuel droplets. Spherically expanding flames following central ignition 
were employed to quantify the flame structure and propagation rate. The effect of 

droplets on flame propagation was investigated by comparing the burning rate of 

gaseous mixtures at initial pressure and temperature close to those of aerosol 

mixtures. 

In quiescent conditions, aerosols of two different fuels, isooctane and 

ethanol, were investigated at near atmospheric conditions. The effect of fuel 

droplets, up to 31 J.1m diameter, on laminar flame propagation was examined at a 

wide range of equivalence ratios. In the early stages of flame development, inertia of 

fuel droplets leads to local enrichment in equivalence ratio which increases the 

initial burning rate of lean aerosols but decreases that of rich ones. For the later 
stages of flame propagation, the presence of liquid droplets causes earlier onset of 

instabilities and cellularity than for gaseous flames, particularly at rich conditions. 

This leads to an enhanced burning rate and is probably due to heat loss from the 

flame and local disturbances due to droplet evaporation and subsequent diffusion 

processes. 
In turbulent studies, the effect of isooctane droplets up to 14 J.1m in diameter 

on flame propagation was examined at various values of root mean square 

turbulence velocities between zero and 4.0 mls. It is suggested that during early 

flame development, the turbulence was found to induce droplet motion before flame 
initiation which dominated over those resulting from the flame, negating the effect 
of droplet inertia. In the later stages, the presence of droplets in a low turbulent 

flame resulted in a significant burning rate enhancement. However, this 

enhancement became progressively less important as turbulent wrinkling became 

dominant. Between low and high turbulence, there was a transition regime between 

instability dominated and turbulence dominated regimes. As a consequence, the 

burning rate enhancement due to droplets under this transition range was rather 

complex. 
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1.1 General introduction 

Chapter 1 

Introduction 

The combustion of sprays of droplets has been the subject of research studies 

for more than five decades. Much work has concentrated on achieving substantial 

improvements in fuel efficiency of the combustion system, while other research has 

been directed at complying with environmental issues and stringent emission 

requirements. Such developments in any practical combustion system always 

necessitate a better understanding of the combustion process, particularly that 

dealing with fundamental knowledge. Nevertheless, studies in practical systems are 

difficult due to the multiplicity of dependent parameters and this is also associated 

with the complexity of the systems themselves. 

In practice, every combustion process occurs in a turbulent environment. 

However, it is well established that the laminar burning rate plays an important role 

in turbulent combustion (Bradley et al., 1992). Information on laminar burning rates 

for fuel sprays and gas-liquid mixtures are still inadequate. There are few 

experimental data of a fundamental nature that clearly demonstrate the similarities 

and differences in burning rates, either laminar or turbulent, between single and two­

phase combustion (Lawes et al., 2006). Several workers, Ballal and Lefebvre (1981), 

Nakabe et al. (1988) and Richards and Lefebvre (1989), suggested that this was due 

to the more complex nature of two-phase combustion and the resulting increase in 

difficulties in experimental as well as theoretical study. Nevertheless, a significant 

number of fundamental studies related to droplet combustion have been made and 

these are reviewed in Section 2.6. Under laminar condition, a few studies (Hayashi 

and Kumagai, 1975; Polymeropoulos, 1984; Greenberg et al., 1998; Nomura et al., 

2000) suggested that flame propagation through droplet clouds can be faster than 

that in fully vapourised homogeneous mixtures. However, under turbulent 

conditions, there is little fundamental data to show the differences. 
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Since the important aspects of single droplet combustion have become well 

understood, fundamental investigation of droplet cloud combustion provided a 

further approach towards a better understanding of spray combustion systems 

(Hayashi et 01., 1976). Such elementary study is essential in order to enhance our 

understanding, particularly to provide correct interpretations of the observed 

phenomena related to spray combustion. As a simple model of spray combustion, 

idealised systems are needed in which monosized droplets are suspended uniformly 

in a fuel vapour air mixture. One such system can be realised by employing the 

principle of the Wilson cloud chamber (as in the present work) in which a fuel 

vapour becomes supersaturated and some portion of the vapour condenses into 

droplets. 

1.2 Objectives of the present study 

The general idea that emerges from previous studies on droplet cloud 

combustion, presented in Section 2.6, was a promotion in the burning rate due to 

droplets at certain conditions, under both laminar and turbulent conditions. Yet, 

these studies are limited by the fact that the enhancement in burning rate, although 

observed by many researchers, was not properly quantified. In the very few cases of 

experimental study where it was quantified (Nomura et 01., 2000; 2007), the size of 

the flame considered was quite small, leading to ambiguities in transition regimes. 

Furthermore, there were only a few experimental works (Hayashi et 01., 1976; Lawes 

et 01., 2006) that identify the similarities and differences between single phase and 

two phase combustion. Therefore, in the present study, experimental investigation of 

spherically propagating flames of droplet and vapour air mixture in a cylindrical, fan 

stirred combustion apparatus was undertaken. The effect of droplets on flame 

propagation was investigated by comparing the burning rate of gaseous mixtures at 

initial pressure and temperature close to those of aerosols at a wide range of 

equiValence ratios. 

The objectives of the present study are: 

• to provide fundamental experimental data on the laminar burning 

characteristics of droplet and vapour air mixtures; 

• to quantify the enhancement in burning rates of aerosol and gaseous mixtures 

at a wide range of equivalence ratios and droplet sizes; 
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• to investigate the effect of fine droplets during two stages of flame 

propagation: early and later stage propagation, under laminar and turbulent 

conditions. 

1.3 Thesis outline 

An essential prerequisite for the study of droplet clouds combustion is an 

understanding of the experimental concepts and theoretical descriptions of gaseous 

pre-mixed combustion under laminar and turbulent conditions. Those important 

concepts for the present study are presented in Chapter 2. A number of important 

studies related to droplet clouds and aerosol combustion are also described in this 

chapter, together with some practical applications. Of particular interest are the 

works on experimental and theoretical study which found the burning rate promotion 

of aerosol combustion at a particular range of conditions. The experimental 

apparatus and techniques involved in the present study are presented in Chapter 3. 

The combustion vessel consists of two vessels, with the main one fitted with optical 

access to allow observation during flame development. It was equipped with fans 

which allowed combustion experiments in a controlled turbulent environment and 

for mixture preparation. Aerosols were generated using the Wilson cloud chamber 

principle (Wilson, 1897), which produced a homogeneous spatial droplet 

distribution and nearly monosized droplets across the vessel. The mixture, generated 

under laminar and turbulent conditions, was characterised using laser diagnostic 

techniques to obtain the droplet size and the number density of fuel droplets. 

Simultaneously, pressure and temperature were also recorded and used as a basis to 

calculate aerosol properties. Characterisation results are presented in Chapter 4. Also 

in Chapter 4, there is a brief description of factors that influence aerosol formation. 

Results from laminar and turbulent combustion are presented in Chapter 5. At 

each condition, all results were presented in terms of flame observations and burning 

rates measurements. For each experiment, details of flame propagation during the 

early and later stages are presented. The effects of several parameters on flame 

propagation was investigated. These include the overall equivalence ratio, droplet 

diameter and rms turbulence velocity. Variations of burning rates at a wide range of 

conditions were presented to demonstrate the differences between gaseous and 

aerosol combustion. Chapter 6 discusses the results. These include the observations 
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of flame development, possible mechanisms of burning rate enhancement, the 

mechanism of flame instability and the determination of unstretched burning 

velocity. The effect of turbulence on aerosol flames is also discussed in this Chapter. 

Finally, Chapter 7 summarises the outcomes of the present work and gives 

recommendations for further work. 
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Chapter 2 

Review of Droplet Combustion 

2.1 Introduction 

Droplet combustion has relevance to many practical combustion devices. 

These varied applications have led to numerous studies of both spray combustion 

and associated processes, such as droplet atomisation and evaporation. Such studies 

are important in order to establish criteria for designing an efficient and reliable 

system with due regard to the environment. This chapter presents a review of droplet 

combustion studies and their applications. Section 2.2 presents an overview of some 

of the practical applications of droplet combustion and the recent trends in their 

development. In Section 2.3, a brief review of the burning rate of homogeneous 

mixtures is presented, since this forms the foundation for the present study. This 

includes the phenomenon of laminar flame instability and a brief description of 

turbulent burning velocity. In order to study droplet, or aerosol, combustion, it is 

necessary to understand the underlying principles of droplet generation. Thus, a 

review of droplet generation techniques is described in Section 2.4, followed by that 

of droplet characterisation in Section 2.5. Finally, a review of previous work related 

to the combustion of droplet and vapour mixtures under laminar and turbulent 

conditions is presented in Section 2.6. 

2.2 Applications and challenges in droplet combustion 

Droplet combustion is of practical importance in a wide range of technological 

applications that include automotive engines, gas turbines, power generation, 

furnaces, boiler and space heating. However, there are several phenomena relating to 

the burning of droplets that are still not fully understood due to the complexity of 

practical spray combustion systems. The following descriptions present an overview 

of some of the practical applications of droplet combustion and the recent challenges 

which draw interest for the present study. 
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In relation to automotive engines, much of the combustion-related research 

has been dedicated to combining the trends in increasing power and fuel economy 

with the minimisation of noxious emissions such as carbon monoxide, nitric oxides 

and particulates. Traditionally, automotive engines can be classified into gasoline 

engines and diesel engines (Heywood, 1988). In terms of mixture introduction and 

combustion, gasoline engines can be sub-divided into port-fuel-injected, PFI, 

homogeneous-charge-compression-ignition, Heel, and gasoline-direct-injection, 

GDI (Zhao et al., 1999). PFI and Heel engines use homogeneous mixtures, and 

therefore are not relevant to the present study. In GDI engines, fuel is introduced in 

two modes, namely early injection for homogeneous charge operation at full loads 

and late injection for stratified charge operation under part loads (Lee et al., 2002). 

Stratified charge is a possible technique for increasing engine efficiency because a 

relatively rich mixture is required for ignition close to spark gap but a lean mixture 

is required elsewhere for increased thermal efficiency (Zhao et al., 1999). However, 

a stratified charge may result in a heterogeneous mixture of droplets and vapour due 

to the limited time available between the required late fuel injection and ignition 

(Zhao et al., 1999). As a result, there is a possibility of fine fuel droplets in the 

reaction zone. Therefore, understanding the effect of fuel droplets on flame 

propagation has become essential. 

In aero-engines, the combustion process involves the burning of a fuel spray in 

air. Different from automotive engines, the combustion occurs in a continuous mode 

rather than intermittent and the typical operating droplet sizes ranges to a few 

hundred microns (Lefebvre, 1989). A crucial criterion of an aero-engine is its 

ignition performance (Mokhtar, 2001) at a wide range of operating conditions that 

range from normal start to altitude relight at which the pressure and temperature are 

very low. In the event of flame extinction at altitudes above which the low pressure 

and temperature prevents successful ignition, it would be necessary to reduce 

altitude before re-igniting combustion (Liou et al., 1994; Lefebvre, 1989). Several 

investigations have focused in this area to understand the behavior of the ignition 

(Tian-Yu et al., 1981; Mokhtar, 2001). Mokhtar (2001) suggested that the use of 

laser ignition could be a potential solution to this problem. However, it would 

probably take another decade before an appropriate lightweight laser system is 

applicable for application in aircraft. Nevertheless, the relighting issue in aero­

engines is a complex process and is still not fully understood. 
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The combustion processes mentioned above are carefully controlled and 

efficient, and effective combustion is a requirement. Conversely, an accidental 

ignition of any flammable fuel vapour or vapour-droplet mixture, perhaps after an 

accidental spillage, may have serious consequences in terms of damage to plant and 

injury or death. The aim of research in this area is to understand the combustion 

process in order to assess more accurately risk and potential consequences as well as 

to provide recommendations that minimise such dangers. The potential explosion 

hazard created from flammable gases has been much discussed (Rasbash, 1979; 

Shebeko et al., 1995) but the hazards generated from releases of two-phase liquid 

vapour mixtures often have been underestimated (Bowen and Cameron, 1999). Yet, 

there is evidence, theoretical (Polymeropoulos, 1984; Greenberg et al., 1999) and 

experimental (Hayashi and Kumagai, 1975; Myers and Lefebvre, 1986; Nomura et 

al., 2000), to suggest that aerosol explosions may, under certain circumstances, burn 

faster than those of homogeneous mixtures. Clearly, this can result in disastrous 

consequences in the hazards context. Several incidents of explosions which were 

believed to be of two-phase air-fuel mixtures (HSE, 1975; 2008) draw the need for 

understanding the contributing mechanism and also for explosion mitigation. 

2.3 Premixed combustion and burning rate 

A necessary precursor to the understanding of droplet combustion is to 

understand the combustion of premixed gaseous mixtures. Several workers, Ballal 

and Lefebvre (1981), Polymeropoulos (1984) and Lawes et al. (2006), used the 

theoretical description of premixed flames to estimate and calculate the burning 

rates in two-phase combustion. Hayashi and Kumagai (1975) suggested that the 

investigation of premixed flames at similar conditions to those for droplet 

combustion is essential to understand the effect of droplets on flame propagation in 

two-phase environments. The following sections present a brief review of the 

burning rate of homogeneous gaseous mixtures, under laminar and turbulent 

conditions. 

2.3.1 Laminar flames 

Premixed laminar burning rates have been derived from spherical expanding 

flames technique with central ignition (Lewis and Von Elbe, 1987; Bradley et al., 
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1998). This technique is well established for premixed flames and has also been 

used previously for aerosol flame studies (Atzler, 1999; Marquez, 2003; Sulaiman, 

2007). The velocity of the spherical flame front, also known as the stretched flame 

speed, Sn, is calculated from the measured flame front radius, r, of spherical flames 

by 

S = dr 
n dt 

(2.1) 

Shown in Fig. 2.1 is a typical variation of flame speed with radius of stoichiometric 

iso-octane-air mixture at initial conditions of 358 K and 100 kPa 

(Bradley et al., 1998). As described by Ali (1995), after spark ignition, the flame 

speed is high due to the high temperature and active radicals provided by the spark 

energy. At approximately 5 mm radius, the flame speed attains a minimum value as 

the effect of the spark decay and before normal flame chemistry develops. After this 

point, spark plasma dynamics and flame stretch are operative in a regime of spark 

assisted flame propagation and this is followed by self-sustaining flame propagation. 

Flame speed is not a fundamental property of a combustible mixture. It is the sum of 

the stretched laminar burning velocity, Un, and the gas expansion velocity, ug, 

adjacent to the flame front: 

(2.2) 

From mass conservation, the relationship between Sn and Un is expressed by 

(2.3) 

where Ph and Pu are the burned and unburned gas densities, calculated using the 

Gaseq equilibrium program (Morley, 2001). S is a generalised function that accounts 

for the effects of flame thickness on the mean density of the burned gases (Bradley 

et al., 1996), and this is given by 

S =1+1.{; (;;rJ-O.l{; (;J']' (2.4) 

where ~ is the laminar flame thickness based on a hydrodynamic length and r is 

flame front radius. 
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The laminar flame thickness can be described by a distance between 

completely unburned gas (at the unburned gas temperature) and completely burned 

gas (at the burned gas temperature). However, it is difficult to quantify this distance 

because the change from unburned gas to burned gas occurs gradually. As a result, 

there are various definitions of flame thickness in the literature (Haq, 1998; 

Gillespie et at., 2000) to estimate this distance such as based on a mass diffusion 

length, liD = Dij/UI (where Dij is the binary mass diffusion coefficient and u/ is the 

unstretched laminar burning velocity), a thennal diffusion length, liT = DT/ul 

(where Dr is the thennal diffusivity of the mixture) and a hydrodynamic length, 

liT = V/UI (where v is the kinematic viscosity of the mixture). In the present work, 

flame thickness is defined based on a hydrodynamic length. 

Derivation of Eq. (2.4) was produced by Bradley et at. (1996) from a 

modeled methane-air mixture at 100 kPa and 300 K for a wide range of equivalence 

ratios. Although, they did not calculate a value for iso-octane air mixtures, used in 

the present work, but they suggested that it is unlikely to be significantly different to 

that of methane-air mixtures. Values of unstretched laminar burning velocity, u/, are 

based on the linear extrapolation of Sn to the zero stretch (illustrated in Fig. 2.2), and 

hence are not sensitive to the value of S. However, Bradley et af. (1998) suggested 

that the calculation of Markstein number (described in later paragraph) might be 

affected by small errors in using Eq. (2.4). With such potential of errors and the 

application mainly for gaseous premixed flames, the present work did not use Eq. 

(2.4) for aerosol flames. 

For a non-planar flame, the rate at which unburned gas is entrained into the 

flame front is not the same as the rate of fonnation of the burned products due to 

finite flame thickness. Bradley et af. (1996) presented two definitions of laminar 

burning velocity. The first is based on the entrainment of the unburned gas into the 

flame front, expressed by 

(2.5) 

where me is the rate of mass entrainment of the unburned gas into the flame front 

and A is the flame area defined at the cold flame front. The second definition is 

based on the rate of production of reacted gas and is given by 
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(2.6) 

where mr is the rate of formation of the burned product. At small flame radii, the 

effect of ~ is important. However, it is less so at larger flame radii. As the flame 

radius tends to infinity, both Un and Unr tend towards U/. Bradley et al., (1996) show 

that Un and Unr are related by 

(2.7) 

In a realistic situation, flame is SUbjected to aerodynamic influences such as 

flow non-uniformity, curvature and non-stationary. The flame in this case is known 

as a stretched flame. A simple explanation to understand a stretched flame is by 

considering a planar flame situated in a divergent stagnation flow as shown in Fig. 

2.3. Assuming a potential flow moves through the streamtube and because the flow 

is divergent, the resultant of the flow is stretching out the flame. This effect is 

clearly due to pure stretch as represented by the divergence of the flow when it 

traverses the reaction region. For a stationary flame, Wu and Law (1984) show that 

there are three factors that result a stretched flame, which due to pure stretch, 

preferential diffusion and non-uniformity flow field. However, since diffusion effect 

is parallel to the normal of flame surface, the importance of preferential diffusion is 

significant in the dynamics of stretched flames. Explanation on the influence of 

preferential diffusion on the response of stretched flame is given in Section 2.3.2. A 

general definition of stretch acting on the flame, a, is defined as the time derivative 

of the area, A, of an infinitesimal element divided by the area (Law, 1988) 

IdA 
a=--

A dt 
(2.8) 

In a case of spherical flame, the surface area is 4n? Hence Eq. (2.8) becomes 

(2.9) 

The change in flame speed due to the stretch rate is given by 

(2.10) 
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where Lb is the Markstein length which represents the sensitivity of flame speed to 

the stretch rate and Ss is the unstretched flame speed. This is a linear equation in 

which the gradient is defined by Lb, and Ss is obtained when a = 0, as shown in 

Fig. 2.2. A positive value of Lb indicates a stable flame with little tendency towards 

instabilities. Conversely, a negative value of Lb indicates greater propensity towards 

unstable flame propagation (Bradley et al., 1998). As the flame stretch tends 

towards zero value, the use of Eq. (2.3) is applicable to calculate the unstretched 

laminar burning velocity from Ss by 

U -S Ph 
,- s- (2.11) 

Pu 

In a spherically expanding flame within the pre-pressure period, there are 

two mechanisms that contribute to stretch. Firstly from curvature, given by 

a = 25!. c 
(2.12) 

r 

and secondly, from flow field aerodynamic strain, expressed by 

(2.13) 

The total stretch is given by the sum of these two mechanisms 

(2.14) 

Combined with the two definitions of stretched burning velocity, Un and Unr' Bradley 

et al. (1996) presented the variation in the stretched burning velocity with these two 

components of flame stretch. For Un, 

(2.15) 

where Ls is the Markstein length associated with aerodynamic strain and Le is the 

Markstein length associated with curvature. Grott and De Goey (1992) show that 

these values are different because they depend strongly on the stage of flame 

propagation and on the isotherm on which the Markstein length is defined. 

For Unr' 

(2.16) 
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where Lcr is the Markstein length associated with curvature and Lsr is the Markstein 

lengths associated with strain. Normalisation of these Markstein lengths by the 

flame thickness, t5[, yields dimensionless Markstein numbers Mas, Mac, Masr and 

Macr. In a spherical flame, Bradley et al. (1996) showed that ug is usually much 

larger than Un, hence the flame stretch due to flow strain, as is typically 4 to 5 times 

higher than that due to curvature, lXc. For this reason, Bradley et al. (1996) 

emphasised that Masr (strain rate Markstein number) is the most relevant for many 

aspects of combustion. 

2.3.2 Instabilities in laminar flames 

The phenomenon of flame front instability plays an important role in the 

investigation of premixed laminar flames and their burning rates. A smooth flame 

front subjected to non-planar disturbances experiences wrinkles and cells uniformly 

over the flame surface. Such typical structure of cellular spherical flame is shown in 

Fig. 2.4 together with comparison to that of smooth flame. This cellularity results in 

an increase in the flame surface area followed by a relative increase in laminar flame 

speed (Bradley et ai., 1998). Similar to experimental work (Groff, 1982; Kwon et 

ai., 1992; Gu et ai., 2000), theoretical studies of flame instability have reported the 

development of instability in the form of wrinkles and cells as precursors to a 

cellular structure of the flame front (Sivashinsky, 1977; Bradley and Harper, 1994; 

Ashurst, 1997). In the present study, cellular flames were observed under many 

conditions (see Chapter 5). Therefore, the mechanism of instabilities is likely to be 

important in aerosol flames. Hence, they are reviewed here. 

Law (1988) described that there are two fundamental modes that contribute 

to the flame instabilities, namely hydrodynamic instability and thermal diffusive 

effects. Hydrodynamic instability is caused by the density jump across the flame. In 

this mode, as shown in Fig. 2.5, the flame is assumed to propagate with the laminar 

burning velocity, Un. As the reactants move towards the convex flame front they 

diverge and as a result the reactants flow slows down because of widening of the 

streamtube. However, since the burning velocity remains unchanged, a dynamic 

imbalance then results which leads to a further protrusion of this flame segment. 

Following a similar approach, for the concave segment, it will further recede into the 

burned gas region. Clearly, this flow variation deforms the flame surface and as a 

consequence, the overall flame speed is increased. This type of instability, also 
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known as a Darrieus-Landau instability, results from the interaction of the flame 

with the hydrodynamic disturbances. 

The instability induced due to the hydrodynamic disturbances can be 

balanced or strengthened by a thermal diffusive mechanism. The thermal diffusive 

mechanism for such cellularity is shown in Fig. 2.6. With a wavelike flame 

(stretched flame) as shown in Fig. 2.6, there is a diverging conductive thermal flux 

away from the flame surface into the unburned gas ahead of it and a converging 

diffusive mass flux of the deficient reactant into the flame surface at the crest of the 

wave. At the trough of the wave, the opposite situation arises where conductive 

thermal flux is converging while diffusive mass flux is diverging. In this context, the 

relationship between conductive thermal flux and diffusive mass flux in terms of 

magnitudes plays a main role in characterising the flame as either stable or unstable, 

depending on which one dominates. This diffusion coefficient, which known as the 

Lewis number, Le, is defined by 

a 
Le=­

D 
(2.17) 

where a is the thermal diffusivity of the mixture and D is the mass diffusivity of the 

deficient reactant. If the diffusion coefficient in the Lewis number expression is less 

than unity (dominated by thermal), there is a resulting increase in enthalpy by the 

flame and the local burning velocity increases at the crest. The converse situation 

occurs at the trough where there is a loss of enthalpy and the local burning velocity 

decreases. The crest then propagates faster than the trough and the amplitude of the 

wavy flame increases. Hence, the flame becomes more unstable. However, if Le is 

greater than unity (dominated by mass), similar effects result in local burning 

velocity, but to decrease at the crest and to increase at the trough. Consequently, this 

effect tends to flatten the wavy flame and stabilise the flame. This demonstrates that 

flame propagation can be influenced by stretch through preferential diffusion which 

tends to increase or decrease the flame temperature and burning rate depending on 

the effective Lewis number. 

Initially, all spherically propagating laminar flames are stable because of 

high stretch rate at small flame radii. This can be described by understanding the 

effect of stretch due to flame motion on spherical flame propagation (Law, 2006). 

Consider an expanding spherical flame, as shown in Fig. 2.7a, with flame radius, rj 

larger than the flame thickness. After an interval 01, as shown in Fig. 2.7b, the flame 
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radius grows by an amount of Orj which is smaller than rj, rr and rM. Here rr and rM 

represent the radii of thermal and limiting reactant layers. As the flame expands, the 

volume of thermal energy increases as well as that of reactant concentration. The 

increase in thermal energy in flame structure represents an increased extent of heat 

transfer away from the reaction zone, while an increase in reactant concentration 

represents an increased amount of reactant supply to the reaction zone. Since the 

effect of flame thickness is significant for the small flame radii (Bradley et al., 

1996), this results in the ratio of rz/rM becoming larger, which means more heat 

release than the amount of reactant supply. This can be further interpreted by the 

Lewis number, Le, expressed in Eq. (2.17), which implies that for this condition Le 

is larger than unity and the flame tends to be more stable. 

As the flame expands, the flame radius increases and the flame stretch rate 

decreases. Subsequently, a critical radius is reached at which the rate of stretch no 

longer provides sufficient stabilising effects and cellularity develops. This early 

cellularity appears in the form of cracks which further propagate across the flame 

surface. At this stage, the critical radius, rcr, defines a critical Peelet number, Pecr, 

given by Harper (1989) as 

(2.18) 

After the onset of cellularity, at Peer. there is no significant change in burning rate 

since it takes time for its effect to manifest itself. Cross-cracking develops until 

eventually the flame surface becomes completely cellular. At this stage, the cellular 

flame gives rise to an increase in flame speed at a higher critical radius, rc/, which 

defines another critical Peclet number, Peel (Bradley et al., 1998; Gu et al., 2000): 

(2.19) 

This point is also shown in Fig. 2.2 and indicates the point at which the flame speed 

rapidly accelerates as stretch is reduced during flame growth. 

The Peelet number in Eqs. (2.18) and (2.19) is traditionally a ratio of 

convective to diffusive transport and this is expressed by 

LV 
Pe=­

a 
(2.20) 
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where L is the characteristic length scale, V is the velocity scale, and a is thermal 

diffusivity. Thermal diffusivity can be calculated by 

k 
a=--

pCp 
(2.21) 

where k is the thermal conductivity, P is the density and cp is the heat capacity. By 

combining the thermal diffusivity expression in the Peelet number expression in Eq. 

(2.20), this becomes 

LVpcp 
Pe=--~ 

k 
(2.22) 

Bechtold and Matalon (1987) showed that the expression of _k_ characterises the 
vpcp 

thickness of the flame, ~ where p is density of unburned gas and V is the adiabatic 

flame speed. In the case of spherical flame, the characteristic length scale, L can be 

represented by radius of the flame, r. 

In the analysis of Bechtold and Matalon (1987) the perturbation of a 

spherical flame was investigated using linear stability analysis. They showed that, 

based on the Markstein number, there can exist a range of perturbing wavelengths 

with upper and lower limits inside which the flame is unstable. These limits are 

defined by the wave number, n, 

21!Pe 
n=--

A 
(2.23) 

where Pe is the Peelet number and A is the wavelength associated with n, 

nonnalised by the flame thickness (Bradley, 1999). Figure 2.8 shows the results of 

the analysis by Bechtold and Matalon (1987) in terms of theoretical values of n and 

Pe for different Markstein Number, Masr with a density ratio, (j = p,/ Ph, of 6. The 

lowest value of Pe for instability at the tip of the peninsular is Peer. The lower limit 

wave number, n/, is associated with the longest unstable wavelength. The upper limit 

wave number, ns, is associated with the shortest unstable wavelength. Within the 

peninsula, the amplitude of the flame disturbance is amplified. At the boundary 

wave numbers, there is no amplification or attenuation of the disturbance. Outside 

the peninsula, the flame is stable. It can be seen that the range of unstable wave 

numbers increases with an increase in Pe and a decrease in Masr• However, full 

cellularity and an associated increase in flame speed only occur at Pecl. Thus, 
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Bradley (1999) modified the analysis of Bechtold and Matalon (1987) to allow for a 

lag in the full development of the instability by introducing f(n/nJ, where f is a 

numerical constant less than unity. An idealised and simplified of instability 

peninsula for particular values of Masr and Pu/Pb is shown in Fig. 2.9. The value of 

Pecl is obtained experimentally by observing when full cellularity has developed and 

the flame speed begins to accelerate. 

Experimental values of Peci have been correlated in terms of Markstein 

Number, MaST (defined in Section 2.3.1) by Bradley et al. (1998) and Gu et al. 

(2000). The latter showed that Pecl can be correlated linearly with Mas, by 

Pecl = 177Mas, + 2177 (2.24) 

This correlation was derived from various experimental results of gaseous mixtures 

of methane-air, iso-octane-air and 90% iso-octane / 10% n-heptane-air at a wide 

range of equivalence ratios, pressures and temperatures. This correlation 

demonstrates some generality in the onset of cellular instabilities in gaseous flames 

as a function of MaST. However, Eq. (2.24) is only an approximate guide to the 

previous experimental results although this relationship is less reliable for negative 

values of Masr (Bradley et al., 2007). In a recent work, Bradley et al. (2009) 

modified this correlation to have a better relation through the latest and previous 

experimental results, expressed by 

Peel = 1808 .6 exp O.f03Muu (2.25) 

Since a spherical flame is initially stabilised by the high stretch rate, Bradley 

et al. (2007) proposed a critical Karlovitz stretch factor for replacing the 

experimental and theoretical values of Pecl, given by 

(2.26) 

where acl is critical total stretch rate at which the flame speed starts to accelerate. 

Bradley et al. (2009) suggested that KcI seems to be a more reasonable parameter for 

quantifying flame instability than Pecl, since KcI was expressed in terms of the 

critical stretch rate at the onset of flame instability. Using available experimental 

and theoretical data, Bradley et al. (2009) also correlated KcI with Masr and this is 

given by 
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K cl = 0.075 exp -O.123Ma" (2.27) 

2.3.3 Turbulent flames 

Measurements of turbulent burning velocity is complicated and still remains 

challenging due to the influence of turbulence parameters such as the root mean 

square turbulence velocity, u~ and the resulting flame brush (Gillespie et al., 2000). 

At Leeds, the mean schlieren flame front radius, rsch, has been used historically in 

measurements of turbulent flame propagation (Abdel Gayed et al., 1986). Yet this 

neither represents the leading edge at which reactants enter the flame nor the mean 

flame front more readily obtained from laser sheet images. Haq (1998) introduced a 

flame radius, rv, at which the volume of unburned mixture inside a sphere of this 

radius is equal to the volume of burned mixture outside it. Bradley et al. (2003) 

showed that at the spherical surface defined by r v, the rate of disappearance of cold 

unburned mixture is equal to the rate of appearance of burned mixture, and showed 

that r v can be estimated by planar sheet imaging. 

Using experimental findings, Bradley et al. (2003) demonstrated that the 

relationship between rv and the schlieren radius, rsch, is given by 

rv = (_l_)r,ch - 2.1 
1.11 

(2.28) 

for rv between 2 and 40 mm. The calculation of flame speeds and burning velocities 

of turbulent flames is very similar to that described in Section 2.3.1 for laminar 

flames. Schlieren flame radius, rsch, is defined based on the projected flame area 

using schlieren technique, and the turbulent flame speed, S" is expressed by 

S = drsch 

t dt 
(2.29) 

Then, the turbulent burning velocity can be calculated by 

(2.30) 

where the constant value of 0.9 is obtained from Eq. (2.28) which relates the 'sch to 
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In order to generalise the measurement of turbulent flames, Bradley et ai. 

(1992) presented a correlation of turbulent burning velocity from about 1650 

experimental values, obtained in both combustion bombs and burners. The 

correlation suggests that 

u 1u
' J 2. = 2.,K,Le(or Ma) 

u, u, 
(2.31 ) 

Here Uk is the effective r.m.s. turbulent velocity influencing the flame (Bradley et 

ai., 1992). The ratio of u/u/ indicates the effect of the increase in burning velocity 

due to turbulence, and U lIul is an indication of flame wrinkling. The Karlovitz 

stretch factor, Kin Eq. (2.31) represents turbulent flame stretch and is given by 

K=(~)/(~J (2.32) 

where the numerator is the turbulent strain rate (Abdel-Gayed et ai., 1984), in which 

A is the Taylor micro scale of turbulence, and the denominator represents a chemical 

strain rate. Alternatively, Eq. (2.32) can be considered to be a ratio of chemical to 

eddy lifetimes: (oluz) / ()./u '). For isotropic turbulence, with A related to the integral 

length-scale, L by Abdel Gayed et ai. (1984) 

.1.
2 v 

-=40.4-
L u' 

(2.33) 

With Eqs. (2.32) and (2.33), it can be shown that 

(2.34) 

where RL is the turbulent Reynolds number based on the integral scale of turbulence: 

(RL= u Vv). In a more recent work, Bradley et ai. (2005) used a different constant in 

Eq. (2.33) and this changed Eq. (2.34) and becomes 

K = O.2{ ::J' R:' (2.35) 

Bradley et ai. (1992) suggested that for laminar flame let modelling of 

turbulent combustion, the group (KMa) expresses the reduction in burning velocity 

due to stretch. However, at that time, there was insufficient data on Ma value to 
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generate a correlation. Therefore, pending the availability of more data on Ma, 

Bradley et al. (1992) decided to correlate experimental values of u/u/ in terms of the 

wrinkling factor, Uk 'lUI, with the flame stretch factor KLe, as shown in Fig. 2.1 O. The 

correlation in Eq. (2.31) and in Fig. 2.10 is described approximately by 

I 

!!1- = 0.88~(KLe to.3 

u/ u/ 
(2.36) 

The negative exponential suggests that increasing the turbulent stretch rate decreases 

the turbulent burning velocity. Bradley et al. (1992) also emphasised that the 

experimental points, which are not shown in Fig. 2.10, correlate better with KLe 

than solely with K. This correlation has been widely used in the validation of 

mathematical models of turbulent combustion in general, and in determining 

combustion rates in engine cycle and explosion models (Bradley et al., 1992). 

2.4 Droplet generation 

In spray combustion, it is necessary to atomise and distribute the liquid fuel in 

a controlled manner within the combustion chamber. The performance of the spray 

combustion process is, in general, dependent upon the size of the droplets produced 

and the homogeneity of the droplet distribution. Gokalp et al. (1999) identified 

several different techniques of droplet generation and summarised some criteria used 

for their selection. A brief description of the principle behind each technique, along 

with its major advantages and disadvantages, is discussed below. These descriptions 

are based mainly on the review of Gokalp et al. (1999) and the schematic of each 

system is given in Fig. 2.11. 

i) Liquid jet atomiser and air assisted atomiser. A large velocity difference 

between liquid jet and the co-flowing gas stimulates surface instabilities on 

the jet surfaces, thus shearing off droplets from the jet surface. The 

advantage is that this type of system is capable of handling large fuel flow 

rates but the disadvantages are that the size distribution of the droplets is 

highly dispersed and produces droplets with high velocity. 

ii) Jet instabilities. Droplets are formed by breaking up of jet due to surface 

dynamic instabilities induced by external excitation, commonly created by 

superimposed oscillations at ultrasonic frequencies, or by some other means. 
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The advantage is that a monodispersed spray is produced in this case but the 

liquid flow rate is extremely low. 

iii) Surface instabilities. Droplets are formed by instabilities created on the 

surface of a planar liquid surface by ultrasonic actuators based on 

piezoelectric or magnetostrictive systems. These create low-dispersed sprays 

for reasonable flow rates. However, there are limitations to the sizes of 

droplet that can be studied and technical realisation in handling a large bulk 

of fluid can be a problem. 

iv) Electrostatic spray. The spray is obtained by feeding a liquid which is 

sufficiently conductive through a capillary metallic tube maintained at a 

potential of a few kilovolts with respect to an electrode located a few 

centimetres away. Under the action of this electric field, spray is formed 

from the thin jet originating from the capillary. The electrostatically 

generated droplets are advantageous in that size of the droplets can be 

controlled and with low dispersion. However, for studying combustion, this 

poses a huge disadvantage, as the electrostatically charged droplets may 

result in micro-explosions, leading to ambiguity in overall results. 

v) Condensation spray. Droplets are generated by condensation process during 

the rapid gas expansion. The main advantage of this type is the narrow 

droplet dispersion and near zero initial droplet velocity field. But the main 

disadvantages are that this method is not suitable for high initial pressure and 

that fabrication is difficult. 

Table 2.1 summarises the above description and clearly shows that there is no ideal 

solution of droplet generation that can perfectly meet all the criteria required. In 

many circumstances, it is essential to consider the quality of the spray in terms of 

physical parameters such as the droplet size distribution or the mean velocity field. 

For an application intended to study flame propagation in a droplet spray, these two 

criteria seem to be the most relevant (G6kalp et al., 1999). 

2.5 Droplet characterisation 

Depending on the nature of formation, described in Section 2.4, droplets may 

exist in the form of sprays in engines, or droplets-vapour-air mixtures as in an 
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aerosol generated by expansion of gaseous fuel. In order to study the combustion of 

these mixtures, the parameters involved in characterising them must be clarified. 

The simplest and perhaps the most practical parameter, used by most 

researchers (e.g. Burgoyne and Cohen, 1954; Hayashi and Kumagai, 1975; Nomura 

et at., 2000) to define a mixture that contains fuel droplets, is the overall equivalence 

ratio, ¢ov. This includes all fuel present, irrespective of phase. Since, as suggested by 

Myers and Lefebvre (1986), the propagation of an aerosol flame might be primarily 

dependent on the gaseous equivalence ratio, ¢g, this also is a key parameter. The two 

different equivalence ratios are therefore defined to accommodate the fraction of 

gaseous and liquid phases. These are described in detail in Section 4.2. 

Atzler (1999) suggested that the evaporation of droplets ahead of the flame 

front may change both the gaseous and liquid equivalence ratios. Therefore, the 

actual amount of gaseous fuel that exists in the reaction zone is difficult to determine 

experimentally and no measurements were attempted in the works included in the 

present review. However, in a theoretical study, this parameter was used by 

Polymeropoulos (1984) in the prediction ofbuming rates in an aerosol flame. Other 

researchers, for example Burgoyne and Cohen (1954), calculated the change in drop 

size and the subsequent change in ¢g, in the preheat zone of the flame from the 

scaled temperature profile of a homogeneous flame. However, this is not without 

problems since aerosol flames can be much thicker than gaseous ones. Therefore, 

experimental results have usually been correlated in terms of cold gas parameters. 

The droplet size is the most frequent parameter used for the correlation of 

flame propagation of an aerosol flame. If all droplets in an aerosol mixture are of the 

same size, then the obvious statement is that of droplet diameter. Such an aerosol is 

tenned monosized or monodispersed. However, sprays produced by injectors are 

rarely monosized. Thus, a form of averaging to determine a suitable mean size that 

correctly represents the physical properties of droplets is necessary (Lefebvre, 

1989). A brief description of several mean droplet size terminologies has been given 

in, for example, Schick (1997). One of the commonly used mean droplet sizes in 

spray is the Sauter Mean Diameter (SMD), or D32. expressed by 

k 

In;D/ 
D32 = ...;,;;,.:..1 __ 

In;D;2 
;=1 

(2.37) 
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where n; is the number of droplets within a range centred on diameter D;, and k is the 

number of ranges. The SMD is an average diameter with a volume to surface area 

ratio equal to that of the droplets. It is also used as an indicator of the degree of 

atomisation produced by an injector. Another representative of droplet diameters is 

the surface mean diameter, D20. It represents an average diameter with a surface area 

equal to the mean surface area of all the droplets. It is expressed by 

(2.38) 

D20 is used for surface controlled applications such as absorption. Another term that 

also can be used for representing droplet diameters is the mean arithmetic diameter, 

D /0. This is expressed by 

(2.39) 

In the case of monodispersed or near monodispersed aerosols, the use of DJO is 

suitable since all mean droplet diameters (Eqs. 2.37 to 2.39) tend towards the same 

value. It is worth noting that, in the context of spray flame instability, the use of 

mean diameters such as SMD to characterise flame cellularity may lead to 

inaccurate conclusions since it is important to differentiate the homogeneity of the 

droplet spatial distribution (Greenberg, 2002). 

Conditions in the mixture containing fuel droplets can also be expressed in 

terms of the liquid volume of fuel present per unit volume of mixture. This is a 

function of the average size of the droplets and the average inter-drop distance. This 

is illustrated in a study by Cekalin (1962) who showed that the sensitivity of burning 

velocity to the inter-drop distance was a function of the vapour fraction. Burgoyne 

and Cohen (1954) combined the droplet size and the inter-drop distance to the non­

dimensional droplet spacing to express the limiting conditions for flame 

propagation, in terms of flammability of the aerosol. This parameter was developed 

further to accommodate more complex process such as combustion in droplet clouds 

(Chiu and Liu, 1977; Correa and Sichel, 1982). 
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2.6 Studies of droplet combustion 

2.6.1 Group combustion modes 

Studies of droplet combustion in practical systems are too complex because 

of the complex interaction between important parameters such as evaporation rate, 

burning rate and turbulence, which are closely coupled (Faeth, 1977). To 

accommodate these complex interactions, Chiu and Liu (1977) introduced the group 

combustion number, G, which characterises different combustion modes. It 

corresponds to the ratio of the gross droplet evaporation rate to the inward oxygen 

diffusion rate and is given by 

(2.40) 

where Le is the Lewis number, Re is the droplet Reynolds number, Sc is the Schmidt 

number, NT is the total number of droplets in a cluster, D is the mean droplet 

diameter and ID is the inter-drop distance. Using this parameter, four modes of 

droplet combustion have been identified: single droplet combustion, internal group 

combustion, external group combustion and external sheath combustion. These 

modes are suggested to progress from single droplet combustion to external sheath 

combustion as the group combustion number increases. The characteristics of each 

mode are presented in Table 2.2. These four different combustion regimes were re­

defined into more detailed subsections by Annamalai and Ryan (1992). The 

applicability of G was verified qualitatively in experiments by Akamatsu et al. 

(1996) by applying advanced laser-based diagnostics with high temporal and spatial 

resolutions to the spray flames in a turbulent jet. Nevertheless, this group 

combustion number only investigates the interaction between droplets in terms of 

evaporation, and the location of the reaction zone is predicted to be a function only 

of the local mixture composition. Furthermore, this group combustion number does 

not account for hydrodynamic interaction between the flame and the droplet clouds. 

Therefore, the group combustion number is likely valid for application in a burner 

and gas turbine engines, in which fuel is sprayed directly into the flame. In a case 

where there is homogeneous distribution of fuel droplets in a combustible mixture, 

such as in the present work, the use of group combustion number might be not 

relevant. 
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In order to provide fundamental understanding of phenomena in practical 

droplet combustion, idealised and simplified systems such as the single droplet 

theory may provide further understanding on important parameters such as 

evaporation, mixing and burning in a well-defined environment. Godsave (I953) 

showed that the time required for a single droplet suspended in stagnant air to burn 

out is a square function of its diameter. He established the so-called d -law for the 

condition in which the difference in temperature between the droplet and the 

surrounding atmosphere is significant: 

(2.41) 

Here, Do and Dt are the droplet sizes initially and at time, t, respectively, and Ko is 

the fuel evaporation constant, determined directly from the gradient of plots of D2 

against t. From Eq. (2.41), the value of droplet lifetime, rD, can be estimated by 

equating Dt to zero value, 

D2 
T =_0 

D K 
o 

(2.42) 

In a case of a quiescent mixture, Ko can be estimated by 

(2.43) 

where kg and cpg are the specific thermal conductivity and specific heat for the gas 

phase, respectively, and PI is the liquid phase density of the fuel (Turns, 2000). The 

constant B, which is referred as the mass transfer number or Spalding number 

(Spalding, 1953), given by 

(2.44) 

where Too is the far field temperature, hjg is the heat of vaporisation and Ts is the 

surface temperature of the fuel. Ts is approximated by the fuel boiling temperature 

since the situation of the fuel droplet is exposed to the intense heating during steady 

state combustion. This allows a further assumption that the surface temperature is 

constant and uniform. As described by Law (1982), the above assumption implies 

that the droplet transient heating effect is neglected. This is consistent since the 
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droplet transient heating proceeds fairly rapidly during the droplet lifetime 

estimation. 

In practice, droplets are not usually stationary, as was assumed by Godsave 

(1953). However, it has been experimentally confirmed by Gokalp et al. (1992) that 

the d-Iaw given in Eq. (2.41) is still applicable. Using an empirically derived 

relation, they showed that the fuel evaporation constant under turbulence 

environment, K" can be estimated by 

(2.45) 

where Sc is the Schmidt number, Re is the droplet Reynolds number and Ko is the 

fuel evaporation constant under quiescent condition. In many situations involving 

droplet combustion, mixing and burning, to a first approximation, can be assumed to 

be very fast (Spalding, 1953). Thus, evaporation rate is the important parameter 

which may control the burning rate of droplet combustion. This is particularly so for 

large droplets, where reduction in droplet burning rate was reported to occur when 

the droplet size is bigger than 40 ~m (Ballal and Lefebvre, 1981). This is discussed 

in the following section. 

2.6.2 Laminar combustion 

Flame propagation in an initially quiescent mixture of uniformly-dispersed 

spray has been widely studied (Burgoyne and Cohen, 1954; Hayashi and Kumagai, 

1975; 1976; Nomura et al., 2000; 2007; Lawes et al., 2006). Burgoyne and Cohen 

(1954) reported that, within a range of droplet diameters between 10 and 40 ~m, the 

flames resembled a brush-like spray of discrete burning drops. For a droplet size of 

17 j.l.m and tPov=0.70, the burning velocity was nearly 60% higher than that of a 

stoichiometric mixture at 1 0 ~m. Similar enhancement in the burning velocity was 

evident in the results of Hayashi and Kumagai (1975, 1976) for n-octane and 

ethanol. They showed that the burning rate of aerosol flames was a function of 

droplet size and gas-vapour concentration. They suggested that the effect of flame 

wrinkling due to isolated droplet burning and the burning of the gaseous fuel around 

isolated droplets at the optimum fuel-to-air ratio were the probable mechanisms 

which increase the burning rate. Nomura et al. (2000, 2007) studied ethanol aerosol 

combustion under microgravity conditions. At a range of equiValence ratio, the 
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liquid fraction was maintained constant by varying the expansion rate. They showed 

that a flame speed enhancement was obtained with overall lean mixtures. However, 

in both studies, the flame size under consideration was relatively small at about 10 

mm in radius. They concluded that the flame speed in aerosol mixtures was 

influenced by the overall equivalence ratio, liquid equivalence ratio and droplet size. 

Lawes et al. (2006) attributed the higher burning rates in iso-octane aerosol 

mixtures, as compared to gaseous mixtures at the same rpov, to the development of 

flame front instabilities in the aerosol mixtures. They suggested that this was due to 

the wrinkling of the flame by the droplets which increased the flame surface area 

and enhanced flame propagation. A similar burning rate promotion was observed in 

other experimental works using an ultrasonic atomiser with a centrally ignited flame 

(Mizutani et al., 1973b), a condensation aerosol generator in a flame tube (Chan and 

Jou, 1988) and flame propagation in a cylindrical tube (Nunome et al., 2002). 

Although most of the previous works observed that the burning rate of 

aerosol mixtures generally increased with droplet size, the opposite effect was 

shown experimentally by Ballal and Lefebvre (1981). They studied aerosol mixtures 

of iso-octane, diesel oil and heavy fuel oil at drop sizes between 30 and 100 )..lm. 

They proposed that the reduction in the aerosol burning rate was related to the rate 

of droplet evaporation which is small when the droplet size is bigger than 40llm. 

From their results, they presented a model to predict burning rate in quiescent 

aerosol mixtures which is based on considerations of evaporation rates and chemical 

reaction rates. Later, Polymeropoulos (1984) extended the work of Ballal and 

Lefebvre (1981) and predicted a significant burning rate enhancement for 

monodispersed aerosol fuel-air mixtures in the so-called "transitional range" in 

which droplet diameters are between 5 and 20 )..lm. However, due to lack of 

experimental data within this transition range, his prediction could not be validated. 

Fig. 2.12 shows the effect of fuel droplets on the burning rate of stoichiometric 

medium diesel oil-air sprays predicted by the model (Polymeropoulos, 1984) and 

from the experiments (Ballal and Lefebvre, 1981). In similar work by Greenberg et 

at. (1998), the enhancement in burning rate was suggested to be due to instabilities 

induced by the use of a spray of fuel droplets. 
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2.6.3 Instabilities in aerosol flame 

The phenomenon of gaseous flame instability discussed in Section 2.3.2 has 

also been observed in aerosol flames. In aerosol combustion, the presence of liquid 

fuel droplets has been shown to influence instabilities by causing earlier onset of 

cellularity than for gases, which further leads to burning rate enhancement 

(Burgoyne and Cohen, 1954; Hayashi et ai., 1976; Atzler, 1999; Sulaiman; 2007). 

Early observation of such phenomena was recorded by Burgoyne and Cohen 

(1954) where flame propagation in tetralin droplets resembled a brush-like spray of 

discrete burning drops. This was followed by a significant promotion in the flame 

velocity propagation. Hayashi et ai. (1976) reported that there was a rough 

appearance of the flame for ethanol droplets as small as 7 J.LIll, growing with flame 

propagation. They observed, for a droplet size around 20 Ilm, the flame front was 

rugged, undulated and thickened. They suggested that this cellularity was due to the 

local variations in temperature and mixture strength and further increase in the 

burning rates. Similar observations were found in later works by Atzler (1999), 

Marquez (2003) and Sulaiman (2007). 

Several mechanisms responsible for these instabilities have been discussed 

by Atzler (1999) and Sulaiman (2007). These include self-tubularisation by droplets, 

flame distortion due to droplets passing through the reaction zone, heat loss from the 

flame and local expansion due to droplet evaporation. Atzler (1999) suggested that 

the possible mechanisms that play a main roles in aerosol flame instability were 

related to the heat loss from the reaction zone and local rapid expansion through 

droplet evaporation. 

2.6.4 Oscillating flames 

At some condition, the aerosol flames appeared to have periodic fluctuation 

of flame structure and speed during its development. This was tenned an oscillating 

flame and reported by several workers (Atzler, 1999; Marquez, 2003; Sulaiman, 

2007). This oscillation, also categorised as flame instability behaviour, was simply 

described by alternating fast and slow modes of flame propagation, as shown in 

Fig. 2.13 together with changes in a flame structure alternating between cellular and 

smooth, respectively. Atzler (1999) reported that this phenomenon was found only 

in aerosol flames of overall lean and stoichiometric mixtures, with droplet diameter 
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greater than 15 J.1m. Several factors have been discussed by Atzler (1999) to explain 

the mechanism responsible for oscillating behaviour in aerosol flames. These 

include the effect of acoustic wave oscillation, radiation from burning particles and 

the effect of droplet inertia. Atzler (1999) suggested that the possible mechanism for 

this oscillation was the effect of droplet inertia. 

Figure 2.14 shows a possible mechanism to explain the oscillating spherical 

flame for an aerosol mixture with ¢ov = 1.0 and 4 = 0.75 due to droplet inertia 

(Atzler et al., 2001). It shows the effect of a variation in droplet velocity, UD, on the 

local equivalence ratio, ¢, (thick line) at the reaction zone and resulting values of 

flame speed, Sn, gas velocity, Ug, and burning velocity, U/. Initially, following 

ignition, UD near the flame front is equal to zero. Therefore, the equivalence ratio in 

the reaction zone is ¢max. The flame causes the gas droplet velocity to begin to 

accelerate. Hence, fewer droplets are entrained by the flame and ¢ decrease, as in 

regime 1. As the stoichiometric equivalence ratio is approached, the droplets 

continue to accelerate towards that of Ug, while UI and ug reduce as their peak values 

are passed, as in regime 2. The point at which Sn and Ug reach their maximum values 

is defined as the critical equivalence ratio, ¢critical. The droplet and gas velocities 

become equal at ¢ov=1.0. After this, inertia results in Uo higher than ug as the latter 

continues to reduce. Hence, the equivalence ratio within the reaction zone tends 

towards ¢= ¢g (regime 3), and would attain this value when uo= Sn. Eventually, the 

droplets approach equilibrium with the surrounding gas and more droplets are 

entrained as ¢ begins to increase through ¢ov and ¢Critlcal (regime 4) as the droplets 

once again lag behind the gas velocity. The cycle is then repeated. Figure 2.14 

clearly shows that a variation in local ¢ will affect local Sm UI and Ug' This results in 

fluctuations in the burning rate in which the minimum burning rate is equivalent to 

that of a gaseous flame with ¢ = 4, while the maximum burning rate can correspond 

to that of a gaseous flame richer than ¢ov. Marquez (2003) and Sulaiman (2007) 

supported the view of Atzler et al. (2001) by verifying his oscillation model with 

experimental works which measured simultaneously droplet velocity, flame speed 

and gas velocity ahead of the flame front. 
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2.6.5 Turbulent combustion 

Under turbulent conditions, there are few experimental data of a fundamental 

nature that demonstrate the similarities and differences in burning rate between 

single and two-phase combustion, and such data are contradictory. Mizutani et al. 

(1972) investigated the effects of flow velocity and turbulence on combustion of a 

two-phase fuel-air mixture on a burner. They found that the flame speed increased in 

proportion to u' and in inverse proportion to the droplet diameter. A similar trend 

was observed in other experimental works using various fuels: kerosene (El­

Banhawy and Whitelaw, 1981; Myers and Lefebvre, 1986), decane and toluene 

(Richards and Lefebvre, 1989) and kerosene with propane drops (Nakabe et at, 

1988). It was suggested (EI-Banhawy and Whitelaw, 1981; Myers and Lefebvre, 

1986) that droplet evaporation rate was a controlling factor for turbulent flame speed 

when the level of turbulence is low, at u' < 2.0 mls. However, these works used 

large droplets of between 40 to 100 !lm, at which conditions there are no 

comparative laminar experiments to form a reference. For example, typical laminar 

aerosol studies have been undertaken with droplets between 10 to 40 J.Ul1 (Hayashi 

and Kumagai, 1975; Polymeropoulos, 1984). Marquez (2003) and Sulaiman (2007) 

suggested that the burning rate of turbulent iso-octane-air aerosol mixtures with 

droplets of about 4 to 15 !lm could be significantly lower than that of gaseous 

flames. They also performed laminar studies with similar sized droplets. However, 

these works were inconclusive because they were unable to maintain the same initial 

pressure and temperature for both the aerosol and gaseous mixtures as well as the 

limitation in the turbulence conditions. 

Contradictory evidence was provided by Mizutani and Nakajima (1973a) in 

which they observed that the addition of kerosene drops into a turbulent (u ' = 0.13 

mls) propane-air flame yielded a higher burning rate than for the propane-air flame 

without drops. However, they also observed that as turbulence increased, this 

combustion-promoting effect became less significant until, ultimately, burning 

approximated that of a gaseous flame and droplet size and number density were not 

significant variables. It was suggested (Mizutani and Nakajima, 1973a) that this was 

because of increased evaporation and mixing and demonstrates that increased 

turbulence may reduce or eliminate the burning rate enhancing effect of droplets in 

aerosol flames that have been reported for initially quiescent mixtures (Hayashi and 

Kumagai, 1975; Polymeropoulos, 1984). 
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Table 2.1: Main characteristics of different droplet generator types. Reproduced from Gokalp et al. (1999). 

~ 
Liquid jet Air assisted Jet Surface Electrostatic Condensation 
atomiser atomiser instabilities instabilities spray spray 

Criteria (Fig.2.11a) (Fig. 2.11 b) (Fig. 2.11 c) (Fig. 2.11 d) (Fig.2.l1e) (Fig. 2.1 If) 

Droplet size 
Broad Broad Very narrow Narrow Very narrow Narrow 

dispersion 

Possible liquid 
Small to large Small to large Very small Small Small Very small 

flow rate 

Initial droplet 
Very high High High Small Small Very small 

kinetic energy 

Design and 
Intennediate Easy Difficult Intennediate Intennediate Difficult 

fabrication 

Use at high 
Easy Intennediate Easy Easy Easy Difficult pressure 

-- - - -
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Table 2.2: Characteristics of group combustion regimes (Chiu & Liu, 1977). 
Reproduced from Nakamura et aZ. (2005). 

Combustion 
Mode 

Single 
droplet 

Internal 
group 

External 
group 

External 
sheath 

Group 
Number 

G < 0.01 

0.01 < G < 0.1 

0.1 < G < 100 

G> 100 

Characteristics 

All droplets in group 
burn with envelope 

flames, unaffected by 
other droplets 

Droplets inside group 
flame just evaporate and 
droplets outside group 

flame bum with 
envelope flames 

Group flame encloses 
whole droplet group 

Non-evaporating region 
found inside 

evaporating region in 
droplet group 

Group 
flame 

Evaporating 
droplets 

Group 
flame 

Group 
flame 

Flame 
envelope 
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Figure 2.1: Measured flame speeds of stoichiometric iso-octane-air with initial 
temperature of 358 K and pressure of 100 kPa at different flame radii. Reproduced 
from Bradley et al. (1998). 

Figure 2.2: Variation of flame speed with flame stretch for stoichiometric methane­
air at 500 kPa and 300 K. Reproduced from Gu et al. (2000). 
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Figure 2.3: Schematic of a planar flame situated in a divergent stagnation flow. 

Figure 2.4: Comparison of flame structure using schlieren images between a (a) 
smooth flame and (b) cellular flame. Reproduced from Mandilas (2008). 
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Figure 2.5: Schematic diagram of the hydrodynamic instability mechanism. 
Reproduced from Law (1988). 
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Figure 2.6: Schematic diagram of the thermo-diffusive instability mechanism. 
Reproduced from Law (2006). 
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Figure 2.7: Conceptual diagrams of the effects of stretch on the flame motion for an 
expanding spherical flame at (a) t = 0, (b) t = lit. Reproduced from Law (2006). 
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Figure 2.8: Theoretical wave numbers, n, at limits of flame stability for different 
Masr. as function of Peclet number. Shaded area is a peninsular of instability for 
Masr = 8. Reproduced from Bradley et al. (2000) . 
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Figure 2.9: Instability peninsula, with limiting wave numbers Ins and n/. Critical 
Peclet number, Peel at tip of peninsula. Reproduced from Al-Shahrany et al. (2005). 

20 

o 

18 

10 

uVu, 

Figure 2.10: Correlation of turbulent burning velocities. Broken curves show 
RJ(Le)2, with RL evaluated for fully developed r.m.s. turbulent burning velocity, u ', 
equal to U 'k. Reproduced from Bradley et al. (1992) . 
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Figure 2.11: Different types of droplet generators. Reproduced from Gokalp el al. 
(1999). 

70 

60 

50 

40 , 

S, emil 

30 

20 

10 

o 20 

preun! 
t:. Bollol e! 01 (1981) 

40 60 
ou.p. m 

80 100 

Figure 2.12: Variation of burning velocity at different droplet size of stoichiometric 
medium diesel oil-air sprays. Reproduced from Polymeropoulos (1984). 
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Figure 2.13 : Variation of flame speed with time for oscillating flames of isooctane­
air aerosols at tPov = 0.8 and 1.0 . Also shown are oscillation periods. Reproduced 
from Atzler (1999). 
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Figure 2.14: Effect of a variation of UD on the local tP and resulting values of Sm ug 
and UI for aerosol mixture with tPov = 1.0 and tPg = 0.75. Reproduced from Atzler et 
al. (2001). 
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Chapter 3 

Experimental Apparatus and Techniques 

3.1 Introduction 

In this chapter, the apparatus and techniques for the study of aerosol 

characterisation and flame propagation are described. The rig and apparatus for the 

experimental work is described in Section 3.2 and the mixture preparation technique is 

presented in Section 3.3. Section 3.4 refers to instrument synchronisation and 

acquisition during the expansion process and the combustion events. In Section 3.5, the 

description of laser diagnostic systems used for characterising the aerosol mixture is 

presented. This comprises measurement of droplet size using Phase Doppler 

Anemometry and droplet density using laser attenuation. During combustion events, 

flames were recorded using high speed schlieren photography. This technique, including 

the processing of flame images, is also presented in Section 3.5. Only brief descriptions 

are given when detailed infonnation exists elsewhere. 

3.2 Combustion apparatus 

The combustion rig is shown photographically in Fig. 3.1 and schematically in 

Fig. 3.2. It comprised an explosion vessel, an expansion tank and interconnecting 

pipework, various valves and control systems and measurement instrumentation. A 

description of each component is presented in Sections 3.2.1 and 3.2.2. 

The present rig was developed by Atzler (1999) and used by Marquez (2003) and 

Sulaiman (2007) for aerosol combustion studies. Aerosol mixtures were generated in 

situ, using the Wilson cloud chamber principle (Wilson, 1897). In this technique, a 

homogeneous fuel air mixture is cooled by expansion until the fuel vapour condenses 

into a cloud of liquid droplets as described in Section 3.3. In addition to the previous 

studies in Leeds (Atzler, 1999; Marquez, 2003; Sulaiman, 2007), this method has been 

used for aerosol combustion studies by Hayashi and Kumagai (1975, 1976) and Nomura 

et al. (2000, 2007). 
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3.2.1 Explosion vessel 

A comprehensive description of the present system can be found in Atzler 

(1999). As shown in Fig. 3.1, it comprised a cast steel cylinder of 305 mm diameter and 

305 mm length with a working volume of 23.2 litres. Optical quality BK7 windows, 

150 mm diameter and 39 mm thick, were fitted in each end plate. Four identical eight­

bladed fans were fitted, equi-spaced around the central circumferential plane at 45° to 

the horizontal. These were connected to 3-phase 1.5 kW motors and electronic motor 

controllers. In laminar studies, prior to the experiment, the fans were used only for 

mixing of fuel and air. For studies of turbulent combustion, the fans provided the 

required flow field and generated nearly isotropic turbulence within the field of view of 

the windows. Turbulence was characterised by Lawes (1987) in gaseous mixtures and it 

was found by Marquez (2003) to be unchanged in the presence of aerosols. Full details, 

including power spectra, velocity and lengths scale for this vessel are given in Abdel­

Gayed et al. (1987). The turbulence root mean square velocity, u~ was found to be a 

linear function of fan speed given by 

u'= 0.0016w (3.1) 

where (j) is the fan speed in rpm, and the integral length scale is approximately constant 

at 40 mm (Lawes, 1987; Marquez, 2003). 

As shown in Fig. 3.1 and 3.2, the explosion vessel was connected by a W' BSP 

fitting at the top of it to a central fill and discharge valve, which linked the vessel to the 

air supply and the exhaust. A pressure transducer, used to monitor the mixture initial 

pressure, was also connected to this port. The pressure transducer was protected from 

combustion pressure by an additional isolating valve fitted immediately adjacent to the 

port. Four 1" BSP ports were equi-spaced around the explosion vessel, as shown in 

Fig. 3.2. The top port was permanently connected to the expansion pipe and the others 

were used as appropriate for ignition, thermometry and an additional 25.4 mm (I") 

diameter window. Two electrical heaters with a total installed power of 4.5 kW were 

used to heat up the vessel to the temperature required for an experiment. As shown in 

Fig. 3.1, each heater was mounted close to the surface of an end plate and, in 

conjunction with the running fans during heating, provided a homogeneous temperature 

distribution throughout the vessel. Both heaters were controlled by a CAL 3200 

electronic controller. 
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Temperature measurements during expansion were required to enable the 

determination of initial conditions for combustion experiments. Two sizes of K-type 

thermocouples were used. For the required high frequency response during calibration 

studies of the expanding mixture, a 25 Jlm fine wire thermocouple was used. However, 

fine wires were too fragile to be used during combustion studies. Hence, in all work that 

did not require a fast response, a 200 Jlm thermocouple was employed. The 

thermocouples were connected, as required, through a home-built l2-way input selector 

to a Digitron 275l-K digital readout, with analogue output. The analogue output was 

used for the computer recording of temperature histories. Measurements of total static 

absolute pressure and fuel partial pressure, as well the pressure change during 

expansion, were made using a precision pressure transducer-amplifier/readout system, 

DRUCK PDCR 820 and DPI 280. It was fitted in the expansion pipe, 400 mm from the 

inner surface of the explosion vessel, behind the isolating valve. This transducer had a 

range of 0 to 350 kPa gauge, with a resolution of 0.1 kPa, and was calibrated by the 

manufacturer. 

3.2.2 Expansion vessel 

Aerosol mixtures were prepared, as described in Section 3.3, by expanding at a 

controlled rate, a gaseous pre-mixture from the explosion vessel into the expansion 

vessel with a volume of 28 litres. As shown in Fig. 3.1, this tank was connected to the 

explosion vessel through the top port. The tank was linked to the exhaust system 

through a ball valve which was connected to a W' BSP port. Prior to its use in the 

present system, the expansion tank was used as a combustion vessel and, hence was, 

capable of withstanding combustion pressure. Therefore, the expansion tank could 

safely withstand any explosion of the fuel-air mixture that was expanded into it. 

The explosion vessel and expansion tank were connected by a pipeline of 3 8 mm 

internal diameter, into which was fitted an expansion valve comprising a ball valve of 

26 mm internal diameter. This was operated pneumatically and was used to separate the 

explosion vessel and the expansion tank. It was placed immediately outside the 

explosion vessel. Mixture expansion was controlled by a throttle, which comprised of 

interchangeable orifice plates. For example, in laminar studies, an orifice of 6 mm 

produced an expansion time to reach pressure equilibrium between the two vessels of 

approximately four seconds. This long duration, relative to that for combustion, allowed 
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for easy synchronisation of the spark and diagnostics with respect to the desired state of 

mixture expansion. The slow expansion also minimised any resulting flow disturbances 

within the combustion chamber. 

3.2.3 Ignition system 

In the present work, two ignition systems were available. The first was used in 

previous studies (Atzler, 1999; Marquez, 2003; Sulaiman, 2007) and is described in 

Section 3.2.3.1. This system was found to be unreliable particularly in providing a 

consistent observation of ignition as described in Section 5.2.1. The second system was 

a variable energy ignition unit, described in Section 3.2.3.2. Using each system, fuel-air 

mixtures were ignited centrally in the explosion vessel with a standard Miniglo model 

aircraft engine spark plug. The plug was held on an extension screwed into one of the 

horizontal I" BSP ports of the vessel. The electrodes and outside earth shell were 

stainless steel wire and tube, respectively. The insulator was made of a ceramic tube 

and all components were bonded together. The body length was 60 mm and 4 mm 

diameter approximately. 

3.2.3.1 Fixed energy ignition unit 

This unit was used and described by Atzler (1999), Marquez (2003) and 

Sulaiman (2007). As shown by a circuit diagram in Fig. 3.3, it comprised a capacitor 

discharge unit and a discharge trigger switch. The capacitor was charged to typically 

between 35 and 40 Volts using an adjustable DC power supply. The voltage across the 

capacitor was monitored by a voltmeter. The trigger produced a small coil generated 

spark at the spark electrodes, thus providing an ionised electrical path for the release of 

the capacitor discharge, which supplied the main spark. This unit produced a spark with 

energy of approximately 300-400 mJ (Atzler, 1999). The limitation of this unit was due 

to the production of an excessive ignition energy with long spark duration. Based on 

indirect measurement by Sulaiman (2007), who used natural light imaging, the average 

duration of the spark discharge from this unit was about 8 ms. 

3.2.3.2 Variable energy ignition unit 

This unit was developed by Lung (1986) and modified by Ali (1995). A 

schematic is shown in Fig. 3.4 and a comprehensive description is given in Ali (1995). 
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This unit allowed spark energy and duration to be controlled separately. The main spark 

unit was designed to discharge a 40 ~F capacitor through the spark gap by means of a 

bank of resistors which controlled the current. The capacitor was charged by a 600 

Volts DC power supply. Control of the spark current was achieved by the series 

resistors which could be isolated or included within the circuit through switches. 

Increasing the series resistance of the circuit reduced the current through the spark gap, 

while reducing the series resistance increased the current. Steps of O.1A and O.5A were 

used for the low energy setting which varied current from 0 to 3A and steps of 0.75A 

was used for the high energy setting which varied current from 6A to 12A. This unit 

enabled the spark duration to be varied from 0 to 1 ms in steps of 1 0 ~s. 

The voltage and current outputs could be monitored by an oscilloscope for 

measuring the discharge energy. The time of discharge across the spark gap was 

obtained from the recorded pulse width. The discharged energy, E (mJ), across the spark 

gap is given by (Ballal and Lefebvre, 1975) 

(3.2) 

where V is the voltage drop in volts, I is the current in amperes and t is the total spark 

duration in seconds. In the present study, combustible mixtures were ignited at a 

settings of 6 A and fixed spark duration of 800 ~s. For this setting, the ignition energy 

was estimated of about 180 mJ. Since this energy was calculated based on the stored 

energy, the delivered energy should be lower by up to 50% (Maly and Vogel, 1979) as 

current and voltage might have been lost between the points of measurement and the 

electrodes. 

3.3 Mixture preparation 

In this study, two fuels were used and these are described in Section 3.3.1. The 

preparation of aerosol mixtures consists of three stages which include pre-heating of the 

explosion vessel, preparation of gaseous pre-mixtures and an expansion process that 

generates the aerosol mixtures. These are discussed below. 
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3.3.1 Fuels 

The principal fuel for this study was iso-octane, which is the single component 

fuel closest to gasoline. It was chosen because data for its gaseous combustion have 

been obtained at Leeds for a wide range of experimental conditions and are available for 

comparison with results from the present study. Atzler (1999) demonstrated that the 

evaporation and condensation properties of iso-octane were suitable for the current 

research apparatus, with regard to the temperature and pressure limitations of the vessel. 

Iso-octane, 2-2-4 trimethylpentane, was supplied by Ultrafine Ltd. and was specified to 

be at least 99.9% pure with 50 ppm maximum water content. 

The other fuel that used for this study was ethanol. It was supplied by Fisher 

Scientific UK Ltd. and was specified at 99.7% purity. It was considered because this 

fuel has been widely recognised as one of the promising alternative fuels for engines. It 

has been identified as offering a potential solution to improve air quality when used to 

replace conventional gasoline in engines because of its good anti-knock characteristics 

and the reduction of CO and unburned HC emissions (Moreira and Goldemberg, 1999). 

This fuel has a lower molecular weight and higher heat of vaporisation than iso-octane 

(Yaws, 1992). Since the vapour pressure of ethanol was nearly close to that of iso­

octane, the condensation process to generate ethanol aerosols was similar to that with 

iso-octane. 

3.3.2 Pre-heating of explosion vessel 

Prior to experiments, the explosion vessel was heated by its internal heaters to a 

temperature of 303 K for the iso-octane and 313 K for the ethanol, according to the 

experimental requirements. This temperature ensured complete evaporation of the liquid 

fuel. It also provided the required temperature datum to enable comparison with the data 

of other workers, for both gaseous and aerosol experiments. 

In order to ensure a spatially homogeneous condensation, a uniform temperature 

throughout the mixture was required. For this, the explosion vessel was heated to a 

preliminary value above the desired initial temperature and then left to cool and 

homogenise for approximately one hour. Temperature uniformity was ascertained by 

monitoring the temperature at several points around the outside of the vessel. Good 

temperature homogeneity across the vessel was assumed when the difference between 

the measurements was less than 2 K. 
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3.3.3 Preparation of gaseous pre-mixtures 

Before the introduction of fresh combustible mixture, the explosion vessel and 

expansion tank were evacuated and flushed with air to remove residuals from previous 

experiments. After flushing, the explosion vessel and expansion tank were evacuated 

again before the valve connecting was closed. Liquid fuel was then injected slowly into 

the explosion vessel through a needle valve at a pressure close to vacuum, to aid 

complete and fast evaporation. The fuel was injected using either a 5 ml or 10 ml 

Hamilton Microliter glass syringe. Atzler (1999) found that the accuracy of the injected 

volumes using this syringe was better than ±0.015 mI and ±0.03 mI, respectively, 

yielding an equivalence ratio accuracy of within ±0.5%. All fans were run at 1500 rpm 

to improve vaporisation of the liquid fuel. During fuel injection, the pressure in the 

explosion vessel was monitored to provide an independent check of the equivalence 

ratio and to ensure complete fuel vaporisation. The appropriate volume of liquid fuel for 

given initial conditions in terms of temperature, pressure and overall equivalence ratio, 

was calculated using the stoichiometric equation and the ideal gas law as described in 

Chapter 4. After fuel injection was completed, a settling time of 40 seconds was allowed 

to ensure proper evaporation of fuel. It was important to use the same settling time in all 

cases during mixture preparation for consistency of results. Such difference in aerosol 

calibration due to settling time is discussed in Section 4.6. 

After fuel injection, clean dried air was injected into the explosion vessel to take 

the final pressure of air-fuel mixture up to that required for an experiment. Bottled 

industrial grade dry air was used in the fuel-air mixtures to minimise the possibility of 

water droplet generation during the expansion process. It also minimised the presence of 

impurities which might affected aerosol formation as described in Section 4.6. The dried 

air was supplied by BOC Ltd., with a specified composition of: 78% N2, 21% 02,0.9% 

Ar, H20 < 250 ppm, CO < 10 ppm, C02 < 500 ppm and oil < 1 ppm. The effects of 

foreign species on combustion were assumed to be negligible. The air-fuel mixture was 

then allowed to blend for about 40 seconds with the fans running at 1500 rpm to achieve 

homogeneity. 

3.3.4 Generation of aerosol 

Following mixture preparation as described above, the expansion valve was 

opened and the mixture was allowed to expand into the expansion tank. When the 
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temperature became lower than the saturation temperature of the fuel, condensation 

occurred. A detailed thermodynamic analysis ofthe process is given in Chapter 4. 

For combustion studies, the aerosol mixtures were ignited at selected times after 

the start of expansion, allowing variation of the initial conditions at ignition, in terms of 

liquid and gaseous phase equivalence ratio, droplet size, pressure and temperature. 

Combustion occurred while the mixture was expanding. However, since the combustion 

duration was short, typically of the order of 20 to 60 ms, relative to the expansion 

duration of about four seconds for laminar conditions, quasi steady state was assumed in 

the unburned mixture. 

For turbulent experiments, it was necessary to make the expansion time to 

pressure equilibrium much faster than for laminar conditions, which was approximately 

0.5 seconds with 25 mm orifice. This was required because the rapid heat transfer from 

explosion walls when the fans were switched on, allowed the maintenance of an aerosol 

for only a very short period. In this case, the combustion duration was typicaUy less 

than 20 ms and hence the assumption of quasi steady condition was also applied for 

turbulent conditions. 

3.4 Data acquisition and synchronisation 

Accurate control of experimental conditions and data acquisition required the 

precise synchronisation of measurement equipment and data acquisition systems with 

the expansion and combustion events. The datum parameter for all experiments was the 

start of expansion. All equipment was triggered by a primary trigger switch, PTS, fitted 

to the expansion valve, as shown in Fig. 3.1. This consisted of a micro switch which 

was actuated by the expansion valve lever, within 2° of lever movement and before the 

actual start of valve opening. Consistency of valve opening was assessed and discussed 

by Atzler (1999). 

Measurements of pressure and temperature were synchronised with the start of 

expansion. Pressure and temperature records were digitised on a 16-bit National 

Instruments analogue-to-digital conversion board, model PCI-6034E. The signal inputs 

to the ADC were analogue voltages from the thennometer and pressure transducer 

amplifier. The output sensitivity of the thennometer was 1 m V IK and that of the 

transducer amplifier 1 m V lkPa. A typical temperature measurement had a bandwidth of 
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approximately 50 K or 50 m V and a typical pressure measurement had one of 

approximately 100-200 kPa or 100-200 mV. 

In addition to error associated with the thennometer and ADC systems, the raw 

data displayed fluctuations of approximately ± 1.2 K at a frequency of approximately 50 

Hz, which indicated electro-magnetic noise from the mains electricity supply. This was 

minimised by using a 5-point moving average smoothing routine, which reduced the 

fluctuations to about ± 0.2 K. The control and monitoring of the measurements were 

done using LabView version 8.5 installed into a desktop computer. 

3.5 Instrumentation for aerosol characterisation and flame analysis 

In the present work, two laser diagnostic systems were used simultaneously for 

characterising the aerosol mixtures. These were PDA, described in Section 3.5.1 and 

laser attenuation, described in Section 3.5.2. Aerosol properties were also detennined by 

equilibrium calculations based on pressure, temperature and overall equivalence ratio, 

as discussed in Chapter 4. Flame propagation was recorded with high speed schlieren 

digital movie photography to obtain flame speeds and burning velocities and this is 

described in Section 3.5.3. 

3.S.1 Phase Doppler Anemometry (PDA) 

PDA is an established optical technique that measures, simultaneously, size and 

velocity of spherical particles. Advantages of PDA are that it is a non-intrusive 

measurement, can be used on-line and in-situ. It is an absolute measurement technique 

which means no calibration is required, has very high accuracy and very high spatial 

resolution (small measurement volume). This system was available to the author from 

the EPSRC (Engineering and Physical Science Research Council) loan pool for a period 

of three months during the present work. A similar PDA system was used in the present 

vessel (Marquez, 2003; Sulaiman, 2007) and described in detail by Marquez (2003). 

Hence, the following is a brief description about the technique as detailed information 

exist elsewhere. 

Phase doppler anemometry is an extension of laser doppler anemometry (LDA) 

and is based on light scattering interferometry (Ofner, 2001). Laser doppler anemometry 

is a well known technique for measuring velocity of particles at a point. The 
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measurement point is defined by the intersection of two coherent laser beams and the 

measurements are performed on single particle as it move through this point. When a 

particle passes through this measurement point, the scattered light forms an optical 

interference fringe pattern. The scattered interference sweeps past a receiver unit at the 

Doppler difference frequency, which is proportional to the velocity of the particle. The 

spatial frequency of the interference fringe pattern is inversely proportional to the 

diameter of the particle. 

The arrangement of PDA apparatus in the present work is shown in Fig. 3.5, 

where it was used simultaneously with laser attenuation measurements. Detail of laser 

attenuation measurements are described in the following section. The PDA system and 

the instrumentation was manufactured by TSI Instruments Ltd and comprised the 

following: 

1. An argon-ion laser source, Spectra Physics, model Stabilite 2017, with 

an output power of 2W. 

2. ISI multicolour laser beam separator, model 9201, capable of separating 

the beam into two wavelengths: 514 nm (green) and 488 nm (cyan). 

3. ISI transmitter probe with focal length of363 rnm 

4. Optical fibre cables to convey the beams to the transmitter 

5. Fibreoptic receiver, model 450300, with focal length of500 rnm 

6. Photo detector module, model PDM 1000: receives optical signals from 

receiver and send as electric signals to FSA signal processor. 

7. Signal processor, Multibit digital processor model FSA3500: receives 

and processes electric signals from PDM such as frequency, phase, burst 

transit time and arrival time, and sends to the computer. 

8. TSI traverse system, Isel® Traverse controller, to place the transmitter-

receiver arrangement. 

For the present work, the receiver and transmitter were positioned at an angle of 32° as 

shown in Fig. 3.5, being the optimal angle for PDA measurements. A rising logic level 

signal (5V) from the expansion controller was connected to the pulse input connection 

located on the back of PDA signal processor box. This was used to synchronise the 

expansion event with PDA data acquisition by resetting the time stamp during data 

collection. Data from signal processor were processed using a software from TSI, 

Flowsizer 2.0.3 installed on a computer. The program requires input of droplet-media 
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refractive index and transmitter-receiver angle. The outputs from this program were 

diverse, but of particular interest to the present work were: individual and arithmetic 

mean droplet diameter, D 10. 

3.5.2 Laser attenuation system 

This technique measures the attenuation of a laser beam due to its passage 

through a specific fluid medium. Syzmanski and Wagner (1990) claimed that this 

technique was suitable for measuring aerosol concentrations with diameters larger than 

0.1 J.Ill1 and concentrations up to the order of 1010 mo3
• For the present study, this 

technique was used for two reasons. First, laser attenuation enabled assessment of the 

starting point of condensation by measuring the reduction in laser power when the first 

droplets appeared. Second, laser attenuation during the expansion event was used to 

estimate the number density of droplets generated using the Beer-Lambert law (Bachalo 

et al., 1988): 

(3.3) 

where 10 and 1 are the intensities of the original and attenuated laser beam, respectively, 

ND is the number density, L is the optical path length taken to be 305 mm, which is the 

length of the vessel, and O"e is the extinction cross-section which is constant for visible 

light frequencies. It is defined by Bachalo et al. (1988): 

(3.4) 

where Q. is the mean extinction efficiency taken to be 1 for uniform sprays (Payne et 

al., 1986; Nicolas, 2009) and D20 is the surface mean diameter of droplet (defined in 

Section 2.5). During the present work, values of D20 were not measured, but were 

substituted with values of arithmetic mean diameter, D/O that was obtained from PDA 

measurement described in Section 3.5.1. This was considered to be a reasonable 

approximation because the narrow distribution of droplet size that obtained in the 

present vessel resulted in a little difference between D]o and D/O. 

The laser attenuation system was arranged simultaneously with the PDA system, 

as shown in Fig. 3.5. It comprised a uniphase 20 m W He-Ne source laser with a 

wavelength of 632 nm and a laser power meter as a receiver. The laser beam was 
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expanded to a diameter of 150 mm by an Olympus A40 microscope lens, where it was 

collimated by alSO mm diameter plano-convex lens with a focal length of 1000 mm. 

After the beam passed through the two windows of the explosion vessel, a second, 

identical lens was used to refocus the parallel beam onto a pinhole. The laser was 

detected by a laser power meter which produced an analogue voltage output which was 

proportional to the laser input. This was received by the ADC system, described in 

Section 3.4. 

An input-output calibration undertaken by Marquez (2003), who uses the same 

technique, using absorptive neutral density filters of known attenuation, showed that the 

laser power meter has a linear response in voltage for intensity attenuation throughout 

the whole range of operating conditions. This is given by: 

I 
-= 

(~+o.o279 ) (3.5) 

1.0483 

where the voltage ratio VIVo was the ratio of attenuated and non-attenuated laser beam 

obtained from experiment. 

3.5.3 High speed schlieren photography 

The growth rate of spherically expanding flames was recorded using high speed 

schlieren cine photography. This technique is a visual process that used to photograph 

the flow of fluids of varying density. In the present work, it was used to visualise the 

density gradients between burned and unburned mixtures. Using the path-integrated 

image from analysed high speed flame movies, flame radius against time data was 

measured to derive flame speed and burning velocity, following the image processing 

technique presented in Section 3.5.3.2. The schlieren images were also used to study the 

onset and development of cellularity in aerosol flames as discussed in Chapter 5. 

3.5.3.1 Image recording 

The arrangement of the image recording system is shown in Fig. 3.6. In this 

setup, a SOW tungsten light was focused by a 45 mm diameter plano-convex lens with 

70 mm focal length onto a pinhole. Then the light was collimated by a ISO mm diameter 

plano-convex lens with 1000 mm focal length. After the light passed through the two 

windows of the explosion vessel, a second, identical lens was used to refocus the 
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parallel beam onto a pinhole. A high-speed digital camera (see details below) fitted with 

a Nikkor 50 mm lens was positioned behind the schlieren focus to record the flame 

propagation. In laminar experiments, a Phantom V 4 high-speed digital camera was used 

with full resolution at 512x512 pixels. At this resolution, it is capable of recording 

schlieren movies at 1000 frames per second. For turbulent experiments, a Photron 

Ultima APX-RS high-speed digital camera with a 10-bit CMOS type chip was used. 

This camera was operated at between 3000 and 5000 frames per second, depending on 

the level of rms turbulence velocity. At both frame rates, the image resolution was 

480x480 pixels. 

A synchronisation unit, the circuit of which is shown in Fig. 3.7, was used to 

synchronise the start of camera operation with that of the expansion process with 

ignition. When the expansion valve opened, it activated the primary trigger switch, PTS, 

which sent a signal to start an Omron H8GN countdown timer. The signal from the 

timer was converted by the signal converter into break (OFF) and make (ON) signals for 

the camera and ignition systems, respectively. 

3.5.3.2 Image processing 

The processing technique for the schlieren images was described by Orsmby 

(2005) and Mandilas (2008), and only brief details are given here. For each combustion 

experiment, about 30-100 schlieren images were recorded. These images covered the 

period from just before ignition until the flame edge was no longer visible, due to the 

window size. The flame images were originally in a grayscale format. Using an 

algorithm coded in the Matlab software environment, by Mandilas (2008), the flame 

radius for each image was calculated by thresholding the grayscale image to yield a 

white flame image on a black background. The flame radius was calculated as the radius 

of a white circle. A transparent grid of 10 mm x 10 mm attached to the window of the 

vessel was first photographed with the setup used for flame studies to provide a scale 

with which measurements could be scaled to true distances. From the time interval 

between images and flame radius measurements, flame speed and burning velocity were 

calculated. 
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Figure 3.]: Photograph of the cylindrical explosion vessel, with one end plate removed. 
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Chapter 4 

Characterisation of Aerosol Mixtures 

4.1 Introduction 

This chapter presents an analysis of the aerosol mixture composition, in terms 

of gaseous and liquid fractions, and the experimental results of cold calibration 

studies of aerosol mixture. In this characterisation study, aerosol mixtures of iso­

octane and ethanol were calibrated, without combustion, to obtain the temporal 

variation of pressure, temperature, droplet size and number density as function of 

time during expansion, under laminar and turbulent conditions. In Section 4.2, a 

theoretical analysis to calculate the liquid-vapour equivalence ratio is presented. It is 

based on the thermodynamic principle that, given any two properties of a system, in 

this case pressure and temperature, any other property such as here the liquid 

fraction can be calculated. In Section 4.3, experimental data on pressure and 

temperature variations during the expansion process are presented. The results of 

droplet size measurements, using the Phase Doppler Anemometry technique, are 

shown in Section 4.4. In Section 4.5, experimental data on laser attenuation 

measurements are presented and these are used to estimate the variation of droplet 

number density throughout the aerosol formation and development. A brief 

discussion of effect of impurities and factors that might affect droplet formation is 

presented in Sections 4.6 and 4.7, respectively. 

4.2 Determination of aerosol properties 

During the expansion of a fuel-air mixture, the vapour phase of the pure 

substance is brought to a supercooled state by the rapid drop of pressure. Further, 

when the pressure is dropped beyond the point of saturation, the mixture then 

undergoes a phase change. This process can be explained in schematic diagrams of 

pressure-specific volume, P-v, and temperature-entropy, T-s, as shown in Fig. 4.1, 

with two extreme assumptions: constant specific entropy (dashed line) and constant 

temperature (dotted line). During expansion, the temperature of the vessel is, 
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essentially, constant. The mixture temperature reduces due to expansion but receives 

heat from the vessel. If the expansion is fast, the heat transfer from the vessel will be 

negligible; hence the process is isentropic. Conversely, if the expansion is slow, the 

process will be at constant temperature. 

By considering first, the isentropic case, at the start of expansion (point 1), the 

fuel is completely vaporised and superheated. At this time, the system is in gas 

phase equilibrium until saturation of the fuel vapour is reached at point 2, when its 

partial pressure is equal to its vapour pressure, as shown in Figs. 4.1 a and 4.1 b. As 

the expansion continues, the mixture goes into the two-phase regime towards point 

3. Here a fraction of the fuel is in the liquid phase and the rest is in the vapour phase. 

However, if the expansion was at constant temperature, from point 1 to point 4, due 

to the heat supplied from the vessel, the fuel vapour would never reach the 

saturation point and the mixture would remain in the vapour phase throughout 

expansion. In reality, as discussed in Section 4.3, the expansion process is very close 

to isentropic. 

In a two-phase mixture, as shown in Fig. 4.1 between points 2 and 3, the 

fractions of liquid and vapour of a substance are important parameters for the 

determination of the aerosol properties. The calculation procedure is demonstrated 

below for iso-octane and results are shown for both fuels, iso-octane and ethanol, in 

Sections 4.3 to 4.5. 

4.2.1 Gas phase equilibrium 

The molar composition of a stoichiometric mixture of iso-octane and air can 

be calculated from the stoichiometric equation 

(4.1) 

For a non-stoichiometric mixture, the reactants on the left hand side ofEq. (4.1) can 

be expressed by 

(4.2) 

where tPov is the overall equivalence ratio. Normalising to one mole of reactants 

yields 
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1 mole reactants = ,pov CsHls + 59.5 Air 
59.5+,pov 59.5+,pov 

(4.3) 

From Eq. (4.3), the mole fractions of air and fuel are 

no 59.5 
=---

n 59.5 + ,pov 
(4.4) 

and 

nf ,pov 
-=--'-"-'--
n 59.5 +,pov 

(4.5) 

where na, nf, and n are the numbers of moles of air, fuel and the total mixture. The 

ratio of the partial pressures of two gaseous species is equal to their mole fractions, 

such that 

(4.6) 

where Pfand Pa are the fuel and air partial pressures. Equation (4.6) is valid only for 

an ideal gas and cannot be used for liquid. Following from Eqs. (4.5) and (4.6), the 

partial pressure of the fuel can be determined by 

P
f 

= P ,pov 
59.5 + ,pov 

(4.7) 

4.2.2 Mass fraction and equivalence ratio 

The stage at which the fuel is completely vaporised and superheated, such 

that it is well away from saturation conditions, is defined by the ideal gas law 

n)iT 
Pf =-­

V 
(4.8) 

where V is the volume occupied by the mixture and R is the universal gas constant. 

Close to saturation conditions, the ideal gas law must be modified to account for the 

changed compressibility of the gas, using the compressibility factor, Z. 

(4.9) 
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Compressibility factors were acquired from Fig. 4.2 which is reproduced from 

Cengel and Boles (1998). This chart shows generalised compressibility factors as a 

function of reduced pressure, Pr and temperature, Tr, which are expressed by 

P T 
P =....L . T =­, P , , T 

c c 

(4.10) 

where Pc and Tc are the critical pressure and temperature. The critical properties for 

iso-octane and ethanol were obtained from Yaws (1992). For the present work, a 

rich iso-octane mixture at ¢ov=2.0, expanded from 200 kPa, represents the worst case 

for estimating the changed compressibility factor. This mixture has a fuel partial 

pressure at the onset of condensation of 5.4 kPa, which yields a value of P, of 

2.1 x 10-3
• Also, the value of T, at 290 K is 0.53. The calculated value of P, is far off 

the scale to the left of Fig. 4.2, but extrapolation of the curves with a constant value 

of T, shows that Z is close to unity. A value of Z close to unity was also obtained for 

ethanol. Therefore Z was disregarded in the present analysis. The total number of 

moles of fuel in the explosion vessel at the start of expansion, when all fuel was 

fully vaporised, can be expressed using Eqs. (4.7) and (4.8), by 

(4.11 ) 

where suffix 1 denotes the state of the mixture immediately prior to the start of 

expansion. In an ideal system, saturation of the fuel vapour is reached when its 

partial pressure is equal to its vapour pressure. In the wet region, the partial pressure 

cannot be used to characterise the total fuel content because some of it is liquid. 

However, the gaseous portion of the fuel can be approximated by the assumption 

(4.12) 

where P v is the vapour pressure of the fuel. This is calculated from the measured 

temperature by 

B 
10gP =A---

v T+C 
(4.13) 

where T is the temperature and the coefficients are A = 6.81189, B = 1257.84 and 

C= 220.735 (Yaws, 1992). 
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At saturation conditions, the ideal gas law is not strictly valid. However, it 

does give a good approximation. Using Eqs. (4.8) and (4.12), the number of moles 

of gaseous fuel in the wet mixture can be estimated by 

PvV 
nfg2 =-=-­

RT2 
(4.14) 

where suffix 2 denotes the point of the mixture at any time in the wet region 

(Fig. 4.1) and g represents the vapour state. The Jiquid molar fraction of fuel can be 

expressed in terms of the gaseous fraction as 

n fl (n f - n fg ) n fg 
-= =1--
nf nf nf 

(4.15) 

In the current apparatus, the expansion of the mixture from a fixed-volume 

vessel into an expansion tank introduces an additional problem. The total amount of 

mixture in the explosion vessel decreases during the process. However, it is assumed 

that ¢ov in the vessel, irrespective of the phase of the fuel, remains constant during 

expansion. This assumption is reasonable on the grounds that condensed drops and 

the remaining fuel vapour-air mixture are essentially at the same temperature and the 

droplets are small enough to follow the flow. As droplets condense from the gas 

phase at the local flow velocity, they are transported out of the bomb at the same 

rate as that of the gaseous mixture (Atzler, 1999). The values of nj within the wet 

regime must be calculated by assuming a constant mixture composition because the 

method presented in Eq. (4.11) does not account for the liquefied fuel. Constant 

mixture composition implies 

Hence 

nul = n u2 

nfl nf2 

Using Eq. (4.4), the initial number of moles of air is 

The number of moles of air in the wet region is 

(4.16) 

(4.17) 

(4.18) 
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(4.19) 

Substituting Eqs. (4.11), (4.18) and (4.19) into Eq. (4.17) yields 

rPov (P2 - pv)v 
n -

/2 - 59.5 RT2 (4.20) 

Substituting Eqs. (4.14) and (4.20) into Eq. (4.15) yields 

n fl2 = 1- 59.5Pv 

n /2 rPov (P2 - P.) 
(4.21) 

The mass of gaseous fuel and air present in the combustion vessel at condition 2 can 

be calculated from the molar mass of fuel, Mj; and air, Ma by 

The instantaneous mass of liquid fuel can be determined by 

nfl2 
mfl2 =mI2 -

nl2 

(4.22) 

(4.23) 

(4.24) 

The mass fraction of fuel in the liquid and gas phases (1m! and gmf) are given by 

1m! = mfl2 , gmt = mlg2 = ml2 -mfl2 
ml2 ml2 m/2 

(4.25) 

The gaseous and liquid equivalence ratios can be calculated by 

(4.26) 

and 

(4.27) 

where FIA is the fuel-air ratio. The stoichiometric fuel-air ratio can be calculated 

from Eqs. (4.1) and (4.2) 

M 
(FIA) = I 

I stoic 59.5M
a 

(4.28) 
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4.3 Pressure and temperature variation 

Pressure and temperature are important parameters for the calculation of 

gaseous and liquid fractions of fuel-air mixture at any instant during expansion. In 

addition to mixture composition, data on these are essential prerequisites for the 

analysis of the combustion process, discussed in Chapter 5. This section presents 

experimental values of pressure and temperature variation as a function of time from 

the start of expansion for two fuels at a wide range of <Pov under laminar and 

turbulent conditions, as summarised in Table 4.1. The pressure and temperature 

measurements were obtained simultaneously with the droplet size and number 

density. 

4.3.1 Initially quiescent conditions 

Figure 4.3 shows typical variations of pressure and temperature during the 

expansion of a stoichometric iso-octane and air mixture from an initial temperature 

and pressure of 303 K and 200 kPa. Following the start of expansion until the start 

of condensation, the measured temporal variations of temperature and pressure 

exhibited an isentropic relationship as indicated by the dashed line in Fig. 4.3. This 

can be expressed by 

(4.29) 

where r is isentropic expansion index. Using the ratio of specific heats of the iso­

octane-air mixture, the value of r is 1.35. At the start of nucleation, the measured 

temperature deviated from that ofEq. (4.29) because the mixture no longer acts like 

an ideal gas. The temperature remains higher than that suggested by Eq. (4.29) 

because of the latent heat of condensation. Marquez (2003) suggested that there is an 

additional factor that may affect the measured temperature due to the thermocouple 

which tends to act as a nucleation site, resulting in a higher temperature at the 

thermocouple than in the free stream. Similar trends of the variation of pressure and 

temperature during the expansion of a stoichiometric ethanol and air mixture is 

shown in Fig. 4.4 in which the start of condensation was approximately 0.7 seconds 

after the start of expansion. 
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Shown in Fig. 4.5 are the variations of measured pressure and temperature of 

iso-octane and air mixtures at ¢ov between 0.8 and 2.0, expanded from 200 kPa and 

303 K. The pressure varies little with variation in ¢ov. However, temperature remains 

nearly independent of ¢ov only to the start of condensation, indicated by the solid 

circles on each curve. This is because of the transition to non-ideal gas behaviour as 

discussed above. 

4.3.2 Turbulent conditions 

Figure 4.6 shows typical variations of pressure and temperature as a function 

of time during expansion of stoichiometric iso-octane and air mixture at an initial 

condition of 200 kPa, 303 K and u' of 1.0 mls. For turbulent conditions, the orifice 

size was 25 mm, as discussed in Section 3.2.2, to compensate for the higher rate of 

droplet evaporation as a result of a higher rate of heat transfer from the vessel due to 

the turbulence flow. Also shown in Fig. 4.6 are curves of the variation of 

temperature with time for isentropic expansion of an ideal gas (r = 1.35) and for 

expansion with a polytropic index of 1.21. It is shown that under turbulent 

conditions, the expansion process is far from adiabatic and this is due to the high 

turbulence convective heat transfer from the vessel walls. 

Shown in Fig. 4.7 is the variation of pressure and temperature of 

stoichiometric iso-octane and air mixture at different u' between 1.0 and 4.0 mls 

and at similar initial conditions to those in Fig. 4.6. Under turbulence, there is no 

significant effect of u' on the variation of pressure with time. However, in 

temperature variation, there is a slight increment in temperature with u' prior to 

condensation. During condensation, the increment in temperature becomes 

significant due to enhanced heat transfer resulting in more rapid evaporation of 

droplets. 

4.4 Droplet size distribution 

This section presents measurements of the temporal variation of droplet size in 

terms of individual and averaged diameter as a function of time throughout the 

expansion of fuel and air mixtures. The measurements were performed using Phase 

Doppler Anemometer as described in Section 3.5.1. 
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4.4.1 Initially quiescent conditions 

Figure 4.8 shows a typical variation of individual and averaged droplet 

diameter with time for stoichiometric iso-octane-air aerosols when expanded from 

initial conditions of 200 kPa and 303 K. The diamond symbols represent individual 

measurements while the solid circles and the solid curve represent averaged values. 

Also shown in Fig. 4.8, by the crosses and chain dashed line, are values of standard 

deviation of droplet diameter, aD, which was obtained from 

(4.30) 

where D and DIO are the individual and linear averaged droplet diameter, 

respectively. In most cases, the present system could not adequately detect the onset 

of condensation. However, this was resolved by extrapolating the curve fit of DJO to 

zero. During the early stage of droplet formation, up to 3.5 seconds, a narrow 

distribution of droplet diameter was obtained, as supported by the small value of aD. 

After this period, significant scatter was recorded before the size of droplet reduced 

and further disappeared from the expanded mixture. This was probably due to 

droplet evaporation by heat transfer from the explosion vessel. 

Figure 4.9 shows a typical variation with time of individual and averaged 

droplet diameter and O'D for stoichiometric ethanol-air aerosols, expanded from 

initial conditions of 200 kPa and 313 K. In general, a similar trend to that of aerosol 

for iso-octane discussed above, was obtained for ethanol. The onset of droplet 

formation was obtained at approximately 0.7 seconds after the start of expansion. 

Since the condensation of ethanol started earlier than iso-octane, the maximum 

attainable droplet diameter in ethanol was greater than in iso-octane. The probable 

reason for ethanol's experiencing an earlier start of condensation is because of its 

being more volatile than iso-octane. 

Figure 4. I 0 shows the spatial variation of individual droplet diameters for 

stoichiometric iso-octane aerosol measured at six locations within the field of view 

of the windows (Marquez, 2003). The solid line represents a curve fit through the 

experimental values and the chain dashed line represents aD. Because the 

measurements of individual droplet diameter at different locations were obtained 

from different experiments, values of aD represent the combined effect of spatial and 

shot to shot experiment variability. It is shown in Fig. 4.10 that although aD 



66 

increases slightly with time, the spatial variation is low, which typically is below 2 

Jlm. Clearly, this low value of CTD demonstrates the near monodispersed distribution 

of D 10 and the excellent repeatability in the present explosion vessel. All combustion 

studies in the present work were undertaken during the first few milliseconds, while 

droplet diameter could be considered monodispersed. Clearly, this simplifies 

analysis during combustion studies because variation in droplet diameter can be 

neglected. Further, many studies report the use of various volume and area weighted 

averages such as D32 and D20 as described in Section 2.5. However, for 

monodispersed droplets, they all reduce to the same value (Hayashi and Kumagai, 

1975; Cameron and Bowen, 2001). 

Shown in Fig. 4.11 is the temporal variation of DIO with time for iso-octane 

aerosols expanded from an initial pressure of 200 kPa and initial temperature of 

303 K, at values of rPov between 0.8 and 1.4. Each curve was obtained from a single 

expansion and the limit was determined from the start of droplet formation until the 

end of the narrow distribution of droplet diameter (at which CTD ~ 2 Jlm). The scatter 

of the individual data is indicated by the error bars. The onset of droplet formation is 

a strong function of rPov, being at 1.2 seconds after the start of expansion for tPov of 

1.4 and at later times for leaner mixtures. The richer mixtures experience earlier start 

of condensation due to higher values of Pv, as described in Section 4.2. A similar 

trend of temporal variation of DIO with time also was obtained in ethanol aerosols as 

shown in Fig. 4.12. 

4.4.2 Turbulent conditions 

Figure 4.13 shows the temporal variation of D 10 for iso-octane aerosols 

expanded from 200 kPa and 303 K, at values of rPov between 0.8 and 1.4 with u I of 

1.0 mls. The solid line in Fig. 4.13 represents the curve fit through the experimental 

values. The scatter of the individual droplet diameter is indicated by the error bars. 

The variation in droplet diameter with time is similar to that in Fig. 4.11, except that 

droplet formation is much faster under turbulence than for initially quiescent 

conditions. This was due to the quicker expansion rate as a result of the use of a 

larger orifice, as described in Section 3.2.2. It is interesting to note that the 

maximum attainable value of D 10 is slightly smaller under turbulent than for initially 
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quiescent conditions. This was probably due to the higher rate of heat transfer as 

discussed in Fig. 4.7 

Shown in Fig. 4. 14 is the temporal variation of D 10 with time for 

stoichiometric iso-octane aerosols, expanded from initial conditions of 200 kPa and 

303 K, at a wide range of u ~ The values of u' were varied between 0.5 and 4.0 mls. 

The solid line represents the curve fit through the experimental values of DJO at 

u' = 0.5 mls. It is shown in Fig. 4.14 that the influence of u' on the onset of droplet 

fonnation is not significant, however the maximum attainable of DJO decreased as u' 

increased. 

4.5 Droplet number density 

An estimation of droplet number density, ND, was based on measurement of 

laser power attenuation and DIO, as described in Section 3.5.2. The attenuation in the 

intensity of the laser beam is given as a ratio of the voltage output (VIVo) of the laser 

power meter. This section presents measurements of laser power attenuation and ND 

as a function of time throughout expansion under initially quiescent and turbulent 

conditions. 

4.5.1 Initially quiescent conditions 

Shown in Fig. 4.15 are the variations of VIVo and ND with time during the 

expansion of iso-octane and air mixtures, at values of ¢ov between 1.0 and 1.6, at 

similar initial pressures and temperatures. The repeatability of the experiment was 

good, as indicated by several laser attenuation measurements at ¢ov = 1.0. Following 

the start of expansion, the value of VIVo remained constant until it reduced after the 

onset of condensation. This corresponds well with the detennination of onset of 

droplet fonnation by extrapolation to zero of the experimental values of D/O, as 

explained in Section 4.4.1. After the onset of condensation, VIVo decreased with 

time due to the combined effect of an increase in droplet size and droplet number 

density, until a minimum value was reached. After this, VIVo increased due to 

droplet evaporation. Using this ratio and DJO measurement, ND was estimated based 

on the Beer-Lambert law, as described in Section 3.5.2. It is shown in Fig. 4.15 that 

immediately after the start of condensation, ND rose rapidly to an approximately 

constant value, in the order of 1010, before it experienced a slight reduction. Similar 
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results and trends of ND at different ¢ovare also shown in Fig. 4.15 and this indicates 

that the variation in ¢ov did not have a significant effect on ND• 

Figure 4.16 shows the variations of VIVo and ND with time during the 

expansion of ethanol and air mixtures, at values of ¢ov between 0.6 and 1.2, and at 

initial conditions of 200 kPa and 313 K. Similar to Fig. 4.15, the onset of 

condensation is shown to be a function of ¢ov, with richer mixtures condensing 

earlier than lean ones. It is shown in Fig. 4.16 that ethanol aerosols had lower 

number densities (_109 m·3) than those of iso-octane (_1010 m·3). The probable 

reason for this is due to the latent heat of ethanol being higher than that of iso­

octane. The estimation of ND can be used further to estimate a mean inter-drop 

distance, [D. Annamalai and Ryan (1992) showed that lD can be estimated by 

(4.31) 

Figure 4.17 shows the typical calculated mass of liquid fuel as a function of 

time during expansion of stoichiometric iso-octane aerosols from initial conditions 

of 200 kPa and 303K. This is used to compare the mass of liquid fuel calculated 

from ND and DIO measurement (shown by crosses) by comparing with the mass of 

liquid calculated using measured pressure and temperature, as described in Section 

4.22 (shown by circles). After the start of condensation, both results show a similar 

trend where the liquid mass increases with time as the fuel condenses. The 

comparison in Fig. 4.17 indicates that there is not much difference between mass of 

liquid fuel calculated by using ND-D[o and measured pressure-temperature. Hence, 

this suggests that the estimation of ND in the present work is likely to be reasonable. 

4.5.2 Turbulent conditions 

Shown in Fig. 4.18 are the variations of VIVo and ND with time during the 

expansion of turbulent stoichiometric iso-octane and air mixtures, at values of u' 

between 1.0 and 4.0 mis, at identical initial pressure and temperature. The 

repeatability of experiment under turbulent conditions was good, as indicated by 

several laser attenuation measurements at u'=1.0 mls. It is shown that the onset of 

condensation under turbulent conditions is independent of u'. However, the variation 

of ND at highest u' (4.0 mls) seems to be slightly smaller than at low u'. This is 

probably due to the higher rate of droplet evaporation as discussed in Fig. 4.7. 
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4.6 Effect of particles on aerosol formation 

As described in Section 3.3.3, the repeatability of aerosol generation was 

maintained throughout experiment by using a clean dried air and a consistent 

mixture preparation procedure. However, since nucleation is affected by particles 

(Carey, 1992), it is interesting to investigate the effect of particles on the aerosol 

formation. In general, particles might have existed in the atmosphere or could result 

from various deliberate or intentional additions such as small droplets from partially 

evaporated fuel, from particulates such as smoke and fine dust, and even from 

particles adhering to the vessel walls that might be disturbed during mixture 

preparation. Whilst uncontrolled particles are detrimental to reliable experiments, 

their controlled introduction might be beneficial in providing a means of varying and 

controlling ND and D/O. 

The present Section reports results from the variation of particle inclusion in 

the mixture. Such particles were introduced by two techniques. The first involved 

variation of the settling time between liquid fuel injection and clean air addition into 

the main vessel. This variation might affect the degree of evaporation of liquid fuel 

and the degree to which particles that might have adhered to the wall were disturbed 

by the inflow of the reactants. The second technique involved deliberate introduction 

of small particles (smoke from incense sticks). Although it was not possible to 

quantify the amount of smoke injected, careful preparation and experimentation 

helped to ensure consistency. The technique was to fill an empty syringe with smoke 

by placing the open end of the syringe (with plunger removed) over a burning 

incense stick to allow the smoke to fill the syringe. The plunger was then refitted 

and adjusted until it contained 10 ml of smoke. The smoke was then injected into the 

vessel prior to liquid fuel injection. 

Shown in Fig. 4.19 are the variations of pressure and temperature with time 

during the expansion of stoichiometric iso-octane and air mixtures under different 

preparation conditions. The thick solid line represents a mixture with clean dried air 

and 40 seconds settling time, the dashed line represents a mixture with 10 seconds 

settling time and the thin line represents a mixture with the inclusion of 10 ml of 

smoke. It is shown that the variation of pressure with time is independent of the 

method of mixture preparation. The variations of temperature variation were initially 

similar. However, after the start of nucleation, the mixture with 10 seconds settling 
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time and that with 10 ml of smoke had a slightly higher temperature by between 3% 

and 4% than the mixture with clean air and 40 seconds of settling time. 

Shown in Fig. 4.20 are the corresponding variations of Dlo with time for those 

mixtures in Fig. 4.19. Immediately after the start of condensation, the variation of 

D 10 with time was a strong function of the method of mixture preparation. That with 

clean air and 40 seconds of settling time exhibited the greatest influence of time on 

D /0. Such differences became progressively more prominent later during expansion. 

The mixture with clean air and 40 seconds settling time displayed the largest size of 

D/O variation, typically by 40-50% higher than that with 10 seconds settling time. 

The mixture with the inclusion of smoke resulted in D}o being of similar magnitude 

to that mixture with 10 seconds settling time but the time dependence was a little 

different. Shown in Fig. 4.21 are the variations of laser power attenuation and ND 

with time for those mixtures in Fig. 4.19. It is shown that the time of onset of 

condensation was nearly the same in all cases. However, the attenuation profile was 

different, with clean air and 40 seconds settling time displaying less attenuation than 

the other mixtures, typically by between 60-70%. This significant difference is 

reflected in the variation of N D with time. Figure 4.21 clearly shows that the effect 

of the inclusion of particulates can increase the number density of droplets by an 

order of magnitude. 

It is shown above that the existence of particles in the expanded mixture had a 

significant influence in the development of D/O and ND• In the present work, it is 

unclear whether changes in settling time were due to evaporated fuel or due to dust 

particulates that were disturbed during mixture preparation. However, in the case of 

smoke addition, it is clear that any contamination during mixture preparation would 

result in a difference in Dlo and ND. Clearly, this issue must be minimised by 

following a standard mixture preparation procedure, as described in Section 3.3. 

Any changes to the standard procedure might result in inconsistency of aerosol 

calibration which would lead to ambiguity in the aerosol combustion studies. 

4.7 Summary of aerosol characterisation 

Throughout the experiments to calibrate aerosol mixtures, discussed in 

Sections 4.3 to 4.6, several factors have been identified which may have a 

significant influence on the aerosol formation and characteristics. Aerosol 
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generation by expansion was influenced by the following parameters: initial pressure 

and temperature, equivalence ratio, fuel volatility, expansion rate, mixture flow and 

impurities. Most of these parameters affected the onset of condensation which in 

turn affected the variation in D/O. In this Section, these parameter are discussed with 

respect to the results presented in Sections 4.3 and 4.4 and the thermodynamic 

considerations illustrated in the P-v diagram in Fig. 4.1. This schematic provides a 

qualitative understanding of the expansion and condensation processes in the present 

work. A full quantitative analysis would require consideration of the compressibility 

factor and non-equilibrium, or supersaturation, theory embodied in the Wilson line 

(Marquez, 2003). 

Shown in Fig. 4.22a is the variation of D/O with instantaneous pressure that 

recorded during mixture expansion at different initial pressures of 200 kPa and 300 

kPa. In both experiments, the initial temperature was identical. In Fig. 4.22b, 

schematic representation of these expansion processes are illustrated on a P-v 

diagram. Both figures are related by the point of condensation start. As indicated by 

the experimental results in Fig 4.22a, the onset of condensation for the mixture with 

high initial pressure of 300 kPa occurred at higher instantaneous pressure than that 

with initial pressure of 200 kPa. This was due to their different values of Pfi as 

expressed by Eq. (4.7), and being equal to Pv when the condensation is started 

(described in Section 4.2). Further, the maximum attainable D/O, was higher for the 

higher initial pressure. This was related to the higher difference between the 

saturation and instantaneous pressure at which D /0 was measured. 

Figure 4.23a shows the effect of initial temperature on the expansion of 

stoichiometric ethanol and air mixtures at initial pressure of 200 kPa. Here the 

mixtures were expanded from initial temperature of 313 K and 333 K. Similar to 

Fig. 4.22b, Fig. 4.23b shows schematic representation of these expansion process on 

a P-v diagram. It is clear from Fig. 4.23a and 4.23b that the onset of condensation 

occurred at higher instantaneous pressure for the mixture with the lower initial 

temperature. This was related to the lower values of P v at the saturation line during 

expansion. As given in Eq. (4.13), increasing the initial temperature resulted in an 

increase in the value of Pv• Hence, the higher the initial temperature, the greater the 

difference in P v, being equal to Pj at the point where the condensation occured. 

The equivalence ratio was also found to have an effect on the generation of 

aerosols. Shown in Fig. 4.24 are data from the expansion of iso-octane and air 
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mixtures from initially quiescent conditions at 200 kPa and 303 Kat ¢ov.= 1.0 and 

1.4. In Fig. 4.24a, the mixture with the higher ¢ov experienced condensation at 

higher instantaneous pressure than the lower ¢ov. A similar reason applies as 

discussed in relation to Fig. 4.22 where, in this case, increasing ¢ov results in 

increasing Pfo Figure 4.24b shows schematically that different ¢ov results in a 

different saturation line (due to different PI) with the line for higher ¢ov being nearer 

to the initial condition (1). Although the schematic of the expansion of each mixture 

should follow a different process path, the actual variations were small, as shown in 

Fig. 4.5, and in the present work were considered to be negligible. 

Figure 4.25 shows the comparison of different fuels, between iso-octane and 

ethanol on aerosol formation. Both mixtures were expanded from identical initial 

conditions. It is shown in Fig. 4.25a that ethanol condensed at a higher instantaneous 

pressure than iso-octane. The reason for this is shown schematically in Fig 4.25b. 

Because ethanol was more volatile (high value of Pv) than iso-octane (Yaws, 1992), 

it has a higher saturation line, at which Pv located closer to the initial condition, (1), 

than iso-octane. 

Figure 4.26 shows the effect of expansion rate on the generation of aerosol. In 

the present work, the difference in expansion rate was obtained by changing the 

diameter of the orifice plate, as described in Section 3.2.2. It is shown in Fig. 4.26a 

that the higher expansion rate, in this case corresponding to the 8.5 mm orifice, 

resulted in condensation at a higher instantaneous pressure than for the 6.0 mm 

orifice. The reason for this is shown schematically in Fig. 4.26b where it is related to 

the quicker rate of pressure drop towards the saturation point. Further, for the 

mixture with high instantaneous pressure at condensation, the amount of fuel 

condensed was higher than for those with low instantaneous pressure and this 

correlates well with the high value of maximum attainable Dlo. 
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Table 4.1: Initial (pre-expansion) conditions for aerosol characterisation experiment 

In ~esent work. 
Pin Tin orifice u' 

Regime Fuel <Pov 
(kPa) (K) (mm) (m/s) 

160 

Iso-octane 
180 303 0.8,0.9, 1.0, 1.1, 

C8H18 1.2, 1.4, 1.6, 2.0 
200 

Laminar 140 6 -

Ethanol 160 
313 0.6, 0.8, 1.0, 1.2 

C2HsOH 180 

200 

100 - 0.5,1.0, 
0.9, 1.2 

Iso-octane 200 25 2.0,4.0 

Turbulent 303 
C8H18 100 -

0.8, 1, 1.4, 1.6,2.0 1 

200 25 
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Figure 4.1: Expansion paths for phase change in present work on (a) P-v diagram, 
and (b) T-s diagram. Reproduced from Sulaiman (2007). 
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Figure 4.4: Variation of pressure and temperature with time during expansion of 
initially quiescent stoichiometric ethanol and air mixture from 200 kPa and 313 K. 
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Figure 4.5: Variation of pressure and temperature with time for initially quiescent 
iso-octane and air mixtures at various ¢ov. All mixtures were expanded from 200 kPa 
and 303 K. 
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Figure 4.15: Variation of laser power attenuation and droplet number density with 
time for initially quiescent iso-octane and air mixtures at various rPov. All mixtures 
were expanded from 180 kPa and 303 K. 
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Figure 4.25: Comparison of aerosol generation at different types of fuel: (a) 
variation of D 10 with instantaneous pressure and (b) schematic representation of 
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Figure 4.26: Comparison of aerosol generation at different expansion rates: 
(a) variation of D 10 with instantaneous pressure and (b) schematic representation of 
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quiescent conditions at 200 kPa and 303 K. 
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Chapter 5 

Flame Observations and Burning Rates 

5.1 Introduction 

This chapter presents the experimental results of aerosol combustion under 

initially quiescent and turbulent conditions. Burning rates of laminar and turbulent 

flames have been derived by the spherical expanding flame technique discussed in 

Section 2.3. Effect of droplets was investigated by comparing flames of gaseous 

mixtures with those of aerosols at similar initial conditions. Flame observations of 

initially quiescent aerosol and gaseous flames are presented in Section 5.2. This 

includes observations during the ignition stage and throughout flame development at 

different tPov and DiO• Measurements of laminar burning rates of aerosol and gaseous 

flames are presented in Section 5.3, together with those of Markstein length, Lb and 

unstretched burning velocity, U/. The experimental results are also compared with 

those from other researchers. In Section 5.4, observations of aerosol and gaseous 

flames under turbulent conditions are presented, followed in Section 5.5 by 

measurements of their turbulent burning rates. Burning results of laminar ethanol-air 

flames are presented in Section 5.6. 

5.2 Observations of laminar iso-octane-air flames 

In this section, observations of flame structure within aerosol and gaseous 

flames at a range of initial conditions are presented. Flame images were acquired by 

schlieren imaging as described in Section 3.5.3. 

5.2.1 Flame development with different ignition systems 

Shown in Fig. 5.la is a sequence of gaseous flame development at initial 

conditions of tPov = 1.2, 100 kPa and 303 K, ignited using a fixed energy ignition 

unit, described in Section 3.2.3.1. Also shown in each image is the time from the 
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start of spark. It is shown in Fig. 5.la that after the spark was initiated, a bright spot 

was exhibited at the centre of the flame and lasted for about 8 ms after ignition. 

After 16 ms, the flame surface started to display small bumps at random locations 

across the flame front. As the flame propagated further, these bumps enlarged but 

there was no cell division. On further investigation, it was found that the fixed 

energy ignition unit has a spark duration of several milliseconds which has the 

obvious effect of melting the electrode. Since this produced inconsistent observation, 

as discussed in Section 6.2, the ignition unit was changed to a variable energy 

ignition unit, as described in Section 3.2.3.2. 

Shown in Fig. 5.lb is a sequence ofisooctane-air gaseous flame development 

ignited using the variable energy ignition unit. The initial condition of gaseous 

mixture was identical to that in Fig. 5.1a. A smooth surface on the flame front was 

observed throughout flame propagation in Fig. 5.1b and was seen to be stable 

throughout observation. Small cracks were visible on the right and left side of the 

flame surface after 16 ms from ignition and these were originated due to the 

interaction between flame and the spark electrode. A similar observation of flame 

propagation was found when the same experiment was repeated. Although the flame 

structure in Fig. 5.la is different from that in Fig. 5.1 b due to the appearance of 

small bumps, such phenomena did not cause any difference to the rate of flame 

propagation. Nevertheless, in order to avoid misinterpretation of flame observation 

between aerosol and gaseous flames in the present study, the use of the variable 

energy ignition unit was employed throughout the rest of the experiments. See 

Section 6.2 for further details. 

5.2.2 Ignition 

Figure 5.2 shows sequences of schlieren images of gaseous and aerosol flame 

kernels for fuel rich mixtures, ¢lOll = 1.4, during the first 3 ms after ignition. 

Measurements for D/O of 5 J.lm, 14 J.lm and 20 J.lm are shown. At these conditions, 

aerosol temperatures were varied between 275 K and 282 K, and pressures between 

104 kPa and 110 kPa. For gaseous flames, the conditions were 285 K and 110 kPa. 

All mixtures were ignited using the same spark electrode at identical ignition energy 

using the variable ignition unit, described in Section 3.2.3.2. Up to three 

experiments, denoted 1,2 and 3 in Fig. 5.2, were recorded at each condition. 
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It is shown in Fig. 5.2 that the size of flame kernel within 3 ms after ignition 

was an inverse function of D 10, with the gaseous flame being the largest. This trend 

indicates that the initial flame development of a gaseous flame was faster than for 

aerosol flames. However, this trend was reversed for the fuel lean mixtures, as 

shown in Fig. 5.3 for gaseous and aerosol flame at tPov = 0.9. In contrast to the trend 

presented for the richer mixtures in Fig. 5.2, Fig. 5.3 shows that for lean mixtures, 

the size of flame kernel was smallest in the gaseous flame and largest in the aerosol 

flame at D/O == 20 Jlffi. Clearly, this difference in flame size within the first 3 ms is a 

function of the complex interaction between ignition, diffusion and burning and this 

is discussed in Section 6.4.1. 

5.2.3 Aerosol and gaseous flame development 

Shown in Fig. 5.4 are schlieren images showing the growth of three 

expanding laminar iso-octane-air flames at ¢ov = 1.2. The circular boundary (150 mm 

in diameter) represents the optical access windows. The black horizontal object in 

each of images was the spark electrode holder. Figure S.3a shows a gaseous mixture 

ignited at 107 kPa and 283 K, while Figs. 5.3b and 5.3c show aerosol mixtures with 

D/O = S J..I.m and 141!m, ignited between 279-280 K and 100-105 kPa. Since there 

were negligible differences in initial pressure and temperature, it is assumed that the 

differences in the flame structure between Figs. 5.4a and 5.4c were entirely due to 

the presence of droplets. 

For the gaseous mixture, the flame had a smooth surface and was nearly 

spherical throughout observation. The long cracks visible on the flame surface were 

initiated by the perturbation by the spark electrode and then persisted throughout the 

range of observation. For the aerosol mixture in Fig. 5.4b, initially, the flame 

structure was similar to that in the gaseous mixture. However, differences started to 

appear at about J 0 ms after ignition. At about this time, small cracks and cel1s 

appeared that progressively increased throughout flame growth. As D 10 increased 

from 5 J..I.m (Fig. 5.4b) to 14 J..I.m (Fig. 5.4c), this development of cracks and cells 

became more prominent as indicated by the earlier onset of cracks and cells of about 

6 ms after ignition. Clearly, such observations demonstrate that aerosol flames are 

more unstable than those of equivalent gaseous flames, which manifests itself in 
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earlier onset of cellularities that would not be present in gaseous flames at similar 

conditions. 

Figure 5.5 shows a comparison between schlieren images of flames within 

aerosol and gaseous iso-octane-air mixtures at ¢loy ranging from 0.8 to 2.0 and D/O up 

to 20 J.lm. In all cases, the flame radius was approximately 48 mm which was the 

largest at which most flames could be fully observed through the windows at a wide 

range of equiValence ratios. This was less than the radius of the windows and is used 

to compare the flame structure between gaseous and aerosol mixtures in the later 

stage of flame propagation. Also shown in each flame image is the time from 

ignition. The aerosol mixtures were ignited at between 265-290 K and 93-125 kPa 

and gaseous mixtures were ignited at between 278-293 K and 95-125 kPa. The slight 

differences in initial pressure and temperature were unavoidable due to the method 

of aerosol generation using condensation technique as described in Section 4.7. For 

gaseous flames, the flame structure was smooth for lean and stoichiometric 

mixtures, indicating a stable flame. At ¢loy = 1.2, the flame surface displayed a few 

long cracks, or large cells. At ¢loy = 1.4, a large number of small cells were obtained, 

but at increasing tPov, the cellular structure appeared to diminish. Conversely, for 

aerosol flames, the degree of cellularity was more prominent, indicative of more 

unstable flames. Furthermore, the tendency towards unstable flame propagation was 

promoted with an increase in D/O. For example, at ¢loy = 1.0, the gaseous flame 

appeared smooth but a gradual transition to cellular structure was observed with an 

increase in D/O. However, it is interesting to observe that this trend was more 

apparent up to DJO = 14 J.lffi. At a larger DIO, for instance at 20 J.lm, the density of 

cells reduced, but the flame structure seems to be slightly distorted. Even the aerosol 

flame at tPov = 0.8, which appeared smooth up to a droplet size of 14 J.lm, presented a 

considerably distorted structure at D /0 = 20 J.lm. Further results that related with this 

comparison is addressed in Section 5.3.2. Nevertheless, Fig. 5.4 clearly demonstrates 

that aerosol flames are more unstable than an equivalent gaseous flame and this 

observation is more pronounced for richer mixtures. 
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5.3 Laminar burning rates in iso-octane-air mixtures 

Burning rates of quiescent aerosol mixtures were measured at a range of initial 

conditions. These were compared to burning rates of gaseous mixtures at similar 

conditions by igniting the mixture during expansion but before the onset of 

condensation. 

5.3.1 Flame speed development of gaseous mixtures 

Shown in Figs. 5.6 and 5.7 are the variations offlame speed with time, radius 

and stretch, for gaseous iso-octane-air mixture at pre-ignition conditions of ,pov = 0.9, 

97 kPa and 279 K. This is a typical data of gaseous flame development that has been 

described by many workers (Ali, 1995; Haq, 1998; Gillespie et al., 2000) and 

explained in Section 2.3.1. It is shown in Fig. 5.6b that the flame might be 

considered to be fully developed approximately at radii larger than 20 mm, as 

denoted by point (1). This is indicated by the reduced gradient of flame speed against 

radius. 

As shown in Fig 5.7, after a smooth propagating flame is established at point 

(1), the fundamental property of a laminar flame can be detennined by a linear 

extrapolation of the region (1) to (2) to zero stretch (continuous line in Fig. 5.7), as 

described in Section 2.3.1. In detennining the best linear extrapolation method that 

takes into account all data in region (1) to (2), two possible linear extrapolations 

were identified, as denoted by Lb,min and Lb,max, and the average value is calculated. 

From the flame speed at zero stretch, Ss, the laminar burning velocity, u/, can be 

calculated using Eq. (2.11). The slope of this linear extrapolation represent the 

sensitivity of the flame speed to stretch rate and is known as the Markstein length, 

Lb. In the present plot of Fig. 5.7, the value of Lb is of positive sign and its 

significance is explained in Section 2.3.1. 

5.3.2 Aerosol flame speed and comparisons with gaseous flames 

Shown in Figs. 5.8 and 5.9 are the variations of flame speed with radius and 

stretch rate for three aerosol flames at DJO = 5 Jlm and ¢ov = 0.8 (squares), ¢ov = 1.0 

(triangles) and ,pov = 1.2 (circles). In Fig. 5.8, corresponding schlieren photographs of 

the flames at a maximum viewable radius are shown. As in Fig. 5.7, the solid lines 
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in Fig. 5.9 are linear fits to the data points at which the flames were stable and were 

used to detennine Ss and Lb. The leanest mixture, ¢Oll = 0.8, in Figs. 5.8 and 5.9, was 

the slowest among those shown and was stable throughout the observed period. This 

is indicated by the smooth flame surface shown in Fig. 5.8. This flame was also 

affected by buoyancy in the later stages, as depicted by the corresponding schlieren 

photograph in Fig. 5.8, in which a smaller spacing can be seen between flame edge 

and window edge at the top in comparison to the bottom side. The flame in the 

stoichiometric mixture was also smooth and stable throughout propagation, as 

indicated by the photograph in Fig. 5.8. The flame of the richest mixture, tPov = 1.2, 

shown in Figs. 5.8 and 5.9, was the fastest throughout the observation and also 

displayed a high degree of cellularity. In all the flames shown in Figs 5.8 and 5.9, a 

gradual increase in flame speed, Sn, was noticeable. However, at a critical radius, the 

flame for the richest mixture, ¢Oll = 1.2, became unstable and later began to 

accelerate. This is shown clearly in Fig. 5.9 and is described in Section 5.3.3. 

Figure 5.10 shows the variations of flame speed with time and radius of 

aerosol and gaseous iso-octane-air mixtures at ¢Oll = 0.9, 1.4 and 2.0. The pressure 

and temperature are indicated for each curve (graphs plotted against time and radius 

used the same data) and, for the aerosol mixtures, values of D/O and ¢Jr, also are 

indicated. For clarity, each plot shows average values from up to three explosions 

with associated error bars. In Fig. 5.10f, for the aerosol mixture with D/O = 14flm, 

data from all three explosions are plotted along with the corresponding error bars. In 

general, the scatter of experimental data was slightly larger for the lean mixtures, 

Figs. 5.10a and 5.10b, possibly by 20 to 60%, than for the richer mixtures, Figs. 

5.1 Oc to 5. 1Of. 

In the lean flames of Figs. 5. lOa and 5. lOb, gaseous flames developed slower 

than aerosol flames. After 30 ms from ignition, all flames seem to have reached an 

approximately constant value, although aerosol flames at 5 flm and 14 Ilm exhibited 

small fluctuations. A notable exception to this trend was that at D /0 = 20llm, where 

significant oscillations in flame speed were observed throughout propagation. 

Further results of this phenomenon are addressed in Section 5.3.5. 

In the rich flames, shown in Figs. 5.1 Oc and 5.1 Od, gaseous flames developed 

faster than aerosol flames within the first 7 ms after the start of ignition. Conversely, 

the aerosol flames had lower flame speeds during this early stage, but attained higher 
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subsequent values throughout the later period of observation. This acceleration, 

relative to that of the gaseous mixture, was associated with flame instabilities, as 

shown in Fig. 5.5. For the very rich flames, ¢ov = 2.0, shown in Figs. 5.lOe and 5.1O£, 

the development of aerosol flames was remarkable in that they show a dramatic 

increase in flame speed compared to that in the gaseous phase and this increases 

rapidly with D}O. Such acceleration leads to a significant burning rate enhancement 

relative to the gaseous flames. 

Although the temperature was not constant for all of the curves in Fig. 5.10, 

the differences in each figure were negligible in all comparisons except for 

Figs. 5.10a and 5.lOb. Here, the temperature associated with different curves varied 

by 14°C, with the gaseous flames being at the highest temperature. This results in a 

higher gaseous flame speed, possibly by up to 5% (Lawes et ai., 2006), than for the 

coldest aerosol mixture. Hence, for identical temperatures, the effect of D 10 on the 

flame speed might be a little greater than is shown in Figs. 5.l0a and 5.10b. 

Nevertheless, the overall trends would be unchanged. 

In the present work, Sn,48, which corresponds to the flame speed at a radius of 

approximately 48 mm was used to characterise the burning rate at the later stage of 

flame propagation. It should be noted that Sn,48 is not a fundamental parameter. This 

parameter was chosen because there was some difficulty to determine unstretched 

flame speed, Ss for flames that cellular immediately after the ignition period 

(described in Section 5.3.3). In addition, the use of Ss in aerosol flames does not 

properly describe the effect of droplets on flame propagation. Since the 

determination of Ss does not account for flame acceleration due to instabilities, the 

variation of Ss as a function of equivalence ratio can be represented by the results of 

unstretched burning velocity, Uf, as described in Section 5.3.4. Shown in Fig. 5.11 

are the variations of flame speed, measured at a radius of 48 mm, Sn,48, at a wide 

range of ¢ov, for gaseous and aerosol iso-octane-air mixtures at similar initial 

pressures and temperatures. This plot shows the stretched flame speed that 

corresponds to the schlieren images as shown in Fig. 5.5. The symbols in Fig. 5.11 

represent the average value of up to three measurements at each condition and the 

curves were best fits through the experimental data points. It is shown in Fig. 5.11 

that at lean and stoichiometric flames, the effect of droplet size was not significant 

on the measured Sn,48. However, for increasingly rich flames, Sn,48 became a strong 
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function of Dlo. This was particularly significant at very high tPov and large Dlo (20 

",m). The curve at Dlo = 18 ",m appeared to be in a transition regime at which 

droplets were reducing the burning rate at rich mixtures (1.1 S tPov S 1.6), but 

increasing it at very rich mixtures (tPov ~ 1.8). At bigger droplet sizes (DIO> 18 ",m), 

the effect was even more dramatic, which can be observed at DIO = 20 ",m, where the 

very rich aerosol mixture (tPov = 2.0) burns nearly as fast as a gaseous stoichiometric 

mixture. 

5.3.3 Flames with early onset of instabilities 

Figure 5.12 shows four graphs of flame speed with stretch rate of rich 

gaseous and aerosol iso-octane-air mixtures at (Jov = 1.4. In the gaseous flame of 

Fig.5.12a, the flame had a steady increase in flame speed and the flame front 

remained smooth and stable, as a result of the high stretch rate. As the flame 

expanded, the stretch rate is reduced. As stretch rate is reduced further, a point was 

reached where the flame became unstable and cellularity develops and this is 

associated with a significant increase in flame speed. As denoted in Fig. 5.12a, the 

point at which the flame speed begins to accelerate rapidly with decreasing stretch 

rate is expressed as Pecl, as defined in Section 2.3.2. For the aerosol flame at 

Dlo = 5 ",m, shown in Fig. 5.12b, a similar trend of flame speed variation with 

stretch rate was found as in the gaseous flame in Fig. 5.12a, except that the onset of 

acceleration which denoted by Pecl was earlier than gaseous in Fig. 5.12a and the 

acceleration of flame speed due to cellularity became more pronounced. The 

influence of Pecl on aerosol flame instabilities is discussed in Section 6.4.3. At a 

larger DIO, as in Figs 5.12c and 5.l2d, cellularity was seen to develop immediately 

after the ignition period in aerosol flames. This is indicated by significant 

acceleration in flame speed at stretch rate, a = 0.4 ms· l
. As a result, the linear 

extrapolation for calculating the unstretched laminar burning properties such as Lb 

and Ss could not be determined. 

5.3.4 Markstein length and unstretched burning velocity 

Figure 5.13 shows the variations of L6 (defined in Section 2.3.1) for iso­

octane gaseous and aerosol flames at a wide range of (Jov. Each plot shows average 
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values, as depicted in Fig. 5.7, from up to three experiments, and a best fit curve was 

obtained for each condition. For values of ¢ov less than about 1.3, gaseous flames had 

the highest positive values of Lb, which reduced with increasing D 10 and ¢ov 

However, at values of ¢ov greater than 1.3, Lb became negative and decreased with 

decreasing D 10. It is interesting to note that the gradient of Lb with ¢ov reduces with 

Dlo such that an extrapolation of the data in Fig. 5.13 to Dlo = 20 j.lm might yield a 

constant value of Lb as indicated by the dotted line. 

Shown in Fig. 5.14 are the variations of u, (defined in Section 2.3.1) over a 

wide range of ¢ov for gaseous and aerosol iso-octane-air mixtures. This plot shows 

the average value of the experimental data. The value of u/ was obtained by 

application ofEq. (2.11) to experimental results such as those shown in Fig. 5.9. The 

solid line in Fig. 5.14 was obtained by drawing a best fit curve through the 

experimental results for gaseous mixtures. The scatter in the gaseous data is 

indicated by error bands. It is clear from Fig. 5. I 4 that the average value of u/ of an 

aerosol mixture is similar to that of an equivalent gaseous mixture. This observation 

is further strengthened by the fact that data points for aerosol mixtures lie within the 

error bands of an equivalent gaseous mixture. This might suggests that the laminar 

burning velocity of an aerosol iso-octane-air mixture probably remains unaffected by 

droplets within the range of the present work. This conclusion differs from that for 

flame speed shown in Fig. 5.11 because the latter includes the influence of 

instabilities while the former does not. 

Shown in Fig. 5.15 are the variations of u, with DiO for iso-oetane-air 

mixtures at ¢ov of 0.8, 1.0 and 1.2 at a range of pressures and temperatures. Also 

shown are the data points from previous measurements (Lawes et al., 2006; 

Sulaiman, 2007) using the same apparatus as in the present work. For ¢ov = 0.8, the 

present data is available only up to DIO = 5 j.lm because flame oscillations (addressed 

in Section 5.3.5) prevented reliable measurements thereafter. Further, in the case of 

¢ov = 1.2 and D 10 greater than 10 j.lm, values of u, could not be determined due to the 

early onset of instabilities, as explained in Section 5.3.3. It is shown in Fig. 5.15 that, 

in general, the present measurements showed good agreement with those taken 

previously. Reasons for the ability of the previous authors to obtain data at 

conditions not possible by the present author are unclear. For overall stoichiometric 
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mixtures, the present results show a slightly higher value than the previous results by 

up to 10%. This was probably due to differences in the initial pressure. 

5.3.5 Oscillating flames 

Shown in Fig. 5.16 is the variation of flame speed with radius for an 

oscillating flame of iso-octane-air aerosol at tPov = 0.8, DIO = 14 /lm, P = 95 kPa and 

T = 273 K. Also shown in Fig. 5.16 are corresponding schlieren images at selected 

radii to indicate the structure of flame surface. At approximately 6 mm radius, the 

flame speed reaches a minimum value, indicated by point (1), as the effects of the 

spark decayed. After this point, the flame speed begins to accelerate until it reaches a 

maximum, indicated by point (2) in Fig. 5.16. At this point, the flame displayed a 

mildly cellular surface structure. As the flame developed further, it slowed down 

until it reached a second minimum, at which the flame surface appeared smooth, as 

shown by point (3) in Fig. 5.16. This phenomenon was repeated throughout 

observation with alternating maximum and minimum in the flame speed, together 

with cellular and smooth flame structure. 

Figure 5.17 shows the variations of flame speed with time for iso-octane-air 

aerosol at tPov = 0.8, pressures between 93 and 120 kPa and temperatures between 

263 and 276 K. The droplet sizes were 0 /lm (thin continuous line), 5 /lm (thick 

continuous line), 14 /lm (dash dot line) and 20 /lm (dash line). The symbols in 

Fig. 5.17 have been removed for clarity. It is indicated in Fig. 5.17 that large flame 

oscillations in the iso-octane aerosol mixture occurred for aerosols at DJO= 14 /lm 

and D 10 = 20 /lm, as depicted by large fluctuations in flame speed throughout 

observation. These fluctuations in flame speed were accompanied by a periodic 

appearance and disappearance of cellular flame structure, as shown in Fig. 5.16. It is 

interesting to note that the flame oscillation frequency is a clear function of D JO as 

indicated by the larger time interval between the peaks with the larger D /0. These 

oscillations are in a good agreement with those obtained in the previous work as 

described in Section 2.6.4. Although this represents an interesting aside to the 

present work, further investigation is beyond the scope of the present study. 
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5.4 Turbulent flame observations 

This section presents observations of aerosol and gaseous flames of iso-octane 

and air mixtures under turbulent conditions. The effect of fine droplets up to 14 J.1m 

in diameter on turbulent flames was examined at various values of u' between zero 

and 4.0 mls. 

5.4.1 Ignition 

Shown in Fig. 5.18 are sequences of schlieren images of gaseous and aerosol 

flame kernels for fuel-lean mixtures, ;ov = 0.9, at u'= 0.5 mls during the first 3 ms 

after ignition. Measurements for DJO of 5 J.1m and 10 J.1m are shown. At these 

conditions, the temperatures of the aerosols varied between 268 and 277 K and 

pressures between 97 and 108 kPa. For gaseous flames, the conditions at ignition 

were 293 K and 100 kPa. Similarly, as previously discussed in Section 5.2 relating to 

laminar flames, the variation in pre-ignition conditions was inevitable due to the 

droplet generation method. Ignition of all mixtures was initiated at the centre of the 

combustion vessel at identical ignition energy, as described in Section 3.2.3. Up to 

five experiments were recorded and measured at each condition. 

It is shown in Fig. 5.18 that for ;ov = 0.9, the size of flame kernel was an 

inverse function of droplet size, with the gaseous flame being the largest at all times. 

However, this trend was reversed for fuel rich mixtures at ;ov == 1.2, as shown in Fig. 

5.19. Similar to Fig. 5.18, the aerosols in Fig. 5.19 varied at similar values of DJO 

and also had a slight difference of pressure and temperature during ignition. In 

contrast to the trend presented for lean mixtures in Fig. 5.18, it is seen in Fig. 5.19 

that for rich mixtures, the size of flame kernel was smallest in gaseous flame and 

biggest in aerosol flame at D10 = 10 J.1m. Clearly, the difference in the flame size 

within the first 3 ms can cause differences in early flame propagation rates. This is 

discussed in Section 6.5.1, together with the reversal trend between development in 

fuel-lean and fuel-rich conditions under turbulent conditions. 

5.4.2 Aerosol and gaseous flame development 

Shown in Fig. 5.20 are schlieren images of the growth of three expanding 

iso-octane-air flames at u'== 0.5 mls and ¢ov= 0.9 during the first 30 ms of flame 
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propagation. Within the first 5 ms, all flames had a smooth surface with mild 

wrinkles due to turbulence. At 10 ms, all flames had clear wrinkles which 

progressively increased throughout the rest of flame growth. During these 

observations, the gaseous flame was largest relative to the aerosol flames which 

indicates that it had faster propagation. The two aerosol flames, initially, displayed 

nearly similar flame sizes until 15 ms. However, after 15 ms, the aerosol flame at 

D 10 = 10 Ilm appeared slightly larger in size and had more wrinkles relative to the 

aerosol flame at D 10 = 5 Ilm. Although such observations in flame structure were 

obtained from a single experiment, consistency of observation was obtained in up to 

five experiments at each condition. 

Figure 5.21 shows a comparison of flame growth and development similar to 

Fig. 5.20 but in this case for fuel rich mixtures at t/Jov = 1.2. The flames in Fig. 5.21 

are similar to those in Fig. 5.19 except only one flame was selected at each 

condition. Initially, all flames started to show wrinkles due to turbulence as early as 

3 ms after ignition started. Such wrinkles developed gradually throughout the flame 

growth and became more intensified towards a large flame. It is interesting to note 

that the degree of wrinkling in the case of aerosol flames was slightly higher relative 

to the gaseous flame, in which the aerosol flame at DIO = 10 Ilm had the highest 

degree of wrinkling. It is also shown in Fig. 5.21 that the aerosol flame at D}o = 10 

!lID had the largest flame size compared to the other flames throughout the 

observation, which indicates the fastest propagation. Clearly, this observation, 

obtained in a fuel-rich mixture, is reversed from the observation in a fuel lean 

mixture in Fig. 5.20. 

Shown in Fig. 5.22 are schlieren images of the development of three 

expanding iso-octane-air flames at t/Jov = 1.2 under the highest measured turbulent 

condition of u ,= 4.0 mls. At these conditions, the temperatures of the aerosols were 

varied between 267 and 277 K and pressures between 93 and 106 kPa. For gaseous 

flames, the conditions at ignition were 293 K and 100 kPa. The same comment 

applied as in Fig. 5.18 about the variation in pre-ignition conditions between aerosol 

and gaseous mixtures. It is shown in Fig. 5.22 that there were insignificant 

differences in the structure of these three flames throughout observation. However, 

since the level of turbulence was the highest in the present work Cu ' = 4.0 mls), the 

flame kernel was significantly more wrinkled and distorted than those of lower 
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turbulence, as in Fig. 5.21. As a result of higher turbulence, the flame propagation in 

Fig. 5.22 was faster than in Fig. 5.21, as indicated by the time scale in the two 

Figures. 

Shown in Fig. 5.23 are schlieren images of aerosol and gaseous iso-octane­

air flames at ¢ov = 0.9 and at different values of u I between zero and 2.0 mls. The 

images are limited to u ':$ 2.0 mls due to a failure to ignite the mixtures at higher 

levels of u ~ All images were taken at a mean flame radius of 40 rnrn. This radius 

was the largest at which most flames were observed. Also shown in each flame 

image is the time from ignition. For the gaseous mixture at u I = 0, the flame was 

smooth and nearly spherical. As u' increased from 0.5 to 2.0 mis, the flames started 

to wrinkle and deform considerably relative to the laminar flame. The degree of 

wrinkling was also shown qualitatively to increase with u ~ In the case of aerosol 

flames, a slightly unstable flame with small bumps was found for laminar aerosol 

flame at DJO = 10 J..Ull. As u' increased from 0.5 to 1.0 mis, the flames started to 

wrinkle and the degree of wrinkling increased as u'increased. However, at u'= 2.0 

mis, the flame images were unusual, in that both aerosol flames were obstructed by 

unknown 'black clouds' (Sulaiman, 2007). These were observed at random locations 

near the flame front and started to appear approximately between 8 and 10 ms after 

ignition and increased in quantity throughout flame propagation. The observation of 

'black clouds' was significant because they seem to be visible only in aerosol 

flames. This is addressed in Section 6.2. 

Figure 5.24 shows a similar comparison of flame structure between gaseous 

and aerosol flames as in Fig. 5.23 but in this case for fuel-rich mixtures at rPov = 1.2 

and u I between zero and 4.0 mls. Under quiescent conditions, u' = 0, the gaseous 

flame was smooth and nearly spherical. However, the corresponding aerosol flames 

showed unstable structure with cracks and cells and the level of cellularity was 

increased as D lo increased. In low turbulence, u'= 0.5 mis, the structure of aerosol 

flames still displayed more wrinkles than in the gaseous flame, indicating that 

droplet induced flame instabilities were still present. However, at u'= 1.0 to 4.0 mfs, 

the difference in flame structure between aerosol and gaseous mixtures was much 

less obvious, suggesting that increasing levels of turbulence eventually dominate 

over any effects of cellular instabilities. 
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5.5 Turbulent burning rates in isooctane-air mixture 

Following the observations in Section 5.4, this section presents measurements 

of turbulent burning rates for both gaseous and aerosol iso-octane-air flames. The 

calculation procedures are described in Section 2.3.3. 

5.5.1 Flame speed development in gaseous mixtures 

Shown in Fig. 5.25 are the variations of radius with time for turbulent 

gaseous iso-octane-air mixtures at (JOY= 1.2, 100 kPa and 303 K for two different 

u'; 0.5 and 4.0 mls. The asterisk markers represent the results for u'= 0.5 mls and 

the circles represent those for u'= 4.0 mls. For each condition, up to five 

experiments were recorded. It is shown in Fig. 5.25 that the variation of flame radius 

with time is a strong function of u ~ As the flames propagated further, the flame 

radius at u ' = 4.0 mls is shown to be always higher than that of u ' = 0.5 mls. 

Shown in Figs. 5.26 and 5.27 are the measured turbulent flame speeds, 

plotted against time and radius after ignition for the mixtures in Fig. 5.25. The 

turbulent flame speed was calculated using Eq. (2.29). The scatter of the results was 

small for u'= 0.5 mls but remarkably high for u'= 4.0 mis, possibly by up to a factor 

of 4. This uncertainty was consistent with random variations associated with 

turbulence (Nwagwe et al., 2000) and was probably due to real cyclic variations 

rather than to experimental errors. It is shown in Figs. 5.26 and 5.27 that a regime of 

spark affected propagation in early stages, as described for laminar flames in Section 

2.3.1, was also exhibited in the turbulent flames. The effect of turbulence on flame 

propagation was significant throughout the flame growth, which is shown in Figs. 

5.26 and 5.27 where the flame speed increased with u' and became more prominent 

as the flame developed further. 

5.5.2 Aerosol flame speed and comparisons with gaseous flames 

Figure 5.28 shows the variations of flame speed with time and radius for 

gaseous and aerosol lean mixtures, (JOY= 0.9, and values of u' at 0, 0.5 and 1.0 mls. 

The results are limited to u':S 1.0 mls due to obscuration of the flame edge by the 

'black clouds' at u' = 2.0 mis, as shown in Fig. 5.23 and discussed in Section 6.2. 

The ignition pressure and temperature are indicated for each curve (graphs plotted 
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against time and radius used the same data) and, for the aerosol mixtures, the values 

of DIO (5Jlm, 10Jlm, 14Jlm) and rp" also are indicated. For clarity, each plot shows 

the average value of between three and five explosions with associated error bars. In 

Fig. 5.28c, for the gaseous mixture, data from all five explosions are plotted along 

with the corresponding error bars. In general, the scatter of experimental data was 

small for quiescent mixtures but it increased with u ~ This was probably due to 

random variations associated with turbulence as described in Section 5.5.1. 

It is shown in all data in Fig. 5.28 that a regime of spark affected period was 

visible within 10 ms after the start of ignition. After this period, the propagation of 

flame in quiescent mixture displayed evidence of flame speed stabilisation while the 

propagation of turbulent flame displayed a sustained increase in flame speed with 

time and radius. For quiescent mixtures, shown in Figs. 5.28a and 5.28b, the 

propagation of aerosol flames was faster than that of gaseous flames throughout the 

observation. However, at low turbulence, where u'= 0.5 mis, the trend was reversed 

to that of u I = 0 mis, where gaseous flames developed faster than aerosol flames 

throughout the propagation. As u' increased to 1.0 m/s, the variation of flame speed 

with time and radius was seen to be independent of the presence of droplets. 

Shown in Figs. 5.29 and 5.30 are similar plots to those in Fig. 5.28, but for 

fuel rich mixtures at r/>ov = 1.2, and values of u I at 0, 0.5 and 1.0 mls (Fig. 5.29) and 

u' at 2.0 and 4.0 mls (Fig. 5.30). The general trend in all data in Figs. 5.29 and 5.30, 

after the spark affected period of about 3 ms, was a sustained increase in flame speed 

with time and radius. The flame growth rate was also increased with u~ In the 

quiescent mixtures of Figs. 5.29a and 5.29b, gaseous flames developed faster than 

aerosol flames within the first 5 ms before reaching an approximately constant value 

of about 2.5 mls. Conversely, the two aerosol flames developed slower than the 

gaseous flames but continued to accelerate throughout the period of observation and 

the maximum flame speed increased with D /0. This acceleration was associated with 

flame instabilities due to droplets, as shown in Fig. 5.24. 

At u'== 0.5 mis, as shown in Figs. 5.29c and 5.29d, the effect of D/O on flame 

propagation was still obvious, where both aerosol flames propagated faster than 

gaseous flames, particularly in the later stage. This enhancement is consistent with 

the increase in cellular structure of aerosol flames compared with that of gaseous 

flames, as shown in Fig. 5.24. As u'increased to 1.0 mis, as shown in Figs. 5.2ge 
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and 5.29f, the variation of flame speed with time and radius between gaseous and 

aerosol flames was not consistent. Initially, all flames propagated with nearly the 

same rate. After 5 ms, aerosol flames at DJO = 5 /lm developed slower than gaseous 

flames. Conversely, aerosol flames at DJO = 10 /lm developed faster than aerosol 

flames at D 10 = 5 /lm and closer to that of gaseous flame propagation. This trend was 

unexpected and further discussion on this result is presented in Section 6.5.2. At 

higher turbulence, u'= 2.0 and 4.0 mis, as shown in Fig. 5.30, the difference in the 

flame speed variation with time and radius between gaseous and aerosol flames 

became less obvious. 

As described in Section 5.3.2, it is important to recognise that the 

temperature was not constant for all comparisons in Figs. 5.28 to 5.30. For example, 

in Fig. 5.28, the highest temperature difference between gaseous and aerosol was up 

to 28 K, while in Figs. 5.29 and 5.30 it was up to 26 K, with the gaseous flames 

being at the highest temperature in each Figure. Such differences in temperature 

might result in increase of gaseous flame speed, possibly by up to 10% more than for 

aerosol mixture (Lawes et al., 2006). Nevertheless, as explained in Section 5.3.2, 

this variation would not alter the overall trends of flame propagation due to the 

presence of droplets. 

5.6 Burning rates of quiescent ethanol aerosol mixtures 

In the present work, experimental investigation on combustion of droplet 

clouds has been extended to that of ethanol. The burning rates of quiescent ethanol 

aerosol mixtures were measured at near atmospheric pressures and temperatures. 

The effect of fine droplets between 5 and 31 /lm in diameter was examined at 

tPov between 0.7 and 1.2. Comparisons of flame propagation were made between 

ethanol gaseous and aerosols mixtures at similar conditions. 

5.6.1 Flame observations 

Shown in Fig. 5.31 are schlieren images of the growth of three expanding 

laminar ethanol-air flames at tPov= 1.2. Figure 5.31a shows a gaseous mixture ignited 

at 100 kPa and 300 K, while Figs. 5.31b and 5.31c show aerosol mixtures at 5 /lm 

and 12 /lm, ignited at between 298-300 K and 109-115 kPa. In general, a similar 
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observation of flame structure as in iso-octane-air flames in Fig. 5.4, was found in 

ethanol-air flames. For gaseous flames, smooth surface and nearly spherical flame 

were recorded throughout observation. For aerosol flames at DIO = 5 Ilm, 

development of cracks and cells on the flame surface was observed as early as 9 ms 

after the mixture ignited. However, for the 12 Ilm droplets, the development of 

cracks and cells appeared to become less obvious than for flames at D10 = 5 Ilm. 

Figure 5.32 shows a comparison between the flame structure at a flame 

radius of approximately 48 mm of gaseous and aerosol mixtures, for ¢ov ranging 

from 0.8 to 1.2 and D/O up to 31 Ilm. This comparison was similar to that for the iso­

octane-air flames in Fig. 5.5, except that the range in ¢ov was limited to 1.2. Also 

shown in each flame image is the time from ignition. The variation in pre-ignition 

conditions for ethanol-air mixture was unavoidable and varied between pressure of 

96-119 kPa and temperature of 289-300 K. For gaseous flames, the flame structure 

was smooth and stable at a wide range of ¢ov. Conversely, for aerosol flames, the 

flame structure displayed cracks and shallow cells. For lean and stoichiometric 

aerosol flames, the development of cracks and cells became pronounced as DIO 

increased to 31 Ilm. However, for aerosol flames at ¢ov = 1.2, the degree of 

cellularity was remarkable only for aerosol flames at DIO = 5 Ilm and gradually 

became less cellular with DIO larger than 12 Ilm. It is interesting to note that, at a 

wide range of ¢ov, increasing DIO beyond 12 Ilm showed a slight distortion on the 

flame surface and this became apparent with leaner mixtures and bigger droplets. 

5.6.2 Burning rates of laminar gaseous and aerosol mixtures 

Shown in Fig. 5.33 is the variation of flame speed, at a radius of 48 mm, 

S".48, at a wide range of ¢ov, for aerosol and gaseous ethanol-air mixtures at similar 

initial pressures and temperatures. Similar to iso-octane-air flames in Fig. 5.12, Sn.48 

was used as characteristic flame speed for comparing the burning rate between 

gaseous and aerosol mixtures in the present work. This plot shows the average value 

of the experimental data and the trend was obtained by drawing a best fit curve 

through the averaged data points. It is shown in Fig. 5.33 that in the lean flames, the 

effect of fine droplets, up to 23 )lm, was not significant on the measured Sn.48. 

However, as D/O increased to 31 Ilm, there was a remarkable enhancement in the 
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measured Sn,48, possibly by up to 22 % than that of equivalent gaseous flames. 

However, for stoichiometric and rich flames, such a trend was reversed. Aerosol 

flames at 31 Jlm showed slowest propagation than the other flames, possibly by up 

to 15 % slower than the equivalent gaseous flame. Although the effects of fine 

droplets up to 23 J.lm was also insignificant on the measured Sn.48 of rich flames, due 

to cellularity, as shown in Fig. 5.31, aerosol flames at 5 and 12 !lm had a slight 

enhancement on the measured Sn.48 probably by up to 4 % than the equivalent 

gaseous flames. Two important observations can be made from the results in Fig. 

5.33. First, the measured Sn,48 was roughly independent of DIO up to 23 !lm 

throughout a wide range of tPov. Second, as DIO increased beyond 23 !lm, there was a 

remarkable enhancement of Sn.48 in the lean flames but a reduction of Sn.48 in the rich 

flames. 

Shown in Fig. 5.34 are the variations of Lb (defined in Section 2.3.1) for 

aerosol and gaseous flames of ethanol-air mixtures at a wide range of tPov. Each plot 

shows average values and a best fit curve was obtained for each condition. In 

general, a similar trend of Lb, as shown by iso-octane-air flames in Fig. 5.13, was 

obtained for ethanol-air flames. For gaseous flames, as rPov increased, Lb decreased. 

In case of aerosol flames, as D 10 increased, the reduction in Lb was only appreciable 

up to tPov = 0.9. For tPov greater than 0.9, the reduction became less pronounced and 

further became insignificant to the tPov. 

Shown in Fig. 5.35 are the variations of u/ (defined in Section 2.3.1) with DJO 

for ethanol-air mixtures at tPov of 0.8, 1.0 and 1.2 at a range of pressures and 

temperatures. Also shown in Fig. 5.35 by the cross symbols are the experimental 

values from Hayashi ef al., (1976). In general, the value of u/ in the present work, at 

each condition of tPov, was shown to be slightly lower, possibly by up to 12% than 

those in Hayashi ef al. (1976). This was probably due to the lower initial temperature 

in the present work, possibly by up to 38 K than that in Hayashi et al. (1976). This is 

supported by Bradley et al. (1998) who showed that, for stoichiometric gaseous 

flames, an increase in temperature of about 30 K would increase u, by about 10%. 

Nevertheless, both values from the present work and from Hayashi et al. (1976) 

show a similar trend at each tPov. At tPov :=: 0.8, the results suggest that u, was probably 

unchanged by the presence of droplets. However, at stoichimetric and tPov = 1.2, 
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droplets show an effect to the variation of u/ with DIO where it decreases as DIO 

mcreases. 

Shown in Fig. 5.36 are the variations of u, at a wide range of tPov for gaseous 

and aerosol ethanol-air mixtures. Each plot shows average values and best fit curves 

were obtained for each condition with associated error bars. At ,pov = 0.7, only data 

up to 12 J.Lm were available, since the larger droplets (beyond 12 J.Lm) experienced 

the oscillating phenomenon as described in isooctane-air flames in Section 5.3.5. It 

is shown in Fig. 5.36 that the effect of droplet size was important to the variation of 

u/ at a wide range of ';ov. In the case of stoichiometric and rich flames, an increase in 

DIO caused a significant reduction in U/. However, in lean flames, the reduction in u{ 

due to DJO occurred only up to DIO = 12 /-lm. As DIO increased beyond 12 /-lm, the 

value of Ul appeared to increase. Also shown in Fig. 5.36, for comparison, is the 

smooth curve for gaseous iso-octane reproduced from Fig. 5. 14. It clearly illustrates 

that ethanol flames are faster than iso-octane flames. Also, a comparison of Figs. 

5.14 and 5.36 shows that ethanol is much more sensitive to DIO than iso-octane and 

this is discussed in Section 6.4.4. 
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Figure 5.1: Comparison of effect of ignition system on laminar flame propagation for gaseous iso-octane-air 
mixtures at ~ov=1.2, 100 kPa and 303 K. (a) Fixed energy ignition unit, and (b) variable energy ignition unit. 
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Figure 5.2: Effects of droplets on ignition and initial flame growth of initially quiescent iso-octane-air mixtures, ¢ov=1.4. 
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Figure 5.3: Effects of droplets on ignition and initial flame growth of initially quiescent iso-octane-air mixtures, ,pov=O.9. 
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Figure 5.4: Typical development of laminar iso-octane-air flames at ¢ov = 1.2 for, 
(a) gaseous mixture, (b) aerosol at D 10 = 5 ~m and ( c) aerosol at D /0 = 14 ~m. 
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iso-octane-air mixtures at various ¢ov and D /0. 
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Figure 5.6: Variation of flame speed with (a) time, (b) radius, for gaseous iso-octane-air 
mixtures at ¢ov= 0.9,97 kPa and 279 K. 
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Figure 5.10: Variation of flame speed with time and radius for gaseous and aerosol iso­

octane-air mixtures at ¢Jov = 0.9, 1.4 and 2.0. 
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Figure 5.12: Typical variation of flame speed with stretch rate for iso-octane-air 
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Figure 5.18: Effects of droplets on early stage of flame propagation under turbulent condition, u'= 0.5 mls for iso-octane-air 
mixtures at rpov = 0.9 
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Figure 5.19: Effects of droplets on early stage of flame propagation under turbulent condition, u' = 0.5 mls for iso-octane-air 
mixtures at rpov= 1.2 
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Chapter 6 

Discussions 

6.1 Introduction 

This Chapter contains a discussion of laminar and turbulent burning results 

that were presented in Chapter 5. This is placed in context in relation to previous 

experimental and theoretical works. In Section 6.2, the effect of using different 

ignition systems on comparisons with previous work is discussed. This is followed 

in Section 6.3, by discussion of droplet evaporation under laminar and turbulent 

conditions. In Section 6.4, the effects of droplets on laminar flames are discussed. 

This includes discussion on the effects of droplets during the early stage, later stage 

propagation, flame instabilities and unstretched burning velocity. Finally, the effect 

of droplets in turbulent flames is discussed in Section 6.5. 

6.2 Effect of ignition unit on comparisons with previous work 

In the earlier stages of the present study, ignition of combustible mixtures was 

performed using a large spark from a fixed energy ignition unit, described in Section 

3.2.3.1. This system was used for obtaining good consistency of results when 

comparing with previous works that used the same ignition system (Atzler, 1999; 

Marquez, 2003; Sulaiman 2007). However, there have been problems with its use 

which were reported by Sulaiman (2007), but no action was taken to mitigate the 

problem. These issues are discussed below and the present author changed the 

ignition unit to the one described in Section 3.2.3.2. 

Shown in Figs. S.1a and 5.1 b are sequences of gaseous flame development 

taken with the previous ignition unit and with the one used throughout this study. As 

described in Section 5.2.1, flame observation with the previous unit showed the 

existence of bright spots in the early stage of flame development and the appearance 

of bumps on the flame structure at random locations in the later stage of 

propagation. These structures were not observed with the present unit. This has been 
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investigated by Sulaiman (2007) who used natural light imaging as shown in Fig. 

6.1. Here, a sequence of natural light images of a spark in air (without fuel) is shown 

at 100 kPa and 303 K using the previous unit, described in Section 3.2.3.1. A bright 

spot was remained at the spark location for about 12 ms after spark ignition. More 

importantly, after 6 ms from ignition, splashes of bright objects were emitted from 

the spark kernel. Sulaiman (2007) suggested that these splashes were fragments of 

molten metal from the electrode as a result of high ignition temperature. He also 

demonstrated that the observation of black clouds in turbulent aerosol flames, as 

shown in Fig. 6.2, was related to the interaction between molten metal and droplets. 

The present author believes that the most likely reason for these phenomena is the 

excessive energy and long spark duration in the previous ignition unit. The use of a 

large ignition energy and long spark duration can cause the tip of the electrodes to 

melt. Further, this long spark duration is unhelpful in the ignition process since, after 

about a millisecond, the flame has propagated, far from the spark kernel, as shown in 

Fig. 5.1a. Therefore, the present author used another ignition unit, with a smaller 

spark duration, as described in Section 3.2.3.2, and this resulted in successful 

ignition of combustible mixtures. However, due to the use of different ignition 

systems, care must be used in any comparison of results from both systems. This is 

discussed below. 

Shown in Fig. 6.3 is a graph of flame speed against time for gaseous flames 

presented in Fig. 5.1 b and from Sulaiman (2007) at exactly similar conditions. The 

cross symbols with chain-dashed curve represent flames ignited using the previous 

unit and the square symbols with solid curve represent flames ignited using the 

present unit. In the early stage of propagation, within 6 ms after ignition, the 

previous unit produced flame relatively overdriven than the present unit. This is an 

expected result owing to higher ignition energy. Between 6 ms and 14 ms, both the 

curves start to converge towards attaining identical values of flame speed. After 

about 16 ms, both curves are similar although the propagation by the previous unit 

shows slightly higher values of S" by about 2%. It is suggested that this difference 

was due to mild cells and bumps on the flame surface that generated due to 

interaction of molten metal with the flame front. As the flame propagated further and 

the effect of molten metal subsided, both the propagations became almost identical. 

Therefore, on the basis of the results in Fig. 6.3, the present author suggests that 



139 

usage of different ignition system does not produce any significant difference in the 

measurement of burning rates. However, the use of ignition with excessive energy 

might produce an unstable flame structure which is although not a real flame 

instability, but may lead to mistaken conclusions on intezpretation of flame 

cellularities. 

6.3 Evaporation of droplets in laminar and turbulent flames 

As described in Section 2.6.1, the understanding of droplet evaporation is 

important for investigating the combustion of droplets. For this, it is imperative to 

investigate the range of droplets that is fully evaporated during or prior to 

combustion in the present work. However, the present experiments did not allow a 

simple analysis of droplet evaporation. This is because at ignition, the initial 

temperature was low (normally less than 280 K) and the mixture was in the wet 

regime. Clearly, there is no evaporation at these conditions. Evaporation can only 

occur when conditions change, such as when droplets advance into a higher 

temperature zone, within the preheat region of the flame. 

Although the present experimental conditions are difficult to simulate, an 

attempt is made here to estimate droplet evaporation of a single droplet 

instantaneously placed into air at a given condition. Figure 6.4 shows variation of 

droplet lifetime, TD, estimated from Eq. (2.42), with droplet diameter for isooctane at 

100 kPa and 273 K. The dashed line represents fl, defined as the time taken for a 

droplet, at a burning rate, Un, to reach a reaction zone located within a distance of 

preheat zone. Haq (1998) showed that the preheat zone thickness was typically of the 

order of half a milimeter (see Section 6.4.1). Using this value and burning rates of 

stoichiometric isooctane, yields a critical droplet diameter, of about 35 ~m, below 

which droplets fully evaporate before reaching the reaction zone. Since this value is 

larger than the droplet diameter studied in the present work, this suggests that there 

is no droplets penetrate the reaction zone and result in a single phase flame 

propagation. Yet, this estimation contradicts the result of Sulaiman (2007) who 

showed at certain conditions, droplets can survive the flame front. However, in a real 

situation, for example in combustion engines, droplets are likely to fully evaporate 

before reaching the reaction zone since the initial condition of combustion is much 

higher than the present work. Although the estimation in Fig 6.4 suggests that 
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droplets are fully evaporated, it is likely that rapid increase in volume expansion due 

to evaporation and inevitable heterogeneous mixture in the reaction zone due to 

improper mixing could have significant effect on flame instability. 

For turbulent combustion, the above model is used but the evaporation 

constant is changed to that expressed in Eq. (2.45). Yet, the use of laminar burning 

rate to estimate the critical droplet diameter under turbulence conditions raises some 

doubts. Shown in Fig. 6.5 is the illustration of turbulent flame with burning rate, Ur, 

and the droplets ahead of the flame front. The turbulent flame thickness is much 

thicker than laminar flame thickness as a consequence of the flame becoming 

wrinkled by an ever-increasing range of turbulent wavelengths as it propagates 

(Abdel-Gayed et al., 1987). For analysing droplet evaporation, one can simply say 

that the turbulent burning rates and flame brush thickness are the appropriate values 

to take into account. Yet, both values are difficult to define. In laminar flame, the 

temperature profile across the reaction zone is well defined (see Section 6.4.1). 

However, in turbulent flame as in Fig. 6.5, it is difficult to define the temperature 

profile because of flame wrinkles. Hence, for an individual droplet, it evaporates 

quicker because of turbulence, but it does not know about the flame until it gets 

close to the flame. To a first approximation, the flame can be treated as a stretched 

laminar flamelet as the flame, locally, propagates with laminar burning velocity. 

Justification for this argument is given by the modified Borghi diagram as described 

below. 

Shown in Fig. 6.6 is a modified Borghi diagram that has been adopted fairly 

widely in the literature to indicate combustion regimes (Abdel-Gayed et al., 1989). 

On y-axis, the ratio of U '!UI represents the magnitude of turbulence relative to the 

laminar burning velocity. High values of U'Iul will cause a large amount of flame 

wrinkling leading to increased flame surface area and turbulent flame brush 

thickness. On x-axis, the ratio of Ut5{ represents the size of turbulent eddies relative 

to the laminar flame thickness. This is important since, as discussed below, large 

eddies will wrinkle the flame surface while eddies that are smaller than the flame 

thickness will exist within the reaction zone and may alter the local heat and mass 

diffusion processes. The regime at the bottom left, for which the turbulent Reynolds 

number, RL is less than one represents laminar flames. The regime at the bottom 

right in which U'IUI is less than one represents a wrinkled flame. In this regime, 



141 

turbulence wrinkles the flame surface but the smallest scales are too slow or contain 

too little energy to disrupt the flame. In the corrugated flamelets regime, the velocity 

of turbulent eddies is such that they can cause the flame to fold back on itself to 

cause reacted gas pockets. In the distributed reaction zone, the chemical lifetime, Te, 

is larger than the lifetime of the smallest turbulent eddies, TTl' Hence, the flame will 

not have enough time to burn a small eddy before that eddy breaks up. In the well 

stirred reactor, where Tc is larger than the largest eddies lifetime, TL, the reacting 

mixture is being continuo sly broken up by the fast but short lived eddies. Shown by 

the symbols in Fig. 6.6 are data from the present author. They were calculated from 

the experimental data in Section 5.3. They clearly show that the data reported in this 

thesis lie within the wrinkled laminar and corrugated regimes. Hence, locally, these 

flames approximate that of a stretched laminar flamelet. This approximation is 

consistent with Bradley (1992) who shows that a turbulent flame in an engine can 

often be regarded as an array of laminar flamelets with no turbulence structure 

residing within them. 

Shown in Fig. 6.7 is the variation of droplet lifetime with droplet diameter for 

stoichiometric isooctane-air aerosols at a different value ofu~ It is shown in Fig. 6.7 

that there is an increase in a critical droplet diameter below which a droplet is fully 

evaporated as u' increases. Clearly this suggests that the rate of droplet evaporation 

improved due to the turbulence. Since the present work investigates only the effect 

of droplets up to 10 J!m diameter under turbulent condition, this estimation suggests 

that the droplet is fully evaporated before it reaches the reaction zone and propagates 

as a gaseous flame. Nevertheless, the results of turbulent flames in Section 5.5 

suggest that there was a difference between aerosol and gaseous flames propagation. 

This is further discussed in Section 6.5. 

6.4 Effect of droplets on laminar flames 

In this Section, some of the important aspects of laminar flame propagation in 

quiescent aerosols are addressed. The effect of droplets during the early stage of 

propagation is discussed in Section 6.4.1. In the later stage of flame propagation, 

some of the aerosol flames became cellular in structure and resulted in higher 

burning rates relative to the equivalent gaseous flame. This enhancement in burning 
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rates is discussed in Section 6.4.2 and the relationship with flame instabilities is 

discussed in Section 6.4.3. Finally, the effect of droplets on the determination of 

unstretched burning velocity is discussed in Section 6.4.4. 

6.4.1 Early stage of flame propagation 

It is shown in Section 5.2.2 (Figs. 5.2 and 5.3) that the initial growth of flame 

kernel in aerosol mixtures was different than in gaseous mixtures. This difference 

was shown to be a function of droplet size and equivalence ratio. Shown in Fig. 6.8 

is the variation of flame speed with time for the first 10 ms of flame development for 

the lean and rich flames represented in Figs. 5.2 and 5.3. Figure 6.8a shows that for 

lean mixtures, an increase in D 10 resulted in an increase in flame speed. However, 

for the rich mixtures in Fig. 6.8b, the trend is reversed. These results contradict 

previous arguments by Hayashi and Kumagai (1975, 1976) that droplets can increase 

burning rate by reducing, towards stoichiometric, the value of ¢g of very rich flames. 

The same argument would result in the flame speed of lean flames being lower than 

the equivalent gaseous flame which, clearly, is not the case in Fig. 6.8a. 

Ballal and Lefebvre (1978) showed that the influence of droplets on initial 

flame kernel growth can be related to the difference in the minimum ignition energy, 

Emin• They defined Emin as the amount of energy required to heat a sphere of 

gas/droplet (whose diameter is equal to the quenching distance) to its adiabatic flame 

temperature. Figure 6.9 shows the variation of Em in with droplet size for isooctane-air 

mixtures at 1 atm and tjJ = 0.65 (Ballal and Lefebvre, 1978). It demonstrates the 

strong dependence of Emin on droplet size, where Emin is proportional to the cube of 

droplet size. Although this illustrates how droplets might affect the early stage 

propagation in terms of ease of ignition, it does not explain the contradictory trends 

of Fig. 6.8. 

A more convincing explanation, was proposed by Atzler (1999, 2001) and 

described in Section 2.6.4 in which oscillating flames were explained by droplet 

inertia. Following ignition of a quiescent aerosol mixture, the spark produces very 

rapid expansion of the gas in front of the flame. However, droplets have inertia 

which causes their velocity to lag behind that of the expanding gas. This results, for 

lean mixtures, in an increase in equivalence ratio at the flame front towards that for 

maximum flame speed, which is at about tjJ = 1.1 for iso-octane (Bradley et a]., 
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1998), as shown in Fig. 6.8a. Similarly, richer mixtures become, local to the flame 

front, even richer with a corresponding reduction in flame speed, as shown in 

Fig.6.8b. 

As described in Section 2.6.4 (Fig. 2.14), Atzler et al. (2001) predicted the 

relationship between droplet velocity, local tP and the resultant velocities of flame 

speed, gas velocity and burning velocity near the flame front of an oscillation flame. 

This prediction was extended from ignition, through flame development and into the 

oscillations. For the present purposes, only the developing phase of flame 

development is of interest. Therefore, Fig. 2.14 has been adapted in Fig. 6.10 to 

show only that regime. Considering a developing flame, initially at time = 0, the 

spark is initiated which results in a rapid flame expansion as discussed above. A 

short time later, the flame has grows, but droplets lag behind. This results in an 

increase in local tP as shown by point 1. At a later time (point 2), droplet velocity, Ud, 

starts to catch up with the gas velocity, Ug' This results in a lower ¢ and thus 

increases U/. As u/ increases, the effect is to increase Sn and ug and therefore affects 

Ud as well. Ultimately, (for a non-oscillating flame) it reaches steady state, with no 

relative slip velocity between droplet and gas phase. The local ¢ and burning 

velocities then become equal to those of the overall mixture. 

Evidence of the effect of droplet inertia on laminar flame propagation can be 

strengthened by considering the response time of droplets to the gas velocity 

fluctuation ahead of the flame. Using Stoke's law and the equation of motion, Drain 

(1980) derived an expression to predict the maximum droplet diameter, D that will 

faithfully follow a flow velocity fluctuation of frequency,fu 

( J
I/2 

D = 0.4.u 
PDiu 

(6.1) 

where Ii is the viscosity of gas flow and PD is the density of the droplet. The fu can be 

related to the time taken to accelerate the cold gas ahead of a flame to the velocity of 

the burned gas and is given by fu = 2u[l8 where 8 is the flame thickness in terms of 

the velocity profiles, as illustrated schematically in Fig. 6.11. For the present work, 

data on gas velocity profiles within an isooctane-air mixture at atmospheric 

conditions were not available. However shown in Fig. 6.12 are typical profiles of gas 

temperature and velocity in a methane-air flame at 0.16 atm (Bradley et af., 1994). It 
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shows that the velocity goes from a value of about 0.5 mls to 3.5 mls in about 4 mm 

for this low pressure flame. For the atmospheric pressure flames studied in the 

present work, this distance is less but unknown. Shown in Fig. 6.13 are profiles of 

various parameters, including temperature for a methane-air flame at 1 atm and 300 

K (Haq, 1998). By assuming the profile of gas velocity is similar to that for 

temperature as in Fig. 6.12, it suggests that the gas velocity rises, in Fig. 6.13, from 

rest to its maximum value in about 0.8 mm. Making the final assumption that the 

profile for methane and isooctane are not too dissimilar, the gas velocity for the 

present isooctane-air mixtures probably rises in about 0.8 mm. Using the present 

data for the stoichiometric flame speed yields a frequency of gas velocity of 1.25 

kHz. Substitution of this value into Eq. (6.1) gives the maximum droplet diameter 

that will faithfully follows the gas flow. However, in the ignition stage, due to rapid 

expansion following the spark, Akindele (1980) showed that the gas velocity is 

much higher (by up to a factor of 4) than that in steady state propagation. This 

results in an increase of frequency of gas velocity up to about 5 kHz, and a 

maximum droplet diameter of only 1.5 J,Lm. Clearly, this value is significantly 

smaller than the lowest droplet diameter studied in the present work. Hence, this 

approximate analysis by the present author supports the view that droplet inertia is a 

plausible cause of the differences in early stage propagation between aerosol flames 

and gaseous ones. 

6.4.2 Later stage of flame propagation 

In Section 5.3.2, it is shown, through Figs. 5.10 and 5.11, that during the later 

stage of flame development, the droplets lead to an increase in the rate of aerosol 

flame propagation relative to that of gaseous mixtures. Such enhancement was 

significant, particularly at rich conditions. 

Using the results in Fig. 5.11, the droplet induced enhancement in the flame 

speed was quatified by normalising Sn,48 for the aerosol mixture with that for the 

gaseous mixture, Sn,48g at the same iPov, Figure 6.14 shows the effect of (Jov on the 

relationship between normalised flame speed and droplet size. The solid curves were 

obtained by drawing a best fit curve through data points at each ¢ov. From these 

curves, the dashed curve was deduced which shows, approximately, the variation of 

maximum flame speed enhancement with droplet size and ¢ov. It is seen that the 
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maximum flame speed enhancement occurs at larger droplet diameters as tPov 

increases. It is probable that small droplets evaporate quickly near the reaction zone 

(Section 6.3) and, hence, are not significant to burning. As droplet diameter 

increases, there is a complex interaction between droplet evaporation, instabilities 

and variations in gaseous phase equivalence ratio which can significantly affect 

burning. 

An attempt to further generalise the data in Fig. 6.14 by nonnalising the 

droplet diameter with flame thickness, ~, as shown in Fig. 6.15 by the solid curves. 

Also shown in Fig. 6.15 are data for ethanol mixtures (chain dashed curves). Figure 

6.15 suggests that for isooctane and ethanol mixtures, generality is obtained, with a 

maximum enhancement of flame speed at about DJ(/~ = 0.18. If this generalisation 

is proven to be universal, it has interesting consequences for engine combustion. For 

example, at the high pressures that occur in engines, the flame thickness is less than 

in the present work, suggesting that enhancement exists only for very small droplets. 

Further research is required in order to study aerosol flame propagation at high 

pressure. 

6.4.3 Instabilities in aerosol flames 

An important observation based on the quantification of burning rate 

enhancement in Section 6.4.2 was a significant enhancement in laminar flame speed 

compared to the gaseous flame, particularly at fuel rich conditions and optimum 

droplet size (at which maximum enhancement occurs). It is suggested by the present 

author and also by several workers (Hayashi et al., 1976; Atzler, 1999; Sulaiman; 

2007) that this enhancement can be attributed to the instability of the flame front by 

droplets which increases the flame surface area and promotes propagation. This 

Section discusses this instability in aerosol flames and presents a comparison with 

instabilities in gaseous flames. 

As shown in Fig. 5.5, aerosol flames are more unstable than an equivalent 

gaseous flame. In order to quantify the instability of aerosol and gaseous flames, a 

critical Peelet number, Pecl (defined in Section 2.3.2) was measured at a wide range 

of tPov. Shown in Fig. 6.16 is the variation of Pecl with D/O for isooctane-air aerosol 

flames at different tPov. It was not possible to determine the values of Pecl for most 

gaseous flames since they were smooth throughout the observable period of 
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propagation (resulting in large, but unmeasurable in the present work, values of 

Pecl). However, with a known value of Masr for the gaseous flames, the value of Pecl 

was estimated using Eq. (2.25). It is shown in Fig. 6.16 that the measured Pecl is an 

inverse function of DJo, with the gaseous flame (DIO = 0) showing the highest value 

of Pecl at any rPov. 

As explained in Section 2.3.2, Pecl can be correlated with Masr to 

demonstrate some generality of the onset of flame instabilities. For this, the 

correlation of Bradley et al. (2009) which plots Pecl against Masr has been extended 

in Fig. 6.17 to include the influence of aerosols in terms of the dimensionless group 

DJ(/t5t. The curves for different values of DJoIt5t were obtained from experiments at 

D JO between 5 and 20 J.lm, pressures between 93 and 125 kPa, and temperatures 

between 265 and 293 K. It is clearly shown in Fig. 6.17 that the trend in the effect of 

Masr on Pecl is similar to that for gaseous flames, but that the magnitude is smaller. 

As the ratio of Du/t5t increases, its effect is to reduce the value of Pecl which 

indicates earlier onset of flame instabilities. 

Although Pecl has been used extensively for quantifying flame instabilities 

(Bradley et al., 1998; Gu et al., 2000), this dimensionless number is, perhaps, not 

physically appropriate because onset of instabilities is more directly related to a 

reduction in flame stretch rather than to flame radius. In a recent work, Bradley et al. 

(2009) proposed the critical Karlovitz stretch factor, KcI (defined in Section 2.3.2) as 

a further practical parameter for quantifYing the onset of flame instability since it is 

expressed in tenns of the critical stretch rate at the onset of flame instability. Shown 

in Fig. 6.18 is the variation in KcI with Masr for iso-octane-air aerosols in tenns of 

dimensionless group DJoIt5t. These data were obtained by reprocessing the data in 

Fig. 6.17 using Eq. (2.26). It is shown in Fig. 6.18 that the trend in the effect of Masr 

on KcJ is similar to that of gaseous flames, except that the magnitude of KcI is larger 

in aerosol than in gaseous flames. As Masr reduces to negative values, the flame 

stretch regime in which stable flames occur becomes narrower. With the increase in 

D}{/Ot at 0.4 and above, it indicates that the initial flame becomes unstable almost 

immediately. 

Several possible reasons related to droplets in the reaction zone have been 

proposed by previous workers to explain instabilities in aerosol flames. Hayashi 

et al. (1976) suggested that droplets obstructed the path of the flame, producing a 
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distortion of the flame front and consequently, flame acceleration. For this reason, 

Atzler (1999) investigated the effect of non-evaporating hollow glass spheres in a 

laminar flame of gaseous isooctane-air. With careful experimental preparation, he 

obtained similar number density and spacing of glass spheres to those of droplets in 

an aerosol mixture. From observations of flame propagation with and without glass 

spheres, Atzler (1999) found that the flame front was smooth in both cases, and the 

glass spheres did not produce any change in the burning rates. Clearly, this suggests 

that particles in the reaction zone do not cause instability of the flame front. 

Another mechanism that might be responsible for the instability of aerosol 

flames was suggested by Atzler (1999), to be due to the heat loss from the flame and 

rapid local expansion through droplet evaporation. In an attempt to investigate these 

effects, Atzler (1999) introduced water droplets using the condensation technique in 

a gaseous propane-air mixture. A similar premixed flame of gaseous propane-air was 

used to compare the difference in the flame structure and the burnig rates. Shown in 

Fig. 6.19 are schlieren images of the resulting flame of gaseous propane-air with and 

without water droplets at a radius of 60 mm. Both mixtures were ignited centrally at 

nearly identical conditions which is close to that of the experiments in the present 

work. It is clearly shown in Fig. 6.19 that there was a well developed cellular 

structure in a mixture with water droplets as compared to the smooth flame in a 

mixture without water droplets. Atzler (1999) demonstrated that the corresponding 

flame speed due to this cellularity increased by about 13 % more than the smooth 

one. This suggests that the heat loss from the flame due to evaporation of water (or 

fuel) droplets has a significant role in the development of flame instabilities. 

Moreover, it was shown theoretically by Greenberg et al. (1999), using linear 

stability analysis, that the effect of heat loss due to droplet evaporation plays a 

dominant role in the manifestation of instabilities in a spray flame. 

The influence of heat loss from the flame due to presence of water droplets 

can be described in tenns of heat and mass diffusion effects embodied in the Lewis 

number, Le, which is defined by the ratio of the thennal diffusivity to the mass 

diffusivity of the reactant. Water droplets near the flame front will absorb the heat as 

they evaporate. This reduces the thermal diffusion from the reaction zone, but is 

unlikely to change the mass diffusion. As shown by Joulin and Clavin (1979) that 

the influence of heat loss is to produce a shift of Le to a lower value. Hence, the 
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presence of water droplets is likely to reduce Le. As described in Section 2.3.2, 

lower values of Le (less than unity) result in a greater propensity of the flame to 

cellularity. 

6.4.4 Unstretched burning velocity ofisooctane and ethanol aerosols 

One of the objectives of the present work was to investigate the fundamental 

unstretched laminar burning velocity, UI. in aerosol mixtures. Iso-octane was used as 

a primary fuel for the present study and the results for U/ were presented in Section 

5.3.4 for different droplet diameters between 5 and 20 /lm and at equivalence ratios 

between 0.8 and 2.0. In addition, the present study also investigated the burning rates 

of ethanol aerosols under quiescent conditions, as presented in Section 5.6. For 

ethanol, the effects of fine droplets, between 5 and 31 J.1m in diameter were 

examined at equivalence ratios between 0.7 and 1.2. 

It is shown in Figs. 5.14 and 5.36 that the variation of UI with r/Jov for iso­

octane and ethanol aerosols were different since ethanol flames are much more 

sensitive to D JO than iso-octane flames. In order to describe this difference, 

nonnalisation of U/ for the aerosol mixture with that for the gaseous mixture at the 

same f/Jov was calculated and plotted as a function of D/O. Figure 6.20 shows these 

plots for stoichiometric iso-octane and ethanol aerosol mixtures. The symbols in 

both mixtures represent the average data points from Figs. 5.14 and 5.36 and the 

curves are best fits through the data points. The small range of DIO in isooctane 

relative to that of ethanol was due to the lower volatility of the fuel as described in 

Section 4.7. It is shown in Fig. 6.20 that, at stoichiometric conditions, both mixtures 

showed a reduction of U/ as D 10 increased. However, the reduction of U/ in ethanol 

was higher than that of iso-octane, by about 13 % at D/O = 12 /lm. 

The probable reason for the different trends in the reduction of UI in Fig. 6.20 

was due to the difference in the thennodynamics properties of the fuel. To explain 

this, a simplified model of droplet evaporation, as discussed in Section 6.3, is used 

to compare the droplet lifetime ofisooctane and ethanol aerosols. Shown in Fig. 6.21 

is the variation of droplet lifetime, t'b with droplet diameter, Dlo for stoichiometric 

isooctane and ethanol aerosols at 100 kPa and 273 K. It is shown that the variation 

of TD with DJO was a strong function of fuel where TD in ethanol displayed a larger 

value than that of isooctane at the same DIO. This was caused by two factors. First, 
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the heat of vaporisation for ethanol was about three times higher than that of 

isooctane, which makes the droplet temperature rise slower in the case of ethanol 

and further reduces the rate of evaporation. Second, the heat of combustion for 

isooctane was nearly twice as high as that of ethanol, which accelerates the heat 

release rate and enhanced the evaporation rate near the reaction zone. As a result, 

both factors resulted in a reduction of fuel vapour near the reaction zone due to 

insufficient droplet evaporation particularly for ethanol aerosols. For a larger droplet 

(Dlo ~ 30 Ilm), the reduction of evaporation rate is expected to be greater, as shown 

by the significant reduction of u/ in ethanol as compared to the gaseous flames in 

Fig. 6.20. 

6.S Effect of droplets on turbulent flames 

This Section discusses a comparison of burning results between aerosols and 

gaseous mixtures under turbulent condition. In the present work, the investigation of 

the effect of fuel droplets under turbulent conditions was divided into two stages of 

flame propagation: early stage and later stage. In the early stage, the flame is 

characterised by transitions from ignition to spark assisted propagation and then to 

developing self sustained propagation. These result in high gradients and high flame 

stretch. In the later stage, near steady state turbulent flame propagation dominates 

flame development. The early stage of propagation is discussed below and later 

stage propagation is addressed in Section 6.5.2 

6.5.1 Early stage propagation 

It is demonstrated in Section 5.5.2 that the early stage of turbulent flame 

propagation was different between aerosol and gaseous mixtures particularly at low 

u ~ Although such difference was found in the laminar study discussed in Section 

6.4.1, the trend in the laminar case was different. Shown in Fig 6.22 are the 

variations of flame speed with time and D 10 for the first 8 to 11 ms of flame 

development under turbulent conditions of u' = 0, 0.5 and 1.0 mls. For each u ~ the 

plot of flame speed with time for fuel-lean (,pOY= 0.9) and fuel-rich (,paY= 1.2) 

mixtures was given in the left and right side of Fig. 6.22, respectively, to indicate the 

trend at a wide range of ,pov. Under quiescent conditions, as shown in Figs. 6.22a and 
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6.22b, the droplets cause an increase in the flame speed of lean aerosol mixtures but 

decrease that of rich ones. A possible reason for this is discussed in Section 6.4.1. 

However, at low turbulence of u' = 0.5 mis, as shown in Figs 6.22c and 

6.22d, the rate of early flame development has opposite trends to those for the 

laminar flames in Figs. 6.22a and 6.22b. They appear to follow the trends expected 

from consideration of t/Jg in which flame speed is changed directly in relation to the 

gaseous phase equivalence ratio. A possible reason for this is due to turbulence 

induced droplets motion before flame initiation which might dominate over those 

reSUlting from the flame, negating the effect of droplet inertia. Evidence for this 

mechanism is given by estimating the maximum droplet diameter that will faithfully 

follow the flow as expressed in Eq. (6.1) by Drain (1980). Under turbulence 

conditions, the frequency, fu can be related to the time scale of turbulence flow 

inside the vessel. At u' = 0.5 mis, the maximum diameter of isooctane droplet that 

faithfully follows the flow was three times bigger than the largest droplet size 

studied under the present turbulent conditions. 

The further data at u I = 1.0 mls in Figs. 6.22e and 6.22f show that the 

difference in early flame propagation between aerosol and gas mixtures became less 

significant. This suggests that as turbulence increase, any droplets effect is being 

diminished due to the additional contribution from externally generated turbulence. 

This is further discussed in Section 6.5.2. 

6.5.2 Later stage propagation 

In Section 5.5.2, the burning rates of turbulent gaseous and aerosol flames 

are presented as a function of time and radius at a different u' throughout flame 

development. Although the comparison demonstrates some dissimilarity between 

aerosol and gaseous flame propagation, the difference was not clearly defined since 

the development of turbulent flame is influenced by the degree of turbulence 

spectrum (Abdel-Gayed el al., 1987). To make a better comparison between aerosol 

and gaseous propagation, the burning rate at selected radius was quantified by 

normalising flame speed for the aerosol with that for the gaseous at the same ?ov. 

Figures 6.23 and 6.24 show the effect of normalised droplet diameter, D J(I c5t and u' 

on the flame speed normalisation at two different ?ov: 1.2 and 0.9, at a flame radius 

of 40 mm. This radius was the largest at which most flames were observed and also 
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the integral length scale of turbulence in the vessel (Lawes, 1987). Abdel-Gayed et 

al. (1987) showed that a turbulent flame of 40 mm radius is considered to be 60% 

fully developed. Further, at this radius, the effects of ignition were probably 

negligible and the initial droplet velocity lag due to inertia has probably decayed to 

near zero. 

It is shown in Figs. 6.23 and 6.24 that droplets can have contradictory effects 

on developed flame speed. For initially quiescent conditions, flame speed is 

enhanced by 10 % as DlI/iSJ is increased to about 0.22 for ¢ov = 1.2 and by 6 % as 

Du/iSJ is increased to about 0.15 for tPov= 0.9. At low level of turbulence of 

u'= 0.5 mfs, the trends for the rich and lean mixtures were different. The flame 

speed of the rich mixture was clearly enhanced as D /(/ iSJ increased, to a maximum 

value of 30 % at Du/iSJ of about 0.22. However, data for the lean mixture, in Fig. 

6.24, at this level of turbulence appear confusing, showing an initial reduction in 

flame speed (enhancement less than unity) before the enhancement increases 

towards unity at Du/iSJ of approximately 0.18. A similar trend of flame speed 

reduction-enhancement was found in the case of rich mixture, in Fig. 6.23, when 

u'= 1.0 mfs. Data for the lean mixture at u'= 1.0 mfs displayed insignificant 

variation of flame enhancement with D/(/iSJ. At high u~ as shown in Fig. 6.23, the 

effect of droplets on the flame propagation becomes, ultimately, insignificant within 

the range of droplet sizes reported in the present work. 

In order to generalise the results in Figs. 6.23 and 6.24, the ratio of rms 

turbulent velocity to the laminar burning velocity, u'/u/ , was used to characterise 

the transition from laminar condition (zero value) to the turbulent condition at a 

wide range of ¢av. Shown in Fig. 6.25 is the effect of D/(/iSJ on the flame speed 

normalisation as a function of u'/u/ . The solid lines represent the results from 

¢ov= 1.2 and the chain dashed lines represent the results from tPov= 0.9. For roughly 

similar values of u'/u, , for both ¢ov, a similar trend of flame speed enhancement 

due to droplets can be observed. Under laminar conditions (u'/u, = 0), there was a 

significant increase in a flame speed as Du/iSJ increased. This, most likely, was due 

to increased in flame instability and wrinkling by the droplets as discussed in Section 

6.4.3. However, at higher turbulence (u'/u, ::: 4.8), there was no significant 

enhancement of flame speed due to the droplets. Wrinkling by turbulence probably 
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dominates over that due to flame instabilities. This was due to the increased 

turbulent wrinkling coupled with a reduction in cellular instability due to increased 

flame stretch (Abdel Gayed et al., 1987). Interestingly, it is shown in Fig. 6.25 that 

the transition from laminar condition (u'/u, = 0), to highly turbulence (u'/u, = 4.8) 

was rather complicated. Within this range, there appears to be a transition regime, 

between instabilities dominated, and turbulence dominated regimes. For example, at 

u'ju, = 1.7, this trend suggests that instabilities and turbulence work together, where 

there was a greater enhancement than for a simple gaseous flame at the same 

turbulence condition. However, at u'/u, between 2.3 and 3.3, the trend suggests that 

droplets counteract the effects of turbulence which resulted in the reduction of flame 

speed. This reduction becomes less significant and negligible as Du/i5, increased to 

about 0.2. To clarity the trend in this transition regime, a cross plot of data in Fig. 

6.25 is plotted at a fixed value of Du/i5,. Shown in Fig. 6.26 is a variation of flame 

speed normalisation with a different ratio of u'/u, at D){/i5, of about 0.11. It is 

shown that the normalised flame speed is fluctuated (increased and then decreased) 

by approximately 14% from the unity before it became constant when u'/u, reached 

of about 5. One might argue that this transition is likely due to experimental error. 

However, each of the data represents up to five experiments which suggest that this 

phenomenon might be real. 

Based on the results in Figs. 6.25 and 6.26, it is interesting to note that the 

effect of droplets on turbulent flame propagation is significant for a smaller value of 

u'juJ up to about 5. As described in Section 2.6.5, some previous works found 

contradict effects of droplets on turbulent flames. Mizutani and Nakajima (1973a) 

observed that the addition of kerosene drops into a low turbulence (u '= 0.13 mls) 

propane-air flame yielded a higher burning rate than for the propane-air flame alone. 

However, Sulaiman (2007) demonstrated that the burning rate of turbulent isooctane 

aerosol with droplets 4 f.lm was lower than that of gaseous flames at u' = 1.0 mls. By 

estimating the experimental conditions in both previous works, their results fall 

roughly within the transition regime as shown in Fig. 6.25. In the case ofMizutani's 

work, the ratio of u'ju
j 

is about 0.7 while in the case of Sulaiman's works, the ratio 

of u'/uJ is about 3.5. This implies that the enhancing effects resulted in Mizutani's 

work while the reduction effect is found in Sulaiman's work. Nevertheless, both 
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works did not report any contradictory effects due to droplets, since their conditions 

were limited to a certain value of u'. Hence, it is proposed that Fig. 6.25 presents a 

generalisation of the effect of droplets on turbulent flames and thus could be applied 

for any mixture conditions. 

As a conclusion, an important finding pertaining to the effects of droplets on 

turbulent flame was a significant enhancement of burning rates which appeared in a 

low turbulence condition, but became progressively less important as turbulent 

wrinkling became dominant. Between low and high turbulence, there was a 

transition regime where turbulent aerosol flames were found to be lower than those 

of gaseous flames. In the real situation, since all flames start with laminar and time 

is required for turbulent flame structure to be fully developed, the above phenomena 

might be important to understand the initial stages of combustion in engines. In 

some other applications, the present results might be relevant for understanding and 

quantifying potential hazards posed by releases of two-phase combustible liquid 

vapour mixtures. 
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11 ms 12 ms 13 ms 14ms 15 ms 

Figure 6.1 : Natural light imaging of spark ignition in air using fixed energy ignition unit 
at 100 kPa and 303 K. Reproduced from Sulairnan (2007). 

Figure 6.2: Schlieren image of black clouds in turbulent stoichiometric iso-octane 
aerosol flame at u '=4.0 mis, ignited by fixed energy ignition unit. Reproduced from 
Sulaiman (2007). 
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Figure 6.3: Variation of flame speed with time for gaseous isooctane-air mixtures at 
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flame at 0.16 atm and ¢= 1.07. Reproduced from Bradley et al. (1994) . 
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(a) (b) 

Figure 6.19: Comparison of laminar flame structure of propane-air mixtures at 60 mm 
radius, (a) without water, (b) with water aerosol, at ¢ov =1.3, 105-110 kPa, 260-265 K. 
Reproduced from Atzler (1999). 
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Chapter 7 

Conclusions and Suggestions 

Experimental studies of aerosol combustion under quiescent and turbulence 

conditions have been conducted to quantify the differences in the flame structure 

and burning rates between aerosol and gaseous mixtures. Homogeneously 

distributed and near monodispersed aerosol clouds were generated using a 

thermodynamic condensation method. Using schlieren photography, spherically 

expanding flames, following central ignition, were recorded to investigate the flame 

structure and propagation rate. The effects of fine droplets on flame propagation 

were investigated at a wide range of equivalence ratios for isooctane and ethanol 

droplet, vapour and air mixtures. For quiescent mixtures at some conditions, 

significant enhancement of burning rate was observed, as addressed in Section 5.3.2, 

and possible reasons for this enhancement were discussed in Section 6.2.2. Similar 

observations of burning rate enhancement were observed under low turbulence 

conditions but this became negligible at higher turbulence. A summary of the 

conclusions obtained from the present work are presented in Section 7.1. This is 

followed by several suggestions for further work in Section 7.2. 

7.1 Conclusions 

1. Aerosols of two different fuels, iso-octane and ethanol, were investigated in 

this study. Aerosol mixtures were generated by condensation through 

controlled expansion of a gaseous fuel-air mixture from the combustion vessel 

into the secondary vessel, as described in Section 3.3. This proved to be highly 

successful in producing well defined aerosol mixtures with nearly equal size 

and homogeneously distributed. Conversely, conventional means of generating 

two phase mixtures, such as through use of fuel injection, produce a highly 

heterogeneous mixture which is affected by the induced flow field as 

described in Section 2.4. 
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2. The characteristics of the aerosol mixtures were calibrated by in-situ 

measurements, for a wide range of equivalence ratios, without combustion, to 

obtain temporal variation of pressure, temperature, droplet size and number 

density with reference to the time from start of expansion. It was shown in 

Section 4.4 that the aerosol was near monodispersed as indicated by the low 

standard deviation of droplet diameter and that D /0 was a strong function of 

time. 

3. The repeatability of aerosol generation was maintained throughout the work 

by using clean dried air and using a consistent mixture preparation 

methodology as described in Section 3.3. This was shown, in Section 4.6, to 

be very important, because existence of particles in the expanded mixture, 

either from the atmosphere or due to incomplete evaporation, had a significant 

influence on the development of D/O and ND. 

4. The present study investigated spherically expanding flames. Although the 

experimental methods and their theoretical descriptions are well established 

and have been used by many researcher for gaseous combustion (as discussed 

in Section 2.3), aerosol combustion presents additional challenges that include 

quantification of the effect of droplets on flames, in terms of burning rate and 

flame front structure. Data on burning properties for gaseous and aerosol 

mixtures were investigated under near atmospheric conditions. For quiescent 

mixtures, the effect of fuel droplets up to 31 Ilm diameter was examined. In 

turbulent flames, the effect of droplets up to 14 Ilm was investigated at various 

values of u I up to 4.0 mls. 

5. Throughout the entire range of combustion experiments presented in Sections 

5.2 and 5.3, the pressure of the mixture at ignition was maintained between 93 

and 125 kPa, while the temperature was maintained between 265 and 293 K. 

This range was unavoidable due to the variation of saturation temperature with 

fuel partial pressure and to the method of generating droplets by expansion as 

described in Section 4.7. Nevertheless, based on the empirical correlations in 

Lawes et al. (2006), the differences in pressure have a negligible effect on 

burning rate, and those in temperature can affect it only by up to 9 %. In the 

opinion of the present author, the overall trends obtained from the present 
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work would be unchanged due to slight inconsistencies in pressure and 

temperature. 

6. Based on measurements of unstretched laminar burning velocity of aerosol 

mixtures (Section 5.3.4), and on heat transfer and droplet evaporation 

calculations (Section 6.3), the droplets were found to evaporate completely in 

the preheat zone, particularly for very small droplets, and this results in single 

phase flame propagation, as indicated by small changes of u/ of about 8 % 

between isooctane gaseous and aerosol mixtures. In a case where there was a 

significant difference in u/, as in ethanol aerosol mixtures presented in Section 

5.6.2, this was caused by a reduction of fuel vapour in the reaction zone as a 

result of incomplete evaporation of droplets. Based on this difference, it is 

concluded that ethanol flames are much more sensitive to droplets than are 

isooctane flames due to the difference in the thermodynamic properties of the 

fuel, as discussed in Section 6.4.4. 

7. As presented in Section 5.2.1 and discussed in Section 6.2, the use of an 

ignition system with large energy and long spark duration, as used by 

Sulaiman (2007), does not produce any significant difference in the 

measurement of burning rates compared with that of present work. However, 

such a system might produce fragments of molten metal from the electrodes as 

a result of high spark kernel temperature and long spark duration. Further, the 

interaction between the molten metal and the flame front resulted in an 

unstable flame structure as shown in Fig. 5.1a. Although this is not a real 

flame instability as described in Section 5.3.3, it may lead to incorrect 

conclusions on the interpretation of flames with early onset of instabilities. 

Such difficulties were eliminated in the present work by using an ignition unit 

which capable in controlling the spark duration and energy as described in 

Section 3.2.3.2. 

8. The initial growth of laminar flame kernel in aerosol mixtures was different 

from in gaseous mixtures. This difference was found to be a function of 

droplet size and equivalence ratio, as shown in Section 5.2.2. It is concluded 

that such a difference was due to the effect of droplet inertia which leads to 

local enrichment in equiValence ratio. This is supported by the analysis of 

droplet inertia in Section 6.4.1, in which it is concluded that the droplets used 
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in the present work are unlikely to faithfully follow the gas flow ahead of the 

flame. 

9. In the later stages of laminar flame propagation, an enhancement in flame 

speed was observed for aerosol flames as compared to that of gaseous flames 

as shown in Fig. 5.11. This enhancement was significant at very high ¢ and 

large DJO (relative to the present work). This enhancement was likely due to 

the more rapid development of flame instabilities in aerosol than in gaseous 

flames, which in tum increased the flame surface area and burning rate. As 

discussed in Section 6.4.3, the mechanism behind this flame instability was 

probably related to the heat loss from the flame in vaporising the droplets, 

accompanied by the local rapid expansion of fuel volume through droplet 

evaporation. Increase in droplet diameter not only intensified the propensity 

but also triggered an earlier onset of instabilities. 

10. Based on the quantification of laminar flame speed in Section 6.4.2, a 

generalisation of flame speed enhancement in aerosol flames was obtained, as 

shown in Fig. 6.15. The ratio of Du/8t has been proven by the present author 

to be useful in quantifying the effect of droplets on flame propagation. It is 

shown in Fig. 6.15 that for isooctane and ethanol mixtures, the maximum 

enhancement of flame speed occurred at about Du/8t = 0.18. 

11. In order to quantify the instabilities in aerosol flames, the dimensionless 

numbers, Peel and Kel provide valuable insight and data for a wide range of 

conditions, as reported in Section 6.4.3. Two relationships were plotted in 

terms of Peel with Masr and KcI with Maar to generalise the phenomena of 

flame instabilities. It is shown in Figs. 6.17 and 6.18 that the ratio of D u/4 has 

been proven to be useful in demonstrating the influence of droplets on laminar 

flame instability. 

12. In the early development of turbulent flames, presented in Section 5.5.2, the 

propagation of aerosol flames was different from the gaseous flames, 

particularly at low u ~ The aerosol flames appear to follow the trends expected 

from consideration of ¢g in which flame speed directly related to the gaseous 

phase equiValence ratio. A possible reason for this is due to the turbulence that 

counteracted the effect of droplet inertia, which is an important mechanism 



172 

when in initially quiescent. This is supported by the estimation of maximum 

droplet diameter that faithfully follows the turbulence flow in Section 6.5. I. It 

is shown that this is three times bigger than the largest droplet diameter 

studied under present turbulent conditions. Hence, it is concluded that under 

turbulent condition, the droplet is likely to follow the gas flow ahead of the 

flame. 

13. In the later stages of turbulent propagation, aerosol flames were found to be 

more wrinkled than gaseous flames in low turbulence, as shown in Fig. 5.21. 

This is consistent with the enhancement of turbulent flame speed in aerosol 

mixtures as discussed in Section 6.5.2. This enhancement was probably due to 

the flame instability and wrinkling by the droplets which might be dominant as 

compared to the effect of low turbulence. However, at higher turbulence, the 

enhancement of flame speed become insignificant within the range of droplet 

sizes reported in the present work. This concludes that as turbulence increases, 

any droplet effect is being diminished due to the additional contribution from 

externally generated turbulence. 

14. From the quantification of turbulent flame speed in Section 6.5.2, the present 

work has produced a generalisation of the effect of droplets on turbulent 

flames as shown in Fig. 6.25. This generalisation enables identification of 

whether the aerosol flame is dominated by flame instability or generated 

turbulence. It is shown that there was a transition range between laminar and 

high turbulence conditions in which the aerosol flame propagation was 

influenced between instability and turbulence dominated regimes. As a result, 

the flame speed enhancement due to droplets under this transition range was 

rather complex. Further research is required to investigate this transition range. 

7.2 Suggestions for further work 

1. Combustion experiments with larger droplet diameter (DIO > 30 Jlm for 

laminar experiments and D JO > 15 Jlm for turbulent experiments) are required 

in order to provide further evidence to support conclusion of the present work. 

This is important because a larger range of droplet diameters exists in 

conditions such as those in gas turbines (Lefebvre, 1989). 
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2. The effect of particles on aerosol formation is investigated in Section 4.6 and 

this emphasizes the importance of maintaining a standard procedure of aerosol 

mixture preparation to obtain a good consistency of aerosol generation. Yet, 

the present investigation did not quantify the size and density of the particles 

involved. Since nucleation is significantly affected by particles (Carey, 1992), 

it is interesting to extend the present investigation by varying the density and 

size of particles. This might be beneficial in providing a means of varying and 

controlling N D and D /0 of generated aerosol mixtures. 

3. A study of the effect of water aerosol in a gaseous propane-air mixture was 

conducted by Atzler (1999) using the present vessel. It was shown that 

mixtures containing water aerosol burned faster than in purely gaseous 

mixtures. However, the amount of water used in Atzler's experiment was not 

properly quantified. Therefore, a good method of quantifying the amount of 

water in the present vessel is required. In addition, precise characterisation of 

water aerosols is essential to further quantify any enhancement on flame 

propagation due to the water droplets. 

4. Experiments at higher pressures are recommended in order to investigate the 

effect of pressure on aerosol combustion. Although a similar study has been 

made by Nomura ef al. (2007) using ethanol aerosols at pressure up to 1000 

kPa, this work was limited to droplet diameters of 8.5 and 11 /-lm and 

measurements of flame speed at a radius of 10 mm. The maximum safe 

operating pressure of the current vessel is only 300 kPa at ignition. Therefore 

the use of high pressure vessel, the Leeds Mk-2 bomb, is recommended as this 

would allow initial pressures of up to 1400 kPa. 

5. The present work did not investigate a minimum ignition energy (defined in 

Section 6.4.1) to ignite aerosol mixture at a wide range of conditions. This 

probably offers an interesting extension to the present work, particularly that 

related to the effect of droplets in the early stage of flame propagation. 

6. In order to advance the clarification of the effect of droplets on turbulent 

flame, the use of optical technique such as laser sheet imaging is 

recommended to visualise the droplets with and without flame, at different 

time steps, for different turbulence level and overall equivalence ratio. From 
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such observations, data on droplet lifetimes or vaporisation times can be 

deduced and compared with the turbulence time scales and characteristic 

chemical time scales. Although similar attempts have been made by Sulaiman 

(2007), but his observations were obscured by the phenomenon of black 

clouds as described in Section 6.2. 

7. As discussed in Section 6.5.2, there was a transition regime between laminar 

and high turbulence aerosol flames in which the flame propagation was 

influenced between instability dominated and turbulence dominated regimes. 

Since the present work did not provide many data (at different u) within this 

transition regime, there is a need for detailed investigation. This may provide 

additional evidence to assess the mechanism which controls the turbulent 

aerosol flame propagation within this transition regime. 
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