
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Marti Kaljuve

Cross-Browser Document Capture System

Master’s Thesis (30 ECTS)

Supervisors: Marlon Dumas, Prof

Kaspar Loog, MSc

Author: ... „......“ May 2013

Supervisor: ... „......“ May 2013

Professor: ... „......“ May 2013

Tartu 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

3

Abstract

A web page is seldom displayed in the exact same manner in different browser and

operating system combinations. There are several reasons for different rendering

outcomes: interpretation of web standards by the browser, the browser's rendering

engine, available fonts in the operating system, plugins installed in the browser, screen

resolution etc. Neglecting to consider these differences as a web designer may lead to

webpage layout issues that result in lost customers.

Web designers might consider it common practice to test webpages on several browsers

to eliminate cross-browser layout issues. Experiments show that finding visual

differences is a dull and cumbersome task for people. Knowing this, another member

working at Browserbite has created an algorithm that has proved to be much faster and

more accurate at finding layout issues compared to humans. The algorithm works by

comparing a baseline (oracle in software testing terms) webpage in image form to other

image captures of the same webpage in different browsers, finding differences in layout

and position that a human might consider erroneous.

This thesis concentrates on the problem of creating the input to the aforementioned

algorithm. A selective overview of existing solutions and services for webpage capture

and automation is given, measuring their performance where possible. A list of

requirements are established for a cross-platform capture solution to be commercialized.

A fast and cross-platform method of capturing full webpages is then introduced, and an

overview of a scalable Software-as-a-Service system implemented for cross-browser

and cross-platform capture in several virtual and physical machines asynchronously is

given.

4

Abbreviations

ACID Atomicity, Consistency, Isolation, Durability

AJAX Asynchronous JavaScript and XML

AMQP Advanced Message Queuing Protocol

ANSI American National Standards Institute

API Application Programming Interface

BitBlt Bit-level block transfer

BSD Berkeley Software Distribution

CSS Cascading Style Sheets

CPU Central Processing Unit

DOM Document Object Model

EC2 Elastic Compute Cloud

ESB Enterprise Service Bus

IE Internet Explorer

GDI Graphics Device Interface

ISO International Organization for Standardization

JSON JavaScript Object Notation

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

MRI Matz's Ruby Interpreter

MVC Model-View-Controller

PDF Portable Document Format

PPM Portable pixmap

RAM Random Access Memory

REST Representational State Transfer

OS Operating System

SOA Service-oriented architecture

SQL Structured Query Language

UI User Interface

URL Uniform Resource Locator

XML Extensible Markup Language

5

Chapter 1 Contents

Abstract .. 3

Abbreviations ... 4

Chapter 1 Introduction .. 7

Chapter 2 Requirements .. 11

Chapter 3 Existing solutions ... 14

Chapter 4 Implemented solution.. 16

Workflow.. 17

Workers .. 20

Web Browser Automation ... 21

Webpage capture... 22

Capturing the screen ... 22

Cross-Platform Capture Method - Scrolling .. 23

Capture Method for Windows – Resizing ... 24

Capture Methods for Mobile Devices ... 25

Frontend ... 27

Webpage automation... 28

Recording .. 29

Playback .. 31

Cloud computing... 32

6

Chapter 5 Conclusion .. 33

Future work .. 34

Bibliography ... 36

Appendices ... 41

7

Chapter 1

Introduction

The share of web browsers usage is fragmented and very dynamic. The four most

popular desktop browser families in use today are Microsoft Internet Explorer, Mozilla

Firefox, Google Chrome and Safari, which today account for over 95% of the desktop

browser market [1]. Several of these browsers are available for more than one operating

system, which means that several browser and OS combinations can be used to access a

web page. Market share of mobile browsers is also increasing at a rapid pace, resulting

in an even larger fragmentation of operating systems, browsers and screen resolutions.

Despite web standards [2] that describe how mark-up languages and style sheet

languages should be translated into visual web pages, in reality the implementations of

these standards by different browser engines and versions are inconsistent. This often

results in layout or behaviour discrepancies on the same web page. For example, in the

beginning of 2011, it was discovered that when the Estonian Air website was viewed in

Firefox on Mac, the button for booking flights was not visible, as can be seen in Figure

1.

These layout differences have long been a problem for web designers. In some cases

they have brought about campaigns to encourage users to upgrade their browser

software. A popular example is the Internet Explorer 6 countdown [3], an official

campaign by Microsoft encouraging users to replace the over 10 year old browser,

stating that it will save hours of work for web developers.

Experience has shown that it is illusory to expect that all users will continuously

upgrade their browsers or that users will settle for one single browser and version.

Software companies are pressed to support a wide array of browsers and browser

versions and in different operating systems. On the other hand, the emergence of

different types of devices, ranging from smartphones to lightweight notebooks, entails

that these browsers will run in different configurations, to cater for different screen

sizes, resolutions, input capabilities, etc.

8

FIGURE 1 A SCREENSHOT OF FIREFOX ON MAC OS X SHOWING THE ESTONIAN AIR

HOMEPAGE WITH THE “BOOK NOW” BUTTON MISSING FROM THE LEFT CONTAINER.

Faced with such imperatives, software development projects are forced to introduce

cross-browser compatibility testing as an integral step in their quality assurance process.

Generally speaking, cross-browser compatibility testing is the act of verifying (via test

cases) that a given web page can be adequately rendered in different browsers. The

notion of adequacy will greatly vary from one stakeholder to the other as beauty is in

the eyes of the beholder. What is an adequate rendering for a developer or a user might

not be an adequate rendering for a Web designer, who would typically have higher

expectations on the fidelity of the rendering relative to their initial design.

Traditionally, cross-browser compatibility testing has been a manual task. Testers take a

number of Uniform Resource Locators (URLs) and simply render them manually in

different browsers and configurations, and check that the corresponding rendering meets

their set expectations. They then report any potential incompatibilities back to

developers who devise and implement a resolution. A range of solutions for partially

automating the cross-browser compatibility workflow have emerged over recent years,

including Mogotest [4], BrowserStack [5] and Browsershots [6]. These solutions

automate the process of opening a given URL on multiple browsers and configurations,

and taking a screenshot of the rendering. They then aggregate these screenshots and

9

show them to the user. As an example, Figure 2 shows the rendering of the web page

http://www.apple.com in Internet Explorer 9 running on Windows 7 given by the

BrowserStack service.

FIGURE 2 A RENDERING OF WWW.APPLE.COM IN WINDOWS 7 - INTERNET EXPLORER 9 BY

BROWSERSTACK

One of the key challenges that Web page rendering engines have to address is that of

scalability. The process of opening pages in different browsers, configurations and

operating systems is computationally heavy, due to the cost of launching and running

virtual machines in order to reproduce the exact environment in which a Web browser is

expected to run. Also, large amounts of data needs to be manipulated as images can be

large. A second challenge is to ensure that the entire Web page is rendered, as usually

Web pages are not rendered in their entirety in a single view, but rather a partial view is

given and page scrollbars are provided by the browser so that the user can view other

parts of the Web page. Thirdly, the resolution of different browsers and browser

configurations might make the images taken from different browser configurations

http://www.apple.com/

10

incomparable and thus a normalization procedure needs to be applied. Fourthly, Web

page rendering engines for cross-browser compatibility testing need to be extensible, so

that support for additional browsers and browser configurations can be easily

introduced, without requiring major recoding efforts.

The thesis at hand describes an architecture and implementation of a Web page

rendering engine for cross-browser compatibility testing that tackles the above

challenges. The described Web page rendering automation engine is currently running

in production mode and is at the kernel of a product developed and marketed by

Browserbite.

The rest of the thesis is organized as follows. Chapter 2 describes existing solutions that

have taken on the same challenge of cross-browser webpage capture. The performance

is briefly measured, where applicable. Chapter 3 introduces the requirements for a

cross-browser capture solution that can be commercialized. Chapter 4 describes the

implemented solution in detail. Chapter 5 lists some of the features that have yet to be

implemented in the software. A conclusion is then made in chapter 6.

11

Chapter 2

Requirements

The main functional requirement of a cross-browser rendering (or capturing) system is

to produce a set of screenshots (image file) that fully and accurately capture the

rendering of a given Web document (identified by a URL) on a given set of browsers

and browser configurations.

If we analyze this initial functional requirement further, we see that the main two

criteria in this requirement are the completeness of the document capture (the “fully”

adverb), and the accuracy.

With respect to completeness, an obvious requirement for a capturing solution is that

web documents must be captured in full width and height. In other words, the aim is to

produce an image that captures every part of the document regardless of its size or given

browser viewport.

With respect to accuracy, an important requirement is that the produced image for a

given browser and configuration is in all cases identical to the rendering that would be

obtained by opening the Web document in question on said browser and configuration.

In this context a browser configuration includes a particular device (e.g. notebook with

a given resolution), operating system and a given assignment of values to the

configuration parameters of the browser.

Additionally, since the aim is to compare screenshots taken across different browsers

and configurations, a second requirement is that the screenshots taken for different

browsers and configurations should be comparable. In particular, documents must be

12

rendered in the same size as they would be viewed on a typical user’s screen. Based on

global statistics, a typical desktop computer was defined as a screen with a 1024x768px

[7] resolution and with the browser window maximized. In addition to the default

plugins of each browser and operating system, Adobe Flash must be installed. This is a

reasonable assumption given that Adobe Flash is reported to have 99% market

penetration [8]. Nonetheless, the system should be able to be adaptable so that this

requirement can be lifted in future.

In addition to the above core functional requirements, the system should also support

HTTP (HyperText Transfer Protocol) Basic Authentication scheme in order to be able

to crawl through authenticated pages and capture pages hidden behind those

authentication screens.

Coming down to non-functional requirements, and as stated in Chapter 1, the system

needs to be highly extensible in order to cope with the ever-evolving landscape of

browsers and devices. This means that the system architecture should minimize

wherever possible the effort required to incorporate support for a new browser or

platform. It also implies that the core (screen capturing) components of the system

should be portable so as to support an evolving set of platforms, including tablet and

smartphone browsers.

Secondly, performance (processing-time) and scalability (additional resources required

to cope with additional load) should be carefully kept in mind when designing the

system. To support highly iterative development processes, the system should be able to

capture a web page in a wide number of browsers and configurations in a matter of

minutes, if not seconds.

Resource-intensive parts of the system must be horizontally or vertically scalable to

handle increasing demand. An obvious way for the system to be scaled horizontally (or

scaled out) is to increase the number of machines that capture a specific browser and

operating system configuration. This allows the system to handle requests from several

users simultaneously, while keeping average waiting times low. Vertical scaling (or

scaling up) of the system is possible both by upgrading memory and CPU in physical

servers as well as increasing the relevant allotted resources for virtual machines.

13

Related to scalability is the fact that the system should be deployable on the cloud in

order to benefit from the elasticity of computing resources that public clouds such as

Amazon Elastic Compute Cloud (EC2) offer [9]. This requirement entails that the

system should be compatible to platforms supported by public clouds (platform

compatibility).

The requirement to deploy on the cloud also imposes resource constraints, meaning that

the system should be developed while keeping in mind available resources, including

CPU, memory and network bandwidth constraints.

Finally, the system should be robust, specifically it should handle errors in browsers and

desktops gracefully and recover autonomously to a working state, including after a

system-wide restart. In a similar vein, the system should clear the browser cache for

every capture so as to avoid interference between two captures.

14

Chapter 3

Existing solutions

Before building a cross-browser page capturing solution to meet the previously defined

requirements, existing web- and desktop-based browser automation solutions were

considered and researched to potentially use as input to the visual comparison

algorithm. Many services, some even by corporations such as Adobe and Microsoft

[10], exist to render webpages in different browsers and operating systems, but only a

few provide an Application Programming Interface (API) to use the captures externally.

In 2009, Microsoft introduced SuperPreview [11], a visual debugging tool that renders

pages in Windows and Macintosh computers and provides DOM tree information.

SuperPreview is included in Microsoft Expression Blend 4, a Windows application for

creating graphical interfaces for web and desktop applications. No public API is

available.

Mogotest [4] is one of the most prominent web services specializing in cross-browser

testing. The browsers are run in a cloud environment, namely Amazon EC2. The list of

supported browsers consists of Internet Explorer 6 up to 9, Firefox 3.6 up to 10 and the

latest Google Chrome. The service also offers a web API to create captures and retrieve

the results.

Browsershots [12] is a web service capable of capturing browsers on Windows, Linux,

Mac and Berkeley Software Distribution (BSD) computers. There are two interesting

aspects of this project - it is open-sourced and crowd-sourced. By crowd-sourcing the

capturing of webpages to volunteers who register their own „shot factories“, the service

is able to provide screenshots of a large number of browsers on different operating

systems.

The documentation of Browsershots reveals that a single shot factory can process circa

one screenshot per minute. The capture method is revealed by looking at the source

code [13] – a web page is vertically scrolled and captured in small increments. After

every scroll, the new capture is stitched together by analysing lines in PPM format.

15

PPM [14] is a verbose image file format where every pixel is represented by three

decimal numbers for the red, green and blue component, separated by spaces or other

“white space” characters.

A comparison of the main solutions considered before implementing the capture system

described in this thesis is given in Table 1.

 SuperPreview Mogotest Browsershots BrowserStack

Full page

(„scrolled“)

screenshots

Yes Partial (only

desktop

browsers)

Scrolled Partial (only

viewport for

Safari, Opera)

Speed of

rendering a

screenshot

1-2 minutes after

submitting request

20-60 seconds 5 minutes to

hours, depending

on queue size

15-60 seconds

Browser

coverage

Internet Explorer,

Firefox

Chrome,

Firefox, IE, iOS

Chrome, Firefox,

IE, Safari, Opera

etc.

Chrome,

Firefox, IE,

Safari, Opera

API availability No Yes Limited Yes

Real browser

or emulated

Unknown Real browser Real browser Real browser

Support for

scripting

No No No No

TABLE 1 COMPARISON OF FEATURES OF EXISTING SOLUTIONS (AS OF 19TH OF FEBRUARY

2013)

It should also be mentioned that, as of May 2013, several cloud-based solutions exist for

running automated tests on web pages (e.g. TestingBot [15], Nerrvana [16] and

browserling [17]), but which do not have full-page capturing capabilities.

Comparing the requirements, existing solutions and potential future needs, a new

solution was selected to be implemented since the existing solutions did not meet speed

nor future scripting support needs.

16

Chapter 4

Implemented solution

The capture system described in this thesis consists of a web server, a database, a key-

value store and worker processes distributed over several virtual and physical machines.

The database, key-value store and web server are running in physical machines, while

most of the cross-platform worker processes are in a private cloud of virtual machines.

PostgreSQL [19] is used as the main database to store persisted data, including browser

and operating system configurations, user accounts, webpage requests, captures,

comparisons and paths to captured images. PostgreSQL is an open-source object-

relational database management system that is actively developed and supported on all

major operating systems, including Linux, FreeBSD, Microsoft Windows and Mac OS

X. The SQL implementation conforms strongly to the SQL:2008 ISO and ANSI

standard, is fully ACID compliant and supports foreign keys, joins, views, triggers and

several procedural languages to be executed by the database server. ACID stands for

Atomicity, Consistency, Isolation and Durability - a set of properties that guarantee that

database transactions are processed reliably [20].

In addition to a relational database, Redis [21] is used in the implementation of the

capture system. Redis is a key-value store that by default stores its whole dataset in

RAM and allows for optional durability by periodically storing changes to disk. In

addition to string values it also supports lists of strings, sets of strings, sorted sets of

strings and hashes where keys and values are strings. To increase read scalability and

data redundancy, Redis servers can be easily replicated in a master-slave configuration.

Benchmarks published on the Redis website promise sustained performance of 50,000

17

queries/second for more than 60,000 concurrent connections [22]. Redis is sponsored

by VMware, Inc., a company providing cloud and virtualization software and services.

Many languages were considered for the cross-platform parts of this project, including

Java, C#, C++, JavaScript and Ruby. Ruby was chosen because of the author's

familiarity of the language and its dynamic nature, allowing quick prototyping of

different solutions. The reference implementation, Ruby MRI (short for Matz’s Ruby

Interpreter) [23], is written in C and has support for writing extensions in C and C++. A

large user community is actively developing open-source libraries (gems) and tools for

the Ruby language, which makes it a popular choice among developers.

In production, the implemented solution currently offers capture and comparison of 15

configurations, consisting of different versions of Google Chrome, Mozilla Firefox,

Opera and Internet Explorer running on Windows XP, Windows Vista, Windows 7 and

Mac OS X. The choice of configurations was decided based on Browserbite customer

feedback.

All shot worker machines were configured to proxy requests through a local server that

runs Squid [24], an open-source web cache and proxy server. A proxy has several

advantages when used in this system. By caching the web pages accessed by shot

workers for a predefined time (currently 60 seconds), it both reduces the load of the

remote web server as well as increases the speed at which a webpage is loaded in all

shot workers. The proxy is also configured to block certain resources from being

loaded, for example executables and large files to increase robustness. This makes it

safer for shot workers to open web pages that would otherwise automatically initiate file

downloads, as is the case for many software vendors.

Workflow

A simplified flowchart of the implemented capture system is shown in Figure 3.

18

Document captured
by worker #1

URL submitted

Document captured
by worker #2

Document captured
by worker #3

Request finished

Request stored in
database

Capture jobs
dispatched to

workers

Capture processed
and stored in

database

Baseline capture
finished?

Yes
Captures compared

against baseline

Comparison results
added to database

No

All captures
compared?

Yes

No

FIGURE 3 A SIMPLIFIED FLOWCHART OF THE CROSS-BROWSER DOCUMENT CAPTURE

SYSTEM.

Based on potential CPU usage and time consumption, the primary bottlenecks in the

capture solution’s workflow were recognized as shot workers loading and capturing

webpages and the comparison algorithm running on completed captures. As usage of

the capture system increases, these resource-intensive processes should be parallelized

to maintain low average cycle times in the capture system. An elegant way to achieve

this is to incorporate a queuing system.

Several protocols and solutions for sending and receiving messages between distributed

systems were considered. The selection included the Advanced Message Queuing

Protocol [25] (AMQP), an open standard for connecting systems by passing messages

between applications or organizations, and ØMQ [26], an asynchronous messaging

library that can run without a dedicated message broker. The eventual choice settled on

Resque [27], a Redis-backed Ruby library specifically created for placing jobs into

queues and processing them in the background.

Resque implements queuing using Redis Lists [28], which are lists of strings sorted by

insertion order. A job consists of its name and parameters (the payload) that are

serialized as a JSON string and stored in a Redis List corresponding to a specific queue.

Jobs are performed by workers, which are separate Ruby processes configured to

reserve jobs from specific queues. Although the main library includes only Ruby

bindings for workers, the queuing system is language-agnostic and worker

implementations exist for several other languages, including C, C#, Java and Python.

19

Adding and removing (pushing and popping) jobs to a queue has O(1) time complexity

in Redis, meaning that these actions happen in constant time, independent of the size of

a list. A “blocking pop” command is available, which effectively allows multiple

workers to wait behind a single queue in a “first come, first served” manner. A fallback

solution is also available where workers poll Redis queues every N seconds instead of

blocking.

An overview of the queuing system is shown as a sequence diagram in Figure 4 and as a

flow diagram in Figure 5. A successful flow of a single request is as follows: A request

for capturing a URL is saved in the PostgreSQL database and to a dispatch queue in the

Redis key-value store. A worker removes the job from the queue and distributes work to

the required browser queues, which are monitored by corresponding Capture Workers.

Capture Workers upload their captures to a central storage location and queue their

results for processing by a Capture Processing Worker, which updates the database with

the location of finished results. This worker also detects whether the baseline capture

has finished, in which case it will queue subsequent captures for comparison. A

Comparison Worker executes the visual comparison algorithm on captures it is given as

parameters and queues its results for processing by a Comparison Processing Worker,

which is responsible for updating the state of the request in the database and notifying

the user.

Web Server Postgres Redis

storeRequest

dispatchRequest

Dispatcher Shot Worker

poll

Capture Processing
Worker

Compare Worker

takeScreenshots

poll

processCapture

poll

compareCaptures
poll

processComparison

Compare Processing
Worker

poll

storeComparisonResults

FIGURE 4 A SEQUENCE DIAGRAM OF THE CAPTURE SYSTEM'S WORKFLOW

20

Capture Worker
#3

Capture Worker
#2

Capture Worker
#1

Compare Worker

Resize Worker

PostgreSQL

Dispatch Worker

winxp_ie6
Capture Worker

#1

winxp_firefox
Capture Worker

#2

osx_safari
Capture Worker

#3

captured
Capture

Processing
Worker

resize

compare

Resize Worker

Compare Worker

compared
Comparison
Processing

Worker

Redis

Storage

Web frontend

... Capture Worker
#3

Capture Worker
...

dispatch

FIGURE 5 A DIAGRAM OF QUEUES AND PROCESSES IN THE SCALABLE CAPTURE

SOLUTION.

Workers

Several workers were created to make parts of the capture system asynchronous and

easily scalable. In addition to Shot Workers, the cross-platform processes that automate

and capture web pages, there are also separate workers for dispatching a new request,

21

processing finished captures, comparing captures against a baseline, processing the

results of a comparison and creating thumbnails of captures for use in the frontend.

Excluding shot workers, all of the aforementioned workers are configured to run using

multiple threads, which allows for more concurrency and more efficient usage of the

available hardware resources.

The workflow of a capture job (TakeScreenshots) is as follows: a worker removes the

job from the queue and opens the required browser. If there are no local crop settings

for this browser, the crop is recalibrated and stored in file. The browser then navigates

to the given URL and waits for the document to complete loading. The browser window

is maximized and a screenshot of the desktop is captured. The full-page capture follows,

either by scrolling or resizing the document using measurements retrieved from the

JavaScript DOM. The browser is closed and the resulting images and logs are copied or

uploaded to the central storage. A ProcessCapture job is then queued with the created

artefacts as parameters and finally, local artefacts are removed.

As there are many steps that can fail, either with browser automation, screen capture or

uploading results, exception and timeout handling logic has been added that will

requeue a job a certain number of times in case of apparent failure.

Resque workers can be configured to listen to multiple queues, which means that a

single worker can perform captures of multiple browsers. This allowed the Browserbite

product to offer 15 distinct configurations by only setting up 9 virtual machines. For

example, in a real-life scenario the Browserbite capture system has three machines

running on Windows 7 and each one performs captures of different versions of Internet

Explorer (7, 8 and 9), in addition to a shared version of Google Chrome and Mozilla

Firefox.

Web Browser Automation

Several software solutions exist to automate either specific or multiple browsers,

including Sahi [30], WatiR [31] and Selenium WebDriver [32].

The solution described in this thesis uses Selenium WebDriver for automating web

browsers. WebDriver is based on a client-server architecture communicating via JSON

messages, defined in the WebDriver wire protocol [33]. Browser-specific drivers are

accessed from client libraries by using their RESTful [34] web service over HTTP. A

22

RESTful web service can be described as a collection of resources that is hypertext

driven and that has a base URI, a defined set of supported HTTP methods (e.g. GET,

POST, PUT, DELETE) and a supported media type, e.g. JSON.

As of May 2013, Selenium WebDriver supports most browser families: Internet

Explorer, Mozilla Firefox, Google Chrome, Opera, Mac Safari as well as simulated

support for Android and iOS devices, as is explained further in this thesis.

At the time of writing the capture system, support for Mac Safari was missing from

WebDriver. The WatiR project, however, had a working solution for automating Safari

via AppleScript [35], a proprietary scripting language for Macintosh computers. A

wrapper server was therefore created by the author, which translates incoming wire

protocol requests into WatiR commands. Even with the added overhead of the wrapper

setup, the performance of the Safari capture worker on the physical Mac Mini hardware

has proved to be better than capture workers in the virtual environment.

Webpage capture

Capturing the screen

Ruby unfortunately lacks an API for screen capture. In the first version of shot workers

the author therefore used JRuby [36], an alternate implementation of Ruby that runs on

the Java Virtual Machine (JVM). This made it possible to use the java.awt.Robot

class, which generates native system input events to manipulate the browser and creates

screen captures of rectangles on the screen. As the Java API is cross-platform, this

capture method worked on both Windows and Mac OS workers.

This method performed sufficiently well on physical machines, but performance issues

were observed on virtual machines with shared CPU and memory resources as captures

for long webpages would take several minutes to complete. For Windows desktops, a

better performing solution was therefore developed using Windows GDI+, an API that

includes functions used for graphics and formatted text on both video displays and

printers. In particular, this API includes the BitBlt function (short for bit-level block

transfer) that performs a bit-block transfer of the colour data corresponding to a

rectangle of pixels from the specified source device context into a destination device

23

context [37]. In the described capture system, the source device context is either the

browser window or the browser’s child window (the viewport).

Appendix 2 shows the use of BitBlt to capture browsers and their child windows on

Microsoft Windows, written in C++ as a Ruby extension.

Cross-Platform Capture Method - Scrolling

The first and most obvious solution to capture a full web document from a browser’s

viewport was to capture it gradually. This method entails scrolling to every part of the

document horizontally and vertically, capturing the viewport into numbered files after

every scroll event, and finally combining the captures into a single full-page image.

This method starts by querying and storing the current scroll position. The method for

getting the scroll position can be seen in Appendix 1. The viewport is captured, the

document is scrolled horizontally by the width of the viewport and the viewport is

captured again. The new scroll position is then queried and compared with the old scroll

position. If the amount moved is smaller than the width of the viewport, the page has

finished scrolling to the right edge. The page is then scrolled back to the left edge and a

vertical scroll is performed by the height of the viewport using the same rules. When the

page has been scrolled through, the captured images are combined into a single full-

page image using the command-line interface of a cross-platform montage utility in

ImageMagick, an open source software suite for editing and displaying images [38].

As described previously, the full-page capture logic only captures the area of the

desktop containing the browser viewport. To find the coordinates of this area, a

calibration is performed for each browser on the computer by navigating to two bright-

coloured pages, one with forced scrollbars and one without rules for scrolling. In both

cases, a screenshot of the desktop is captured. Starting from the center of each image,

the top, left, right and bottom bounds of the viewport are found. These measurements

are then combined to get the viewport bounds and the scrollbar dimensions and cached

in a local file for future requests. An illustration of these measurements is shown in

Figure 6.

24

FIGURE 6 A SCREENSHOT OF THE BROWSER VIEWPORT MEASUREMENT PAGE WITH

ADDED ANNOTATIONS.

The scrolling capture solution works sufficiently well on static webpages, but has some

drawbacks on more dynamic pages in its current state. For example, several webpages

tested on the Browserbite platform include a navigation element or advertisement that is

fixed to the browser viewport. This results in full-page captures where the fixed element

is repeated as many times on the final image as the document has been scrolled. An

additional, albeit minor flaw of the scrolling solution appears when a page has

dynamically loaded content at the bottom of the page, in which case the algorithm might

scroll the page an uncertain amount and create overlapping areas on the full-page

capture.

Capture Method for Windows – Resizing

An unusual feature of the Windows operating system is that a window can be positioned

or resized so that its dimensions exceed the bounds of the desktop. This is not possible

by regular user interaction using a mouse and keyboard, but can be done

programmatically using the Windows API SetWindowPos [39] method and setting a

SWP_NOSENDCHANGING flag that prevents the window from receiving a specific

message about its size and position changing. Using this method, it is possible to make a

browser window larger than the desktop so that the viewport is as large as the entire

web document, which can then be captured all at once.

25

The window resizing method requires a handle to a window as its first parameter. In

Windows, every window has a unique handle, represented by either a 32-bit or 64-bit

signed integer based on the operating system’s version. As Selenium WebDriver does

not expose the window handle of a browser, the solution described in this thesis has

implemented a custom solution for finding the correct window. After a web document

has been opened in the browser, the title of the document is changed via JavaScript to a

unique name consisting of a prefix and a random number, e.g. browserbite-1409. A

function then iterates over the handles of all open windows using the Windows API

EnumWindows method, checking the title of each window for a matching title.

To determine how large the viewport must be to fit the whole document, attribute values

from the Document Object Model are queried via JavaScript. For example, the

document’s height is set to the largest value of these attributes:

 document.body.scrollHeight

 document.body.offsetHeight

 document.documentElement.scrollHeight

 document.documentElement.offsetHeight

 document.documentElement.clientHeight

The corresponding attributes for width are used to get the document’s desired width.

The dimensions reported by JavaScript are then combined with the measurements of the

browser window (found via calibration as described in the scrolling method description)

to get the full required size of the window. The window is then resized, captured and

restored to its original size.

The method of capturing a full web document by resizing is used in the Browserbite

product for all browsers running on Windows XP, Vista, Windows 7 and 8.

Capture Methods for Mobile Devices

Android

Support for automating web documents in Android devices was added using the

AndroidDriver package included in Selenium WebDriver. Instead of automating the

native browser of a device, this driver is implemented as a separate Android application

consisting of an HTTP server for translating incoming wire protocol commands and a

26

WebView [40] object where the desired webpage is opened and automated. It can be

run on both physical devices and emulators, but only the latter are used in the capture

system described in this thesis. Though replicating the real browser of an operating

system was desired, the solution used by AndroidDriver was deemed suitable, as the

native browser and WebView used the same WebKit rendering engine and would

therefore display webpages identically.

The WebView object includes a method for capturing the full document without

scrolling, but since the driver works by encoding the image in Base64 and sending it as

a JSON response, on large pages the driver would often crash or reach a timeout

imposed by the HTTP protocol. To prevent this, the AndroidDriver was modified in the

described capture solution to instead save the captured document to a file on the

device’s storage and copy it using a command line tool included in the Android

Software Development Kit (SDK).

As of May 2013, developers of Chromium, the open source project from which Google

Chrome is derived from, were working on ChromeDriver2, a new driver based on the

WebKit Remote Debugging Protocol [41] that is included in both desktop and mobile

releases of Chrome. When this driver is released, additional Android shot workers can

be added to the Browserbite product, using the same control logic as the existing

workers.

Apple iOS

Similarly to Android support, the Selenium project includes IPhoneDriver for

automating webpages in iOS devices. This driver does not automate the built-in Mobile

Safari browser of an iOS device - instead, it is implemented as a native iOS application

that displays a fullscreen UIWebView object. As the same UIWebView is used by the

built-in Safari browser, there are no differences when comparing a webpage rendered by

IPhoneDriver and Mobile Safari.

There is currently no known method for capturing the whole contents of a UIWebView

object, so full document capture on the iOS shot worker was implemented using the

same scrolling method outlined previously.

As of May 2013, an open-source project named "ios-driver" [42] has been in

development that enables automation of both native and web applications on iOS

27

devices using the WebDriver Wire protocol. Internally, ios-driver uses Apple's

UIAutomation framework [43] to control native applications, while webpages are

opened in the Mobile Safari browser and controlled using the Remote Debugging

Protocol built into WebKit.

As one of the requirements of the document capture solution is to render webpages in

real browsers and operating systems, the ios-driver implementation should be preferred

over the Selenium IPhoneDriver implementation. The ios-driver project will therefore

be used in the next version of the capture system’s iOS shot worker.

Frontend

The frontend for the capture system was developed using Ruby on Rails [44], a popular

open source web application framework that runs on the Ruby programming language.

The Rails framework includes components needed to create database-backed web

applications according to the Model-View-Controller (MVC) pattern. The MVC pattern

divides an application into three layers:

 Model layer, encapsulating the business logic and domain model of the

application;

 View layer, consisting of "templates" that provide representations of the

application's resources;

 Controller layer, handling incoming HTTP requests and responding with a

rendered template from the View layer.

A model in Rails is typically a class using the Active Record [45] pattern, which maps a

row in a database table to a Ruby object and can be embellished with additional

business logic methods. A view in Rails is usually an HTML file with embedded Ruby

code, but depending on the HTTP request, a controller can output other formats, for

example XML, JSON or PDF.

When a URL is submitted for capturing from the frontend, the user is redirected to an

overview page showing placeholders for all queued captures. As captures are finished

by shot workers, these placeholders are automatically replaced with thumbnails of the

resulting images from different configurations. This is accomplished by having the

rendered overview page periodically poll for changes from the web server using

Asynchronous JavaScript and XML [46] (AJAX), a popular technique to achieve

28

asynchronous communication between a client browser and a web server. A screenshot

of the web frontend used in the Browserbite product is shown in Figure 7.

FIGURE 7 BROWSERBITE FRONTEND SHOWING 16 CAPTURED CONFIGURATIONS OF A

REQUEST.

The frontend is served by Unicorn [47] workers running behind an nginx [48] reverse

proxy server. Unicorn is an HTTP server for Ruby applications that takes advantage of

features like forking found in Unix-like kernels to serve clients. Nginx is a popular open

source web server and a reverse proxy that is focused on high performance and low

memory usage. According to Netcraft statistics for May 2013 [49], nginx served or

proxied 13.54% busiest sites in the world.

Webpage automation

A major supplementary feature of the capturing system is support for scripting user

actions on a webpage before capturing. In addition to capturing the flow of visitors on a

29

webpage, automation enables capturing web documents that are behind custom login

forms, as well as capturing states of a web application where a state does not have a

URL.

Recording

Due to the majority of Browserbite customers using Google Chrome, the recording

solution has been implemented as a Chrome browser extension. However, as the

Chrome-specific features were deliberately kept in separate service classes, a major part

of the extension source code can be reused when implementing a similar solution for

other browsers with JavaScript-based extensions, such as Mozilla Firefox, Opera and

Safari.

The Chrome extension consists of a content script that runs in the context of a recorded

webpage, an invisible background page that stores the recorded steps and a popup page

showing the currently recorded steps (shown in Figure 9). An overview of how the

recorded data from the webpage is transferred to shot workers is shown in Figure 8.

When recording is started from the popup page, a content script is injected into the

active webpage - this is JavaScript code that adds several event handlers, e.g. for clicks,

form field changes and mouse hover events, to the document. When any of these actions

are performed by the user, the handlers forward information about these events to the

background page so that they can be replayed as steps in other browsers. The forwarded

data includes unique locators for the event’s target, along with its coordinates and

changed value, where applicable.

Background page
(JavaScript)

Content Script
(JavaScript)

Webpage

Web frontend Shot WorkersJSON JSON

Message passing

DOM event

30

FIGURE 8 DIAGRAM OF DATA FLOW FROM THE RECORDER TO THE CAPTURE SYSTEM.

As these elements need to be found on multiple platforms and browsers with possibly

different DOM-s, both unique CSS and XPath selectors are recorded. To find a unique

CSS selector for an element, the DOM path of that element is traversed in reverse,

starting from the element itself. For each element in the path, a selector is constructed

by concatenating the element's tag name with the first attribute value that is either ID,

NAME, CLASS, TYPE, ALT, TITLE or VALUE. This selector is then prefixed with a

list of preceding siblings' tag names, separated by plus-signs. After every element

traversal, the document is queried using the JavaScript document.querySelector() [50]

method and if it returns the desired element, a unique CSS selector has been found. An

example result is shown in Appendix 3. The method of using plus-signs to target sibling

elements instead of more terse :nth-child() [51] CSS pseudo-selectors was chosen for

compatibility with old browsers, in particular Internet Explorer 7 and 8.

31

FIGURE 9 THE BROWSERBITE CHROME EXTENSION POPUP BEFORE AND AFTER

RECORDING

Playback

Shot workers replay recorded steps using built-in methods in Selenium WebDriver. An

element is first looked for using the CSS selector in the recording, using the XPath

selector as a failback. If the element is found, the recorded action is performed on it,

after which the document is measured and fully captured. Both finding an element and

performing an action on it is retried up to 3 times to account for dynamically loaded

elements that might not be immediately available after the page is first loaded or after

the previously performed step.

32

Capture Processing jobs are created after every performed step, which allows the

frontend to show finished steps a few seconds after they have been repeated by shot

workers.

Cloud computing

As the need to scale grows, it may be more feasible to migrate parts or all of the project

to an external cloud provider such as Amazon Elastic Compute Cloud. The main

challenge with this decision is that most cloud providers only offer either Windows

Server or Enterprise Linux virtual machines instead of desktop operating systems.

Running desktop virtual machines inside the cloud provider's Windows Server virtual

machines can result in severely degraded performance, but makes the system

horizontally scalable.

Due to licencing constraints not all parts of the system can be migrated to a cloud

provider. For instance, the Software License Agreement for Mac OS X [29] grants a

license to install, use and run up to two (2) additional copies or instances of the Apple

Software within virtual operating system environments on each Mac Computer you own

or control that is already running the Apple Software. This means that OS X capture

workers can only run inside Mac computers or virtual machines running on Mac

Computers, which severely limits the available options of cloud providers.

Except for the legal constraint introduced by Apple Inc., all other parts of the system

can be migrated. Since the shot workers are processing in the background

asynchronously from users, no real threat is imposed by migrating parts of the capture

system to cloud services in the future. An architecture that has running parts in both an

external cloud and on private hardware can be defined as a hybrid cloud solution.

33

Chapter 5

Conclusion

It is rare to have a web page perform exactly the same in different browsers. Though

most differences across platforms can be considered insignificant, for example text

rendered in different fonts, page elements missing background gradients or rounded vs.

rectangular corners on buttons, there are sometimes more severe differences. In worst

cases, layout differences or bugs can result in lost revenue. Knowing this, a commercial

offering by Browserbite was created that can capture full-page screenshots of web pages

in a wide variety of web browsers on different platforms and can algorithmically find

discrepancies between them.

This thesis focused on the implementation aspects of the cross-platform capture system

in the product offered by Browserbite. First, a set of requirements were established for

cross-browser document capturing. Existing web services and applications were

compared against these requirements. It was determined that none of the existing

solutions completely satisfied the previously set criteria.

A new solution architecture was created that enabled horizontal and vertical scaling.

Established queuing solution was introduced to enable asynchronous job processing and

separate front-end and back-end specific tasks. Methods for capturing a web-page in

multiple platforms and browsers were then introduced, using operating system-specific

functions where required to manipulate a browser window more efficiently and capture

a full page document and the desktop.

A scalable architecture consisting of a web frontend, a relational database, a key-value

store and distributed background workers was described that is already being

successfully used in a production environment. The architecture enables to migrate

nearly all of the subsystems into a cloud service provider to ease the deployment and

other options.

The solution is in daily use by both corporate and freelance customers. It is

commercially available at: http://browserbite.com.

http://browserbite.com/

34

Future work

As a commercial offering, new features are mainly put into work based on user

feedback. The capture system has been considered fast and stable enough for production

use with prospective loads, but several new features are planned in the near future:

 Supporting desktop resolutions other than 1024x768, either by programmatically

changing the screen resolution before captures or by having capture workers

running on computers with different resolutions.

 Banner detection and coverage: pages that have dynamic banner ads or

animations will often produce irrelevant comparison results. The solution should

therefore try to detect the dynamic parts of a web page and cover these parts on

each capture before sending them for comparison. Preliminary tests to detect

these changes by capturing the page twice with a delay or page refresh and

finding the pixel-by-pixel differences have yielded positive results.

 Support for capturing different browsers on Android emulators or physical

devices, as currently only the WebKit based browser is used.

 Support for testing private webpages and intranet sites behind firewalls by

establishing a reverse network tunnel to the customer’s computer.

 Support for capturing desktop browsers on popular Linux distributions.

 Creating a REST API for the capture solution which can be used outside the web

frontend. This would enable more seamless integration into current workflows

of the system’s users.

Most of the tools and libraries used in the implemented cross-browser capture

system are open-source. The capturing solution has advantages over many existing

services, but unlike the visual comparison algorithm, given time, it is not difficult to

reproduce. The capturing solution could therefore be considered for release as an

open-source project to enable outside contributions that improve and extend its

capabilities.

35

Mitmeplatvormiline veebidokumentide pildistamise

lahendus

Magistritöö (30 EAP)

Marti Kaljuve

Resümee

Veebilehte kuvatakse harva täpselt samasugusena erinevates brauseri ja

operatsioonisüsteemi kombinatsioonides. Sellel on mitmeid põhjuseid: veebistandardite

tõlgendamine brauseri poolt, brauseri visualiseerimismootor, operatsioonisüsteemi

vaikefondid, brauserisse installeeritud pistikprogrammid, ekraani eraldusvõime jms.

Nende erinevuste tähelepanuta jätmine võib tekitada probleeme veebilehe kujunduses,

mille tagajärjeks on klientide kaotamine.

Veebidisaineritele võib tunduda veebilehtede testimine mitmes brauseris tavapärase

praktikana, et leida brauseritevahelised kujunduse probleemid. Katsed näitavad, et

visuaalsete erinevuste käsitsi leidmine on tülikas ja kohmakas ülesanne. Seda teades on

meie meeskonna liige loonud algoritmi, mis on osutunud inimestega võrreldes

märkimisväärselt kiiremaks ja täpsemaks kujunduses vigade leidmisel. Algoritm töötab

selliselt, et veebilehest tehtud aluspilti (tarkvara testimise mõistes oraaklit) võrreldakse

samast veebilehest teiste brauseritega tehtud piltidega, leides nendes paigutuse

erinevusi, mida ka inimsilm arvestaks väärana.

Käesolev töö keskendub probleemile, kuidas eelnevalt mainitud algoritmile sisendit

luua. Töö annab valikulise ülevaate olemasolevatest lahendustest ja teenustest, mis

tagastavad veebilehe sisu pildi kujul, ning võimalusel mõõdab nende jõudlust.

Tuvastatakse nimekiri nõuetest, mis on vajalikud mitmeplatvormilise veebidokumentide

pildistamise lahenduse kommertsialiseerimiseks. Seejärel tutvustab töö kiiret ja

mitmeplatvormilist meetodit veebilehe täispikkuses pildistamiseks ning annab ülevaate

skaleeritava arhitektuuriga veebiteenusest, mis pildistab veebilehti virtuaalsetes ja

füüsilistes masinates ning erinevates brauserites ja operatsioonisüsteemides.

36

Bibliography

[1] StatCounter, “Top 12 Browser Versions from Apr 2012 to Apr 2013,” 2013.

[Online]. Available: http://gs.statcounter.com/#browser_version-ww-monthly-

201204-201304. [Accessed April 2013].

[2] W3C, “HTML & CSS - W3C,” May 2013. [Online]. Available:

http://www.w3.org/standards/webdesign/htmlcss. [Accessed May 2013].

[3] Microsoft, “Internet Explorer 6 Countdown | Death to IE 6 | IE6 Countdown,”

2011. [Online]. Available: http://www.ie6countdown.com/. [Accessed April

2013].

[4] Mogoterra, Inc., “Mogotest,” 2013. [Online]. Available: http://mogotest.com/.

[Accessed May 2013].

[5] BrowserStack, “Cross Browser Testing Tool. 200+ Browsers, Mobile, Real IE.,”

2013. [Online]. Available: http://www.browserstack.com/. [Accessed May 2013].

[6] Browsershots, “Check Browser Compatibility, Cross Platform Browser Test,”

2013. [Online]. Available: http://browsershots.org/. [Accessed May 2013].

[7] NetMarketShare, “Screen Resolutions - Report,” May 2011. [Online]. Available:

http://www.netmarketshare.com/report.aspx?qprid=17&qptimeframe=M&qpsp=1

48&qpch=350&qpmr=100&qpdt=1&qpct=3&qpcid=fw79667&qpf=1. [Accessed

January 2013].

[8] Adobe Systems, “Millward Brown survey,” July 2011. [Online]. Available:

http://www.adobe.com/products/flashplatformruntimes/statistics.html. [Accessed

37

April 2013].

[9] Amazon, “Amazon Elastic Compute Cloud (Amazon EC2),” 2013. [Online].

Available: http://aws.amazon.com/ec2/. [Accessed May 2013].

[10] Microsoft, “Expression Web SuperPreview,” 17 March 2011. [Online]. Available:

http://www.microsoft.com/en-us/download/details.aspx?id=2020. [Accessed

March 2013].

[11] Microsoft, “Microsoft Expression Web SuperPreview - Expression Web team

blog,” March 2009. [Online]. Available:

http://blogs.msdn.com/b/xweb/archive/2009/03/18/microsoft-expression-web-

superpreview-for-windows-internet-explorer.aspx. [Accessed December 2012].

[12] Browsershots.org, "Check Browser Compatibility, Cross Platform Browser Test,"

[Online]. Available: http://browsershots.org/. [Accessed April 2013].

[13] browsershots, “browsershots - Test your web design in different browsers -

Google Project Hosting,” 23 October 2009. [Online]. Available:

https://code.google.com/p/browsershots/source/browse/#svn%2Ftrunk. [Accessed

March 2013].

[14] “PPM Format Specification,” 3 October 2003. [Online]. Available:

http://netpbm.sourceforge.net/doc/ppm.html. [Accessed May 2013].

[15] TestingBot, “Selenium Testing in the cloud - Run your cross browser tests in our

online Selenium Grid,” 2013. [Online]. Available: https://testingbot.com/.

[Accessed May 2013].

[16] Deep Shift Labs, “Nerrvana - easy Selenium testing in the cloud,” 2013. [Online].

Available: http://www.nerrvana.com/. [Accessed May 2013].

[17] Browserling Inc, “browserling - interactive cross-browser testing,” 2013.

[Online]. Available: https://browserling.com/. [Accessed May 2013].

[18] J. Webber, Guerilla SOA, 2007.

[19] The PostgreSQL Global Development Group, “PostgreSQL: The world's most

advanced open source database,” May 2013. [Online]. Available:

http://www.postgresql.org/. [Accessed May 2013].

38

[20] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques,

Morgan Kaufmann, 1992.

[21] Redis, “Redis,” May 2013. [Online]. Available: http://redis.io/. [Accessed May

2013].

[22] D. Spezia, “How fast is Redis? - Redis,” 29 July 2012. [Online]. Available:

http://redis.io/topics/benchmarks. [Accessed 03 04 2013].

[23] “Ruby Programming Language,” May 2013. [Online]. Available:

http://www.ruby-lang.org/en/. [Accessed May 2013].

[24] Squid, “squid : Optimising Web Delivery,” 2013. [Online]. Available:

http://www.squid-cache.org/. [Accessed March 2013].

[25] OASIS, “Home | AMQP,” May 2013. [Online]. Available: http://www.amqp.org/.

[Accessed May 2013].

[26] iMatix, “The Intelligent Transport Layer - zeromq,” 2013. [Online]. Available:

http://www.zeromq.org/. [Accessed May 2013].

[27] Resque, “Resque: the rock-solid job queue,” GitHub, May 2013. [Online].

Available: http://resquework.org/. [Accessed May 2013].

[28] Redis, “Data types - Redis,” [Online]. Available: http://redis.io/topics/data-types.

[Accessed May 2013].

[29] Apple Inc, “Software License Agreement For Mac OS X,” 01 07 2012. [Online].

Available: http://www.apple.com/legal/sla/docs/OSX108.pdf. [Accessed 03 04

2013].

[30] Tyto Software Pvt. Ltd., “Sahi Web Test Automation Tool,” 2013. [Online].

Available: http://sahi.co.in/. [Accessed March 2013].

[31] B. Pettichord and P. Rogers, “Watir.com | Web Application Testing in Ruby,”

2013. [Online]. Available: http://watir.com/. [Accessed March 2013].

[32] Selenium, “Selenium - Web Browser Automation,” May 2013. [Online].

Available: http://www.seleniumhq.org/. [Accessed May 2013].

[33] Selenium, “JsonWireProtocol - selenium - A description of the protocol used by

WebDriver to communicate with remote instances,” April 2013. [Online].

39

Available: http://code.google.com/p/selenium/wiki/JsonWireProtocol. [Accessed

April 2013].

[34] R. T. Fielding, “REST APIs must be hypertext-driven,” 20 October 2008.

[Online]. Available: http://roy.gbiv.com/untangled/2008/rest-apis-must-be-

hypertext-driven.

[35] Apple Inc., “AppleScript Overview: Introduction to AppleScript Overview,” 31

October 2007. [Online]. Available:

https://developer.apple.com/library/mac/#documentation/AppleScript/Conceptual/

AppleScriptX/AppleScriptX.html. [Accessed March 2013].

[36] JRuby, “Home - JRuby.org,” May 2013. [Online]. Available:

http://www.jruby.org/. [Accessed May 2013].

[37] C. Petzold, “Programming Windows,” Microsoft Press, 1998, p. 648.

[38] ImageMagick Studio LLC, “ImageMagick: Convert, Edit, Or Compose Bitmap

Images,” May 2013. [Online]. Available:

http://www.imagemagick.org/script/index.php. [Accessed May 2013].

[39] Microsoft, “SetWindowPos function,” February 2013. [Online]. Available:

http://msdn.microsoft.com/en-

us/library/windows/desktop/ms633545(v=vs.85).aspx. [Accessed May 2013].

[40] Google Inc., “WebView | Android Developers,” May 2013. [Online]. Available:

http://developer.android.com/reference/android/webkit/WebView.html.

[Accessed May 2013].

[41] Google Inc, “Remote Debugging Protocol v1.0 - Chrome DevTools - Google

Developers,” 7 May 2013. [Online]. Available:

https://developers.google.com/chrome-developer-tools/docs/protocol/1.0/.

[Accessed 19 May 2013].

[42] F. Reynaud, “ios-driver,” May 2013. [Online]. Available: http://ios-

driver.github.io/ios-driver/. [Accessed May 2013].

[43] Apple Inc., “UI Automation JavaScript Reference,” 9 September 2012. [Online].

Available:

http://developer.apple.com/library/ios/#documentation/DeveloperTools/Reference

40

/UIAutomationRef/_index.html. [Accessed May 2013].

[44] D. H. Hansson, “Ruby On Rails,” May 2013. [Online]. Available:

http://rubyonrails.org/. [Accessed May 2013].

[45] M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley

Professional, 2002.

[46] J. J. Garrett, “Ajax: A New Approach to Web Applications,” 18 February 2005.

[Online]. Available: http://www.adaptivepath.com/ideas/ajax-new-approach-web-

applications. [Accessed March 2013].

[47] E. Wong, “Unicorn: Rack HTTP server for fast clients and Unix,” [Online].

Available: http://unicorn.bogomips.org/. [Accessed May 2013].

[48] nginx, “nginx,” [Online]. Available: http://nginx.org/. [Accessed May 2013].

[49] Netcraft Ltd., “May 2013 Web Server Survey,” May 2013. [Online]. Available:

http://news.netcraft.com/archives/2013/05/03/may-2013-web-server-survey.html.

[Accessed May 2013].

[50] W3C, “Selectors API Level 1,” 21 February 2013. [Online]. Available:

http://www.w3.org/TR/selectors-api/. [Accessed May 2013].

[51] W3C, “Selectors Level 3,” 29 September 2011. [Online]. Available:

http://www.w3.org/TR/selectors/#nth-child-pseudo. [Accessed May 2013].

41

Appendices

APPENDIX 1. FINDING THE SCROLL POSITION

var scrOfX = 0, scrOfY = 0;

if (typeof (window.pageYOffset) === 'number') {

 //Netscape compliant

 scrOfY = window.pageYOffset;

 scrOfX = window.pageXOffset;

} else if (document.body && (document.body.scrollLeft ||

document.body.scrollTop)) {

 //DOM compliant

 scrOfY = document.body.scrollTop;

 scrOfX = document.body.scrollLeft;

} else if (document.documentElement &&

(document.documentElement.scrollLeft ||

document.documentElement.scrollTop)) {

 //IE6 standards compliant mode

 scrOfY = document.documentElement.scrollTop;

 scrOfX = document.documentElement.scrollLeft;

}

return { 'x': scrOfX, 'y': scrOfY };

42

APPENDIX 2 WINDOW CAPTURE USING BITBLT AND PRINTWINDOW IN THE WINDOWS API

VALUE capture_and_crop(VALUE self, VALUE hwndInt, VALUE

filenameValue, VALUE leftValue, VALUE topValue, VALUE

rightValue, VALUE bottomValue, VALUE useBitBlt) {

 int x, y, width, height;

 HWND controlHwnd = tohwnd(hwndInt);

 RECT controlRect;

 HDC controlDC;

 HDC compatibleDC;

 HBITMAP compatibleBitmap;

 if(!controlHwnd) {

 printf("Invalid handle value: %d\n", controlHwnd);

 return filenameValue;

 }

 int left = FIX2INT(leftValue);

 int top = FIX2INT(topValue);

 int right = FIX2INT(rightValue);

 int bottom = FIX2INT(bottomValue);

 // Initialize GDI+.

 Gdiplus::GdiplusStartupInput gdiplusStartupInput;

 ULONG_PTR gdiplusToken;

 GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, NULL);

 CLSID encoderClsid;

 Gdiplus::Status stat;

 GetWindowRect(controlHwnd, &controlRect);

 x = controlRect.left;

 y = controlRect.top;

 width = controlRect.right - controlRect.left;

 height = controlRect.bottom - controlRect.top;

 controlDC = GetDC(controlHwnd);

 compatibleDC = CreateCompatibleDC(controlDC);

 int finalWidth = useBitBlt ? (width - left+right) : width;

 int finalHeight = useBitBlt ? (height - top+bottom) :

height;

 compatibleBitmap = CreateCompatibleBitmap(controlDC,

finalWidth, finalHeight);

 SelectObject(compatibleDC, compatibleBitmap);

 if (useBitBlt == true) {

 BitBlt(compatibleDC, 0, 0, finalWidth, finalHeight,

controlDC, left, top, SRCCOPY);

 }

 else {

 PrintWindow(controlHwnd, compatibleDC, 0);

 }

43

 Gdiplus::Bitmap* image =

Gdiplus::Bitmap::FromHBITMAP(compatibleBitmap, NULL);

 if (useBitBlt == false && (left > 0 || top > 0 || right > 0

|| bottom > 0)) {

 Gdiplus::Bitmap* cropped = image->Clone(

 left, top, width - (left + right), height - (top

+ bottom), image->GetPixelFormat());

 delete image;

 image = cropped;

 printf("Bitmap::Cloned -> %p\n", cropped);

 }

 CLSID clsid;

 wstring filename = StringValuePtr(filenameValue);

 if(GetEncoderClsid(L"image/png", &clsid) == -1) {

 printf("Failed to get encoder clsid\n");

 }

 else if(stat = image->Save(filename, &clsid, NULL)) {

 printf("Capture failed: error %d\n", stat);

 }

 else {

 wprintf(L"Capture: %s\n", filename.c_str());

 }

 delete image;

 DeleteObject(compatibleBitmap);

 DeleteDC(compatibleDC);

 ReleaseDC(controlHwnd, controlDC);

 Gdiplus::GdiplusShutdown(gdiplusToken);

 return filenameValue;

}

44

APPENDIX 3 FINDING UNIQUE CSS SELECTOR FOR DOM ELEMENT

<html>

 <head>

 <title>Test page</title>

 </head>

 <body>

 A

 B

 C

 </body>

</html>

CSS selector for list item "C":

li+li+li > a

45

Non-exclusive licence to reproduce thesis and make thesis public

I, Marti Kaljuve (date of birth: 01.01.1986),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

“Cross-Browser Document Capture Solution”, supervised by Marlon Dumas, Prof and

Kaspar Loog, M.Sc.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu, 20.05.2013

