

UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Software Engineering

Olgun Cakabey

Role-Based Access Control Using

Knowledge Acquisition in Automated

Specification

Master Thesis (30 ECTS)

Supervisor: Dr. Raimundas Matulevičius

Author: Olgun Cakabey “….….…. “ Nov 2012

Supervisor: Raimundas Matulevičius “…….…...“ Nov 2012

Approved for defence

Professor: Marlon Dumas “…………“ Nov 2012

TARTU 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

3

ABSTRACT

Security is considered to be an aspect of information systems. Role-based access control

(RBAC) is an approach to restricting system access to authorized users in information

systems. Existing security modeling languages and/or approaches address the security of

the IS, however existing languages or approaches do not necessarily conforms to the needs

of RBAC. There are several modeling languages (e.g. SecureUML, UMLSec, etc.) to

represent RBAC but they are not interoperable and it is not easy to compare one with

another. Each modeling language represents different perspectives on information systems.

Besides, there is a need to merge design and requirement stages in order to discover system

security concerns and analyze related security trade-offs at the earlier stages. Knowledge

acquisition in automated specification (KAOS) is a goal oriented requirement engineering

approach to elicit software requirements. In this point, KAOS will be a key solution in

order to combine requirements with design principles.

In this thesis, we will analyze KAOS to apply RBAC. More specifically, we will apply a

systematic approach to understand how KAOS can be used to apply RBAC. Our research

work will be based on the transformation rules between KAOS-SecureUML and KAOS-

UMLSec, and vice versa. Moreover, through these transformations we will show how we

aligned KAOS to RBAC.

The contribution of this research has several benefits. Firstly, it will potentially help to

understand how KAOS could deal with RBAC. Secondly it will define the approach to

elicit security requirements for RBAC at early stages of the IS development. This will

apply our results in a case study to measure the correctness of the defined approach.

Thirdly, the transformations from/to the KAOS would help IS developers and the other

system stakeholders (e.g. system analysts, system administrators, etc.) to understand how

important these security approaches (KAOS, SecureUML and UMLSec) are and which one

has more advantages/disadvantages. We plan to validate our results for transformation

rules and the models regarding their correctness that will be measured. Last but not least,

we will be able to justify the design stage with requirement stage.

4

ACKNOWLEDGMENTS

I am heartily thankful to my supervisor, Raimundas Matulevičius, whose encouragement,

guidance and support from the initial to the final level enabled me to develop an

understanding of the subject.

Lastly, I offer my regards and blessings to my family, Latif Cakabey, Gülben Cakabey and

Basak Cakabey and my colleagues who supported me in any respect during the completion

of the project.

Olgun Cakabey

5

TABLE OF CONTENTS
ABSTRACT ...3

ACKNOWLEDGMENTS ...4

TABLE OF CONTENTS ..5

LIST OF FIGURES ...9

LIST OF TABLES ...11

LIST OF ABBREVIATION ..12

CHAPTER 1. INTRODUCTION ...13

PART I BACKGROUND ..15

CHAPTER 2. ROLE-BASED ACCESS CONTROL ..17

2.1. TERMS AND CONCEPTS ...17

2.2. RBAC REFERENCE MODELS ...17

2.2.1. RBAC0 ...18

2.2.2. RBAC1 ...19

2.2.3. RBAC2 ...19

2.2.4. RBAC3 ...19

2.3. OTHER ACCESS CONTROL MODELS ...19

2.3.1. DISCRETIONARY ACCESS CONTROL ...19

2.3.2. MANDATORY ACCESS CONTROL ...20

2.3.3. ATTRIBUTE-BASED ACCESS CONTROL ...20

2.4. SUMMARY ...20

CHAPTER 3. KNOWLEDGE ACQUISITION IN AUTOMATED SPECIFICATION23

3.1. ABSTRACT SYNTAX ...23

3.2. KAOS MODELS ..24

3.2.1. GOAL MODEL ...24

3.2.2. RESPONSIBILITY MODEL ..24

3.2.3. OBJECT MODEL ...24

3.2.4. OPERATION MODEL ...27

3.3. CONCRETE SYNTAX ..27

3.4. SEMANTICS ...28

3.5. KAOS EXTENSION TO SECURITY ...28

3.6. SUMMARY ...29

CHAPTER 4. RELATED WORK ...31

6

4.1. SECUREUML FOR RBAC ...31

4.2. UMLSEC FOR RBAC..32

4.3. SUMMARY ...32

PART II CONTRIBUTION ..35

CHAPTER 5. UNDERSTAND THE LANGUAGE ...37

5.1. COMMON CONCEPTS BETWEEN KAOS AND RBAC ..37

5.1.1. ENTITY - OBJECT..37

5.1.2. AGENT - ROLE ..37

5.1.3. OPERATION - OPERATION ..37

5.1.4. PERFORMANCE LINKS - PERMISSION ASSIGNMENT37

5.1.5. USER ENTITY - USER ..38

5.2. DESIGN OF TRANSFORMATION RULES ...38

5.3. SUMMARY ...38

CHAPTER 6. SECUREUML - KAOS TRANSFORMATIONS39

6.1. MEETING SCHEDULER EXAMPLE WITH SECUREUML39

6.2. TRANSFORMATION RULES ..42

6.2.1. MODEL TRANSFORMATION FROM SECUREUML TO KAOS42

6.2.2. MODEL TRANSFORMATION FROM KAOS TO SECUREUML44

6.3. SUMMARY ...47

CHAPTER 7. UMLSEC - KAOS TRANSFORMATIONS ...49

7.1. MEETING SCHEDULER EXAMPLE WITH UMLSEC ...49

7.2. TRANSFORMATION RULES ..50

7.2.1. MODEL TRANSFORMATION FROM UMLSEC TO KAOS50

7.2.2. MODEL TRANSFORMATION FROM KAOS TO UMLSEC52

7.3. SUMMARY ...54

PART III VALIDATION ..57

CHAPTER 8. DESIGN OF VALIDATION AND TEST ..59

8.1. VALIDATION TYPE ..59

8.2. CORRECTNESS TEST ...59

8.2.1. DESIGN ...59

8.2.2. THREATS TO VALIDITY ...60

8.3. SUMMARY ...60

CHAPTER 9. FOOD DELIVERY EXAMPLE ..61

9.1. FOOD DELIVERY SCENARIO ...61

7

9.2. KAOS MODEL ..61

9.3. SECUREUML MODEL ..63

9.4. UMLSEC MODEL ...64

9.5. APPLYING TRANSFORMATION RULES ...66

9.5.1. KAOS TO SECUREUML1 ..66

9.5.2. KAOS TO UMLSEC1 ..69

9.5.3. SECUREUML TO KAOS1 ..71

9.5.4. UMLSEC TO KAOS2 ..74

9.6. COMPARISON OF MODELS ..76

9.6.1. KAOS VS. KAOS1 ..77

9.6.2. KAOS VS. KAOS2 ..77

9.6.3. SECUREUML VS. SECUREUML1 ..78

9.6.4. UMLSEC VS. UMLSEC1 ...78

9.7. SUMMARY ...78

PART IV CONCLUSION ...79

CHAPTER 10. CONCLUSION ...81

RESÜMEE ...82

REFERENCES ..83

8

9

LIST OF FIGURES
FIGURE 1 RBAC .. 17
FIGURE 2 A FAMILY OF RBAC MODELS ... 17

FIGURE 3 KAOS .. 23
FIGURE 4 KAOS MODEL FRAGMENT FOR THE LONDON AMBULANCE SERVICE SYSTEM ... 25
FIGURE 5 A METAMODEL OF THE KAOS GOAL MODEL .. 26
FIGURE 6 SECUREUML META-MODEL .. 31
FIGURE 7 TRANSFORMATION PROCESS .. 38

FIGURE 8 EXTRACT OF KAOS METAMODEL.. 38
FIGURE 9 SECUREUML DIAGRAM FOR MEETING SCHEDULER EXAMPLE 39
FIGURE 10 MEETING SCHEDULER EXAMPLE WITH KAOS .. 41
FIGURE 11 SECUREUML TO KAOS TRANSFORMATION RULE # 1 42
FIGURE 12 SECUREUML TO KAOS TRANSFORMATION RULE # 2 42

FIGURE 13 SECUREUML TO KAOS TRANSFORMATION RULE # 3 43

FIGURE 14 SECUREUML TO KAOS TRANSFORMATION RULE # 4 43

FIGURE 15 KAOS TO SECUREUML TRANSFORMATION RULE # 1 45
FIGURE 16 KAOS TO SECUREUML TRANSFORMATION RULE # 2 45
FIGURE 17 KAOS TO SECUREUML TRANSFORMATION RULE # 3 45
FIGURE 18 KAOS TO SECUREUML TRANSFORMATION RULE # 4 46

FIGURE 19 UMLSEC DIAGRAM FOR MEETING SCHEDULER EXAMPLE 49
FIGURE 20 UMLSEC TO KAOS TRANSFORMATION RULE # 1 ... 50

FIGURE 21 UMLSEC TO KAOS TRANSFORMATION RULE # 2 ... 51
FIGURE 22 UMLSEC TO KAOS TRANSFORMATION RULE # 3 ... 51
FIGURE 23 UMLSEC TO KAOS TRANSFORMATION RULE # 4 ... 52

FIGURE 24 KAOS TO UMLSEC TRANSFORMATION RULE # 1 ... 53
FIGURE 25 KAOS TO UMLSEC TRANSFORMATION RULE # 2 ... 53

FIGURE 26 KAOS TO UMLSEC TRANSFORMATION RULE # 3 ... 54
FIGURE 27 THEORETICAL AND EMPIRICAL VALIDATION ... 59

FIGURE 28 DESIGN OF TEST .. 60
FIGURE 29 FOOD DELIVERY EXAMPLE KAOS MODEL ... 62
FIGURE 30 FOOD DELIVERY EXAMPLE SECUREUML MODEL .. 63

FIGURE 31 FOOD DELIVERY EXAMPLE UMLSEC MODEL ... 65
FIGURE 32 KAOS TO SECUREUML TRANSFORMATION STEP 1 .. 66

FIGURE 33 KAOS TO SECUREUML TRANSFORMATION STEP 2 .. 66
FIGURE 34 KAOS TO SECUREUML TRANSFORMATION STEP 3 .. 67
FIGURE 35 KAOS TO SECUREUML TRANSFORMATION STEP 4 .. 67

FIGURE 36 SECUREUML1 MODEL ... 68
FIGURE 37 KAOS TO UMLSEC TRANSFORMATION STEP 1 ... 69
FIGURE 38 KAOS TO UMLSEC TRANSFORMATION STEP 2 ... 69
FIGURE 39 KAOS TO UMLSEC TRANSFORMATION STEP 3 ... 70
FIGURE 40 UMLSEC1 MODEL ... 71

FIGURE 41 SECUREUML TO KAOS TRANSFORMATION STEP 1 .. 72
FIGURE 42 SECUREUML TO KAOS TRANSFORMATION STEP 2 .. 72

FIGURE 43 SECUREUML TO KAOS TRANSFORMATION STEP 3 .. 72
FIGURE 44 SECUREUML TO KAOS TRANSFORMATION STEP 4 .. 73

FIGURE 45 KAOS1 MODEL .. 73
FIGURE 46 UMLSEC TO KAOS TRANSFORMATION STEP 1 ... 74
FIGURE 47 UMLSEC TO KAOS TRANSFORMATION STEP 2 ... 74
FIGURE 48 UMLSEC TO KAOS TRANSFORMATION STEP 3 ... 74

10

FIGURE 49 UMLSEC TO KAOS TRANSFORMATION STEP 4 ... 75

FIGURE 50 UMLSEC TO KAOS TRANSFORMATION NOTE 2 .. 75
FIGURE 51 UMLSEC TO KAOS TRANSFORMATION NOTE 3 .. 76

FIGURE 52 KAOS2 MODEL .. 76

11

LIST OF TABLES
TABLE 1 RBAC TERMS AND CONCEPTS ... 18
TABLE 2 ANTI-MODEL BUILDING METHOD ... 29

TABLE 3 UMLSEC RBAC STEREOTYPE ... 32
TABLE 4 GENERAL COMPARISON OF SECUREUML, UMLSEC, AND KAOS 33
TABLE 5 KAOS MODEL LINK TYPES .. 44
TABLE 6 COMPARISON OF RBAC MODELING USING SECUREUML AND KAOS 47
TABLE 7 COMPARISON OF RBAC MODELING USING UMLSEC AND KAOS 55

TABLE 8 KAOS VS. KAOS1 .. 77
TABLE 9 KAOS VS. KAOS2 .. 77
TABLE 10 SECUREUML VS. SECUREUML1 ... 78
TABLE 11 UMLSEC VS. UMLSEC1 .. 78

12

LIST OF ABBREVIATION
ABAC : Attribute-Based Access Control

AC : Authorization Constraints

AT : Associated Tags

DAC : Discretionary Access Control

IS : Information System

KAOS : Knowledge Acquisition in Automated Specification

KS : KAOS to SecureUML

KU : KAOS to UMLSec

MAC : Mandatory Access Control

RBAC : Role-Based Access Control

SK : SecureUML to KAOS

UK : UMLSec to KAOS

UML : Unified Modeling Language

13

Chapter 1. Introduction

Nowadays information systems are everywhere in our lives, such as banking, education,

health, and legacy, etc., therefore information system security plays an important role in

information systems, which in many cases, information is confidential and should not be

accessible to everyone.

In computer systems security, role-based access control (RBAC) [11] is an approach to

restricting system access to authorized users. RBAC is a very popular security pattern in

information systems. It is basically used for ensuring confidentiality. Knowledge

acquisition in automated specification (KAOS) [13] is a goal-oriented software

requirements capturing approach in requirements engineering.

Even though security is an important aspect in information systems, security issues and

concerns are raised only when the system is already in use, or is about to start running, or

luckily in the best case, security is just considered during the late system development

phases for instance implementation phase. This is an obstacle to secure the system

development. System security concerns should be discovered and related security trade-

offs should be analyzed at the earlier stages such as requirements or design stages. There is

possible way to guide such an analysis is suggested by the model-driven approaches. For

example, “SecureUML [7] and UMLSec [7] which are both originated from UML and also

deal with security modeling, these modeling approaches could be applied to model RBAC

in a system [9], they are rather specific than general. They actually both contain targeted

concepts for RBAC” but they fail to satisfy our needs about the security analysis in the

earlier stages. Our motivation to look at KAOS was also strengthened by the fact that it is

not used to analyze the access control before. However, it contains basic RBAC concepts.

In addition to this, we can justify the design with the requirements; this means we can

secure the system development at early stages. In order to continue our research, we

formulate the following research question:

 Can KAOS be aligned to model RBAC or not? If yes, how?

In order to answer this research question we have analyzed the KAOS literature [12] and

tested it on Meeting Scheduler Example [16] and Food Delivery Example. At the same

time, we also benefit from the SecureUML and UMLSec literature work [7] and

application of these approaches on Meeting Scheduler Example. We had chance to

compare each modeling approaches. Our observations are that KAOS can be applied to

model RBAC. According to the common concepts and the similarities between KAOS and

RBAC, we can use KAOS to define RBAC.

The structure of the thesis is as follows: after giving brief introduction in Chapter 1. As

Background part, in Chapter 2 we introduce the general RBAC model. In Chapter 3 we

introduce one modeling approach - KAOS model. Later on, in Chapter 4 we present related

work that has been done with RBAC on two modeling approaches – SecureUML and

UMLSec. As Contribution part, in Chapter 5 we understand the KAOS language with its

similarities with RBAC. Then, in Chapter 6 and Chapter 7 we define transformation rules

between KAOS-SecureUML and KAOS-UMLSec and vice versa. As Validation part, in

Chapter 8 we select one of the validation options and design our test for validity. In

Chapter 9 we situate our contribution in a case study and discuss our results. Finally as

Conclusion part, in Chapter 10 we finalize our work and present some future work.

14

15

PART I BACKGROUND

PART I

BACKGROUND

16

In Background Part, we are going to present literature work and reviews of RBAC, KAOS,

and related works.

Mainly on RBAC side, we focus on RBAC reference models, and other access control

models. On KAOS side, we discuss about abstract syntax, concrete syntax and semantics

of KAOS, KAOS models and relationship between security and KAOS. After that, we

finalize with related works that has been done with RBAC on different security modeling

languages.

17

Chapter 2. Role-based Access Control

“In computer systems security, role-based access control (RBAC) is an approach to

restricting system access to authorized users. Within an organization, roles are created for

various job functions. The permissions to perform certain operations are assigned to

specific roles. Members of staff (or other system users) are assigned particular roles, and

through those role assignments acquire the computer permissions to perform particular

computer-system functions. Since users are not assigned permissions directly, but only

acquire them through their role(s), management of individual user rights becomes a matter

of simply assigning appropriate roles to the user's account; this simplifies common

operations, such as adding a user, or changing a user's department.” [1] and [17]. In Fig. 1

we see the basic elements of RBAC model.

Figure 1 RBAC

(adapted from [1])

2.1. Terms and Concepts

The Table 1 shows the terms and concepts of RBAC [11]. This table covers all the terms

and concepts of RBAC but actually we are not going to use and benefit from all of them.

Users, Roles, Operations, Objects and Permissions are the main elements of RBAC.

2.2. RBAC Reference Models

In this section, we are going to present RBAC reference models. The figure 2 shows the

family of RBAC models.

Figure 2 A Family of RBAC Models

(adapted from [11])

18

Table 1 RBAC Terms and Concepts

(adapted from [11])

Access A specific type of interaction between a subject and an object that

results in the flow of information from one to the other.

Access control The process of limiting access to the resources of a system only to

authorized programs, processes, or other systems.

Administrative

role

A role that includes permission to modify the set of users, roles, or

permissions, or to modify the user assignment or permission

assignment relations.

Constraint A relationship between or among roles.

Group A set of users.

Object A passive entity that contains or receives information.

Permissions A description of the type of authorized interactions a subject can have

with an object.

Resource Anything used or consumed while performing a function. The

categories of resources are time, information, objects, or processors.

Role A job function within the organization that describes the authority and

responsibility conferred on a user assigned to the role.

Role hierarchy A partial order relationship established among roles.

Session A mapping between a user and an activated subset of the set of roles

the user is assigned to.

Subject An active entity, generally in the form of a person, process, or device

that causes information to flow among objects or changes the system

state.

System

administrator

The individual who establishes the system security policies, performs

the administrative roles, and reviews the system audit trail.

User Any person who interacts directly with a computer system.

2.2.1. RBAC0

RBAC0 is also called base model or core model. It has four entities: users, roles,

permissions and sessions.

Users and roles: User is a human and role is a job function within the organization which

describes the authority and responsibility of a member.

Permissions: Permission is an ability to access to one or multiple objects in the system. As

a term, authorization, access right or privilege are also used instead of permission in the

literature.

Sessions: Session is a mapping between the user and a subset of the roles belong to that

user.

RBAC0 model has the following components:

 “U, R, P, and S respectively represent users, roles, permissions, and sessions;

 PA P X R, a many-to-many permission-to-role assignment relation;

 UA U X R, a many-to-many user-to-role assignment relation;

 user: S  U, a function mapping each session si to the single user user(si) (constant for

the session’s lifetime); and

19

 roles: S  2
R
, a function mapping each session si to a set of roles roles(si) {r |

(user(si), r) UA} (which can change with time) and session si has the permissions r

 roles(si) {p | (p, r) PA}” [11].

2.2.2. RBAC1

RBAC1 is also called hierarchical RBAC. It introduces role hierarchies.

RBAC1 model has the following components:

 “U, R, P, S, PA, UA, and user are unchanged from RBAC0;

 RH R X R is a partial order on R called the role hierarchy or role dominance

relation, also written as ≥; and

 roles: S  2
R
 is modified from RBAC0 to require

roles(si) {r | (r’≥ r) [(users(si), r’) UA]} (which can change with time] and

session si has the permissions

r roles(si) {p | r”≤ r) [(p, r”) PA]}” [11].

2.2.3. RBAC2

RBAC2 is also called constrained RBAC. It introduces constraints.

“RBAC2 is unchanged from RBAC0 except for requiring that there be constraints to

determine the acceptability of various components of RBAC0. Only acceptable values will

be permitted” [11].

2.2.4. RBAC3

RBAC3 is also called consolidated model. It provides both role hierarchies and constraints,

as it combines RBAC1 and RBAC2.

2.3. Other Access Control Models

There are four most widely recognized models. First one is RBAC which we already gave

its description and characteristics. The others are Discretionary Access Control (DAC),

Mandatory Access Control (MAC) and Attribute-Based Access Control (ABAC).

Access control models are sometimes categorized as either discretionary or non-

discretionary. For example, MAC and RBAC are non-discretionary. “Role-based access

control (RBAC) is an access policy determined by the system, not the owner. RBAC is

used in commercial applications and also in military systems, where multi-level security

requirements may also exist. RBAC differs from DAC in that DAC allows users to control

access to their resources, while in RBAC, access is controlled at the system level, outside

of the user's control. Although RBAC is non-discretionary, it can be distinguished from

MAC primarily in the way permissions are handled. MAC controls read and write

permissions based on a user's clearance level and additional labels. RBAC controls

collections of permissions that may include complex operations such as an e-commerce

transaction, or may be as simple as read or write. A role in RBAC can be viewed as a set of

permissions.” [17].

2.3.1. Discretionary Access Control

“Discretionary access control (DAC) is a policy determined by the owner of an object. The

owner decides who is allowed to access the object and what privileges they have.

Two important concepts in DAC are:

20

- File and data ownership: Every object in the system has an owner. In most DAC

systems, each object's initial owner is the subject that caused it to be created. The

access policy for an object is determined by its owner.

- Access rights and permissions: These are the controls that an owner can assign to

other subjects for specific resources.” [17].

2.3.2. Mandatory Access Control

“Mandatory access control refers to allowing access to a resource if and only if rules exist

that allows a given user to access the resource. It is difficult to manage but its use is

usually justified when used to protect highly sensitive information. Examples include

certain government and military information. Management is often simplified (over what

can be required) if the information can be protected using hierarchical access control, or by

implementing sensitivity labels. What makes the method "mandatory" is the use of either

rules or sensitivity labels.

- Sensitivity labels: In such a system subjects and objects must have labels assigned

to them. A subject's sensitivity label specifies its level of trust. An object's

sensitivity label specifies the level of trust required for access. In order to access a

given object, the subject must have a sensitivity level equal to or higher than the

requested object.

- Data import and export: Controlling the import of information from other systems

and export to other systems (including printers) is a critical function of these

systems, which must ensure that sensitivity labels are properly maintained and

implemented so that sensitive information is appropriately protected at all times.

Two methods are commonly used for applying mandatory access control:

- Rule-based (or label-based) access control.

- Lattice-based access control.” [17].

2.3.3. Attribute-based access control

“In attribute-based access control (ABAC), access is granted not based on the rights of the

subject associated with a user after authentication, but based on attributes of the user. The

user has to prove so called claims about his attributes to the access control engine. An

attribute-based access control policy specifies which claims need to be satisfied in order to

grant access to an object. For instance the claim could be "older than 18”. Any user that

can prove this claim is granted access. Users can be anonymous as authentication and

identification are not strictly required. One does however require means for proving claims

anonymously. This can for instance be achieved using anonymous credentials or XACML

(extensible access control markup language).” [17].

2.4. Summary

Even though RBAC is well known security pattern, still there is some disagreements on

what RBAC means. That’s why RBAC is open to interpretation by researchers, system

developers and especially security pattern and application designers.

“Sophisticated variations of RBAC include the capability to establish relations between

roles, between permissions and roles, and between users and roles. These role-role

relations can enforce security policies, including separation of duties and delegation of

authority. Previously, these relations would have required application software encoding;

with RBAC, they can be specified once for a security domain” [11].

21

In RBAC, these relations can be predefined; assigning users to the roles is making it

simple. Besides “without RBAC, it can also be difficult to determine what permissions

have been authorized for what users” [11].

22

23

Chapter 3. Knowledge Acquisition in Automated

Specification

“KAOS is a methodology for requirements engineering enabling analysts to build

requirements models and to derive requirements documents from KAOS models” [10].

KAOS is a goal-oriented software requirements capturing approach in requirements

engineering. It is a specific goal modeling method. It allows requirements for being

calculated from goal diagrams.

Figure 3 KAOS

(adapted from [9])

3.1. Abstract Syntax

The KAOS approach consists of a modeling language, a method, and a software

environment. In this section, we will consider KAOS modeling language’s abstract syntax.

In other words, we present the grammar rules of KAOS.

A KAOS model includes a goal model, a responsibility model, an object model and an

operation model. Each of them has a graphical and a textual syntax. We will introduce

KAOS through examples from the London Ambulance Service system, and Figure 4 [4].

“A goal is a prescriptive assertion that captures an objective which the system-to-be should

meet. Goals are either maintain, avoid, achieve and cease goals. For example, goal

AccurateLocationInfoOnNonStationaryAmbulance follows the maintain pattern in which a

property always holds. AmbulanceAllocationBasedOnIncidentForm follows the achieve

pattern where a property eventually holds. A goal is refined through G-refinement, which

24

relates a set of subgoals whose conjunction, possibly together with domain properties,

contributes to the satisfaction of the goal. A goal can have alternative G-refinements (e.g.

AccurateStationaryInfo). A set of goals is conflicting if these goals cannot be achieved

together (e.g. LocationContactedByPhone and InformationSentByEMail). This means that

under some boundary condition these goals become logically inconsistent in a considered

domain” [6].

“An object (e.g. Ambulance in the object model in Figure 4) is a thing of interest in the

system. Its instances can be distinctly identified and may evolve from state to state. Objects

have attributes. Goals concern objects and attributes (see Def in textual goal syntax in

Figure 4). An agent plays a role towards a goal’s satisfaction by monitoring or controlling

object behavior. Goals are refined until they are assigned to individual agents. A goal

effectively assigned to a software agent (e.g. CAD - Computer Aided Dispatch) is called a

requirement. A goal effectively assigned to an environment agent (e.g. Ambulance Staff) is

called an expectation (assumption in [4]). An operation is an input-output relation over

objects. Operations are characterized textually by domain and required conditions.

Whenever the required conditions hold, performing the operations satisfies the goal. If a

goal is operationalised and has a responsible agent, the latter performs the operations (see

operation model in Figure 4)” [6].

3.2. KAOS Models

3.2.1. Goal Model

“The KAOS Goal Model is the set of interrelated goal diagrams that have been put

together for tackling a particular problem” [10]. A KAOS goal model is a directed graph

(which is more general than a simple tree), which means that a given goal can appear on

different diagrams to refine different higher-level goals. Figure 5 shows metamodel of the

KAOS goal model, [4] and [15].

3.2.2. Responsibility Model

“The KAOS responsibility model is the set of derived responsibility diagrams” [10]. The

responsibility model contains all the responsibility diagrams. A responsibility diagram

describes for each agent, the requirements and expectations that he’s responsible for, or

that have been assigned to him. To build a responsibility diagram, the analyst reviews the

different requirements and expectations in the goal model and assigns an agent to each of

them.

3.2.3. Object Model

“The KAOS object model contains objects, agents, entities and relationships among them.

The notation used in the object model complies with the one used in UML for class

diagrams” [10].

The object model is used to define and document the concepts of the application domain

that are relevant with respect to the known requirements and to provide static constraints

on the operational system that will satisfy the requirements.

Three types of objects may coexist in the object model:

 Entities: they represent independent, passive objects. ‘Independent’ means that their

descriptions needn’t refer to other objects of the model. They may have attributes

25

whose values define a set of states the entity can transition to. They are ‘passive’ means

they can’t perform operations.

 Agents: they represent independent, active objects. They are active meaning they can

perform operations. Operations usually imply state transitions on entities.

 Associations: they are dependent, passive objects. ‘Dependent’ because their

descriptions refer to other objects. They can have attributes whose values define the set

of states the entity can transition to. They are passive so they can’t perform operations.

But agents can make association instances change state by performing operations.

The KAOS object model is compliant with UML class diagrams in that KAOS entities

correspond to UML classes; and KAOS associations correspond to UML binary

association links or n-ary association classes. Inheritance is available to all types of objects

(including associations). Objects can be qualified with attributes.

Figure 4 KAOS Model Fragment for the London Ambulance Service System

(directly taken from [4])

26

Cease goal Avoid goal

Achieve goal Maintain goal

-name : string
-def : string
-priority : string
-owner : string
-category : string
-formalSpec : string

GoalSoftgoal

Conflict

0..*

-betweenGoals

*

-name : string
-def : string
-formalSpec : string
-likelihood : string
-critically : string

Boundary condition

1

1 -complete : bool
-attName : string
-tactics : string

G-refinement

-superGoal1

0..* -subGoal 0..*

1..*

-name : string
-def : string
-formalSpec : string

Domain property

-subProperty0..*

0..*

-isInDomain

0..*

0..*

Domain invariant Domain hypothesis

-attName : string

Assignment

Requirement

Expectation

Software agent

Environment agent

1

-assignedGoal

0..*

1..*

-isResponsibleFor

1

0..*

-isResponsibleFor

1

-complete : bool
-attName : string

Operationalization

1

-op_goal

0..*

Op operation

1
-belongsTo1..*

ReqTrig
RegPre

PrePost DomPre
DomPost

-name : string
-def : string
-j modifier : bool

Operation

1..*

-op_op_operation

1

1-hasTrig1
1

-hasPre1

1 -hasPost1

-def : string
-name : string

Condition

1

-hasPre1

1
-hasPost1

-name : string
-def : string

Agent

1..*

-responsibleAgent

1

Object_OR_Attribute

-controls0..*

0..1

0..*

-monitors0..*

Attribute
-name : string
-def : string

Object

Association

EntityEvent
1

-performs

1..*

-causes0..*

0..*

-occurs0In0..*

0..*

0..*

-concerns

0..* 0..*

-isInputFor

0..*

-isOutputFor

0..*

0..*

0..*

1

-belongsTo

11..*

Figure 5 A Metamodel of the KAOS Goal Model

(adapted from [15])

27

3.2.4. Operation Model

“The KAOS operation model sums up all the behaviors that agents need to have to fulfill

their requirements. Behaviors are expressed in terms of operations performed by agents.

Those operations work on objects described in the object model: they can create objects,

provoke object state transitions or trigger other operations through sent and received

events” [10].

The KAOS operation model describes all the behaviors that agents need to fulfill their

requirements. Behaviors are expressed in terms of operations performed by agents.

Operations work on objects, they can create objects, trigger object state transitions and

activate other operations.

A KAOS operation diagram typically composes operations performed by one or several

agents to achieve a requirement. Compositions are made through data flows (the output of

an operation output becomes the input of another operation) or control flow (an event sent

by an operation triggers or stops another operation). An operation diagram thus describes

how the agents need to cooperate in order to make the system work. With KAOS, the

operation model is connected to the goal model: the analysts justify operations by the goals

they “operationalize”. An operation with no justification means that either there is still

missing goals in the model or that the operation is not necessary. Conversely if some

requirements are left without “operationalization”, they may just be wishful thinking.

3.3. Concrete Syntax

Besides abstract syntax, KAOS also has concrete syntax like spoken languages do. In

spoken languages, there are letters and words but in KAOS, there are constructs.

“Agent: Active Object (=processor) performing operations to achieve goals. Agents can be

the software being considered as a whole or parts of it. Agents can also come from the

environment of the software being studied; human agents are in the environment.

Association: Object, the definition of which relies on other objects linked by the

association.

Composite system: The software being studied and its environment.

Conflict: Goals are conflicting if under some boundary condition the goals cannot be

achieved altogether.

Domain Property: Descriptive assertion about objects in the environment of the software.

It may be a domain invariant or a hypothesis. A domain invariant is a property known to

hold in every state of some domain object, e.g., a physical law, regulation, … A hypothesis

is a property about some domain object supposed to hold.

Entity: Autonomous object, that is, the definition of which does not rely on other objects.

Environment: Part of the universe capable of interaction with the software being studied.

Event: Instantaneous object (that is, an object alive in one state only) which triggers

operations performed by agents.

Expectation: Goal assigned to an agent in the environment.

Formal model: Model in which the concepts have been mathematically formalized.

Goal: Prescriptive assertion capturing some objective to be met by cooperation of agents; it

prescribes a set of desired behaviors. Requirements and expectations are goals.

Model: Abstract representation of a composite system. An model represents a composite

system by means of concepts of different types, mainly, objects, desired or undesired

properties (goals, obstacles), and behaviors (operations).

28

Object: Thing of interest in the composite system being modeled whose instances can be

distinctly identified and may evolve from state to state. Agents, events, entities and

associations are objects.

Obstacle: Condition (other than a goal) whose satisfaction may prevent some goal(s) from

being achieved; it defines a set of undesired behaviors.

Operation: Specifies state transitions of objects that are input and/or output of the

operation. Operations are performed by agents.

Operationalisation: Relationship linking a requirement to operations. Holds when each

execution of the operations (possibly constrained to that intent) will entail the requirement.

Makes the connection between expected properties (goals) and behaviors (operations).

Refinement: Relationship linking a goal to other goals that are called its subgoals. Each

subgoal contributes to the satisfaction of the goal it refines. The conjunction of all the

subgoals must be a sufficient condition entailing the goal they refine.

Requirement: Goal assigned to an agent of the software being studied.

Responsibility: Relationship between an agent and a requirement. Holds when an agent is

assigned the responsibility of achieving the linked requirement.

Semi-formal model: Model in which the concepts are not mathematically formalized, every

concept in the model receives a name, a type, a textual definition, values for attributes and

a graphical representation.” [10].

3.4. Semantics

“The KAOS approach provides support for security goal specification in terms of a number

of specialized meta-classes of goal, namely, Confidentiality, Integrity, Availability,

Privacy, Authentication and Non-repudiation goal subclasses. In order to support the

concepts of attacker knowledge, the formal language of goals is extended with the

epistemic operators, KnowsVag, which is defined as follows:

KnowsVag (v) = Ǝx: Knowsag(x=v) (“knows value”)

Knowsag(P) = Beliefag (P) ˄ P (“knows property)

The operational semantics of the epistemic operator Beliefag(P) is defined as “P being one

of the properties stored in the local memory of agent ag”. The knowledge of a value of a

property at a given point depends on both the agent having a value for the property in its

local memory and that property value actually holding at the given point in time.

The use of obstacles for security goals makes obstacle refinement trees analogous to the

threat trees that are used for modeling potential attacks security-critical systems. However,

obstacles neither capture the goals and knowledge of a potential attacker; or the

vulnerabilities in software systems. The notions of anti-goals and anti-models were

introduced to the KAOS framework in order to deal with these problems. Combining

with the epistemic operators described above, allows security patterns to be expressed in

the KAOS framework” [9].

3.5. KAOS Extension to Security

KAOS is based on goals and these goals are operationalized into specifications of

operations to achieve them. Besides that, goals refer to objects which can be derived from

their specification to create UML class diagrams as a structural model of a system. Along

this process, because of obstacles sometimes it is needed to generate some alternative

resolutions such as: “goal substitution, agent substitution, goal weakening, goal restoration,

obstacle prevention and obstacle mitigation” [13]. Obstacles are a means for identifying

29

goal violation scenarios. In declarative terms, an obstacle to some goal is a condition

whose satisfaction may prevent the goal from being achieved. “Richer models should thus

be built to capture attackers, their goals and capabilities, the software vulnerabilities they

can monitor or control, and attacks that satisfy their goals based on their capabilities and on

the system’s vulnerabilities” [13].

Anti-goals are the goals of attackers which includes malicious obstacles to security goals.

Anti-goals should be distinguished from the goals the system under consideration should

satisfy. Anti-model is a model that exhibits how specifications of model elements could be

maliciously threatened, why and by whom. “Anti-models should lead to the generation of

more subtle threats and the derivation of more robust security requirements as anticipated

countermeasures to such threats” [13]. Table 2 shows the anti-model building method [13].

Table 2 Anti-Model Building Method

(adapted from [13])

1. Get initial anti-goals by negating relevant Confidentiality, Privacy, Integrity

and Availability goal specification patterns instantiated to sensitive objects

from the object model.

2. For each such anti-goal, elicit potential attacker agents that might own the

anti-goal, from questions such as “WHO can benefit from this anti-goal?”

(Applicationspecific specializations of known attacker taxonomies may help

answering such questions).

3. For each anti-goal and corresponding attacker class(es) identified, elicit the

attacker’s higher-level anti-goals from questions such as “WHY would

instances of this attacker class want to achieve this anti-goal?”. Such

questions may be asked recursively to elicit more and more abstract anti-

goals yielding threat rationales together with other potential threats from

alternative refinements of those higher-level anti-goals.

4. Elaborate the anti-goal AND/OR graph by AND refining/abstracting anti-

goals along alternative branches, with the aim of deriving terminal anti-goals

that are realizable either by the identified attacker agents or by attackee

software agents. The former are anti-requirements assigned to the attacker

whereas the latter are vulnerabilities assigned to the attackee.

5. Derive the object and agent anti-models from anti-goal specifications. The

boundary between the anti-machine (under the attacker’s control) and the

anti-environment (which includes the software attackee) are thereby derived

together with monitoring/control interfaces.

6. AND/OR-operationalize all anti-requirements in terms of potential

capabilities of the corresponding attacker agent – the latter may include blind

or intelligent searching, eavesdropping, deciphering, spoofing, cookie

installation, etc.

3.6. Summary

A lot of requirements documents produced nowadays just describe solutions: the expected

functions, processes and data structures. However it should become clear to the reader that

a requirements analysis with KAOS is much more than a limited description of the

solution. An important focus is put on the problem itself. If we compare the kind of

information provided by the solution description with the one provided by the problem

30

description, we will see that the information collected in the latter diagrams are not

irrelevant for the requirements document. They introduce abstract and fundamental

properties that have to be fulfilled by the system to be. If a requirements document

consisting only of description derived from solution description, one can reasonably expect

that a development team will develop the system right with respect to that specification.

But how may we guarantee that the system built is the right system if we discard the first

part of the analysis which describes precisely what the users really need?

Some of the benefits of KAOS are listed below [10]:

- “Traceability: A major benefit of KAOS resides in the fact that it provides continuum

between the problem description and the expected solution description. This bi-

directional traceability between problem and solution spaces is fundamental not only

for the requirements analyst to be sure, the system to build will be the right one, but

also for developers who need to understand the context and objectives to make correct

architectural and design choices. Moreover systems developed nowadays work in a

quickly changing environment that requires lots of modifications. As with KAOS, the

requirements document is derived from a KAOS model, it becomes possible to modify

the KAOS model and regenerate a consistent requirements document from it.

- Completeness: Requirements documents elaborated with KAOS tend to be more

complete. A complete KAOS model leaves no space for wishful thinking (a goal not

refined), no space for requirements for which we do not know who is responsible for,

no space for unjustified operations, and no space for operations, for which we ignore

who will execute what and when. Completeness of a KAOS model clearly relies also

on the completeness of the goal model.

- No ambiguity: On the one hand, the completeness criteria contribute to less ambiguity

in requirements documents; we know who is responsible for what and who perform

what. On the other hand, the object model contains all the information needed to

produce the requirements document glossary. The glossary validation forces all

stakeholders who generally have different background, to agree on the domain and

application relevant concepts. Standards for requirements document require the

inclusion of a glossary. With KAOS, we can build the glossary progressively and we

get for free a criterion for deciding which concept has to be defined in the glossary: in

fact all those defined in the object model.”

31

Chapter 4. Related Work

Security remains a key challenge in the development of software systems and the goal of

developing secure software systems has remained an area of active research. Research in

security engineering has resulted in the realization that documenting recurring security

problems and their solutions as security patterns is an important advancement as it allows

software designers with little knowledge of security to build secure systems. When a

designer encounters a security problem that match a given pattern, they can reuse the

solution part of the pattern or use the pattern to guide them in finding a solution to the

problem at hand. In this chapter we have reviewed approaches to security analysis

according to RBAC. Our review focused on evaluating the capabilities of these approaches

to supporting security analysis patterns and is based on a set of evaluation criteria for

characterizing security patterns.

4.1. SecureUML for RBAC

“Lodderstedt et al. [5] present a modeling language, based on UML, called SecureUML.

SecureUML focuses on modeling access control policies and how these policies can

be integrated into a model-driven software development process. It is based on an

extended model of role-based access control (RBAC) and uses RBAC as a meta-model

for specifying and enforcing security. RBAC lacks support for expressing access

control conditions that refer to the state of a system, such as the state of a

protected resource. In addressing this limitation, SecureUML introduces the concept of

authorization constraints. Authorization constraints are preconditions for granting access to

an operation.”

The SecureUML meta-model based on the RBAC model is shown in Figure 6 [5]. It

describes the abstract syntax with UML diagrams and its information about access control.

The meta-model shows concepts (User, Role, and Permission), UML elements

(ModelElement), and permissions/constraints. The combination of the graphical capability

of UML, access control properties of RBAC, and authorization constraints makes it

possible to base access decision on dynamically changing data such as time. Similar to its

parent modeling language UML, SecureUML focuses on the design phase of software

development.

User Role Permission

AuthorisationConstraint

ModelElement

ResourceSetActionType

-baseClass

ResourceType

-RoleAssignment

1..* 0..*

-PermissionAssignment

1..* 0..*

-ProtectedObject

0..* 1

-+context

1 0..*

-ActionTypeAssignment0..*

1..*

l

+constrainedElement

0..*

-Inheritance0..1

-Containment

0..*

0..1

-+contains0..*

*

Figure 6 SecureUML Meta-model

(adapted from [5])

32

4.2. UMLsec for RBAC

“UMLsec (Jurjens, 2004) is an extension of UML which allows an application

developer to embed security-related functionality into a system design and perform

security analysis on a model of the system to verify that it satisfies particular security

requirements. Security requirements are expressed as constraints on the behavior of the

system and the design of the system may be specified either in a UML specification or

annotated in source code” [2].

UMLsec is defined as a UML profile extension using stereotypes, tags and constraints.

Role-based access control stereotype, <<rbac>>, its tagged values and constraints is a

subset of UMLsec. <<rbac>> stereotype enforces RBAC in the business process specified

in the activity diagram.

Table 3 UMLsec Rbac Stereotype

(adapted from [2])

Stereotypes Base class Tags Constraints Description

Rbac subsystem protected, role,

right

only permitted activities

executed

enforces

RBAC

“The UMLsec approach consists of two main steps. The first step is translating UML

models into UMLsec specifications. UMLsec specifications describe the behavior of a

system in terms of its components and their interaction. The behavior of system

components is described in terms of the messages they exchange in communication links

between them. The next step, security analysis, involves eliciting ways by which an

adversary may modify the contents of the data exchanged in communication link queues

that may compromise the integrity of system behavior. The analysis focuses on a

consideration specific types of adversaries that may attack a system in a specific way. An

example of such an attack on a communication link between components is breach of

confidentiality, which state that some information will only become known only to

legitimate parties. UMLsec specifications are checked for vulnerability to types of threats

on contents of a communication link such as delete, read, and insert. The types of threats

are adversary actions associated with particular adversary types. Delete means that an

adversary may delete messages from a communication link queue. Read allows an

adversary to read messages in the link queue, while insert allows the adversary to insert

messages in the communication link” [9].

4.3. Summary

Table 4 shows the general comparison of SecureUML, UMLsec and KAOS based on

problem, context, forces, solution, and consequences criteria. These criteria are chosen

based on the research done by A.Nhlabatsi, A.Bandara in 2009 [9].

33

Table 4 General Comparison of SecureUML, UMLsec, and KAOS

(adapted from [9])

 SecureUML UMLsec KAOS

Problem SecureUML does not explicitly model

security goals but focuses on modeling

solutions to security problems. Its

foundation of on RBAC implies that it

is specific to security goals relating to

controlling access to shared resources.

Although security analysis is guided by

specific goals and constraints in

checking for security vulnerabilities in a

system design, UMLsec does not have a

specific construct for modeling security

problems.

The intent of a security requirements

pattern expressed in KAOS is

documented in the top-level goal of the

pattern. The meta-class of the top-level

goal will identify if the pattern pertains

to a confidentiality, integrity,

availability, privacy, non repudiation

or authentication concern. The anti-

goal model that forms part of the

pattern definition can be used to

identify the problem addressed by the

pattern.

Context The modeling of context in SecureUML

is similar to RBAC. However, the

context only captures assets that may be

harmed in the event of an attack. It does

not model scenarios of attacks and

possible harm to assets.

Yes, the UMLsec approach explicitly

models context of a security problem.

However this context is limited to

system design components, their

interactions, and adversary models.

As with the intent, the general context

of the problem the pattern aims to

address will be documented in the top-

level anti-goal. More specific details of

the attacker knowledge, intention and

asset properties will be captured in

lower level goals of the pattern

definition. The notation does not

provide an explicit means of specifying

harms to assets, although these can be

captured as annotations to the anti-goal

model.

Forces There is no construct for capturing and

modeling forces in SecureUML.

Once security vulnerabilities have been

identified the system design is

progressively refined to eliminate the

threat. The rationale for selecting a

The KAOS pattern notation does not

provide an explicit means of capturing

the forces that might influence the

selection of a particular refinement

34

particular solution of refining a design is

not explicitly captured and it is not

explicit whether alternative solutions are

explored. It is possible though that such

alternative security solutions can be

explored in the refinement process based

on the native UML design.

pattern. However, requirements

engineers are able to use the

preconditions specified in the formal

definition of goals to determine the

suitability of a give pattern for the

problem at hand.

Solution Yes. The combination of RBAC with

UML and the authorization constraints

extension is the bases of a security

solution in SecureUML.

UMLsec provides an explicit refinement

of design in order to ensure that they

satisfy security constraints. Once a

design has undergone refinement its

ability to satisfy security requirements is

re-verified. The refinement continue

until it can be demonstrated that the

vulnerability of the design to attacks

is eliminated

The KAOS pattern notation allows

specification of the solution to the

initial problem in the form of sub-

goals that satisfy the original goal.

Consequences Yes. The consequences of using

SecureUML is a solution to an access

control problem in access rights to

resource are assigned to roles and users

are assigned to roles with specific

authorization constraints.

When a design has been found to violate

security requirements, UMLsec provides

for the generation of scenarios, in the

form of attack sequences, which explain

how security requirements may be

violated by the design. The results

(consequences) of refining a system

design in order to address security

vulnerabilities are captured in the

revised version of the design and

assessed against security requirements.

The consequence of a KAOS

refinement pattern is to satisfy the

original, high-level goal. If a pattern is

specified using the formal notation

provided by KAOS, the entailment

relation between the sub-goals and top-

level goal can be formally proven.

This ability to validate that the

consequences specified for a given

pattern are correct is particularly useful

in the domain of security patterns.

35

PART II CONTRIBUTION

PART II

CONTRIBUTION

36

In Contribution Part, we are going to present the common concepts and similarities

between KAOS and RBAC. Later on, we will generate transformation rules between the

security modeling approaches (KAOS-SecureUML, SecureUML-KAOS, KAOS-UMLSec,

and UMLSec-KAOS). We will apply these transformation rules on to the models, KAOS,

SecureUML and UMLSec separately then we will get transformed versions of these

models.

37

Chapter 5. Understand the Language

In this chapter, we will try to show the common concepts and similarities between KAOS

and RBAC. In order to do this, first of all, we will explain the common constructs between

them and secondly make a design for transformation rules based on these common

constructs.

5.1. Common Concepts between KAOS and RBAC

In this section, we explain the common constructs between KAOS and RBAC. We will

show what their definitions are and how they match to each other.

5.1.1. Entity - Object

In RBAC, “Object is defined as a passive entity that contains or receives information” [11].

In KAOS, “Object is a thing of interest in the software being studied and its environment,

being modeled whose instances can be distinctly identified and may evolve from state to

state. Agents, events, entities and associations are objects” [10]. From these definitions, we

understand that they both refer to similar concepts, changeable status or value. There is a

slight difference about objects in RBAC and KAOS. In RBAC, objects are passive entities

which mean they cannot perform operations. On the other hand, in KAOS, objects can be

either passive or active which can perform operations (e.g. agents) and which cannot (e.g.

entities and associations). So we can match objects in RBAC as in entities in KAOS.

5.1.2. Agent - Role

In RBAC, “Role means a job function within the organization that describes the authority

and responsibility conferred on a user assigned to the role.” [11]. In KAOS, there is no

construct named as role but there are agents which refers “active objects performing

operations to achieve goals.” [10]. We understand more clearly why agent matches with

role with the help of sub divisions of agents. “Agents can be the software being considered

as a whole or parts of it. Agents can also come from the environment of the software being

studied; human agents are in the environment.” [10]. This means, there are two types of

agents: Software agents and environment agents. Both of them are active components that

play some role towards goal satisfaction.

5.1.3. Operation - Operation

In RBAC, “An operation is an executable image of a program, which upon invocation

executes some function for the user.” [1]. In KAOS, operation is expressed as “an input-

output relation over objects; operation applications define state transitions.” [14]. Both

definitions refer to the same thing, there is an execution and these operations are

characterized by pre and post conditions.

5.1.4. Performance Links - Permission Assignment

In RBAC, “permission assignment is an authorized interaction a subject can have with an

object.” [11]. It is between roles and permissions (operations and objects) with possible

constraints. In KAOS, there are operations and there are agents who should perform these

operations. In order to determine which agent has permission to perform which particular

operation, performance links are used.

38

5.1.5. User Entity - User

In RBAC, user is defined as “any person who interacts directly with a computer system.”

[11]. Basically, user is a human-being. In KAOS, there is no such a construct that we can

use as user. Therefore, we have to find an alternative way to represent user in KAOS. The

solution is to create an entity named user which leads us to create human objects of it.

5.2. Design of Transformation Rules

In this section, we generate a transformation process that leads us to receive transformed

model as it is shown in Fig. 7. “Input” represents the initial model, “Action” represents the

transformation rules applied to the input and “Output” is the outcome transformed model.

Figure 7 Transformation Process

5.3. Summary

In this chapter, we showed the similarities between KAOS and RBAC regarding their

constructs. We first gave the definitions of these constructs and later on we explained

which construct of KAOS match with which construct of RBAC. This is very important

stage in our research because for the following stages, we will rely on these matches to

prove our transformation rules. More detailed examples will be shown in transformation

rules parts in Chapter 6 and Chapter 7. In Fig. 8, we see extract of the KAOS metamodel

showing which elements are part of RBAC.

Figure 8 Extract of KAOS Metamodel

Input

Output
Action

39

Chapter 6. SecureUML - KAOS Transformations

In this chapter, we describe a scenario called Meeting Scheduler Example. According to

this scenario, we create SecureUML diagram and later on we generate transformation rules

from SecureUML to KAOS and vice versa.

SecureUML inherits features from RBAC and UML. It is based on these concepts: Role,

Permission, ResourceSet, ModelElement, ActionType, and AuthorizationConstraints

where ModelElement is a UML concept and the others are RBAC concepts.

6.1. Meeting Scheduler Example with SecureUML

The Meeting scheduler example is described as follows: “Meeting initiator needs to

organize a top-secret meeting. He needs to invite potential Meeting participants and find a

suitable meeting place and time. In order to ease his task Meeting initiator decides to use a

Meeting scheduler system for sending invitations, merging availability dates and informing

the Meeting participants. Since the Meeting is top secret, the Meeting scheduler system

must apply appropriate security policy for the Meeting agreement (place and time). This

means, the time and place could be entered and changed only by the Meeting initiator and

could be viewed only by the invited Meeting participants. In other words, no unintended

audience should get access to the Meeting agreement.” [16].

+setTimePlace()
+changeTimePlace()
+viewTimePlace()

-place : string
-time : string

<<secuml.resource>>
MeetingAgreement

-assignedUser : string

<<secuml.role>> MeetingInitiator

-assignedUser : string

<<secuml.role>> MeetingParticipant

<<secuml.user>> Bob

<<secuml.user>> Ann

<<secuml.user>> John

<<assignment>>

<<assignment>>

<<assignment>>

-getAgreementInformation : Select

<<secuml.permission>> ParticipantPermissions

*

-participantRole

*

-participantResource

-enterAgreementDetails : Insert
-changeMeetingInfo : Update

<<secuml.permission>> InitiatorPermissions

*

-initiatorRole

*

-initiatorResource

{AC#1}

{AC#3}

{AC#2}

Figure 9 SecureUML Diagram for Meeting Scheduler Example

(adapted from [7])

40

There are three authorization constraints: AC#1, AC#2 and AC#3 to strengthen the

permissions.

AC#1 context MeetingAgreement::setTimePlace():void

pre: self.roleInitiator.assignedUser ->

exists(i | i.assignedUser = “Bob”)

AC#2 context MeetingAgreement::changeTimePlace():void

pre: self.roleInitiator.assignedUser ->

exists(i|i.assignedUser = “Bob”)

AC#3 context MeetingAgreement::viewTimePlace():void

pre: self.roleParticipant->

exists (p1|p1.assignedUser="Ann")and

self.roleParticipant->

exists (p2|p2.assignedUser="John")and

self.roleParticipant->size = 2

41

Figure 10 Meeting Scheduler Example with KAOS

42

6.2. Transformation Rules

There are two sets of transformation rules, first it is from SecureUML to KAOS and the

other one is from KAOS to SecureUML.

6.2.1. Model Transformation from SecureUML to KAOS

We will use Fig. 9 SecureUML diagram for meeting scheduler example as our input.

Below we define four transformation rules to transform a model from SecureUML to

KAOS, these are our actions and the final figure that we have Fig. 14 SecureUML to

KAOS Transformation Rule # 4 will be our output.

SK1. A SecureUML class with the stereotype <<secuml.role>> is transformed to the

agents.

 Example: Roles become agents. The names of them remain the same (Meeting

Initiator, Meeting Participant).

Figure 11 SecureUML to KAOS Transformation Rule # 1

SK2. The SecureUML association class with the stereotype <<secuml.permission>>

becomes performance links between agents and corresponding attributes in KAOS

model.

 Example: In KAOS permission assignments are handled by performance links. It

shows which agent has permission to do which operation. E.g. Meeting Initiator is

performing change time and place.

Figure 12 SecureUML to KAOS Transformation Rule # 2

SK3. A class with a stereotype <<secuml.resource>> is transformed to entities (Meeting

Agreement), and the operations of this class become operations belonging to

operation model in the KAOS model.

 Example: the class MeetingAgreement (see Figure 9) is represented as an entity

called Meeting Agreement in Figure 10. The operations setTimePlace(),

changeTimePlace(), and viewTimePlace() are shown as operations respectively set

time and place, change time and place, and view time and place in operation model

in KAOS.

43

Figure 13 SecureUML to KAOS Transformation Rule # 3

SK4. A relationship with a stereotype <<assignment>> relationship used to connect users

and their roles is transformed to generalization among the agents and users in

KAOS model.

 Example: From Figure 10 we specify “User” entity to create another object for

users, as provided in Table 7, e.g. Agent  User  Bob.

Figure 14 SecureUML to KAOS Transformation Rule # 4

Note1: From SecureUML model, we cannot directly generate the goals that we have to

elicit. So, we have to focus the operations and permissions to understand the aim and then

we may write the goals with some lost information.

Note2: The KAOS object model is compliant with UML class diagrams therefore KAOS

entities correspond to UML classes in SecureUML; and KAOS associations correspond to

UML binary association links or n-ary association classes. On the other hand in KAOS

model there are few more association link types, such as concern, input, output etc. The

44

developer should analyze the relationship between the constructs and decide to link one to

another. Table 5 shows the entire link types of KAOS model.

Table 5 KAOS Model Link Types

Link Type Direction

Concerns Link one of Goal, Softgoal, Requirement, Expectation to one of

Entity, Agent, Event, N-ary Association

Performance Link one of Agent to one of Operation

Operationalization Link one of Operation to one of Requirement, Expectation

Responsibility Link one of Agent to one of Requirement, Expectation

Assignment Link one of Agent to one of Requirement, Expectation, Goal,

SoftGoal

Refinement Link one of Requirement, Expectation, Goal, SoftGoal, DomProp to

one of Requirement, Expectation, Goal, SoftGoal

Resolution Link one of Requirement, Expectation, Goal, SoftGoal to one of

Obstacle

Obstruction Link one of Obstacle to one of Requirement, Expectation, Goal,

SoftGoal

Conflict Link one of Requirement, Expectation, Goal, SoftGoal, DomProp to

one of Requirement, Expectation, Goal, SoftGoal, DomProp

O_Refinement Link one of DomProp, Obstacle to one of Obstacle

IsA Link one of Entity, Agent, Event, N-ary Association to one of Entity,

Agent, Event, N-ary Association

Binary Association Link one of Entity, Agent, Event to one of Entity, Agent, Event

Link Link one of N-ary Association to one of Entity, Agent, Event, N-ary

Association

Monitoring Link one of Agent to one of Entity, Agent, Event, N-ary Association

Control Link one of Agent to one of Entity, Agent, Event, N-ary Association

Cause Link one of Event to one of Operation

Input Link one of Entity, Agent, Event, N-ary Association to one of

Operation

Output Link one of Operation to one of Entity, Agent, Event, N-ary

Association

6.2.2. Model Transformation from KAOS to SecureUML

We will use Fig. 10 meeting scheduler example with KAOS as our input. Below we define

four transformation rules to transform a model from KAOS to SecureUML, these are our

actions and the final figure that we have Fig. 20 KAOS to SecureUML Transformation

Rule # 4 will be our output.

KS1. In KAOS model, entities (independent, passive objects) are represented by

stereotype <<secuml.resource>> in the SecureUML and the operations defined in

KAOS model are transformed which hold these operations to the SecureUML class

with a stereotype <<secuml.resource>>.

 Example: Meeting Agreement entity becomes Meeting Agreement class. Attributes

remain the same but additionally operations from KAOS model are also taken

inside the class.

45

Figure 15 KAOS to SecureUML Transformation Rule # 1

KS2. In KAOS model, agents (independent, active objects) can be transformed to the

<<secuml.role>> classes in SecureUML model and each of this class should have

default attribute as “assignedUser : string”.

 Example: Agents become roles in SecureUML. The names of them remain the

same. (Meeting Initiator, Meeting Participant).

Figure 16 KAOS to SecureUML Transformation Rule # 2

KS3. In KAOS model, users are environment agents, they are derived from agent entity.

They can be defined with a stereotype <<secuml.user>> in SecureUML model.

 Example: Environment and software agents become users in SecureUML. E.g. Bob,

Ann and John.

Figure 17 KAOS to SecureUML Transformation Rule # 3

KS4. In KAOS model, from performance links between agents and operations, we are

able to identify on which operations a role can perform security actions. Thus, from

each occurrence of this links in the KAOS model, a corresponding association class

between a << secuml.roles>> and a << secuml.resource>> is introduced in

SecureUML.

 Example: Permission classes are introduced here to replace performance links

between agents and operations. E.g InitiatorPermissions and

ParticipantPermissions.

46

Figure 18 KAOS to SecureUML Transformation Rule # 4

Note1: In KAOS model, there is no authorization constraint therefore, when we generate

SecureUML model from KAOS model, after determining the SecureUML

permission classes, the developer should write the authorization constraints

according to allowed actions in these classes.

Note2: In SecureUML model, there are not only operations (e.g setTimePlace) but also

allowed actions in permission classes (e.g changeMeetingInfo: Update). It is easy to

take operations from KAOS model but to generate these allowed actions, the

developer should benefit from the already existing operations and also from goals.

The developer will understand the relationship between these operations and

actions. The authorization constraints might help to identify the relationship

between them e.g. (enterAgreementDetails and setTimePlace), and

(getAgreementInformation and viewTimePlace). After that these authorization

constraints can be linked to attributes (actions) of permission classes.

Note3: “The SecureUML model needs to be completed manually with the information,

which is not captured from the KAOS model. Specifically, the developer needs to

introduce the following information:

 the attributes of the <<secuml.resource>> class that define the state of the

secured resource(s). For example, the class MeetingAgreement should be

complemented with attributes place:String and time:String

 multiplicities for all the association relationships. For example, multiplicities

for associations between MeetingInitiator and MeetingAgreement,

MeetingParticipant and MeetingAgreement have to be defined;

 names for the association classes. For instance, for classes with the

<<secuml.permission>> stereotype have to be specified;

 action types for the identified actions. For example, for action Insert meeting

time and place action type is Insert, for Update time and place to be suitable

47

action type is Update, and for Check if time and place are suitable action type is

Select.” [7].

6.3. Summary

Table 6 shows the comparison of RBAC modeling using SecureUML and KAOS. In order

to compare these two security modeling language, we chose the common RBAC concepts

which SecureUML and KAOS have.

Table 6 Comparison of RBAC modeling using SecureUML and KAOS

(adapted from [7])

RBAC

concepts

SecureUML KAOS

Construct Example Construct Example

Users

(concept)

Class stereotype

<<secuml.user>>

Bob, Ann, and John Entity “User” “Bob”, “Ann”, and

“John”

User

assignment
(relationship)

Dependancy

stereotype

<<assignment>>

Dependancy

between classes

such as Bob and

MeetingInitiator,

and Ann or John

and

MeetingParticipant

User object Agent >> User >>

Name

Meeting Initiator >>

Bob

Meeting Participant

>> Ann, John

Roles
(concept)

Class stereotype

<<secuml.role>>

MeetingInitiator

and

MeetingParticipant

Agent MeetingInitiator and

MeetingParticipant

Permission

assignment
(relationship)

Association class

stereotype

<<secuml.permissio

n>>

InitiatorPermissions

and

ParticipantPermissi

ons

Performance

links

Meeting Initiator

<<performance>>

Change time and

place

Objects
(concept)

Class stereotype

<<secuml.resource

>>

MeetingAgreement Entity Meeting Agreement

Operations
(concept)

Class operations setTimePlace(),

changeTimePlace(),

and

viewTimePlace()

An operation Set time and place,

View time and

place, and Change

time and place

Permissions

(concept)

Authorization

constraint

AC#1, AC#2, and

AC#3

- Not defined

explicitly

48

49

Chapter 7. UMLSec - KAOS Transformations

In this chapter, we use a scenario called Meeting Scheduler Example that we already

described in Chapter 6. According to this scenario, we create UMLSec diagram and later

on we generate transformation rules from UMLSec to KAOS and vice versa.

UMLsec is an extension of UML which allows an application developer to embed security

related functionality into a system design and perform security analysis on a model of the

system to verify that it satisfies particular security requirements. Security requirements are

expressed as constraints on the behavior of the system and the design of the system

may be specified either in a UML specification or annotated in source code.

7.1. Meeting Scheduler Example with UMLSec

We use the same meeting scheduler example as we described in Chapter 6 Section 1.

UMLSec

MeetingAgreementMeetingInitiator MeetingParticipant

Insert meeting time
and place

Set time and place

Check if time and
place are suitable

View time and place

Change time and
place

Update time and
place to be suitable

Not OK

OK

Figure 19 UMLSec diagram for Meeting Scheduler Example

(adapted from [7])

50

There are three associated tags for the protected actions: AT#1, AT#2 and AT#3 to apply

security policies.

AT#1 {protected = Set time and date}

{role = (Bob, MeetingInitiator)}

{right = (MeetingInitiator, Set time and place)}

AT#2 {protected = View time and date}

{role = ([Ann, John], MeetingParticipant)}

{right = (MeetingParticipant, View time and place)}

AT#3 {protected = Change time and date}

{role = (Bob, MeetingInitiator)}

{right = (MeetingInitiator, Change time and place)}

7.2. Transformation Rules

There are two sets of transformation rules. First it is from UMLSec to KAOS and the other

one is from KAOS to UMLSec.

7.2.1. Model Transformation from UMLSec to KAOS

We will use Fig. 19 UMLSec diagram for meeting scheduler example as our input. Below

we define four transformation rules to transform a model from UMLSec to KAOS, these

are our actions and the final figure that we have Fig. 23 UMLSec to KAOS Transformation

Rule # 4 will be our output.

UK1. In the UMLsec model the activity partitions that do not hold secured protected

actions, can be transformed to the agents in KAOS model.

 Example: We have agents instead of activity lanes in KAOS model.

MeetingParticipant and MeetingInitiator.

Figure 20 UMLSec to KAOS Transformation Rule # 1

UK2. Association tags {protected} allow us identify the operations that belong to secured

resource. We transform the activity partitions, which hold these operations to the

performance relation between operations and the agents who has right to perform

these operations in KAOS model.

 Example: set time and place, change time and place, and view time and place

operations in KAOS model. These operations should be taken from class related

activity lanes (see MeetingAgreement). The other actions like insert meeting time

and place is not taken place in KAOS model.

51

Figure 21 UMLSec to KAOS Transformation Rule # 2

UK3. From UMLSec association tag {right} we are able to identify on which operations a

role can perform security actions. Thus, from each occurrence of this association

tag in the KAOS model, performance links between agents and corresponding

operations are introduced.

 Example: UMLSec association tag right is handled by performance links in KAOS

model. It helps us to understand which operation can be performed by whom.

MeetingInitiator have permission to change time and place but MeetingParticipant

do not.

{right=(MeetingInitiator, Set time and date)}

{right=MeetingParticipant, View time and date)}

{right=(MeetingInitiator, Change time and date)}

Figure 22 UMLSec to KAOS Transformation Rule # 3

UK4. Association tag {roles} allows us to identify the <<assignment>> dependency

relationship between classes of users, in KAOS model they are defined with

environment agents which derived from agent entity and their roles presented with

agent.

 Example: The actor values of associated tag {role} become environment agents.

We are assigning environment agents who are responsible from expectations. In my

KAOS model, I call them User. It is derived from Agent object. Bob, Ann and John

are users.

{role=(Bob, MeetingInitiator)}

{role=([Ann, John], MeetingParticipant)}

52

Figure 23 UMLSec to KAOS Transformation Rule # 4

Note1: From UMLSec model, we cannot directly generate the goals that we have to elicit.

So, we have to focus the activity partitions and actions to understand the aim and

then we may write the goals with some lost information.

Note2: The entities in KAOS object model are derived from activity lanes in UMLSec

model. The problem here is some of the activity lanes will replace as agents and

some of them will replace as entities in KAOS model. The developer should

understand which one is suitable to be agent and which one is suitable to be object.

For instance, MeetingInitiator and MeetingParticipant are chosen to be agent and

MeetingAgreeement is chosen to be entity.

Note3: The attributes of entities should be filled by the developer. The nouns in the

operations will help him to do it. For instance, set time and place action gives him

clue that there are two terms whose values may change. These are time and place

therefore they became attributes in Meeting Agreement entity. Also, we should link

the operations to the entities whose attribute’s values depend on the results of these

operations. Here we use input/output links.

Note4: In KAOS model, there are association link types, such as concern, input, output etc.

The developer should analyze the relationship between the constructs and decide to

link one to another. The entire list of link types of KAOS model is shown in Table

5.

7.2.2. Model Transformation from KAOS to UMLSec

We will use Fig. 10 meeting scheduler example with KAOS as our input. Below we define

five transformation rules to transform a model from KAOS to UMLSec, these are our

actions and the final figure that we have Fig. 26 KAOS to UMLSec Transformation Rule #

3 will be our output.

53

KU1. In KAOS model, entities (independent, passive objects) are represented by an

activity partition in the UMLsec model.

 Example: The agents and objects become activity lanes in UMLSec model. Meeting

Agreement entity becomes a lane in UMLSec model.

Figure 24 KAOS to UMLSec Transformation Rule # 1

KU2. In KAOS model, agents (independent, active objects) can be transformed to the

activity partition in UMLSec model.

 Example: Agents are also become activity lanes. MeetingInitiator and

MeetingParticipant agents become MeetingInitiator and MeetingParticipant lanes in

UMLSec model.

Figure 25 KAOS to UMLSec Transformation Rule # 2

KU3. The operations defined in KAOS model are transformed to actions belonging to this

activity partition in UMLSec. In addition, each operation becomes a value the

UMLsec associated tag {protected}.

 Example: The actions; set time and place, view time and place, change time and

place in MeetingAgreement activity lane in UMLSec model.

 {protected = Set time and date}

{protected = View time and date}

{protected = Change time and date}

54

Figure 26 KAOS to UMLSec Transformation Rule # 3

KU4. In KAOS model, users (e.g Bob, Ann and John) are environment agents; they are

derived from agent entity. They can be defined with actor value of the associated

tag {role} in UMLSec model.

 Example: Environment agents become the Actor value of the associated tag {role}.

{role=(Bob, MeetingInitiator)}

{role=([Ann, John], MeetingParticipant)}

KU5. In KAOS model, from performance links between agents and operations, we are

able to identify on which operations a role can perform security actions. Thus, from

each occurrence of this links in the KAOS model, we define the role value for the

UMLsec associated tag {right}. The value of right can be formulized in:

{right = (roleName, actionName)}.

 Example:

{right=(MeetingInitiator, Set time and date)}

{right=MeetingParticipant, View time and date)}

{right=(MeetingInitiator, Change time and date)}

Note1: “To complete the UMLsec activity diagram a developer needs to specify

information that was not possible to capture from the KAOS diagram. For instance

the developer needs to define initial node (e.g., to enterAgreementDetails action)

and activity final node (e.g., from viewTimePlace action). Other control flows

(including the conditionals ones) need also to be specified. For instance control

flows between setTimePlace and getAgreementInformation, viewTimePlace and

changeMeetingInfo, and changeTimePlace and getAgreementInformation might

define a logical sequence of activity that corresponds to the one in Figure 19.” [7].

7.3. Summary

Table 7 shows the comparison of RBAC modeling using UMLSec and KAOS. In order to

compare these two security modeling language, we chose the common RBAC concepts

which UMLSec and KAOS have.

55

Table 7 Comparison of RBAC modeling using UMLSec and KAOS

(adapted from [7])

RBAC

concepts

UMLSec KAOS

Construct Example Construct Example

Users

(concept)

Actor value of

the associated

tag {role}

“Bob”, “Ann”, and “John” Entity “User” “Bob”, “Ann”, and

“John”

User

assignment
(relationship)

Associated tag

{role}

{role=(Bob,

MeetingInitiator)}

{role=([Ann, John],

MeetingParticipant)}

User object Agent >> User >>

Name

Meeting Initiator >>

Bob

Meeting Participant >>

Ann, John

Roles
(concept)

Role value of

the associated

tag {role}

“MeetingInitiator” and

“MeetingParticipant”

Agent MeetingInitiator and

MeetingParticipant

Permission

assignment
(relationship)

Associated tag

{right}

{right=(MeetingInitiator, Set

time and date)}

{right=MeetingParticipant,

View time and date)}

{right=(MeetingInitiator,

Change time and date)}

Performance

links

Meeting Initiator

<<performance>>

Change time and place

Objects
(concept)

Activity

partition

MeetingAgreement Entity Meeting Agreement

Operations
(concept)

An action Set time and date, View time

and date, and Change time

and date

An operation Set time and place,

View time and place,

and Change time and

place

Permissions

(concept)

{role},

{protected},

and {right}

Not defined explicitely - Not defined explicitly

56

57

PART III VALIDATION

PART III

VALIDATION

58

In Validation Part, we are going to present the type and design of the validation. We will

discuss the threats to the validity. According to our validation test, we will validate our

results through another scenario called Food Delivery Example. We will compare the

transformed models with already existing models.

59

Chapter 8. Design of Validation and Test

In this chapter, we present our validation type and according to this decision, our test type

and its design. Lastly, we will show the threats to the validity.

8.1. Validation Type

“In order for a quality model to be valid, all its metrics (including aggregated metrics and

indicators) have to be valid” [8]. Kitchenham et al. [3] define two major methods to check

metrics validity. (Fig. 27):

 Theoretical validation, which confirms that the measurement does not violate any

required properties of measurement elements or of the definition models [3].

 Empirical validation, which corroborates that measured attributes are consistent

with the values predicted by the models involving the attribute [3].

Figure 27 Theoretical and Empirical Validation

(adapted from [3])

There are three different test types as it is shown in Fig. 27. In this work, we focus only

empirical validation and its subdivision, correctness test due to the lack of theoretical data.

Correctness test is more suitable than perception test and performance test according to

check the validity of transformation rules and models because (i) for perception test, we

needed a group of people who should use our methodology and validate the work, this

option was not convenient to choose (lack of people who is interested in this topic, (ii) for

performance test, our main scope is whether we can align KAOS to RBAC or not and how

we will do that so this option did not also meet with our expectations. Therefore we apply

correctness test to some studies of a specific case.

8.2. Correctness Test

In this section, we present one of empirical validation method, correctness test for KAOS

models and transformation rules. This test is to check whether our model and rules are

correct or not. In subsection 8.2.1, we describe its correctness test design.

8.2.1. Design

We define transformation rules and use these rules to transform one model to another one.

After this transformation, we need to verify the correctness of this transformation. We are

doing this in order to validate our work.

Theoretical validation

• Validity of the metrics

• Validity of the scale

• Validity of the estimation method

Empirical validation

• Perception test

• Performance test

• Correctness test

60

The research method: We plan to analyze some case studies focusing on their correctness

on specific criteria. Our criteria depend on the transformation rules that we covered in

Chapter 6 and Chapter 7. We hope to show that the correctness of the KAOS models and

transformation rules are indeed correct and correspond to the models (SecureUML and

UMLSec) that we created based on these transformation rules and feedback from the

experts mainly my supervisor.

Figure 28 Design of Test

The research sample: We will provide one scenario and create KAOS model based on this

case study. After that, we will use the transformation rules to transform this KAOS model

to SecureUML model and UMLSec model.

The Scenario:

- Food Delivery Example

8.2.2. Threats to Validity

Before presenting the correctness test results, we discuss some validity threats:

- Reliability of our KAOS model (see Fig. 29) could be seen as the internal validity

threat. However, our generated model is theoretically valid. There might be different

designs which can lead developer to receive different results.

- Reliability of existing security models (see Fig. 30 and Fig. 31) could be seen as the

external validity threat. In order to ensure the accuracy and correctness of these

models, I used the related article [7] as a guideline to create these security models.

8.3. Summary

In this chapter, we try to show how to validate and test our approach. Actually we followed

an algorithm to achieve this. Here is step by step what to do in order to validate, test and

conclude our research.

I. Read scenario or generate your own scenario.

II. Create your security model.

III. Apply transformation rules to this model.

IV. Use other security models manually.

V. Compare transformed and manually created security models.

VI. Report the results.

VII. Update your transformation rules.

61

Chapter 9. Food Delivery Example

In this chapter, we are going to discuss another example, called food delivery. First of all,

we describe the scenario and based on this scenario, we create three models, KAOS,

SecureUML and UMLSec respectively. After that, we will apply transformation rules to

the models one by one in order get another model. Finally, we will compare the

transformed models with the existing models.

9.1. Food Delivery Scenario

The Food delivery example is described as follows: Customer wants to order food to a

specific place. He needs to inform the restaurant at appropriate time. He contacts call

center agent and sends his request. Call center agent receives the request and transfers it to

the courier. The courier delivers the food to the registered address. The Food delivery

system helps both customer and call center agent. The customer can use this system to

enter his information (name, address, phone, etc.) and see the food information (menus,

prices, promotions, available hours to delivery, etc.). The call center agent uses this system

to track the orders, online support, and sending notifications.

9.2. KAOS Model

In Figure 29 we present a KAOS model to illustrate RBAC policy for the Food Delivery

Example. Here first, we define goals and sub-goals. After that, regarding these goals we

defined three agents Courier, CallCenterAgent, and Customer in order to associate each

goal with an agent responsible for it. We also present entities which characterize our object

model. The notation used in the object model complies with the one used in UML for class

diagrams. These entities are FoodOrder and Agent. FoodOrder entity has order related

attributes such as orderID, orderStatus, orderAddress, etc. which need to be secured. We

use generalization in order to create two objects Software agent and Environment agent.

We define three Environment agents Jack, Jane and Mary, who act as a user in the system.

Lastly, we define operations Request Order, Cancel Order, Receive Order, and Deliver

Order. These operations sum up all the behaviors that agents need to have to fulfill their

requirements. Behaviors are expressed in terms of operations performed by agents. With

KAOS, the operations are connected to the goals, we justify operations by the goals they

“operationalize”.

62

Figure 29 Food Delivery Example KAOS Model

63

9.3. SecureUML Model

In Figure 30 we present a SecureUML model to illustrate RBAC policy for the Food

Delivery Example. Here we define three users Jack, Jane and Mary, who play different

roles in the system. We also present that a resource (FoodOrder), which characterize order

attributes (orderID, orderStatus, orderTime, etc.) of the food delivery, needs to be secured.

Thus, a certain restriction on changing the value of the attributes of this resource needs to

be defined for the role Courier, CallCenterAgent and Customer.

+requestOrder()
+receiveOrder()
+cancelOrder()
+deliverOrder()

-orderID : int
-orderStatus : string
-orderTime : string
-orderDate : string
-orderAddress : string
-orderDetails : string

<<secuml.resource>>
FoodOrder

-assignedUser : string

<<secuml.role>> Courier

-assignedUser : string

<<secuml.role>> CallCenterAgent

-assignedUser : string

<<secuml.role>> Customer

<<secuml.user>> Jack

<<secuml.user>> Jane

<<secuml.user>> Mary

<<assignment>>

<<assignment>>

<<assignment>>

-enterOrderDetails : Insert
-cancelOrderRequest : Update

<<secuml.permission>> CustomerPermissions

*

-customerRole

*

-customerResource

-getOrderInformation : Select

<<secuml.permission>> AgentPermissions

*

-agentRole

*

-agentResource

-getOrderInformation : Select

<<secuml.permission>> CourierPermissions

*

-courierRole

*

-courierResource

{AC#4} {AC#3}

{AC#1}

{AC#2}

Figure 30 Food Delivery Example SecureUML Model

Association class CustomerPermissions characterizes two actions allowed for the

Customer. Action enterOrderDetails (of type Insert) defines that Customer can enter order

attributes by executing operation requestOrder() (see class FoodOrder), and action

cancelOrderRequest (of type Update) allows changing status of the FoodOrder by

executing operation cancelOrder() (see class FoodOrder). To strengthen these permissions

we define authorization constraints AC#1 and AC#2. Authorization constraint AC#1

means that operation requestOrder() (of class FoodOrder) can be executed by one user

Mary assigned to a role Customer. Likewise, the authorization constraint AC#2 defines

restriction for operation cancelOrder() (of class FoodOrder):

AC#1 context FoodOrder::requestOrder():void

 pre: self.roleCustomer.assignedUser ->

 exists(i | i.assignedUser = “Mary”)

64

AC#2 context FoodOrder::cancelOrder():void

 pre: self.roleCustomer.assignedUser ->

 exists(i | i.assignedUser = “Mary”)

Association class AgentPermissions defines a restriction for the CallCenterAgent role. It

defines an action getOrderInformation (of type Select) that says that only CallCenterAgent

can receive (view) order information defined in the FoodOrder. To enforce this permission

an authorization constraint AC#3 is defined:

Authorization constraint AC#3 says that only user Jane who has an assigned role

CallCenterAgent can execute an operation receiveOrder() (of class FoodOrder).

AC#3 context FoodOrder::receiveOrder():void

 pre: self.roleAgent.assignedUser ->

 exists(i | i.assignedUser = “Jane”)

Association class CourierPermissions defines a restriction for the Courier role. It defines

an action getOrderInformation (of type Select) that says that only Courier can deliver

order. In order to do this, he needs order information defined in the FoodOrder. To enforce

this permission an authorization constraint AC#4 is defined:

Authorization constraint AC#4 says that only user Jack who has an assigned role Courier

can execute an operation deliverOrder() (of class FoodOrder).

AC#4 context FoodOrder::deliverOrder():void

 pre: self.roleCourier.assignedUser ->

 exists(i | i.assignedUser = “Jack”)

9.4. UMLSec Model

Figure 31 illustrates application of UMLSec to model the Food Delivery Example. Here

we define an activity diagram, which describes an interaction between Customer,

FoodOrder, CallCenterAgent, and Courier. The diagram specifies that Customer can insert

order details. Next CallCenterAgent is able to check if the order details are valid and

suitable. If Customer wants to cancel his order, he can do it. Otherwise Courier checks the

order details in order to finalize the delivery.

This diagram carries an <<rbac>> stereotype, meaning that the security policy needs to be

applied to the protected actions. For instance, the Customer’s action Insert order details

leads to the action Request order for the FoodOrder. Request order is executed if and only

if there exists an associated tag, that defines the following: (i) Request order is a protected

action, (ii) Mary plays a role of Customer, and (iii) Customer enforces the action Request

order. In the activity diagram this associated tag (AT#1) is defined as follows:

AT#1 {protected = Request order}

 {role = (Mary, Customer)}

 {right = (Customer, Request order)}}

65

UMLSec

FoodOrderCustomer CallCenterAgent Courier

Insert order details

Request order

Check if order
details are suitable

Receive order

Cancel order

Deliver order

Cancel order details Not OK

Check order details

OK

Figure 31 Food Delivery Example UMLSec Model

Similarly, the sets of associated tags are defined for other three protected actions Receive

order (AT#2), Cancel order (AT#3), and Deliver order (AT#4).

AT#2 {protected = Receive order}

 {role = (Jane, CallCenterAgent)}

 {right = (CallCenterAgent, Receive order)}}

66

AT#3 {protected = Cancel order}

 {role = (Mary, Customer)}

 {right = (Customer, Cancel order)}}

AT#4 {protected = Deliver order}

 {role = (Jack, Courier)}

 {right = (Courier, Deliver order)}}

9.5. Applying Transformation Rules

In this section we are going to apply transformation rules to the models that we have

created in KAOS, SecureUML and UMLSec. We will get the following outputs according

to our inputs:

- KAOS  SecureUML1

- KAOS  UMLSec1

- SecureUML  KAOS1

- UMLSec  KAOS2

9.5.1. KAOS to SecureUML1

We will use as our input Fig. 29 food delivery example KAOS model in order to get a

SecureUML model using transformation rules that we already covered in Chapter 6.

KS1. FoodOrder entity became FoodOrder resource class in SecureUML.

+requestOrder()
+receiveOrder()
+cancelOrder()
+deliverOrder()

-orderID : int
-orderStatus : string
-orderTime : string
-orderDate : string
-orderAddress : string
-orderDetails : string

<<secuml.resource>>
FoodOrder

Figure 32 KAOS to SecureUML Transformation Step 1

KS2. Agents; Courier, Call Center Agent and Customer became roles with the same

names in SecureUML. These roles are linked to the FoodOrder resource class with

binary associations.

+requestOrder()
+receiveOrder()
+cancelOrder()
+deliverOrder()

-orderID : int
-orderStatus : string
-orderTime : string
-orderDate : string
-orderAddress : string
-orderDetails : string

<<secuml.resource>>
FoodOrder

-assignedUser : string

<<secuml.role>> Courier

-assignedUser : string

<<secuml.role>> CallCenterAgent

-assignedUser : string

<<secuml.role>> Customer

-courierRole

*
-courierResource

*-agentRole

*

-agentResource

*

-customerRole

*

-customerResource

*

Figure 33 KAOS to SecureUML Transformation Step 2

67

KS3. Environment agents (users); Jack, Jane and Mary became users with the same

names in SecureUML. They are assigned to the roles with assignment links.

+requestOrder()
+receiveOrder()
+cancelOrder()
+deliverOrder()

-orderID : int
-orderStatus : string
-orderTime : string
-orderDate : string
-orderAddress : string
-orderDetails : string

<<secuml.resource>>
FoodOrder

-assignedUser : string

<<secuml.role>> Courier

-assignedUser : string

<<secuml.role>> CallCenterAgent

-assignedUser : string

<<secuml.role>> Customer

-courierRole

*
-courierResource

*-agentRole

*

-agentResource

*

-customerRole

*

-customerResource

*

<<secuml.user>> Jack

<<secuml.user>> Jane

<<secuml.user>> Mary

<<assignment>>

<<assignment>>

<<assignment>>

Figure 34 KAOS to SecureUML Transformation Step 3

KS4. Performance links between agents and operations are replaced with permission

associated classes.

+requestOrder()
+receiveOrder()
+cancelOrder()
+deliverOrder()

-orderID : int
-orderStatus : string
-orderTime : string
-orderDate : string
-orderAddress : string
-orderDetails : string

<<secuml.resource>>
FoodOrder

-assignedUser : string

<<secuml.role>> Courier

-assignedUser : string

<<secuml.role>> CallCenterAgent

-assignedUser : string

<<secuml.role>> Customer

<<secuml.user>> Jack

<<secuml.user>> Jane

<<secuml.user>> Mary

<<assignment>>

<<assignment>>

<<assignment>>

<<secuml.permission>> CustomerPermissions

*

-customerRole

*

-customerResource

<<secuml.permission>> AgentPermissions

*

-agentRole

*

-agentResource

<<secuml.permission>> CourierPermissions

*

-courierRole

*

-courierResource

Figure 35 KAOS to SecureUML Transformation Step 4

Note1:

AC#1 context FoodOrder::requestOrder():void

 pre: self.roleCustomer.assignedUser ->

 exists(i | i.assignedUser = “Mary”)

AC#2 context FoodOrder::cancelOrder():void

 pre: self.roleCustomer.assignedUser ->

 exists(i | i.assignedUser = “Mary”)

AC#3 context FoodOrder::receiveOrder():void

 pre: self.roleAgent.assignedUser ->

 exists(i | i.assignedUser = “Jane”)

68

AC#4 context FoodOrder::deliverOrder():void

 pre: self.roleCourier.assignedUser ->

 exists(i | i.assignedUser = “Jack”)

Note2:

We have to determine the attributes (actions) of permission classes. In order to do that, we

should analyze the authorization constraints and define actions according to these

operations. The names of these actions can be synonyms of the operation names or

represent the same meaning of those operations.

requestOrder()  enterOrderInformation

cancelOrder()  cancelOrder

receiveOrder()  takeOrder

deliverOrder()  -

Note3:

We need to introduce the following information manually:

- the attributes of the <<secuml.resource>> class that define the state of the secured

resource(s).

- multiplicities for all the association relationships.

- names for the association classes.

- action types for the identified actions.

SecureUML1 Model:

+requestOrder()
+receiveOrder()
+cancelOrder()
+deliverOrder()

-orderID : int
-orderStatus : string
-orderTime : string
-orderDate : string
-orderAddress : string
-orderDetails : string

<<secuml.resource>>
FoodOrder

-assignedUser : string

<<secuml.role>> Courier

-assignedUser : string

<<secuml.role>> CallCenterAgent

-assignedUser : string

<<secuml.role>> Customer

<<secuml.user>> Jack

<<secuml.user>> Jane

<<secuml.user>> Mary

<<assignment>>

<<assignment>>

<<assignment>>

-enterOrderInformation : Insert
-cancelOrder : Update

<<secuml.permission>> CustomerPermissions

*

-customerRole

*

-customerResource

-takeOrder : Select

<<secuml.permission>> AgentPermissions

*

-agentRole

*

-agentResource

-takeOrder : Select

<<secuml.permission>> CourierPermissions

*

-courierRole

*

-courierResource

{AC#4} {AC#3}

{AC#1}

{AC#2}

Figure 36 SecureUML1 Model

69

9.5.2. KAOS to UMLSec1

We will use as our input Fig. 29 food delivery example KAOS model in order to get a

UMLSec model using transformation rules that we already covered in Chapter 7.

KU1. FoodOrder entity became activity lane in UMLSec.

Figure 37 KAOS to UMLSec Transformation Step 1

KU2. Agents; Customer, Call Center Agent and Courier became activity lanes in

UMLSec.

Figure 38 KAOS to UMLSec Transformation Step 2

KU3. The operations in KAOS model became protected actions in UMLSec and they are

placed in FoodOrder activity lane.

{protected = Request order}

{protected = Receive order}

{protected = Cancel order}

{protected = Deliver order}

70

Figure 39 KAOS to UMLSec Transformation Step 3

KU4. The associated tag, {role} is assigned to actorName(s) and roleName(s).

{role = (Mary, Customer)}

{role = (Jane, CallCenterAgent)}

{role = (Mary, Customer)}

{role = (Jack, Courier)}

KU5. Another associated tag, {right} is assigned to roleName(s) and actionName(s).

{right = (Customer, Request order)}}

{right = (CallCenterAgent, Receive order)}}

{right = (Customer, Cancel order)}}

{right = (Courier, Deliver order)}}

Note1:

Since UMLSec is an activity diagram, we have to specify additional information that we

cannot capture from KAOS diagram directly. These are initial node, final node, conditional

flows and other control flows of activity diagram.

71

UMLSec1 Model:

UMLSec

FoodOrderCustomer CallCenterAgent Courier

Enter order details

Request order

Check if order
details are OK

Receive order

Cancel order

Deliver order

Cancel order details Not OK

Check order details

OK

Figure 40 UMLSec1 Model

9.5.3. SecureUML to KAOS1

We will use as our input Fig. 30 food delivery example SecureUML model in order to get a

KAOS model using transformation rules that we already covered in Chapter 6.

72

SK1. SecureUML role classes; Customer, Courier and Call Center Agent became agents

in KAOS model.

Figure 41 SecureUML to KAOS Transformation Step 1

SK2. SecureUML permission classes became performance links between the agents

(Customer, Courier and Call Center Agent) and the operations (Request Order,

Cancel Order, Deliver Order and Receive Order) in KAOS model.

Figure 42 SecureUML to KAOS Transformation Step 2

SK3. SecureUML resource class, FoodOrder became FoodOrder entity in KAOS model.

Figure 43 SecureUML to KAOS Transformation Step 3

73

SK4. SecureUML user classes; Jack, Jane and Mary became Environment agents in

KAOS model.

Figure 44 SecureUML to KAOS Transformation Step 4

Note1:

We cannot generate the goals directly from SecureUML model. Therefore, we can discover

the goals by interviewing the users, by analyzing the scenario and reading available

technical document. This means that goals elicitation cannot be automatically done.

Note2:

We should analyze the relationship between the constructs and decide to link one to

another.

KAOS1 Model:

Figure 45 KAOS1 Model

74

9.5.4. UMLSec to KAOS2

We will use as our input Fig. 31 food delivery example UMLSec model in order to get a

KAOS model using transformation rules that we already covered in Chapter 7.

UK1. Activity partitions; Customer, Courier and Call Center Agent became agents in

KAOS model.

Figure 46 UMLSec to KAOS Transformation Step 1

UK2. Protected actions became operations in KAOS model.

Figure 47 UMLSec to KAOS Transformation Step 2

UK3. The role names and action names which are represented with associated tag {right}

became performance links between agents and operations.

Figure 48 UMLSec to KAOS Transformation Step 3

UK4. The actor names and role names which are represented with associated tag {role}

became Environment agents in KAOS model.

75

Figure 49 UMLSec to KAOS Transformation Step 4

Note1:

We cannot generate the goals directly from UMLSec model. Therefore, we can discover

the goals by interviewing the users, by analyzing the scenario and reading available

technical document. This means that goals elicitation cannot be automatically done.

Note2:

We should create entities from activity lanes in UMLSec model. The problem here is some

of the activity lanes will replace as agents and some of them will replace as entities in

KAOS model. The developer should understand which one is suitable to be agent and

which one is suitable to be object. For instance, Food Order represents an entity in KAOS

model.

Figure 50 UMLSec to KAOS Transformation Note 2

Note3:

The attributes of entities should be filled by us as well. Also, we should link the operations

to the entities whose attribute’s values depend on the results of these operations. Here we

use input/output links.

76

Figure 51 UMLSec to KAOS Transformation Note 3

Note4:

We should analyze the relationship between the constructs and decide to link one to

another.

KAOS2 Model:

Figure 52 KAOS2 Model

As it is seen on KAOS1 and KAOS2 models. They are exactly same.

9.6. Comparison of Models

In this section, we are going to compare the models according to their correctness. We are

going to make the following comparisons:

- KAOS vs. KAOS1

- KAOS vs. KAOS2

- SecureUML vs. SecureUML1

- UMLSec vs. UMLSec1

77

9.6.1. KAOS vs. KAOS1

Table 8 KAOS vs. KAOS1

 Differences

KAOS - KAOS1 1. Goals

- Except the other constructs we could not generate

the goals automatically from SecureUML and

UMLSec models.

2. Links

- The links between some of the constructs are easy

to determine but especially the links between the

goals and the others could not been generated.

Table 8 shows the differences between KAOS and KAOS1. The goals are desired system

properties that have been expressed by some stakeholder(s). So we have to elicit the goals

with the help of the stakeholders and especially the users of the system. Also the user

scenarios/stories and the other technical documentation might help developer to determine

the goals. The links related to the goals such as operationalization, concern, etc. can be

done easily after goal elicitation just the developer should understand the relationship

between the constructs carefully.

9.6.2. KAOS vs. KAOS2

Table 9 KAOS vs. KAOS2

 Differences

KAOS - KAOS2 1. Goals

- Except the other constructs we could not generate

the goals automatically from SecureUML and

UMLSec models.

2. Links

- The links between some of the constructs are easy

to determine but especially the links between the

goals and the others could not been generated.

Table 9 shows the differences between KAOS and KAOS2. The goals are desired system

properties that have been expressed by some stakeholder(s). So we have to elicit the goals

with the help of the stakeholders and especially the users of the system. Also the user

scenarios/stories and the other technical documentation might help developer to determine

the goals. The links related to the goals such as operationalization, concern, etc. can be

done easily after goal elicitation just the developer should understand the relationship

between the constructs carefully.

78

9.6.3. SecureUML vs. SecureUML1

Table 10 SecureUML vs. SecureUML1

 Differences

SecureUML -

SecureUML1

1. Actions’ names

- Actions’ names are different. This will not cause a

problem just they should correspond to operations

logically.

2. Authorization constraints

- Linking authorization constraints to

actions/operations is complicated. Since I am the

only one who designs these models, according to

my design I did it in this way.

Table 10 shows the differences between SecureUML and SecureUML1. The developer

should define comprehensible and logical names for the actions. Also the developer should

give correct action type to these actions (Select, Update, Insert, etc.). The developer should

be very careful about this linking authorization constraints to actions/operations. Some of

these links can be added to permission classes and some of them can be added to resource

classes. This is designer’s decision.

9.6.4. UMLSec vs. UMLSec1

Table 11 UMLSec vs. UMLSec1

 Differences

UMLSec -

UMLSec1

1. Naming

- Actually the transformation was very successful

just there are some naming differences.

2. Conditional - Control flows

- In comparison there was no difference but general

usage of conditional and control flows depend on

design. So it might show some difference in activity

diagram from design to design.

Table 11 shows the differences between SecureUML and SecureUML2. In order to

minimize the mistakes, we have to name the activity names relevant to the scenario and

operations. Since UMLSec is an activity diagram, we have to specify some additional

information that we cannot capture from KAOS diagram directly. These are initial node,

final node, conditional flows and other control flows of activity diagram. It needs to be

written manually by the developer.

9.7. Summary

In this chapter, we focus on to a specific example, called food delivery scenario. Based on

the information provided to us, we first create our own security models in KAOS,

SecureUML and UMLSec. After that, we applied the transformation rules that we already

covered in Chapter 6 and Chapter 7 to these security models in order to get semi-

automatically transformed ones. Finally, we made comparison regarding to their

correctness between transformed models and manually created model.

79

PART IV CONCLUSION

PART IV

CONCLUSION

80

In Conclusion Part, we are going to finalize our thesis. After discussing our results, we will

talk about some limitations and future work.

After conclusion part, you can find resümee (Estonian translation of the abstract) and

references.

81

Chapter 10. Conclusion

In this chapter, we will conclude our work regarding the research done in this thesis. After

showing the results, we will talk about the future work.

In this research we have analyzed how KAOS can help defining security issues through the

role-based access control mechanism. The contribution of this study gives modelers the

criteria (which modeling approach meets the expectations and satisfies the needs of

RBAC) whether they should select KAOS for the RBAC analysis or not.

Our major conclusions include the following:

- We observe that KAOS is applicable to model RBAC solutions. Table 6 and Table 7

both illustrate that KAOS, SecureUML and UMLSec approaches have means to

address the RBAC concepts and relationships. Besides, Figure 8 shows that some of

the elements in KAOS metamodel such as environment agent, agent and operation, etc.

are part of RBAC which refer to user, role and operation respectively.

- According to the results, our transformation rules are not enough to get correct models,

they are beneficial but the information system developers and designers should also

involve in the transformation phase. These transformation rules helped us to show how

we aligned KAOS to RBAC. Here, transformation rules are involved to make the

alignment between KAOS and RBAC usable.

This study is not without limitations. Firstly, we should say that our analysis is of limited

scope, as it is only based on the literature work [7] and on two simple examples, Meeting

Scheduler Example [16] and our own created Food Delivery Example. If we carried out an

extensive study or a set of examples we could receive different results. Secondly, the

transformation rules that we introduced do not provide automatic transformation because

transformation rules rely on to the examples (Meeting Scheduler and Food Delivery) which

we used. That’s why in another research with different examples, the definition of the

transformation rules can be obtained differently.

In this work we did not have a scope to define model transformation rules between KAOS-

SecureUML, KAOS-UMLSec and vice versa. However, in our contribution we include a

set of guidelines in other words transformation rules (see Chapter 6 and Chapter 7) that

could facilitate preparation of the RBAC activity diagrams, if one of these security

modeling diagrams (KAOS, SecureUML or UMLSec) is already being defined. But we

also should acknowledge that these transformation rules, currently should not be taken for

granted because a further and more detailed analysis is required in order to define

automatically transformation between the security modeling approaches. Such a definition

remains for future work. Since the transformations could not be done automatically, maybe

a tool for these languages might be implemented.

82

RESÜMEE

Turvalisust peetakse infosüsteemide üheks aspektiks. RBAC on lähenemine, mis piirab

süsteemi ligipääsu ainult autoriseeritud kasutajatele infosüsteemides. Olemasolevad

turvalisusmudelite keeled või lähenemised adresseerivad IS-i turvalisust, kuigi

olemasolevad keeled või lähenemised tingimata ei kohandu RBAC-i vajadustele. On

olemas mitmeid modelleerimiskeeli (nt SecureUML, UMLSec, jne) mis esindavad RBAC-

i, kuid nad ei ole koosvõimelised (raske selgitada) ning neid ei ole lihtne võrrelda

omavahel. Iga modelleerimiskeel esindab erinevaid perspektiive

informatsioonisüsteemides. Pealegi on vajadus ühendada disain ja nõudestaadiumid

selleks, et avastada süsteemi turvalisusprobleemid ja analüüsida seotud

turvalisuskompromisse varasemates staadiumites. KAOS on eesmärgipõhine nõue

tehnikavaatenurgast, et paika panna tarkvara nõuded. Sellel hetkel, KAOS on tulevikus

võtmelahendus selleks, et kombineerida nõuded disainipõhimõtetega.

Selles teesis me analüüsime KAOS-e võimet kohaneda RBAC-ile. Täpsemalt, me

kasutame süstemaatilist lähenemist selleks, et aru saada kuidas KAOS-t on võimalik

kasutada nii, et see kohanduks RBAC-ile. Meie uurimistöö põhineb

transformatsioonireeglitel KAOS-SecureUML-i ja KAOS-UMLSec-i vahel. Pealegi, läbi

nende muutuste näitame me kuidas sobitasime KAOS-e RBAC-ile.

Selle uurimistöö esitamisel on mitmeid kasutegureid. Esiteks, see aitab potentsiaalselt

mõista kuidas KAOS toimib koos RBAC-iga. Teiseks, see defineerib lähenemise välja

meelitada turvanõuetele IS-i varajastes arendusfaasides RBAC-i jaoks. See rakendab meie

tulemused juhtumuuringus selleks, et mõõta määratletud lähenemise õigsust. Kolmandaks,

see transformatsioon KAOS-est/KAOS-eni aitaks IS arendajaid ja teistel süsteemi osanikel

(nt süsteemianalüütikuid, süsteemi administraatoreid jne) mõista kui tähtsad need

turvalisuslähenemised on ja millistel on rohkem eeliseid/puudusi. Me planeerime

kehtestada oma tulemused selleks, et reegleid ja modeleid muuta olenevalt nende õigsust,

mida mõõdetakse. Viimaseks, me oleme võimelised õigustama oma disainistaadiumit

nõudmise staadiumiga.

83

REFERENCES
[1] Ferraiolo D. F., Sandhu R., Gavrila S., Kuhn D. R. and Chandramouli R., Proposed

NIST Standard for Role-Based Access Control, ACM Transactions on Information

and System Security, Vol. 4, No. 3, August 2001.

[2] Jurjens, J., Secure Systems Development with UML. Heidelberg, German, Springer-

Verlag, 2004

[3] Kitchenham, B., Pfeeger, S. L., Fenton, N.: Towards a Framework for Software

Measurement Validation, IEEE Trans. on Soft. Eng., IEEE Press 21 (12), 1995.

[4] Letier E., Reasoning about Agents in Goal-Oriented Requirements Engineering.

PhD thesis, Universit´e Catholique de Louvain, 2001.

[5] Lodderstedt T., Basin D. and Doser J., SecureUML: A UML-Based Modeling

Language for Model-Driven Security. «UML» 2002: The Unified Modeling

Language: 426-441, 2002.

[6] Matulevičius R., Heymans P., and Opdahl A. L., Ontological Analysis of KAOS

Using Separation of Reference, EMMSAD 2006.

[7] Matulevičius R., and Dumas M., Towards Model Transformation between

SecureUML and UMLsec for Role-based Access Control, 2011.

[8] Matulevičius R., Habra N., and Kamseu F., Validity of the Documentation

Availability Model: Experimental Definition of Quality Interpretation, 2010.

[9] Nhlabatsi A., Bandara A., Hayashi S., Haley C. B., Jurjens J., Kaiya H., Kubo A.,

Laney R., Mouratidis H., Nuseibeh B.. Tun T. T., Washizaki H., Yoshioka N., Yu

Y., Security Patterns: Comparing Modeling Approaches, December 2009.

[10] Respect-IT. A KAOS Tutorial. V1.0. 18 October 2007.

[11] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., Youman, C. E., Role-Based Access

Control Models, February 1996.

[12] Van Lamsweerde, A., Requirements Engineering. From System Goals to UML

Models to Software Specifications. West Sussex: Wiley, 2009.

[13] Van Lamsweerde, A., Elaborating Security Requirements by Construction of

Intentional Anti-Models, Proc. ICSE’04: 26th International Conference on Software

Engineering, Edinburgh, ACM-IEEE, May 2004, 148-157.

[14] Van Lamsweerde, A., Darimont, R., Letier, E., Managing Conflicts in Goal-Driven

Requirements Engineering, IEEE Transactions on Software Engineering, Special

Issue on Managing Inconsistency in Software Development, Nov. 1998.

[15] Van Lamsweerde A., The KAOS Meta-model: Ten Years After. Technical report,

Universite Catholique de Louvain, 1993.

[16] Van Lamsweerde A., Feather M. S., Fickas S., Finkelstein A., Requirements and

Specification Exemplars, Automated Software Engineering, 4 (1997) 419–438.

[17] Wikipedia (2012) - Access Control. http://en.wikipedia.org/wiki/Access_control.

Last Accessed October 24, 2012.

