
TARTU UNIVERSITY
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

INSTITUTE OF COMPUTER SCIENCE

Svitlana Vakulenko
Extraction of Process Models from Business Process Descriptions

Master’s Thesis (30 EAP)

Supervisor:

Marlon Dumas, University of Tartu

Author: . “. ” May 2011

Supervisor . “. ” May 2011

Professor . “. ” May 2011

TARTU, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgement
First of all, I want to thank Marlon Dumas, my supervisor, for his support of my “crazy

idea”, which put this thesis into life. He was also the one, consulting me on the application of
the business process modeling approach and general research methods. I acknowledge his
great contribution to the development of the process extraction method proposed in this thesis.

I express special gratitude to Maarika Traat for her support and valuable comments, which
helped in shaping the final version of this thesis.

Thanks to my parents and friends, who constantly reinforced my motivation, for their care
and faith in me.

My Master's studies were supported by the Estonian Ministry of Foreign Affairs via the
Estonian Development Cooperation Projects 2010.

2 of 61

Table of Contents
 1 Introduction .. 5

 2 State-of-the-art ... 7

 3 Problem Analysis ... 9

 3.1 Scope and method of the analysis. ... 9

 3.2 Basic elements. ... 12

 3.2.1 Activities. .. 12

 3.2.2 Artifacts. ... 14

 3.2.3 Actors. ... 15

 3.2.4 Special case: Passive Voice. ... 17

 3.3 Entry and Exit Points. ... 19

 3.4 Control Flows. .. 21

 3.4.1 Sequence. .. 21

 3.4.2 Concurrency .. 24

 3.4.3 Alternative. ... 24

 3.4.4 Repetition. ... 36

 3.5 “Noise” ... 38

 4 Implementation .. 43

 4.1 List of Functions ... 43

 4.2 Procedure .. 44

 4.3 Components .. 45

 5 Evaluation .. 46

 5.1 Evaluation set .. 46

 5.2 Evaluation results ... 46

 6 Conclusion ... 49

References .. 52

Appendix 1. Penn Treebank II Tags ... 54

Appendix 2. Original Business Process Specification ... 56

Appendix 3. Preprocessed Process Description (Input) ... 57

Appendix 4. Process Model in Textual Format (Output 1) .. 58

Appendix 5. Extracts from the Process Diagram (Output 2) ... 60

Appendix 6. Process Diagram by Raven Cloud ... 61

3 of 61

List Of Abbreviations

CA – composite activity;

BP – Business Proces;

BPM – Business Proces Modelling;

BPMN – Business Proces Modelling Notation;

IDE – Interactive Development Environment;

IE – Information Extraction;

NL – Natural Language;

NLP – Natural Language Processing;

POS-tag – Part-Of-Speech tag;

UML – Unified Modelling Language.

4 of 61

Introduction
Modern organizations maintain valuable information about their business processes in their

manuals of policies and procedures and other internal business documentation, but the
understanding of how the processes work from such descriptions is difficult. Graphical process
modeling is often used as a complement to textual descriptions in order to enhance
understandability and to facilitate communication and knowledge sharing. But for companies
which have not done a process diagramming effort, extracting process diagrams from their
documentation is a painstaking effort.

Natural language processing (NLP) technology has advanced a lot in recent years. This has
made it possible to apply NLP methods in order to automate text processing tasks in various
fields. In particular, NLP methods have already been successfully applied for the purpose of
extracting models from Use case specifications[6], [7], [15], [20].

The goal of the research presented in this thesis is to analyze opportunities to semi-automate
process model extraction and to propose a method for transforming textual narratives into
process models. Given a textual description of a process in natural language (English), the
method is expected to generate a structured process model, which can be visually represented
as a diagram.

The crux of the proposed method is a set of patterns designed to identify and to extract
process elements (i.e. activities, actors, artifacts) and relationships between them (specifically
control flow relations). The elements and relationships captured in this way are represented
using a simple meta-model for structured process models. From the resulting process models,
it becomes straightforward to generate diagrams in any suitable notation (e.g. in BPMN or
UML Activity Diagrams).

To illustrate the scope and purpose of the proposed method, we consider a simple example
of a university enrollment process. A textual narrative of this process is given in Figure 1.1,
while the output of the proposed method (i.e. a corresponding process diagram) is presented in
Figure 1.2.

Figure 1.1. Input: textual process description.

5 of 61

Student fills an online form. Student may attach supplementary documents to the form.

Then the student submits the application electronically or sends it physically by post.

When student service receives the application, it is checked for completeness. If some of
the required documents are missing, the student should send the missing or incorrect
documents.

Then the students service sends the certified copies of the degrees to a specialized agency
(ENIC). While ENIC verifies the validity of the degrees,the English language test results
are checked online by an officer at the students service. If both checks are passed, student
application is accepted. Otherwise the application is rejected.

Fig.1.2. Output: process diagram.

The proposed method has been implemented as a proof-of-concept prototype that takes as
input textual process descriptions and produces process diagrams that can be displayed using
the GraphViz tool [11]. The diagram shown in Figure 1.2. was generated using the
implemented prototype. Note that the diagram has been cut into two parts (left and right side
of the figure) for presentation purposes.

The remainder of the thesis is structured as follows. Chapter 2 gives an overview of the state
of the art in the area of automated (process) model extraction from textual documents. Chapter
3 describes the proposed process model extraction method. Chapter 4 presents the prototype
implementation, while Chapter 5 discusses the validation of the prototype on the basis of real
scenarios and discusses the limitations of the method and opportunities for improvement.
Finally, Chapter 6 summarizes the contributions and outlines directions for future work.

6 of 61

State-of-the-art
The only publicly available software that has similar functional to the one envisaged in this

thesis is Raven – a commercial tool by Raven-Flow, Inc. Raven implements an automated
method of transforming a textual process description into a BPMN diagram. It can be accessed
through a free trial via the RavenCloud on-line service [23].

Raven Cloud identifies actors (swimlines), artifacts, activities, entry and exit points,
alternative and repetition control flow. However, Raven algorithm uses an artificial semi-
natural language for its input. It is not explicitly reinforced by the program, but the text is
parsed correctly only if it corresponds to a pattern from a set of predefined patterns, which is,
in fact, extremely limited. Cross-validation of our prototype against Raven Cloud revealed that
Raven Cloud fails to produce any meaningful model from the textual input, which our
prototype is able to process correctly. Example of a process model cross-validated across our
tool and Raven Cloud can be found in Appendix 5, 6.

A recent research, addressing the challenges of an automated process model extraction from
business documents, is presented in [19]. The paper proposes a rapid approach to business
process modeling - Rapid Business Process Development (RBPD), which can be also called
process discovery. RBPD-tool takes as an input heterogeneous business documentation, parses
it and extracts information, which might be related to a business process. The drawback of this
approach is that it outputs disconnected pieces of process, not linked with each other – Figure
2.1. While it can be of help to an analyst to identify changes of the flow and other events, this
approach is unable to provide a holistic view on the process. In contrast, our method assumes
that an input text contains only process description, all information unrelated to the process
has to be filtered out beforehand.

Figure 2.1. BPMN Proto-Process Model Fragments Extracted from Text by R-BPD tool [1].

7 of 61

A method for automated process extraction from plain text was also proposed in [16], [17],
[18]. It was developed in a framework of an on-going project, as a part of a process elicitation
approach through collaborative “story-telling”. The processes are to be extracted from
“stories” - textual process descriptions, created by several users through GroupStoryTelling
tool. The Story Mining method employs a similar to our approach. By now the method was
reported successfully identifying only Atomic Activities(Tasks), but no Composite Activities
(flow of actions in [9]). Chapter 3 of this thesis presents common patterns, including
corresponding "signal words", for identifying all 4 types of Composite Activities(Control
Flows) and, moreover, discusses the possible limitations for automating their extraction. The
prototype tool, that was developed in our research, is already able to identify a subset of
Composite Activities(CA).

Application of NLP techniques for automated model extraction from Use Cases and
Requirements specifications has already an old tradition, dating back to [9]. Several methods
were developed and implemented. Most of them focus on generating UML diagrams (class,
activity, sequence, etc), for example[6], [7], [15], [20]. Some of the methods restrict the input
language to a template-based one, while others are in support of a natural language usage for
requirements descriptions.

While process elicitation from use case specifications employ similar information extraction
methods to the one described in this thesis, the language of the use cases is, in general,
simpler, more standardized and therefore easier to analyze than the one of business
process(BP) descriptions. Typical use cases do not use as many various control flow
structures(alternative, parallelism, repetition), as BP descriptions normally do. Use cases tend
not to have parallelism because they generally describe interaction of one user with a computer
system, and the user performs only one task at a time. In contrast, process models describe
activities performed by multiple actors. Furthermore, when there are different ways of
interacting with a system, these alternatives are generally described in different use cases. In
contrast, if there are several methods of performing an activity, all of them will be captured in
one process model.

8 of 61

Problem Analysis
Scope and method of the analysis.

A process is a system consisting of activities, which can be either atomic activities (also
called tasks) or composite activities consisting of several other activities. Elements of a
system, by definition, must be related to each other, forming an interconnected component –
the system itself. Hence, all activities, related to the process, have to be connected to this
process (meaning, at least to one of the activities in the process). Thus, process is a set of
interconnected activities.

The main characteristic of a process as a system is that it is evolving in time, which reflects
a certain sequence order between its elements. Hence, process is an ordered chain (sequence)
of interconnected activities. The most basic relation between activities in a process is a simple
sequence, meaning that activities are happening one at a time, with one activity following
another. More complex relations between activities also exist (e.g. parallel execution,
alternative execution), which make the process deviate from a pure sequence.

The same characteristics discussed above are found in the “story-telling” approach, which
humans use to convey information – “to tell a story”. In a traditional “story”, by convention,
facts (e.g. about events) are told in a logical sequential order. Narrative, which contains a
“story” is a system with paragraphs sentences and words, as its elements. This system also has
a certain structure: order of the paragraphs in a text, sentences in a paragraph, words in a
sentences - imply the same sequential order on the context, which they contain.

A process description in natural language is a type of a “story”, in a form of a text it gets the
characteristics of a narrative. Here we draw a parallel between a process and its textual
description – narrative. They both have elements ordered in a certain structure(s). Sequence is
the basic and the most common type of order, as it reflects the category of time.

Thus, our method for translating a narrative into a proce ss model is based on the
assumption that the input narrative h as a logical sequential order, which means that all
activities are listed in a sequential order, unless another order is explicitly indicated by certain
“signal words” which correspond to a change in a natural flow of the “story”, which is a
“baseline” corresponding to a sequence.

Despite huge advances in NLP in recent years, processing of a natural language still remains
a challenge, as the system of natural language is much more complex in comparison with any
computer-based notation. The main problem to deal with, when using NLP approach, is the
ambiguity of natural language. In this respect some researches advocate the use of controlled
natural language, which forces users to follow a set of strict guidelines, which help to avoid
ambiguity [5]. Existing methods for automated model extraction from textual descriptions,
such as [23], follow an approach based on controlled natural language. In other words, users
are asked to follow strict conventions, while writing textual descriptions. However this
approach is not suitable for analyzing texts, which already exist and are written in a free-form.
As our research aims at generating models from already existing process descriptions, we have
to develop methods for analyzing natural language text and define the ways to deal with its
ambiguity.

The language typically used for textual business process descriptions is quite complicated
for understanding by human readers. It usually comprises long sentences with complex

9 of 61

http://attempto.ifi.uzh.ch/

structures, abbreviations, special terms, etc. At the same time, we observe that textual process
descriptions are full of “if..else” and other lexical constructions following certain patterns.
They often look more like a program code, which facilitates the task of automatically
extracting process elements and relations between them.

In order to extract a process model from a textual process description, it is often not
necessary to know the meaning (semantics) of every word, but rather to understand the
relations between them. These reltions can be inferred from the syntactic or morphological
structure. Accordingly, our proposal is based on the premise of the existence a business
process sub-language that is commonly used in textual process descriptions. This business
process sub-language does not contain business terms, but rather a set of grammar-based
patterns corresponding to process elements and their relations, including specific “signal
words” indicating a change in the flow of control between activities in the process. Hence, we
adopt a “best-effort” approach driven by a number of patterns corresponding to typical
grammar structures found in business process documentation.

It has to be admitted that the proposed approach aims at identifying only block-structured
process models, plus references (i.e. “go-to” statements) to previous elements in the process
model [8]. Block-structured process models are models, that are composed of atomic tasks and
four types of blocks: sequential blocks, parallel blocks, if-then-else blocks, repetition blocks.
Each block (also called a composite activity) has one or several other blocks or atomic tasks as
children.

Block-structured process models are easier to produce and they are also more
comprehensible than unstructured process models [13]. In the research presented in [19], on
the basis of two libraries of process models extracted from industrial practice, it has been
found that between 54% and 65% of process models were entirely block-structured, while the
remaining ones were block-structured except for, at most, one non-block-structured fragment
per model. Also, various techniques exist for automatic conversion of unstructured process
models into equivalent block-structured ones [3]. Although these automated transformation
techniques do not work in 100% of the cases, they provide evidence to the fact that structured
process models represent a large class of process models. Thus, the decision to aim research at
process extraction from structured process models seems to be a reasonable trade-off towards
reducing complexity of the system.

In order to implement a software-tool for automated process extraction from textual
narratives, it is essential to analyze common patterns for identifying process elements in the
text and formulate general rules according to these patterns. For this purpose a set of
narratives, consisting of industrial process descriptions and academic case-studies was
analyzed [4], [12], [14], [21]1. The main assumption was that the set of case-studies, selected
for the analysis, should contain patterns, which are common across business process
descriptions in general.

Business process specifications are not standardized, however they often contain similar
structures. Language style (vocabulary and lexical structures used) is normally consistent and
repeated through all the document. The structure also depends on the size of the document. In
general, a compact description contains a concentrated text, which does not contain numerous
1 We also made use of two unpublished case studies: “Improving the ‘IT Incident Management’ process at

FictOrg” and “Improving the ‘Compulsory Third Party Insurance Claims’ Process at New Generation Finance
(NGF)”, written by Jan Recker, Queensland University of Technology.

10 of 61

details irrelevant to the process. Typical structure of a middle-sized BP description document
is the following:

• Title - contains name of the process;

• Introduction – presents purpose of the document;

• Process Overview – describes process on a high level of abstraction;

• Process Description – presents the detailed description of the process itself;

• Exceptions and additional details about the process;

• Conclusion.

Hence, the part to be used for process model extraction is Process Description (sometimes
Exceptions, if they are structured). Process Overview may contain process description on a
more abstract level, hence Composite Activities and their relations can be extracted from there.

Text structure itself says a lot about sequence ordering and grouping of the Activities in the
Process described. Activities, in most of the cases, are ordered sequentially in the text of a
business process description (excluding separated sections alike Exceptions). Process
Description can be structured into Sections which can denote composite activities described in
Process Overview, e.g. “Incident resolution and workaround”, “Incident review and closure”,
etc. Moreover, the order and grouping into paragraphs and sentences gives another clue for
identification of composite activities.

The method used for the analysis of the case-studies is based on inductive reasoning and
formalization. Each of the cases was carefully studied and a mental model of the process
described in the text was constructed. After that, the text elements were analyzed and language
structures corresponding to process elements and their relations, and "signal words" (signaling
changes in the workflow) were inventoried and grouped. Out of each group of examples
sharing common features, a general rule (pattern) was induced and formally captured. Thus,
the human knowledge concerning the methods for process model extraction from a natural
language text was translated into a set of generalized rules. Then, these rules can be translated
into programming language for a software tool able to automatically extract process models.

The output process model is abstract and was not meant to follow any specific notation, thus
it can be utilized to build diagrams in different notations. However, the process modeling
notation used for illustration purposes throughout the thesis corresponds to a subset of the
BPMN notation.

For the sake of analysis, the set of process elements for automated extraction was limited to
the 5 basic classes:

◦ Activities;

◦ Artifacts;

◦ Actors;

◦ Entry&Exit Points;

◦ Control Flows.

11 of 61

 Relations between these types of process elements are presented in a class diagram:

Figure 3.1.1. Classes of Process Elements.

 The analysis is structured according to the types of process model elements shown in
Figure 3.1.1. All cases are grouped and supplied with corresponding linguistic patterns and
examples, based on scenarios from [4], [14]2 .

Linguistic patterns are to be read as follows:

• <required element>;

• [optional element];

• synonym, synonym – the same syntax, the same semantics;

• antonym (antonym) - the same syntax, different semantics;

• Activity Actor;

 All the parse trees for the examples were produced with Stanford PCFG parser [10]. The
parse trees use Penn Treebank II tags [2] in order to mark clauses, phrases and parts of speech
(POS-tags). A list of abbreviations used for the POS-tags can be found in Appendix 1.

The following analysis is not meant to be thorough and represent all the possible variations.
Instead,the goal of the analysis is to put into evidence the most common patters for this kind of
documents, based on the case studies that we have analyzed.

Basic elements.
Activities.

Activities are the main “building blocks” of a process. Activity is a verb phrase (VP), which
normally corresponds to the predicate in a sentence. Activities contain dynamic verbs, which
denote an action. Composite Activity (CA) is an Activity consisting of other activities (e.g.
subprocess). Process is also a composite activity, situated on the highest level of abstraction.

2 Including two unpublished case studies: “Improving the ‘IT Incident Management’ process at FictOrg” and
“Improving the ‘Compulsory Third Party Insurance Claims’ Process at New Generation Finance (NGF)”,
written by Jan Recker, Queensland University of Technology.

12 of 61

Task is an atomic activity, which can-not be subdivided into activities.

Pattern1. Task.

<Task>

 Call the help desk. (1P3)

Pattern2. Composite Activity.

<Activity> [CONJ4] <Activity>

Composite Activity consists of several Activities, which can be connected with a
conjunction.

Call the help desk [and] make a request. (2P)

Call and make.

Figure 3.2.1. Simple Tasks (CA).

Call the help desk and make a request.

Figure 3.2.2. Complex Tasks (CA).

Artifacts.
An Artifact is a part of an Activity and plays a role of an object in a sentence. An Artifact

3 P – predicate.

4 Conjunction (e.g. and, or, for, if, in case, after, because, while, etc.)

13 of 61

can denote an object, place, reference to another Actor, etc. We can generally recognize an
Artifact by observing that it is a noun phrase (NP) which is part of VP of a corresponding
Activity. Below we present a collection of patterns for identifying Artifacts. Each pattern is
accompanied by an example.

Pattern 1. Simple Artifact

<Activity Artifact>

Corresponds to simple object, consists of one independent noun or pronoun.
Call the help desk . (1P)

Pattern 2. Complex Artifact.

<Activity Artifact [and, or] Artifact>

Complex Artifact consists of several simple Artifacts. Corresponds to compound object,
consists of several independent nouns or pronouns.

Contact customer via email [or] telephone . (1P)

Pattern 3. Shared Artifact.

<Activity> [and, or] <Activity [Artifact]>

Warning! This case is ambiguous, as it is not explicit, whether the Artifact belongs to
one activity or to several of them. In this case, existence of supplementary "signal
words" (like “both”, “only”, etc) helps to resolve the ambiguity.

[Both] ask [and] [only] answer questions via email .

 Both ask and answer questions via email. Ask and only answer questions via email.

14 of 61

Figure 3.2.3. Two Tasks and one Artifact.

Pattern 4. Independent Artifacts.

<Activity [Artifact]> [and, or] <Activity [Artifact]>

C all the help desk [and] make a request .

Actors.
Actors are the performers of the Activities. They answer a question “Who is performing the

Activity?”, and normally play the role of a subject in a sentence and correspond to noun
phrases (NP).

Pattern 1. Single Actor.

 [Actor] <Activity>

A client calls the help desk. (1S-1P5)

A client calls the help desk and makes a request. (1S-2P)

A client calls the help desk and makes a request.

5 S – subject; P – predicate.

15 of 61

Fig.3.2.4. One Actor and two Tasks.

Pattern 2. Group of Actors.

<Actor> [and, or] <Actor> <Activity>

Several Actors performing one Activity. Actors can do the same Activity together or in
parallel.

[Both]Computer Support Officer [and] Desktop Support Officer solve the service failure.
(2S-1P)

Computer Support Officer and Desktop Support Officer solve the service failure.

Fig.3.2.5.Two Actors and a single Task.

Pattern 3. Independent Actors.

<Actor> <Activity> [and, or] <Actor> <Activity>

Several Actors performing different Activities. Relations between Activities are
regulated by a coordinating conjunction and other "signal words"(see Control Flows).

16 of 61

Warning! It is often crucial to have “,” before “and” in this construction to be
correctly parsed by the parser.

Receipt department returns the good to the vendor [and] system sends notification to the
purchase department. (2S-2P)

Receipt department returns product, and system sends notification to purchase department.

Figure 3.2.6. Two Actors and two Tasks.

Pattern 4. “Inanimate Actor”.
Warning! Sometimes inanimate object plays a role of a subject (in anti-causative
structure with intransitive verbs: e.g. result, occur, etc), in this case it has to be
identified as an Artifact, not an Actor of the Activity.

An accident occurs .

Special case: Passive Voice.
Passive voice is a grammatical structure in which Artifact and Actor exchange their places:

Artifact plays a role of a subject in the sentence and Actor – an object. Passive voice
structure is very common for process description texts. Often when Actor is absent, it aims to
focus attention on the Artifact instead.

<Artifact> <Activity [by Actor]>

Passive voice is usually formed with “be,get+past participle” construction.
The good is returned to the vendor [by receipt department] .

The good is returned to the vendor by receipt department.

17 of 61

Figure 3.2.7. Passive voice construction.

Receipt department returns the good to the vendor.

Figure 3.2.8. Corresponding active voice construction.

Warning! The word “good” in the parse tree above was incorrectly parsed as an Adjective,
instead of a Noun as in the previous tree. The adjective “receipt” wasn't correctly parsed in the
first tree, in contrast (looks like PCFG algorithm works more precise while parsing subjects,
than objects). It is just a single illustration of possible parsing errors.

Entry and Exit Points.
Entry and Exit points mark the beginning and the end of a Composite Activity. The common

"signal words" for Entry(Exit) point are respectively: start, begin, trigger (end, finish,
complete, terminate).

18 of 61

Pattern 1. Simple entry/exit.

 <Composite Activity> start, begin(end, finish, complete, terminate)

[with(when), <Activity>]

Entry/Exit point description contain reference to the Composite Activity, which they
belong to. Additionally the first Activity (or reference to it if it was previously
described) can be specified. Before this Activity entry to the CA is made.

When relevant forms are sent, the Notification process ends without any further handling
specified.

Request is marked as complete and the process ends .

The process starts.

Figure 3.3.2. Entry point to CA.

The incident management process starts with the detection of a service failure.

This task terminates with the actual delivery of the freight to the customer.

This task terminates with delivery of freight.

19 of 61

Figure 3.3.3. Exit point from CA through an Activity.

Pattern 2. “Signal Activity”.

 <Activity> start, begin, trigger (end, finish, complete, terminate) <new(current) CA>

The word “trigger”(“change to”) indicates both Exit point from previous Composite
Activity and entry point to the new Composite Activity.

The reception of relevant claim documentation triggers The Claims Creation process .

The detection of a service failure ends the Claims Management process .

Detection of service failure ends Claims Management process.

Figure 3.3.4. Exit point from CA caused by an Activity.

Pattern 3. Actor initiating Entry/Exit.

20 of 61

<Actor> start, begin (end, finish, complete, terminate) <Activity>

The Service Desk starts the Incident r esolution process .

Service Desk starts Incident resolution process.

Figure 3.3.5. Entry point caused by an Actor.

Control Flows.
Control flows regulate relationships between activities and changes of a workflow in a

Process. There are 4 types of relationship between activities (control flows):

◦ Sequence

◦ Concurrency

◦ Choice

◦ Repetition

They are similar to the sentence semantic patterns proposed in [9].

Sequence.
Sequence control flow indicates that Activities are happening “one after another”, in

sequential order.

Pattern 1. Direct order.

<previous Activity> [then, after, afterward(s), later, next, and(!)] <new Activity>

This signal words additionally stress the sequential order. They often can be omitted or
replaced with comma (“,”).
Warning! “And” can also indicate Concurrent flows. Other "signal words" for
Concurrent flows(see Concurrency) accompanying “and” can help to avoid ambiguity
in this case.

A client calls the help desk [, and] makes a request. (1S-2P)

21 of 61

Receipt department returns the good to the vendor. After, system sends notification to the
purchase department. (2S-2P)

Pattern 2. 1. Custom order (after).

after, upon, once, when <previous Activity>, <new Activity>

Clauses can be rotated, “after” always indicates previous Activity.
After an accident occurs, the Administration Team receives advice of the accident via
telephone.

When a PO Manager creates a PO, the system initiate s the task automatically .

T he file is referred to Legal Support , once judgement is received.

When Manager creates order System initiates task.

Figure 3.4.1. Time clause indicating Sequence flow.

Pattern 2. 2. Custom order (before).

before <new Activity>, <previous Activity>

Clauses can be rotated, “before” always indicates new Activity.
Before Supply Officer creates a Shipment Information document, the appointment is made.

The appointment is made before Supply Officer create s a Shipment Information document .

Pattern 3. Reference to Activity.
Warning! Activity can be a reference to the other Activity, which was already
described before, and do not present a new Activity (e.g. lead to, result in, etc.)

22 of 61

PO is confirmed and the confirmation letter is sent to the customer. After confirmation of a
PO, a route guide needs to be prepared and the trailer usage needs to be estimated.

Officer notifies Problem Manager to confirm the severity. This results in a confirmation of
Severity 1.

After confirmation of PO, prepare route guide.

Figure 3.4.2. Reference to previous Activity by a Noun Phrase.

This results in confirmation of Severity 1.

Figure 3.4.3. Reference to previous Activity by a demonstrative.

Pattern 4. Explicit numbering.
Often explicit numbering of Activities(first, second, third; A, B, C) and text structure (e.g.
numbered or bulleted list) are used to stress the sequential order between activities.

Concurrency
Concurrent control flow indicates that 2 or more activities happen in parallel, in the same

time. Concurrent flow is modeled by parallel AND-split.

23 of 61

Pattern 1. While.

while <Activity>, <Activity>

While Officer log entries, Client Liaison address customer inquiries.

While Officer log entries, Client Liaison address customer inquiries.

Figure 3.4.4. Time clause indicating Concurrent flows.

Pattern 2. AND.

<parallel Activity> [and] [independently, simultaneously, at the same time, in parallel]
<parallel Activity>

Warning! “And” can also indicate Sequence flow. Additional "signal words" help to
explicitly indicate parallelism between activities.

Officer checks the invoice [and] [simultaneously] fills the form. (1S-2P)

ENIC verifies the degrees [and] [in parallel] an officer checks student's test on - line . (2S-2P)

Alternative.
Alternative is a type of control flow, which divides the workflow into several alternative

workflows.

Pattern 1. Ambiguous OR.

<alternative Activity|Actor|Artifact> or <alternative Activity|Actor|Artifact>

Coordinating conjunction (CC) “or” presents alternative elements (activities, actors
or artifacts).
Warning! Coordinating conjunction “or” doesn't explicitly indicate which of 2: OR-
split or XOR-split is meant(ambiguity). It is very difficult to resolve this ambiguity not
knowing the meaning(semantics) of the words. Additional "signal words" can help to
automatically identify type of the split.

24 of 61

Warning! CC “or” can also identify another name of the same element, not a new
element.

System automatically raises a new incident record on the SOLVE system, or notifies the
Resolver Group of the service failure. 1S-2P

CSO or a Workflow Controller handle assigned incidents. 2S-1P

Contact customer via email or telephone .

System raises incident record or notifies Resolver Group.

Figure 3.4.5. Alternative Activities.

Figure 3.4.6. Alternative Activities in BPMN6.

CSO or Workflow Controller handle incidents.

6 All BPMN diagrams included in Chapters 3, 4 were produced with ORYX-editor [22].

25 of 61

Figure 3.4.7.Alternative Actors.

Figure 3.4.8. Alternative Actors in BPMN.

Contact customer via email or telephone.

Figure 3.4.9. Alternative Artifacts

26 of 61

Figure 3.4.10. Alternative Artifacts in BPMN.

Pattern 2. Exclusive OR (XOR).

either, only <alternative1> or <alternative2, (no(t) alternative1)>

Exclusive XOR-split can be explicitly identified with the help of “signal words”, which
mark the first exclusive alternative, “or” identifies the following exclusive alternative.
Alternatives can be explicitly exclusive using negation (“confirm or do not confirm”)
or implicitly exclusive using antonyms (“confirm or reject”). In the later case, to
identify such alternatives a list of the corresponding antonyms must be handled.

Officer either confirms PO or rejects.

Officer either confirms PO or rejects.

Figure 3.4.11. “Either” explicitly indicates XOR-split.

27 of 61

Pattern 3. Inclusive OR.

<alternative1> and/or <alternative2>

Inclusive OR-split is a merge of XOR- and AND- splits, which indicates possibility of
both Alternative and Concurrent flows and can be explicitly identified with the help of
the compound conjunction “and/or” (“or/and”).

A client gives a feedback on the previous order and/or makes a new order.

Pattern 4. IF.

 if, whether, in case [of], till, until (unless) <Condition>, <alternative Activity>

Conditional clauses is a common method to introduce alternative Activity(s), which
indicates a split into 2 or more separate flows immediately after it.
There are cases with only one alternative Activity, which is also called optional
Activity. In further descriptions we will use the term “alternative” for both optional
and alternative Activities, meaning that optional Activity has an alternative Activity,
which is empty.
Position of If-clause can rotate, but most often it is in the beginning of a sentence,
preceding the description of a corresponding Activity(s).

In case the system detects a service failure, it automatically raises a new incident record on the
SOLVE system.

If PO is confirmed, a route guide needs to be prepared and the trailer usage needs to be
estimated.

Unless PO is confirmed, [do not] prepare guide.

If PO is confirmed prepare route guide and evaluate trailer usage.

Figure 3.4.12. Conditional clause indicating Alternative flows.

28 of 61

Figure 3.4.13. Fragment of Alternative flow created by If-clause.

Pattern 5. IF as a reference.

if, whether, in case <previous Activity>, in [latter7] case [of], <new Activity>

Warning! Conditional clause(e.g. If-clause) can contain a reference to a previous
Activity, described before, then it identifies Sequence not Alternative (see Sequence).

PO is confirmed or rejected. If PO is confirmed, a route guide needs to be prepared and the
trailer usage needs to be estimated.

In case of a temporary work-around, a SOLVE Service Request for a long term solution is
raised based on the SOLVE Problem Record.

In the latter case, the Service Request Process is triggered which is not in scope of Incident
Management. In the former case, the Resolve Group checks if the incident is correctly
assigned to an appropriate group.

In case of work-around, raise request.

Figure 3.4.14. “In case of” construction.

7 this/that, first/second/..,former/later.

29 of 61

PO is confirmed or rejected. If PO is confirmed, prepare route guide and estimate trailer usage.

Figure 3.4.15. Reference to the previous alternative Activity by If-clause.

See the difference with the Figure 3.4.13.

Pattern 6. “If..if”-join.

if, whether, in case [of], till, until (unless) <Activity1>

[and, or]

[if, whether, in case [of], till, until (unless)] <Activity2>, [then] <Activity3>

 Coordinating conjunction between several conditional clauses indicates one of the joins:

• “and” - AND-join;

• “or” - OR-join or XOR-join(ambiguity – see “Or” section above);

If an incident has been handed-off to a Resolver Group and if an incident has been handled as
outlined above, a SOLVE Problem Record is created.

If the resolution was rejected or updates were made, the resolution is reconsidered.

If incident was handed-off, and if incident was handled, create record.

30 of 61

Figure 3.4.16. AND-join indicated by two If-clauses.

Figure 3.4.17. AND-join indicated by two If-clauses in BPMN.

If the resolution was rejected or updates were made, the resolution is reconsidered.

31 of 61

Figure 3.4.18. OR-join by one complex If-clause.

Pattern 7. “In..case”-join.

[in] either, both, all case[s] <Activity>

Construction “in..case(s)” indicates OR-join.
In all other cases, an incident record is raised in the SOLVE – Problem system.

If resolution doesn't satisfy, reject resolution or make updates. In both cases resolution is
reconsidered.

In all other cases, raise incident record.

Figure 3.4.19. “In..case(s)” construction.

If resolution doesn't satisfy, reject resolution or make updates.

32 of 61

If resolution was rejected or updates were made(in both cases), resolution is reconsidered.

Figure 3.4.20. OR-split and OR-join.

Pattern 8. “False IF”.
Warning! When conditional clause (e.g. If-clause) is a part of an Activity (object
clause), then it doesn't indicate Alternative activity.

The Resolve Group checks [if the incident is correctly assigned to an appropriate group] .

Decide whether a SOLVE Problem Record is created .

After communicating the resolution, evaluate [if the resolution was permanent or if additional
action is required].
If the service was not restored determine [if the incident requires re-assignment] .

If the service was not restored determine if the incident requires re-assignment.

Figure 3.4.21. If-clause as an object clause.

Pattern 9. Else.

33 of 61

else, otherwise, if not, <alternative Activity>

If it is urgent, the employee would “hand deliver” the form, otherwise it would go via internal
mail.

Otherwise send via mail.

Figure 3.4.22. Alternative activity indicated by adverb.

Warning! Constructions “If.., otherwise..”, “else”, “if not” often are not correctly parsed by
the parser.

Pattern 10. Option (alternative).

<Actor> have (provide, etc) option (alternative) <alternative Activity>

Client have an option to notify the incident management team of the failure.

FictOrg provides an option to access SOLVE system.

FictOrg have an option to notify SOLVE system.

34 of 61

Figure 3.4.23. Explicit optionality.

Pattern 9. Can, may.

<Actor> can, may <Task>

Client may detect a service failure.

Client may detect a service failure.

Figure 3.4.24. “Modal” optionality.

Pattern 9. Appropriate.

35 of 61

if [it is] appropriate, applicable, optionally, not necessarily, <alternative Action>

If applicable, an RVA needs to be recorded in the Meridian Mai IVR system.

Optionally Service Desk team raise a new incident record.

Optionally Service team raise new incident record.

Figure 3.4.25. Explicit optionality by adverb.

Repetition.
Repetition is a special case of Alternative, when one of the alternatives is the same Activity,

that was before the Condition. Hence activity makes a loop on itself through a Condition. If
condition is empty, the loop becomes infinite. In order to avoid an infinite loop in the process ,
number of repetition s has to be indicated explicitly or via a condition for repetition to stop,
otherwise we assume that Activity has to be repeated only once .

Warning! Repetition is often assigned through references to previous Activities (the same
function as of “go-to” statements in programming languages).

Pattern 1. Ambiguous Repetition.
If Repetition is not accompanied with “signal-words”, which indicate a Condition for
Repetition to stop (Exit point from Composite Activity with Repetition control flow), it
is ambiguous when Repetition has to stop. In order to avoid an infinite loop in the
process, it is safe to assume, that in this case repetition has to be made only once.

Pattern 1.1. Repeat, continue.

repeat, continue <Activity>

Repeat the assignment.

Pattern 1.2. Again.

36 of 61

<Activity> again

The incident is assigned and diagnosed again.
Go through the process again.

Pattern 1.3. Re-work.

re[-]<verb>

Prefix “re-” is a part of a word, which indicates a repeated Activity. In order to avoid
an infinite loop in the process, Activity is repeated only once, unless there are
additional “signal-words” specifying explicit number of repetition or a condition for
repetition to stop.

Re-assign the incident.

Pattern 2. Controlled repetition.
Ambiguous repetition is avoided when it is supported with addition “signal words”.

Pattern 2.1. Condition-controlled repetition.

if, whether, in case [of], till, until (unless) <Condition> <ambiguous Repetition>

The “signal words” for a Condition, which controls Repetition, are the same as for
Alternative Flow, that were already described in the previous section.

If PO was not approved , repeat modifications.

If request is not correct, it goes through the Process again.

If the incident is not correctly assigned, re-assign the incident.

If incident is not correctly assigned, re-assign the incident.

Figure 3.4.26. Repetition of Activity.

If request is not correct, it goes through the Process again.

37 of 61

Figure 3.4.27. Repetition of CA.

Pattern 2.2. Count-controlled repetition.

<Activity> once, twice, <CD8> times

Number of repetition is explicitly assigned via multiplicative numerals(once, twice,
thrice) or cardinal numbers in conjunction with a “signal word” (e.g. three times).
Hence, the Condition in this case will play a role of a counter.

Print the application form twice.

Pattern 2.3. Collection-controlled repetition.

[for] each, all [of] <Artifact> <Activity>

Repeated action is often applied in order to process a certain number of Artifacts of the
same type (a collection). Condition for an exit from Repetition in this case can be
phrased as the following: “Until all <Artifacts> are <Activity>ed”.

Each of the documents has to be reviewed. → Activity: “Review document”;

→Condition: “Until all documents are reviewed”.

“Noise”
BP descriptions are often too lengthy and contain a lot of supplementary details, which can

be irrelevant or not crucial for the understanding of a process, but produce “noise” by being
false identified as process elements or making a model too lengthy and therefore less readable.

The problem is to filter out the parts of a text, which are unrelated and irrelevant for the
process. However these filtered parts can be added to the corresponding process elements as
supplementary comments (providing additional details), they should not interfere with the
main body of the process model due to the reasons listed above.

Pattern 1. “Noisy” sentences and clauses.
Pattern 1.1. Stative verbs.

8 Cardinal number (Penn Treebank II tag, see Appendix 1).

38 of 61

<Actor> be, exist(have, posses, belong; contain, consist of; seem; need etc)

A predicate can contain a stative(state) verb, which describes a state, not an action -
Activity, but a static fact.

The default PO Manager is Carmine Marino.

A PO contains information about the client’s company.

Pattern 1.2. “Dummy subject – wise object”.
Warning! Activity can be in a subordinate clause of a main clause identified as
“noise”.

It is possible that only one of these or even none of these appointments is made.

It is possible that system detects failure.

Figure 3.5.1. Activity in a subordinate clause of a “noisy” main clause.

Pattern 1.3. Subordinate clauses.
Other types of subordinate clauses, which do not contain an Activity: reason (because,
since, as, given), place (where, wherever, anywhere, everywhere, etc.) clauses, clauses
of manner (as, like, the way).

As they are in control of the SOLVE system they raise a new incident record.

As they are in control of System they raise new record.

39 of 61

Figure 3.5.2. “Noisy” reason clause.

Pattern 2. “Noisy” words and phrases.
Pattern 2.1. Adverbs&Adjectives.

Adverb and adjective phrases (ADVP, ADJP - tags).
 This results in a confirmation of Severity 1 respectively.

 Moreover, the PO is confirmed within 3 days.

 In addition, the customer notification is issued.

Also, same to final solutions, close the SOLVE record, independent from the type of
record.

Also, same to final solutions, close the SOLVE record, independent from the type of record.

40 of 61

Figure 3.5.3. Adverb and adjective phrases.

Pattern 2.2. Auxiliary verbs.

[Actor] be (do, have, need, must, can, will, shall, etc.) <Activity>

Auxiliary verbs are helping verbs, which do not indicate a separate activity but add
some extra meaning to the next verb, which corresponds to Activity. Auxiliary verbs
support formation of a passive voice structure, continuous and perfect tenses, express
modality (probability, ability, permission or obligation).

Whiteboard needs to be completed . → “Cleared” Activity: Complete whiteboard.

If it is urgent, the employee would “hand deliver” the form , otherwise it would go via internal
mail.

41 of 61

Whiteboard needs to be completed.

Figure 3.5.4. Auxiliary verbs.

Pattern 2.3.Articles.
Definite and indefinite articles (a, an, the - DT tag) do not contain important
information for the process model and can be eliminated.

Implementation
In order to verify the approach to semi-automated extraction of process elements and

42 of 61

relations between them from plain-text business process descriptions, a software prototype
was implemented and validated. It is based on a subset of the rules, which were identified
during analysis phase and previously described in Chapter 3.

Basic assumptions:

1. One input file contains only one process (the program does not currently deal with
identifying several separate processes in an input text);

2. Sentences in the narrative are ordered sequentially unless the other order is explicitly
indicated by certain "signal words".

List of Functions
Identify and extract Process elements:

 1 Activities (Composite Activities and Tasks);

 2 Actors;

 3 Artifacts;

 4 Entry&Exit Points("signal words": start/begin, finish/end/terminate/complete +
with);

 5 Control Flows:

 5.1 Sequence (default);
 5.2 Parallel ("signal words": while);

 5.3 Alternative ("signal words": or, if, can/may, else/otherwise, until/till);
 5.4 Repetition ("signal words": repeat/continue, again/twice/ CD times).

 Passive Voice support: identify and transform passive voice into active.

 Stop words, used in order to clean the process model from “noise”:

• Articles: a, an, the;

• Auxiliary verbs: will, would, should, must.

• Parentheses with their contest

 (we assume, that parentheses contain irrelevant for the process model details);

• “Signal words” for Sequence: then, when, after, upon, once

(they are not needed, as Sequence order is identified by default);

Procedure
The general procedure for extracting process models is illustrated in Figure 4.2.1. Each of

the steps is described in more details below.

43 of 61

Figure 4.2.1. Flowchart.

1. Preprocess. Currently preprocessing includes only bringing all letters to the lower case.
While this function can be extended to automated filtering of “noisy” sentences and structures.

Input: text file.

Output: text file.

2. Parse (POS-tag). Parser is applied to parse the text and tag words with POS-tags.

Input: text file.

Output: parse tree with POS-tags.

3. Extract process. The main part of the algorithm where different filtering and matching
rules applied in order to extract the process elements and relations between them

Input: parse tree with POS-tags.

Output: process model in java-class structure (the class structure is inherited from the
one, described in Chapter 3, Figure 3.1.1.)

4. Transform. Transformation allows representation of a process model in different formats.
Currently two formats are supported: textual mark-up and “.dot” format.

Input: process model in java-class structure.

Output: 1) free-format textual representation of a model;

 2) process model in “.dot” format.

5. Graphviz. Model in .dot format can be processed with Graphviz to get a process diagram in
a form of a graph.

Input: process model in .dot format.

Output: process diagram in a graphical format (e.g. “.png”, or “.gif”).

44 of 61

Components
The procedure was implemented in Java and is widely based on Stanford Parser together

with Standford Tregex and Tsurgeon tree-manipulation tools.

Parser
Extraction rules for identifying process elements in a text are based on POS-tags, assigned

to each of the words in a sentence. This assigning is done by a parser. The rules presented in
Chapter 3 of this thesis were identified and validated using the POS-tags produced by
Stanford Parser PCFG algorithm.

Stanford Parser is a state-of-the-art parser, written in Java by Stanford NLP group, open-
source licensed under GPL - free to use for research purposes, free software projects, etc. Big
advantage of using Stanford Parser is that it is well documented, supported and continuously
updated (last update on May 2011 - Version 1.6.6: 2011-04-20). Staford Parser package
contains 2 parsing algorithms: unlexicalized PCFG and lexicalized Factored parsers. Factored
parsing algorithm runs 3 parsers including PCFG parser and includes lexicalization, hence it is
considerably slower than PCFG. While the average precision of PCFG and Factored parsers is
reported to be similar[25], that is why the decision was made in favor of PCFG.

The analysis, which was described in Chapter 3, revealed that not all of the sentences are
parsed correctly. Some of the parsing errors directly cause errors in the subsequent process
extraction phase. Hence, the performance of the whole process extraction procedure is limited
by a performance of the corresponding parsing algorithm. The official precision of PCFG
parser is estimated at 86.36% [10].

Extraction rules
Rules for extracting patterns from narratives are based on the analysis documented in

Chapter 3. Not all of the rules covered in the analysis, presented in Chapter 3, were
implemented in the prototype.

The rules were implemented using Tregex and Tsurgeon tools. This syntax is based on tgrep
syntax and is similar to regular expressions for extraction information from strings[24]. Tregex
and Tsurgeon are tree-manipulation tools, also Java open-source from Stanford NLP Group.
Tregex is used for identifying patterns in trees. Tsurgeon is based on Tregex patterns and
performs operations on trees (e.g. delete, insert, move, adjoin).

Lemmatizer
Name of the activities, conventionally, have to be in Present Indefinite tense (base form or

lemma of the verb). However verbs in natural language texts most of the time have other
tenses, which produce “noise” in a process models, unless they are transformed into their base
forms. During the process extraction phase lemmatisation method from Stanford CoreNLP
Toolkit [25] is called in order to get the base form for a verb, which is used to name the
corresponding activity.

Evaluation
Evaluation set

The program was evaluated on an industrial specification of an Internet billing process, the

45 of 61

original of which can be found in Appendix 2. The process description was manually extracted
from the corresponding table.

In order to make the text suitable for automated process model extraction, minimal
preprocessing was required:

1. Omitted “.” were inserted in the end of the sentences - because “.” indicates end of
a sentence for a parser ;

2. “.” in “e.g.” were removed – the same as for point 1;

3. “:” were transformed in “.” - otherwise the marking of a type “Day 1:” is
recognized as a part of a sentence - subject.

The preprocessed process description (Appendix 3) was used as an input for the prototype
tool described in Chapter 4.

Evaluation results
The process model was automatically generated by the prototype in two output formats:

mark-up text and as a graph diagram. As the diagram generation procedure is not mature
enough to correctly represent complex compound structures, we recommend to refer to the
process model, generated in textual format, to get the full and adequate representation of the
extracted process elements. The full process model in the textual format can be found in
Appendix 4, an extract from the generated process diagram is placed in Appendix 5.

The process diagram produced by the prototype was cross-validated against the one
produced by Raven Cloud [23], which was previously described in Chapter 2. The produced
models are too far from each other to be compared with numeric measures. The model
produced by Raven is composed of disconnected process elements and most of the activities
were not processed correctly.

In order to measure precision of the extracted model the following method was used. Each
of the extracted process elements was assigned a score:

• 1 – element is identified correctly;

• 0,5 – element is identified correctly but has some minor errors;

• 0 – element was not identified correctly.

Errors produced by the lemmatizer (wrong stemming of the verbs) were ignored as not
crucial ones. Also, since the proposed process extraction method is not able to identify “timer
events” (which would be required in order to fully capture this process), all errors related to
lack of timer events in the model were ignored.

The process description contains several phrases, which occur in the text at least twice. In
order to exclude repeated errors from the analysis, two different validation sets were separated.
One of them contains elements extracted from all the sentences present in the text, while the
other one contains only unique elements, ignoring duplicated clauses.

Precision and recall of the generated process model was evaluated separately for activities
and control flows. Activities were evaluated together with their supporting elements – actors
and artifacts.

46 of 61

All the errors discovered in the output process model are summarized and presented in Table
5.2.1. Due to the fact that some of these errors were caused by the parsing algorithm, they
were analyzed separately from the errors produced by the process extraction method itself
(the numbers in brackets correspond to the parsing errors). All parsing errors were analyzed
and manually resolved by replacing the causes of the errors with their synonyms, which are
parsed correctly (Cause and Quick Fix columns of the Table 5.2.1.). Therefore, the total
number of errors and points for precision were calculated separately for the output, which
includes parsing errors and the one produced after they were resolved. Precision and recall for
the process models, which were produced before and after correction of the parsing errors, are
presented in Table 5.2.2.

Table 5.2.1. Errors in the extracted Activities.

Table 5.2.2. Precision and recall for extracted Activities.

According to the tables presented above the process extraction method can be seriously
harmed by the low precision of the underlying parsing algorithm. Hence, the ways to reduce
the level of parsing errors should be more carefully studied, including application of another
parsing algorithm or combining several of them to ensure adequate performance.

After elimination of all parsing errors, the control flow structure produced by the model
was verified. The errors produced during the automated extraction control flows, are
summarized in Table 5.2.3., the corresponding precision and recall are presented in Table
5.2.4.

47 of 61

№ Error #Unique #Total Points Cause Parsing Error Quick Fix

1 Unsplit Activities (2) (5)
“charged”

+
“charge you”

add coma

2 Unresolved Passive Voice
(1) (2) “re-attempted” + “reattempted”

1 1 -0.5 “have to” - -

3 Inanimate Actor 1 1 -0.5 “commence” - -
Total #Errors: 2(5) 2(9)
Total #Points: -1(-2.5) -1(-4.5)

(-0.5) missing comma
between clauses

(-0.5)

#Activities: #Unique #Total
In the text 13 26
Identified 13(10) 26(15)
Identified Correctly 10.5(7.5) 21.5(10.5)
Precision 0.81(0.75) 0.83(0.7)
Recall 1(0.77) 1(0.58)

Table 5.2.3. Errors in the extracted Control Flows.

Table 5.2.4. Precision and recall for extracted Control Flows.

All of the errors in extraction of the process elements, which were discovered during the
validation of the implemented prototype, were covered by the analysis presented in Chapter 3.
For example, the program is unable to identify alternative flows indicated by antonyms
(customers with cash accounts/customer with DDR accounts; for Credit Card/for Direct
Debit), unless it has a access to the ontology, where these antonyms are included. Also, the
implemented prototype is not able to resolve references to previous activities. However, a
repetition assigned through statements like “try again” is ambiguous, as it does not explicitly
indicate which activity has to be repeated. In can refer to the previous activity, or to activity,
which is previous to the current composite activity.

The scope of the flow is the most difficult element for automated identification. The
prototype correctly identifies the start of alternative activities, signaled with “if” clauses. But,
as “otherwise” is not explicitly indicated, the alternative, by default, becomes an option. The
program is not able to identify the fact that if payment was already made, it will not be
outstanding any more. In this particular example the problem can be resolved, by assuming
that conditions with the same values are the same conditions, however again it is not always
the case. Further in-depth research and analysis has to be performed in order to formulate and
validate additional baselines for the method to be able to deal with ambiguity of a natural
language.

All in all, the extracted process model is adequate enough to be used as a ready-made draft
of the process model. A human analyst is able to correct the errors caused by the lack of
semantic knowledge, e.g. resolve antonyms, inanimate actors and missing references.

Conclusion

48 of 61

№ Error Control Flow #Unique #Total Points Cause

1 Unidentified Alternative 2 2 -

antonyms:

Credit Card/Direct Debit
2 Repetition 1 2
3 Sequence 1 2

-1 “DDR transactions that failed on Day 9”
4 Repetition 1 3 “try again”

Total #Errors: 5 9
Total #Points: -2 -5

Customers with cash
account/DDR account

“reattempted”
Unresolved
reference

#Control Flows: #Unique #Total
In the text 10 25
Identified 7 21
Identified Correctly 5 16
Precision 0.71 0.76
Recall 0.7 0.84

This thesis proposed a method for semi-automated process model extraction from textual
descriptions written in natural language (English). The method was designed according to the
specific patterns and vocabulary typical for documents containing business process
specifications. The extracted model consists of process elements (activities, actors, etc.) and
relations between them. The model can be graphically represented as a diagram in different
notations (e.g. BPMN, UML, Workflow nets, etc.)

A software prototype was implemented in order to validate the proposed method. The
validation demonstrates a high precision and recall for activity extraction. However, lower
performance was achieved when identifying “control flow relations” between activities. A
step-by-step validation performed on a real case-study reveals the complexity of the problem,
and highlights the strengths and limitations of the proposed method. All of the errors observed
during the validation were predicted during the analysis phase.

As discussed in Chapter 5, our approach has to be extended in order to cover patterns for
identifying not only the beginning of a control flow but also its scope. This problem may
require additional in-depth analysis and development of methods for inferring composite
activities from the text structure.

Another practical limitation of the proposed process model extraction method is its
inability to detect and resolve anaphoras (e.g. pronouns). This limitation is significant due to
the fact that anaphoras are very common in textual process descriptions. Addressing this
limitation is therefore an obvious venue for future work.

Yet another practical limitation of the proposed method is its limited ability to separate the
process-related information in a textual description, from contextual information. Typically a
business document describing a business process will contain not only information about how
the process is executed, but also contextual information related to the organizational context in
which the process is executed. Also, business documents typically describe business rules that
actors need to take into consideration when performing individual activities in the process.
These business rules are usually not represented in the corresponding process diagram. In other
words, a process diagram gives a filtered and abstracted view of a business document, but the
proposed method has limited ability to perform this filtering, beyond filtering simple forms of
“noise”.

Many other limitations exist, some of which have been put into evidence during the
evaluation. To a large extent, the contribution of this thesis has been to provide an initial
approach to the problem of process model extraction, and to reveal the numerous inherent
difficulties in dealing with process descriptions written in a natural language.

49 of 61

Resümee

Teema: Tekstipõhistest narratiividest protsessimudelite tuletamine

Lühikirjeldus: Minu töö eesmärgiks on luua metoodika, mille abil on võimalik
ingliskeelsest tekstipõhisest protsessikirjeldusest tuletada äriprotsessi mudel. Sellel on
praktiline tähtsus, kuna ärianalüütikud kavandavad protsessimudeleid tihti tekstilisest
dokumentatsioonist. Kavandatava metoodika eesmärgiks on võimalikult suures mahus
automatiseerida tekstist diagrammideks muutmise etappi. Loomulikud keeled on teatavasti
väga keerukad ja mitmeti mõistetavad, seega selle projekti jaoks me läheneme probleemile
kasutades "parima ürituse" meetodit, mis tähendab, et see meetod ei pruugi alati toimida.
Kavandatav lähenemisviis suudab märgata teatud lause struktuure ja eraldada neist osalejad,
tegevused ja objektid/artifaktid. Metoodika väljundiks on plokk-struktuuriga protsessimudel.

Metoodika rakendamiseks luuakse Java-põhine rakendus, mis baseerub vabavaralistele
loomuliku keele töötlemise (NLP) teekidele. Täpsemalt, kõneosa (Part-of-Speech (POS))
sildistamine teostatakse kasutades Stanfordi parserit ja vastavalt POS siltidele, vastavate
protsessi üksused määratakse kindlaks kasutades Tregex'i ja Tsurgeon'i. Praegune rakendus on
juba võimeline tavapärastest lausetest tuvastama osalejaid, tegevusi/ülesandeid ja artifakte.
Lisaks sellele on rakendus võimeline õigesti tõlgendama umbisikulise kõne konstruktsioone,
vältima artikleid, sulge ning muid keerukaid keelestruktuure. On kavandatud, et rakendatakse
ka Porteri tüve-tehnikat, et muuta tuvastus morfoloogilistele variatsioonidele
vastupidavamaks. Rakenduse väljundiks on lihtne tekstiformaat esindamaks plokk-
struktureeritud protsessimudeleid.

Oodatavad tulemused ja saavutused:

* Protsessimudeli kirjelduse analüüs, sealhulgas nimekiri lause struktuuride, ajaliste ja
hargnemiste märkidest, mida tüüpiliselt tekstipõhistes narratiivides kasutatakse
(näidates ära jadamisi, paralleelsed, alternatiivsed ja korduvtegevusvood);

* Java-põhine rakendus, mis on võimeline tuletama protsessimudeleid tekstilistest
kirjeldustest "parima ürituse" meetodil

50 of 61

Abstract

Topic: Extraction of Process Models from Textual Narratives

Short description: The purpose of my work is to design a method to transform a textual
process description (in English) into a business process model. This is of practical relevance,
since process models are often designed by business analysts starting from textual
documentation. The method to be designed aims at automating the text-to-diagram conversion
phase as much as possible.

Natural languages are known to be highly complex and ambiguous. Accordingly, for this
project we will approach the problem using a best-effort approach, meaning that the method is
not intended to work always. Instead, the proposed approach will be able to detect certain
sentence structures and extract actors, actions and objects/artifacts from them. Coordinating
and subordinating conjunctions, as well as punctuation and other markers, will be used to
identify sequencing, parallelism, conditional branching and repetition. The output of the
method will be a block-structured process model.

The method is being implemented in Java based on open-source Natural-Language
Processing (NLP) libraries. Specifically, Part-of-Speech (POS) tagging is performed using the
Stanford parser and according to the POS tags, corresponding process entities are identified
using Tregex and Tsurgeon. The current implementation is already able to identify actors,
actions/tasks and artifacts from sentences that abide to certain common structures.
Additionally the implementation is able to correctly interpret passive voice construction, avoid
articles, parenthesis and other complex structures for the purpose of extracting essential
information about the process. It is envisaged that a Porter stemming technique will be
plugged into the implementation to make it more robust to morphological variations. Output
is being produced in a simple text format for representing block-structured process models.

Expected results and achievements:

• analysis of process models' description, including a list of sentence structures, temporal
and branching markers typically used in textual process narratives (indicating
sequence, parallel, alternative and repetitive activity flows);

• a Java program capable of extracting process models from textual descriptions on a
best-effort basis

Keywords: NLP, process extraction, business process sub-language.

References

51 of 61

1. Aditya Ghose, George Koliadis, Arthur Chueng: Rapid Business Process Discovery (R-
BPD). In ER 2007, 26th International Conference on Conceptual Modeling, Auckland,
New Zealand, November 2007, pp. 391-406.

2. Ann Bies, Mark Ferguson, Karen Katz, and Robert Mac-Intyre: Bracketing guidelines
for Treebank II style Penn Treebank project. Technical report, University of
Pennsylvania, 1995.

3. Artem Polyvyanyy, Luciano García-Bañuelos, Marlon Dumas: Structuring Acyclic
Process Models. In BPM 2010, 8th International Conference on Business Process
Management, Hoboken, NJ, USA, September 2010, pp. 276-293

4. Arthur H.M. ter Hofstede, W.M.P. van der Aalst, Michael Adams, Nick Russell.
"Modern Business Process Automation: YAWL and its Support Environment",
Springer, 2010. http://www.yawlbook.com/. Accessed on May 2011.

5. Attempto Project. http://attempto.ifi.uzh.ch/site/ . Accessed on May 2011.

6. Avik Sinha, Amit M. Paradkar, Palani Kumanan, Branimir Boguraev: A linguistic
analysis engine for natural language use case description and its application to
dependability analysis in industrial use cases. In DSN 2009, IEEE/IFIP International
Conference on Dependable Systems and Networks, Estoril, Lisbon, Portugal, June-
July 2009, pp. 327-336.

7. Avik Sinha, Stanley M. Sutton Jr., Amit M. Paradkar: Text2Test: Automated Inspection
of Natural Language Use Cases. In ICST 2010, 3rd International Conference on
Software Testing, Verification and Validation, Paris, France, April 2010, pp. 155-164.

8. Bartek Kiepuszewski, Arthur H. M. ter Hofstede, Christoph Bussler: On Structured
Workflow Modelling. In CAiSE 2000: 12th International Conference on Advanced
Information Systems Engineering, Stockholm, Sweden, June 2000, pp. 431-445.

9. Colette Rolland, Camille Ben Achour: Guiding the Construction of Textual Use Case
Specifications. In Data & Knowledge Engineering, Volume 25 (1-2), March 1998, pp.
125-160.

10. Dan Klein, Christopher D. Manning: Accurate Unlexicalized Parsing. In ACL 2003,
41st Annual Meeting of the Association for Computational Linguistics, Sapporo, Japan,
July 2003, pp. 423-430.

11. Graphviz – Graph Visualization Software. http://www.graphviz.org/. Accessed on May
2011.

12. J. Mike Jacka, Paulette J. Keller. "Business Process Mapping: Improving Customer
Satisfaction", Wiley 2009.

13. Jan Mendling, Hajo A. Reijers, Wil M. P. van der Aalst: Seven process modeling
guidelines (7PMG). In Information & Software Technology, Volume 52(2), January
2010, pp. 127-136.

14. Jan vom Brocke, Michael Rosemann (Eds.). Handbook on Business Process
Management 1. Introduction, Methods, and Information Systems. Series: International
Handbooks on Information Systems, 2010, p. 131 (Help Desk Process).

15.Jaroslav Drazan, Vladimir Mencl: Improved Processing of Textual Use Cases:

52 of 61

http://www.graphviz.org/
http://attempto.ifi.uzh.ch/site/
http://www.yawlbook.com/

Deriving Behavior Specifications. In SOFSEM 2007, 33rd Conference on Current
Trends in Theory and Practice of Computer Science, Harrachov, Czech Republic,
January 2007, pp. 856-868.

16. João Carlos de A. R. Gonçalves, Flávia Maria Santoro, Fernanda Araujo Baião:
Business process mining from group stories. CSCWD 2009, 13th International
Conference on Computers Supported Cooperative Work in Design, Santiago, Chile,
April 2009, pp. 161-166.

17. João Carlos de A. R. Gonçalves, Flávia Maria Santoro, Fernanda Araujo Baião:
Collaborative Business Process Elicitation through Group Storytelling. In ICEIS 2010,
12th International Conference on Enterprise Information Systems, Volume 3, ISAS,
Funchal, Madeira, Portugal, June 2010, pp. 295-300.

18. João Carlos de A. R. Gonçalves, Flávia Maria Santoro, Fernanda Araujo Baião: Let Me
Tell You a Story - On How to Build Process Models. In J. UCS 17(2011), Journal of
Universal Computer Science , vol. 17, no. 2 (2011), pp. 276-295 .

19. Jussi Vanhatalo, Hagen Völzer, Frank Leymann: Faster and More Focused Control-
Flow Analysis for Business Process Models Through SESE Decomposition. In ICSOC
2007, Fifth International Conference on Service-Oriented Computing, Vienna, Austria,
September 2007, pp. 43-55.

20.Maribel Yasmina Santos, Ricardo Jorge Machado: On the Derivation of Class
Diagrams from Use Cases and Logical Software Architectures. In ICSEA 2010, 5th
International Conference on Software Engineering Advances , Nice, France, August
2010, pp. 107-113.

21. New South Wales. Independent Commission Against Corruption. Plant hire (heavy
machinery): Corruption Prevention Project. Redfern, N.S.W. : 1992.

22. Oryx: Research. http://bpt.hpi.uni-potsdam.de/Oryx/Research. Accessed on May 2011.

23. RavenFlow Inc., RAVEN Cloud. http://www.ravencloud.com/ . Accessed on May 2011.

24. Roger Levy, Galen Andrew: Tregex and Tsurgeon: tools for querying and manipulating
tree data structures. In LREC 2006, 5th International Conference on Language
Resources and Evaluation, Genoa, Italy, May 2006.
http://ling.ucsd.edu/~rlevy/papers/levy_andrew_lrec2006.pdf. Accessed on May 2011.

25. The Stanford NLP (Natural Language Processing) Group.
http://nlp.stanford.edu/software/index.shtml. Accessed on May 2011.

53 of 61

http://ling.ucsd.edu/~rlevy/papers/levy_andrew_lrec2006.pdf
http://www.ravencloud.com/
http://bpt.hpi.uni-potsdam.de/Oryx/Research

Appendix 1. Penn Treebank II Tags9

 Clause Level
S - simple declarative clause, i.e. one that is not introduced by a (possible empty)
subordinating conjunction or a wh-word and that does not exhibit subject-verb inversion.
SBAR - Clause introduced by a (possibly empty) subordinating conjunction.
SBARQ - Direct question introduced by a wh-word or a wh-phrase. Indirect questions and
relative clauses should be bracketed as SBAR, not SBARQ.
SINV - Inverted declarative sentence, i.e. one in which the subject follows the tensed verb or
modal.
SQ - Inverted yes/no question, or main clause of a wh-question, following the wh-phrase in
SBARQ.

 Phrase Level
ADJP - Adjective Phrase.
ADVP - Adverb Phrase.
CONJP - Conjunction Phrase.
FRAG - Fragment.
INTJ - Interjection. Corresponds approximately to the part-of-speech tag UH.
LST - List marker. Includes surrounding punctuation.
NAC - Not a Constituent; used to show the scope of certain prenominal modifiers within an
NP.
NP - Noun Phrase.
NX - Used within certain complex NPs to mark the head of the NP. Corresponds very roughly
to N-bar level but used quite differently.
PP - Prepositional Phrase.
PRN - Parenthetical.
PRT - Particle. Category for words that should be tagged RP.
QP - Quantifier Phrase (i.e. complex measure/amount phrase); used within NP.
RRC - Reduced Relative Clause.
UCP - Unlike Coordinated Phrase.
VP - Vereb Phrase.
WHADJP - Wh-adjective Phrase. Adjectival phrase containing a wh-adverb, as in how hot.
WHAVP - Wh-adverb Phrase. Introduces a clause with an NP gap. May be null (containing the
0 complementizer) or lexical, containing a wh-adverb such as how or why.
WHNP - Wh-noun Phrase. Introduces a clause with an NP gap. May be null (containing the 0
complementizer) or lexical, containing some wh-word, e.g. who, which book, whose daughter,
none of which, or how many leopards.
WHPP - Wh-prepositional Phrase. Prepositional phrase containing a wh-noun phrase (such as
of which or by whose authority) that either introduces a PP gap or is contained by a WHNP.
X - Unknown, uncertain, or unbracketable. X is often used for bracketing typos and in
bracketing the...the-constructions.

9 From: Penn Treebank Tags. http://bulba.sdsu.edu/jeanette/thesis/PennTags.html. Accessed on May 2011.

54 of 61

http://bulba.sdsu.edu/jeanette/thesis/PennTags.html

 Word level
CC - Coordinating conjunction
CD - Cardinal number
DT - Determiner
EX - Existential there
FW - Foreign word
IN - Preposition or subordinating conjunction
JJ - Adjective
JJR - Adjective, comparative
JJS - Adjective, superlative
LS - List item marker
MD - Modal
NN - Noun, singular or mass
NNS - Noun, plural
NNP - Proper noun, singular
NNPS - Proper noun, plural
PDT - Predeterminer
POS - Possessive ending
PRP - Personal pronoun
PRP$ - Possessive pronoun (prolog version PRP-S)
RB - Adverb
RBR - Adverb, comparative
RBS - Adverb, superlative
RP - Particle
SYM - Symbol
TO - to
UH - Interjection
VB - Verb, base form
VBD - Verb, past tense
VBG - Verb, gerund or present participle
VBN - Verb, past participle
VBP - Verb, non-3rd person singular present
VBZ - Verb, 3rd person singular present
WDT - Wh-determiner
WP - Wh-pronoun
WP$ - Possessive wh-pronoun (prolog version WP-S)
WRB - Wh-adverb

55 of 61

Appendix 2. Original Business Process Specification

56 of 61

Appendix 3. Preprocessed Process Description (Input)

Day 1. Your invoice is emailed to you.

Day 1-7.Customers with cash accounts must ensure payment of the full outstanding amount
is made and cleared in the Mach Technology bank account.

Day 7.Customers with DDR accounts (eg credit card or direct debit authority) have the full
outstanding amount automatically deducted.

NB for Credit Card. if the automatic transaction fails for any reason, you will be notified by
email,
charge you a $5.50 bank transaction failure fee, and the system will try again on Day 9.
NB for Direct Debit. if the automatic transaction fails for any reason, you will be notified by
email,
charge you a $25 bank transaction failure fee, and the system will try again on Day 9.

Day 8. If payment is still outstanding, you will be emailed a reminder.

Day 9. DDR transactions that failed on Day 7 will be reattempted.

NB for Credit Card. if the automatic transaction fails for any reason, you will be notified by
email,
charge you a $5.50 bank transaction failure fee, and the system will try again on Day 11.
NB for Direct Debit. if the automatic transaction fails for any reason, you will be notified by
email,
charge you a $25 bank transaction failure fee, and your Internet service will be suspended
until payment is received by other means.

Day 10. If payment is still outstanding, an additional $10 late fee will be charged to your
account .

Day 11.DDR transactions that failed on Day 9 will be reattempted.

NB for Credit Card. if the automatic transaction fails for any reason, you will be notified by
email,
charge you a $5.50 bank transaction failure fee, and payment will have to be made by other
means before Day 14.

Day 14. If payment is still outstanding, your Internet service will be suspended until
payment is received (note Day 30 deadline below).

Day 30. If payment is still outstanding, your account will be closed, disconnection fees will
be applied and debt recovery proceedings will commence.

57 of 61

Appendix 4. Process Model in Textual Format (Output 1)
"BILLING" PROCESS

<SEQUENCE\>

Activity: email your invoice to you
Artifact: your invoice
Artifact: you

Actor: customers with cash accounts
Activity: ensure made payment of full outstanding
amount and cleared in mach technology bank
account
Artifact: payment
Artifact: full outstanding amount
Artifact: mach technology bank account

Actor: customers with ddr accounts
Activity: have full outstanding amount automatically
deduct
Artifact: full outstanding amount

<ALTERNATIVE\>
Clause: automatic transaction fails for any reason

<SEQUENCE\>

Activity: notify you by email
Artifact: you
Artifact: email

Activity: charge you $ 5.50 bank transaction failure
fee
Artifact: you
Artifact: $ 5.50
Artifact: failure fee

<REPETITION\>
Clause: again

Actor: system
Activity: try on day 9
Artifact: day 9

</REPETITION>

</SEQUENCE>

</ALTERNATIVE>

<ALTERNATIVE\>
Clause: automatic transaction fails for any reason

<SEQUENCE\>

Activity: notify you by email
Artifact: you
Artifact: email

Activity: charge you $ 25 bank transaction failure fee
Artifact: you
Artifact: $ 25 bank transaction failure fee

<REPETITION\>
Clause: again

Actor: system
Activity: try on day 9
Artifact: day 9

</REPETITION>

</SEQUENCE>

</ALTERNATIVE>

<ALTERNATIVE\>
Clause: payment is still outstanding

Activity: email you reminder
Artifact: you
Artifact: reminder

</ALTERNATIVE>

Activity: reattempted ddr transactions that fail on
day 7
Artifact: ddr transactions
Artifact: day 7

<ALTERNATIVE\>
Clause: automatic transaction fails for any reason

<SEQUENCE\>

Activity: notify you by email
Artifact: you
Artifact: email

Activity: charge you $ 5.50 bank transaction failure
fee
Artifact: you
Artifact: $ 5.50
Artifact: failure fee

58 of 61

<REPETITION\>
Clause: again

Actor: system
Activity: try on day 11
Artifact: day 11

</REPETITION>

</SEQUENCE>

</ALTERNATIVE>

<ALTERNATIVE\>
Clause: automatic transaction fails for any reason

<SEQUENCE\>

Activity: notify you by email
Artifact: you
Artifact: email

Activity: charge you $ 25 bank transaction failure fee
Artifact: you
Artifact: $ 25 bank transaction failure fee

<ALTERNATIVE\>
Clause: until received payment by other means

Activity: suspend your internet service
Artifact: your internet service

</ALTERNATIVE>

</SEQUENCE>

</ALTERNATIVE>

<ALTERNATIVE\>
Clause: payment is still outstanding

Activity: charge additional $ 10 late fee to your
account
Artifact: additional $ 10 late fee
Artifact: your account

</ALTERNATIVE>

Activity: reattempted ddr transactions that fail on
day 9
Artifact: ddr transactions
Artifact: day 9

<ALTERNATIVE\>
Clause: automatic transaction fails for any reason
<SEQUENCE\>

Activity: notify you by email
Artifact: you
Artifact: email

Activity: charge you $ 5.50 bank transaction failure
fee
Artifact: you
Artifact: $ 5.50
Artifact: failure fee

Actor: payment
Activity: have to be make by other means before day
14
Artifact: other means
Artifact: day 14

</SEQUENCE>

</ALTERNATIVE>

<ALTERNATIVE\>
Clause: payment is still outstanding

<ALTERNATIVE\>
Clause: until received payment

Activity: suspend your internet service
Artifact: your internet service

</ALTERNATIVE>
</ALTERNATIVE>

<ALTERNATIVE\>
Clause: payment is still outstanding

<SEQUENCE\>

Activity: close your account
Artifact: your account

Activity: apply disconnection fees
Artifact: disconnection fees

Actor: debt recovery proceedings
Activity: commence

</SEQUENCE>
</ALTERNATIVE>
</SEQUENCE>

59 of 61

Appendix 5. Extracts from the Process Diagram (Output 2)

60 of 61

Appendix 6. Process Diagram by Raven Cloud

61 of 61

