
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Information Technology

Hans Mäesalu

Automated Rule-Based Selection and Instantiation of Layout Templates
for Widget-Based Microsites

Master's thesis (30 ECTS)

Supervisor: Peep Küngas

Author: ….. “......” May 2013

Supervisor: ….. “......” May 2013

Approved for defence

Professor: ….. “......” May 2013

Tartu 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract
This thesis proposes a rule-based widget and layout template matchmaking solution

for widget-based microsites. The solution takes as an input a set of widget descriptions and

a set of layout templates with widget placeholders and returns a microsite, where the most

suitable template has been instantiated with corresponding widgets. Matchmaking is based

on applying a rule engine to metadata of widgets and placeholders about their content

categories and dimensions,. Additional usability rules are used to further improve the

results with respect to commonly accepted usability guidelines. Such a solution makes it

possible to modularly enhance the usability results in the future simply by adding new

usability rules and layout templates. Furthermore, the solution can be applied in mashup

creation tools for layout selection.

The proposed solution has been implemented and is called Auto Microsite in this

thesis. The system consists of a server-side and a client-side component. The server-side

component matches widgets with layout template placeholders according to the given rules

by using the OO jDREW RuleML engine. The client-side is responsible for presenting the

mashup appropriately for the client device. The latter is based on OpenAjax Hub 2.0

framework, which enables secure sandboxing and communication of widgets in the

generated microsite. Furthermore, OpenAjax Metadata 1.0 specification is used in this

thesis to package the widgets such that they could be easily reused.

In order to evaluate the Auto Microsite system in practice two proof of concept (PoC)

scenarios were implemented. The first scenario visualized “Hourly labour costs in Euros

(European Union 1997-2008)” data using widgets for a map, a table and a summary. In the

second scenario, also data was queried through a SOAP service and a Web site. In the

scenario data was visualized using two table widgets and a map widget. The SOAP service

and queries to the Web site were packaged as non-visual widgets to fit the framework. The

POCs demonstrate that the Auto Microsite system is able to construct widget-based

microsites. Furthermore, the framework is capable of constructing also more complex Web

applications, with several pages and more content widgets, by adding new rules and

templates.

2

Table of Contents

1 Introduction 6

2 Related work 9

2.1 Web application and mashup usability...9

2.2 Widgets...11

2.3 Mashup tools...12

2.4 Layout selection and construction..13

2.5 Guidelines...14

3 Background 16

3.1 OpenAjax Metadata 1.0 Specification..16

3.1.1 Details of the standard..16

3.1.2 Example..20

3.1.3 Shortcomings..21

3.2 RuleML 1.0...21

3.2.1 Details...22

3.2.2 Example..24

3.2.3 Shortcomings..24

3.3 Schema.org...25

3.3.1 Details...25

3.3.2 Example..26

3.3.3 Shortcomings..26

3.4 HTML Microdata..27

3.4.1 Details...27

3.4.2 Example..28

3.4.3 Shortcomings..28

3.5 Media queries...29

3.5.1 Details...29

3.5.2 Example..30

3.5.3 Shortcomings..31

3.6 Transformer widget...31

3.7 Proxy widget...33

4 Solution 35

3

4.1 Process view...35

4.1.1 Server-side component..35

4.1.2 Client-side component..36

4.2 Development view..38

4.2.1 Server-side component..38

4.2.2 Client-side application component...39

4.2.3 RuleML service...40

4.3 Physical view..41

5 Implementation 43

5.1 Categories ontology..43

5.2 Widgets...43

5.3 Layout templates...45

5.4 Rules...45

5.5 Usage of rules...46

5.6 Server-side component...47

5.7 Client-side component..53

5.8 Deployment..55

5.8.1 Auto Microsite application..55

5.8.2 RuleML service...57

6 Proof of Concept 58

6.1.1 Schema.org extension...58

6.2 Proof of Concept 1..58

6.2.1 Components..58

6.2.2 Mashup construction...60

6.3 Proof of Concept 2..62

6.3.1 Components..62

6.3.2 Mashup construction...64

7 Conclusions 67

8 Future work 69

9 Abstract (in Estonian) 71

10 Bibliography 73

11 Appendix 78

4

11.1 Source code...78

11.2 RuleML rules..78

5

1 Introduction

Internet is the largest repository of human knowledge, but often this knowledge is

scattered around different information systems and is difficult to use. To simplify

integration of information from various sources to meet specific user requirements the

concept of mashups has arisen.

Mashups are by their nature microsites that concentrate on solving a single user-

oriented problem and combine data and functionality from different online sources. They

are intended to add value by combining data in a meaningful way. Mashups are generally

composed of widgets, which build up the user interface of a mashup and provide the

necessary data.

A widget, sometimes refereed to as a gadget, is a small reusable application

component, normally packaged and enriched with package-specific metadata. W3C

categorizes widgets as regular desktop widgets, mobile widgets, and web widgets [1].

Desktop and mobile widgets are installed on a client device, although often still

communicate with web services to receive additional information, like weather reports or

news. Web widgets are deployed on web sites. They are built using web technologies, such

as HTML, CSS, JavaScript and Flash. This thesis concentrates on web widgets.

Unfortunately with existing technologies combining widgets into mashups is still a

time consuming and complicated task, often requiring programming knowledge. It

becomes even worse when several different programming languages are involved. Modern

web mashups are marked up using HTML, designed using CSS, may contain widgets

written in JavaScript, Flash and Silverlight, and consume data in XML, JSON and CSV

format. Namoun et al. [2] discovered that users are interested in mashing up different

services because they see it as a way to increase productivity, but they fail to do so because

average user without computer science background has poor understanding of technical

details of web services and composing them. And when a mashup is intended to be used by

several people, usability and accessibility will become crucial.

Usability is about effectiveness, efficiency and satisfaction with which users achieve

their intended goals [3]. Accessibility is about ensuring equivalent access for everyone,

including people with disabilities or devices with limited capabilities [4]. Unfortunately

usability and accessibility are mostly considered relevant, just after users start complaining

6

about it or sales start to drop. However, a good Web site should be built with keeping good

usability and accessibility in mind. These qualities also often suffer because mashup

developers generally are not usability experts. Thus even though they start with good

intentions in mind they simply lack the knowledge to consider all the aspects of usability

and accessibility.

The aim of this thesis is to build a framework and a demonstrator that would automate

the creation of visually simple Web pages [5], to which mashups are categorized. Simple

web pages concentrate on one subject, have few links with easy to understand texts, have

few and small images, use few and light colors and fit on screen without scrolling.

Furthermore, visually simple web pages generally do not contain forms or advertisements.

First, the thesis will identify usability guidelines that are applicable to mashup layout

composition. For example, many navigational guidelines are not applicable in case of

visually simple mashups because such mashups only contain one or very few pages and fit

on screen without the need for scrolling. On the other hand, guidelines that apply to

content positioning are still valid because users consider mashup web sites as regular web

sites and expect to find objects in familiar locations. Additional guidelines will be

identified by studying Web sites that have been acknowledged for their good usability.

Such Web sites are taken from the list of “15th Annual Webby Awards Nominees &

Winners” [6].

Second, a set of machine-understandable formats for describing the identified

guidelines and widget metadata will be compiled. The set of formats has to be flexible

enough to be usable in ever-changing Internet technology landscape. At the same time the

set of formats has to be easy to understand and based on existing standards, to minimize

the learning curve. By using these formats a knowledge base of usability guidelines and a

sample set of existing widgets will be constructed. This knowledge base will be extensible,

to make it possible to add new rules in the future to further improve layout generation and

new widgets for supporting wider set of mashup applications.

Third, the framework will be validated with two proof of concept scenarios, to prove its

applicability in solving real world problems. For the first scenario, a mashup visualizing

European average wage data over past years will be composed. The second, a more

complex scenario, will integrate data from a Inforegister.ee SOAP service with a data

widget and will semantically integrate syntactically different messages.

7

The rest of the thesis is organized as follows. Chapter 2 gives an overview of existing

work related to mashups. Chapter 3 introduces technologies and standards used for the

solution proposed in the thesis. Chapter 4 introduces the architecture of the framework

application using a 4+1 architectural view model. Chapter 5 gives an overview of the

implementation. Chapter 6 introduces two case studies that are intended to be solved by the

framework described in this thesis. Finally, Chapter 7 concludes the work that has been

done and Chapter 8 gives an overview of possible future work.

8

2 Related work

Before creating a new mashup construction tool it is important to study existing tools

and techniques for mashups construction. Also, since usability is considered important for

this thesis, literature on usability is reviews in this Chapter.

2.1 Web application and mashup usability
Mashups are generally seen as regular Web applications. There are many studies on

Web application usability [7][8][9]. For example, Thung [7] proposes several navigational

patterns, which were validated on the Web site of University Sains Malaysia School of

Computer Sciences. More specifically, the study proposed set-based navigation, which

means that content is distributed into sets of similar information, to be used together with

search features, to make search more effective. Schmidt et al. [8] studied how changing

design variables, such as font size or color, would affect usability and found that users may

be willing to give up some usability for aesthetically pleasing Web site. Fox and Naidu [9]

studied popular social networking sites and found that even though Facebook does not

adhere to traditional usability guidelines, it had the most efficient user interface. Based on

the studies, several books [10][11] about usability guidelines and patterns have been

written. For example Vora [10] reviews patterns covering all aspects of web applications,

from forms and navigation guidelines to accessibility issues. A book by Leavitt and

Shneiderman [11] elaborates guidelines suggested by the U.S. Department of Health and

Human Services.

In order to scientifically evaluate effectiveness of developed usability guidelines, eye

tracking studies have been performed. For example, Dahal [12] reports a study of 25 USA

university Web sites, which were tested on students. The study reports that people spend

most of their time watching the main menu of a Web site, which is expected to be located

at the top or on the left side of the screen, and the main contents of a Web site, which is

expected to be located at the center of the screen. Russel [13] found that users first fixate

their view in the top left and center areas of a Web sites, so this is where the most

important pieces of contents should be located. It was also seen that it is possible to attract

more attention to some location by coloring it differently from the rest of the Web site. For

a usability study Goldberg and Kotval [14] constructed two interfaces, one of which was

9

poorly organized and another which was well organized. From eye tracking results it was

seen that poorly organized interface may result in less efficient search behavior, which in

return increases the time it takes to perform a specific task. However, sometimes eye

tracking can give results that conflict with common usability guidelines. For example, it is

commonly suggested to position main menu in the top or on the left hand side of a Web site

[10][11], but Bailey et al. [15] found that users used rightaligned menus more efficiently,

even more so on laptop computers. This was further studied by McCarthy et al. [16] who

noticed that on the first page view users searched for the menu on the left hand side of the

Web page. This made them slower to locate and use a menu on the right hand side of the

Web page. But on consecutive page views users remembered where to look for the menu

and the difference disappeared. This finding is also supported by Jacob's Law of Web user

experience [16]:

“Users spend most of their time on other sites. Thus, anything that is a convention and

used on the majority of other sites will be burned into the users' brains and you can only

deviate from it on pain of major usability problems.”

Anyway, the progress in identification of usability guidelines has resulted in so many

suggestions that manual usability evaluation has become time consuming and error prone.

In order to simplify usability evaluation automated usability evaluation tools have been

developed. Dingli and Mifsud [3] introduce one such framework, USEFul. The framework

uses a database of usability patterns, that have been collected from various usability

guidelines, and evaluates Web sites with respect to them. The framework tool was

validated with respect to manual usability evaluation results by usability professionals and

it was revealed that even though it was not able to identify all the usability violations, that

were manually identified by professionals, it was still able to identify usability violations

that were not found manually. Therefore, it was concluded that for the best results

automated and manual usability evaluation should be used together. The same conclusion

was reached by Harty [17] who studied keyboard navigation on Web pages.

However, mashups often have characteristics that separate them from regular web sites.

Cappiello et al. [18] proposed a quality model for mashups taking into account the

component-based nature of mashups and other common mashup characteristics, for

example that mashups are generally laid out on a single page. They identified that mashup

quality depends on two major aspects: the components and the composition. The model of

Cappiello et al. [18] consists of 3 dimensions: data quality, presentation quality and

10

composition quality. Data quality measures in which extent the data used in the mashup is

accurate, complete, timely, consistent and available. Presentation quality measures whether

the mashup is usable and accessible. Finally, composition quality shows whether the

mashup introduces added value, whether suitable components are properly used, consistent

and available. Figure 2.1 shows an overview of the mashup quality model.

2.2 Widgets
W3C categorizes widgets as [1] desktop or mobile widgets and Web widgets. Desktop

and mobile widgets are generally binary programs that are installed on the client device. In

recent years usage of web technologies, like HTML5, in desktop widgets has become

increasingly common. Web technologies are generally considered easier to master thus

lowering the technological barrier. An instance of platforms, where widgets are written

using HTML and JavaScript, is Tizen1. Another popular mobile platform for widgets is

Android2. On Android widgets are used to control phone functionality, for example silence

the phone, display recent news or whether, and access media, for example to display a

picture or to play music.

Web widgets are written entirely by using web technologies, such as HTML, CSS and

JavaScript. Sometimes Web widgets also include embedded content like Flash, Silverlight

or Unity. However, unlike desktop widgets, web widgets are not installed on a client device

- they are embedded into Web sites. This means that Web widgets run in restricted browser

1 https://www.tizen.org/
2 http://www.android.com/

11

Figure 2.1: The mashup quality model by Cappiello et al. [18]

http://www.android.com/
https://www.tizen.org/

sandboxes and, compared to desktop widgets, they do not have access to file-system and,

furthermore, they cannot control or monitor other client resources. Web widgets often

contain a server component, which provides data for the widget. One of the most popular

widget platform is Facebook with over one billion users. Widgets on Facebook are used to

personalize users' profiles, they can be used to share favorite music or travel locations.

Additionally, Facebook provides its own public widgets, that can be used on other Web

sites or in mashups.

2.3 Mashup tools
Volker Hoyer and Marco Fischer [19] have compiled an overview of existing mashup

tools. The authors broadly classify mashup tools to catalog and editor tools. Catalog tools

are collections of existing resources and they also mediate communication between

different resources. Catalogs are further segmented into adapters, which deal with

mediation of communication between resources, and repositories, which organize

resources and widgets. Editor tools are used for combining resources into new applications.

Editors are further distributed into transformation / aggregation tools, which deal with

combining data from different sources, and presentation layer tools, which display data

from different sources. Often real-world mashup tools combine both aspects.

A popular example of an adapter mashup tool is Yahoo!'s Dapper3. Dapper is a tool that

allows users to extract information from Web sites into feeds that can then be used as data

sources in mashups. Another adapter tool, Firecrow, is introduced by Maras et al. [20] with

the aim of providing means to extract reusable user interface parts from existing Web sites

that could then be used in mashups. It is implemented as a browser extension that works by

recording interactions and then based on collected data extracts necessary CSS, HTML and

JavaScript resources for the specific action.

Presentation and repository mashup tools are often combined. For example iGoogle4

and Netvibes5 are both tools that contain a repository of widgets and a customizable web

portal. These allow users to create their own personalized portals by browsing the

repository of widgets, such as weather information, clock and news, and adding them to

their portals. Widgets in such environments generally cannot communicate with each other

and have very limited customization options, which makes such tools very easy to use

3 http://open.dapper.net/
4 http://www.google.com/ig
5 http://www.netvibes.com

12

http://www.netvibes.com/
http://www.google.com/ig
http://open.dapper.net/

independently, with the expense of limitations in use of mashups. More complex

presentation tool is OpenAjax hub based Scrapplet6. It has all the features of simple

presentation tools, but because it is built on top of OpenAjax hub, widgets can

communicate with each-other and widgets can be extracted from regular Web sites, which

means it also has features of transformation and adapter tools.

One of the most traditional examples of a transformation and aggregation mashup tools

is Yahoo! Pipes7. It is a web based service for combining and manipulating data from

different feeds into mashups. Another more complex and enterprise oriented transformation

and aggregation mashup tool is IBM DAMIA8. Similarily to Yahoo! Pipes, it is used to

combine data from different feeds and it is bundled together with IBM Mashup Hub and

QEDWiki to facilitate creation of user interfaces.

One of the most ambitious projects, which is currently under development, is

OMELETTE [21]. This project aims to provide end-users with an environment that allows

them to compose their own workspace according to their own specific needs. It is also

meant to include a suggestions engine and automated composition engine, that suggest

widgets based on defined patterns and user previous usage. The project aims to hide all the

complexity into widgets with the aim of simplifying composition of mashups from

widgets. OMELETTE combines existing technologies and standards to leverage mashup

creation. More specifically, W3C Widgets family of specifications is used for describing

widgets and Apache Rave is used as an application server. In order to simplify widget

creation ServFace is extended for creating widgets from annotated SOAP services, and

MyCoctail, for embedding RESTful services. This tool is supposed to join all four types of

mashup tools into one single application framework.

2.4 Layout selection and construction
Layout modeling is a technique where a layout is modeled using some relatively easy

to use visual tool that then generates the layout HTML code. Ceri et al. [22] introduce

XML based Web modeling language WebML together with design tool suite ToriiSoft. The

approach separates Web page modeling into 4 models: structural model, hypertext model,

presentation model and personalization model. These models can be constructed by

corresponding professionals and together give a complete view of a Web site. Tools, such

6 http://www.scrapplet.com/
7 http://pipes.yahoo.com/pipes/
8 http://link.ece.uci.edu/~yankaiw/damia/browser/html/home.htm

13

http://link.ece.uci.edu/~yankaiw/damia/browser/html/home.htm
http://pipes.yahoo.com/pipes/
http://www.scrapplet.com/

as ToriiSoft, can then generate HTML or even ASP pages with database backend based on

these models.

Constraint based automated layout generation constructs a layout based on a set of

constraints or rules. According to Lok and Feiner [23], there are two types of constraints:

abstract and spatial. Abstract constraints describe a relationship between objects in a

layout. For instance, an illustration references the text would be an abstract constraint.

Spatial constraints describe a specific size or location of an object. For example, a

constraint may set that a text area should appear below an illustration. Abstract constraints

must be translated to spatial constraints before they can be used to generate a layout.

Boring et al. [24] presented an architecture and implemented a prototype of constraint

based layout manager. They proposed a system where constraints would be considered

during page design-time for the basic layout construction and then on client computer the

final dimensions and positions would be chosen using a client-side constraint solver.

Anyway, constraint based systems are a specific subclass of knowledge-based systems

in general. Gonzales-Uriel and Roanes-Lozano [25] propose a knowledge-based system for

layout selection for industrialized home building. They described a set of layout types for

houses and a set of rooms, or components, that are placed into these layouts to form a

house. Then they composed a knowledge base of criteria for house layout selection. These

criteria covered climate-related, building-site-related and occupant-related issues. A set of

concrete parameters are given to this system and based on the layouts and the knowledge

base the approach provides the most appropriate layout for the house. For instance, in a

cold climate a more compact house would be easier to keep warm. This approach is also

relatively easy to extend by adding more rules to knowledge base. For example, it was

proposed to include cost of materials and labor to minimize building costs. This thesis

proposes a similar solution for Web mashup construction, where a set of layouts and rules

are used to determine a layout for a specific set of widgets.

2.5 Guidelines
The following is a set of guidelines that have been identified as important for a layout

of a mashup Web site. Rules are described textually and include references to sources that

propose these rules. During the implementation these rules have been encoded either as

RuleML, implemented in template files or programmed into the application.

Guideline 1 Layout has to be responsive [26]. This means that a Web site should

14

fill 100% width of the screen and should adjust to different screen resolutions.

Guideline is proposed in [10] and [11]. Rule has been used in real world at

CNN.com [27].

Guideline 2 Navigation menu has to be placed in the header or in the left hand

side of the web site. In some situations both locations could be used

simultaneously, for example a header menu for main sections and a left-hand side

menu for subsections. The guideline is proposed in [10] and [28]. Rule has been

used in real world at CNN.com [27], Skype.com [29] and Dropbox.com [30].

Guideline 3 Display a related illustration next to the main content, usually in the

right-hand side. Such content is displayed at a higher position than the rest of the

textual content. Guideline has been used in real world at Skype.com [29].

Guideline 4 Visualized data, for example a map or a graph, should be available as

a table. Guideline has been used in real world at CNN.com [27].

Guideline 5 Visual feedback needs to be given in case page loading is performed.

Without feedback users may get confused and think that the Web site is not

working. Proposed in [10]. Used at CNN.com [27] and Dropbox.com [30].

Guideline 6 Important information should appear higher on a Web page. Users

start reading from the top, this enables them to find important information in

shortest time possible. Proposed in [10], [11] and [31].

Guideline 7 Use frames when some features of a Web page have to remain

visible while scrolling others. Proposed in [11].

Guideline 8 Related information or functionality should be grouped together.

This makes it easier to find necessary information. Proposed in [10] and [11].

Guideline 9 Web site should not be cluttered with information. Only display what

is important for the user. Proposed in [11].

15

3 Background

In order to create an existing standards based application several existing standards and

technologies were studied.

3.1 OpenAjax Metadata 1.0 Specification
OpenAjax Metadata 1.0 [32] specification was developed by IDE Working Group at

OpenAjax Alliance to provide an industrial-strength metadata format for describing

widgets. Although the format can be used to describe simple UI components, like buttons

and text boxes, also more complicated mashup components or widgets, that contain

complicated JavaScript logic and communicate with other widgets in the mashup, can be

described with the format. Similarity it can be used to describe the APIs of JavaScript

librarys, like jQuery9 or Dojo10. OpenAjax Metadata is primarily targeted to IDE

developers, who can use it to provide intelligent code assistants, and mashup assembly

tools, where widget user interfaces and necessary resources can be described with the

standard.

In this thesis OpenAjax Metadata is used to describe Web widgets. This leverages an

elegant way to package the widgets and gives some extra information about the widget to

the mashup creation framework. For example, OpenAjax Metadata allows defining the title

of the mashup, suggested dimensions, required JavaScript files and other external files.

Especially important for us is the ability to define topics, that the widget subscribes or

publishes to, and data exchange formats. However, some extensions to the standard are

needed for our usage, such as support for defining minimal and maximal widget

dimensions, but most of the necessary information can be presented using the standard

annotations.

3.1.1 Details of the standard
OpenAjax Metadata 1.0 widget specification file is a standard XML file that defines a

widget and the resources it uses. A valid OpenAjax widget file name must end with

“oam.xml”.

9 http://jquery.com/
10 http://dojotoolkit.org/

16

http://dojotoolkit.org/
http://jquery.com/

Root element of each widget specification is widget. This element has attributes for

defining a unique identifier of the widget, suggested dimensions, version, JavaScript class

name for the widget and sandbox mode. The sandbox mode, which is enabled with the

sandbox attribute, indicates that the environment has to completely isolate the widget

from the rest of the widgets, apart from allowing communication through OpenAjax

publish/subscribe APIs.

The content element provides widget's presentation in HTML format. It can be

defined inline or refer to an external file. To load an external file, the src attribute is used,

which defines the URL of the external file. The content element may contain any valid

HTML, CSS and JavaScript code.

To load resources elements javascript, require, library, preload and

postload are used. The javascript element is the simplest element for including

JavaScript code that must be available at run-time. It can be inserted before content, after

content or at the end of the mashup file by changing location attribute. The require

element can, similarly to javascript, be used to include JavaScript code, but it can be

also used to include CSS, images and other media. If includeRef attribute is set to

true then this resource will be added into the HTML head element of the mashup page,

otherwise it must be referenced within the widget content. For loading JavaScript libraries

the library element is used. This element helps developer tools to identify widgets that

share common libraries in which case these libraries are loaded only once. For the

preceding, library name and version must be provided with name and version

attributes. The preload and postload elements are library child elements that define

JavaScript that is executed respectively before or after the library is loaded. All resources

required by a widget, in order to operate properly, must be defined with these elements.

17

<?xml version="1.0" encoding="UTF-8"?>
<widget spec="1.0" xmlns="http://openajax.org/metadata">
 <content><![CDATA[
 <div style="@@background@@;width:100%;height:100%;"></div>
]]></content>
 <property name="background" datatype="string"
defaultValue="#FFFFFF"/>
</widget>

Example 3.1: Sample usage of a property

The property element can be used to define properties for the widget. The properties

can be modified either at design-time or at run-time to change behavior of the widget.

Values of properties can be used inside widgets by using @@propertyname@@ variable

substitution syntax or by defining getterPattern and setterPattern methods

which can then be used in JavaScript code. Example 3.1 is a simple widget which

background can be altered by changing the “background” property.

The topic element defines the topics that the widget subscribes to or publishes to

using corresponding OpenAjax Hub primitives. Actual subscription or publication is

performed in widget JavaScript code by using publish or subscribe APIs provided by

OpenAjax Hub to the widget. Widgets can have several topic elements, but the name

attribute of each topic element has to be unique. The topic element can have type

attribute, which defines the type of the data structure that a published or subscribed

message will contain. If type attribute is set to object then the topic element can

contain property elements, which describe the structure of the object published by the

widget or expected as input.

The category element can be used for categorization of widgets, while a widget may

belong to multiple categories. For nested grouping double-colon sequence is suggested.

For localization, message bundle files are defined. These XML files have a root

element messagebundle and any number of msg child elements that provide

localization strings. Message bundle files are loaded into widget with locale element

based on user locale and lang attribute of the locale element. Localized messages are

inserted into elements by using locid attribute or localization variable substitution with

##localizationkey## syntax.

OpenAjax metadata 1.0 specification also provides compatibility elements for defining

which browser or JavaScript library versions are required for specific features. Elements

available and deprecated provide information about which widget or JavaScript

library version specific feature is available for a browser set with userAgent.

Additionally several descriptive elements are specified in the standard. These elements

are all optional, but they could be used to give additional information to the user or a

widget catalog. For example the description element can be used to give a short

description of the widget, the license element can be used to specify license terms, the

18

icon element can be used to specify widget icon for catalogs or developer tools.

For grouping of elements, OpenAjax Metadata 1.0 specification supports plural

elements of many singular elements. For example categories for category

elements, topics for topic elements and requires for require elements. Plural

elements do not add any additional functionality, but they are used to make the widget file

more readable by grouping element of the same type.

OpenAjax Metadata 1.0 specification includes JavaScript widget APIs for widget

handling and communication through OpenAjax hub. To use these APIs widget must

define JavaScript class by using jsClass attribute on the root element and class

constructor function in either javascript or require element, either inline or in a

separate JavaScript file. Widget loader then creates a widget object using class constructor

and attaches OpenAjax APIs to this object. APIs enable several events, like

widget.onLoad, which is fired when widget has finished loading all required resources,

and widget.onChange, which is fired when some widget property has changed. There

are also functions which can be used to get information about the widget or modify its

behavior. For example the widget.OpenAjax.getId() function returns unique

widget identifier which is assigned by the hub, and the widget.OpenAjax.-

requestSizeChange() function tries to resize the widget. However, the latter may

fail or change dimensions to not exactly the requested dimensions if mashup application

does not allow it. Additionally, the widget.OpenAjax.set-PropertyValue()

function changes widget property followed by firing widget.onChange event. Finally,

OpenAjax hub instance is attached to widget.OpenAjax.hub, which implements

OpenAjax hub HubClient interface, such that it can be used to subscribe or publish

messages to some topic.

To ensure compatibility with future versions of the specification, it is not allowed to

write extensions to OpenAjax Metadata specification within any OpenAjax XML

namespaces. Extensions must have their own XML namespaces.

19

3.1.2 Example
Example 3.2 defines a Google Maps based widget. It loads jQuery library, Google

JSAPI and local GoogleMaps.js file with widget logic. Additionally, it subscribes to topic

“AutoMicrosite.GoogleMaps” for listening input messages, and describes the

message semantically, as described in chapter 5.2. User interface of this widget can be seen

in Figure 3.1.

20

<?xml version="1.0" encoding="UTF-8"?>
<widget name="GoogleMapsWidget"
 id="AutoMicrosite/GoogleMapsWidget"
 spec="1.0" width="640" height="480"
 x:min-width="100" x:min-height="100"
 jsClass="AutoMicrosite.Widget.GoogleMaps"
 xmlns:x="http://deepweb.ut.ee/automicrosite/OpenAjaxMetadataExtension"
 xmlns="http://openajax.org/metadata">
 <library name="jQuery"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/" version="1.7.1">
 <require type="javascript" src="jquery.min.js"/>
 </library>
 <require type="javascript"
 src="https://www.google.com/jsapi" />
 <require type="javascript" src="GoogleMaps.js"></require>
 <content><![CDATA[<div id="__WID__map"
style="width:100%;height:100%;"></div>]]></content>
 <topic name="AutoMicrosite.GoogleMaps" type="object" subscribe="true">
 <property name="countryCode" datatype="string"
urlparam="https://www.inforegister.ee/onto/business/2013/r1/registrationC
ountryCode" />
 <property name="county" datatype="string"
urlparam="https://www.inforegister.ee/onto/business/2013/r1/countyName"/>
 <property name="city" datatype="string"
urlparam="http://schema.org/addressLocality"/>
 <property name="street" datatype="string"
urlparam="http://schema.org/streetAddress" />
 <property name="postalCode" datatype="string"
urlparam="http://schema.org/postalCode" />
 </topic>
 <categories>
 <category x:iri="http://schema.org/Map" />
 </categories>
</widget>

Example 3.2: Example of widget specification in OpenAjax Metadata 1.0

3.1.3 Shortcomings
One of the greatest shortcomings of OpenAjax Metadata 1.0 specification is the lack of

standardized or even suggested categories. This means that each implementer will have to

come up with their own set of categories, which might lead to interoperability problems if

certain application expects specific categories in order to work. In this master thesis also

new set of categories had to be selected and extended.

In web development it is generally advised to use feature detection instead of browser

or device detections. This is because browser versions change rapidly and also some

features might be disabled by users in their browsers. In OpenAjax metadata specification

only browser and version detection is possible, feature detection needs to be performed

inside widget code.

3.2 RuleML 1.0
RuleML 1.0 [33] standard has been designed for the interchange of rules in an XML

format that is uniform across various rule languages and platforms. It aims to cover most

real world situations and is designed as an extensible family of languages instead of one

single language. This makes easier to reuse a rule base designed for one application in

another application.

RuleML consists of several subfamilies, languages and sublanguages. Figure 3.2 gives

an overview of RuleML. RuleML languages can be broadly divided into deliberation and

21

Figure 3.1: Example of a visual widget

reaction rule languages. Deliberation rule languages focus on derivation, they have Datalog

RuleML as their core and add more features when necessary for the specific task. Reaction

rule languages focus on actions that are performed in response to events and actionable

situations. Reaction subfamily of RuleML addresses four types of reaction rules:

production rules, event-condition-action rules, rule-based complex event processing, and

knowledge representation reaction. Specific language constructs are structures as modules

in the XML schema definitions. This facilitates maintainability and extensibility.

In this thesis Naf Datalog RuleML is used to describe rules and facts for the mashup

construction application. These are evaluated by a rule engine and mashup is built from the

results.

3.2.1 Details
The following is a description of Naf Datalog RuleML language syntax. Reaction

RuleML languages were not used in this thesis so a description of syntax elements specific

to these languages is not provided. Instead the readers are referred to the official RuleML

1.0 specification [33] for further details.

22

Figure 3.2: Taxonomy of RuleML rules from [34]

The root element of a RuleML document is RuleML. It defines RuleML namespace

and schema location. It can have Assert, Query or Retract elements as its child

elements. The element Assert implies that its content is asserted, i.e., knowledge is

added. The element Query implies that element's content is queried from a ruleset. The

element Retract means that element's content is retracted, i.e., knowledge is removed.

Facts are described using the Atom element. A fact is defined in terms of a relation

constant Rel. It can contain any number of individual constant and data constant elements,

respectively denoted with Ind, and Data, for defining relation arguments.

Implication rules are described using the Implies element. It has 2 child elements:

if, that defines the premise or condition that must evaluate to true, and then, that defines

the conclusion or consequent of the rule. These elements can either have an Atom or an

And and several Atom elements as child elements of this And. The And element evaluates

to true if all of its child elements evaluate to true or if it has no children. Similarly to facts,

the Atom elements in implications can contain constants and data, but they can also

contain logical variable elements denoted with Var.

In object-oriented RuleML, the slot elements can be used to create keyword-value

pairs inside atoms. In this way the order of constants and variables in a relation is not

important, constants and variables are matched based on keyword. Keyword is the first

child of slot and its value is the second child. In order to provide even higher degree of

flexibility, a resl element is supported, which allows matching of all slots that are not

specifically defined.

23

3.2.2 Example
Example 3.4 is an example of a simple Datalog RuleML ruleset. It defines a fact that a

widget “1” belongs to category “http://schema.org/Map” and an implication that if

a widget belongs to category “http://schema.org/Map” then it shall be placed

inside placeholder “2”.

3.2.3 Shortcomings
There is currently no complete open source RuleML evaluator engine available.

RuleML covers very large range of languages which makes creating a complete engine

very difficult and time consuming. For example OO jDREW11 has implemented Naf

Hornlog RuleML, which also contains Naf Datalog RuleML that is used in this thesis, but

is completely missing reaction languages and also several deliberation languages, like First

Order Logic. This means that rules written for one rule engine might not work with another

engine without modifications, even though both engines evaluate RuleML.

11 http://www.jdrew.org/oojdrew/

24

<RuleML xmlns="http://ruleml.org/spec">
 <Assert>
 <Atom>
 <Rel>Category</Rel>
 <slot><Ind>widget</Ind><Ind>1</Ind></slot>

<slot><Ind>category</Ind><Ind>http://schema.org/Map</Ind></slot>
 </Atom>
 <Implies>
 <if>
 <Atom>
 <Rel>Category</Rel>
 <slot><Ind>widget</Ind><Var>x</Var></slot>

<slot><Ind>category</Ind><Ind>http://schema.org/Map</Ind></slot>
 </Atom>
 </if>
 <then>
 <Atom>
 <Rel>Location</Rel>
 <slot><Ind>widget</Ind><Var>x</Var></slot>
 <slot><Ind>placeholder</Ind><Ind>2</Ind></slot>
 </Atom>
 </then>
 </Implies>
 <Assert>
</RuleML>

Example 3.3: A RuleML fact and an implication

http://www.jdrew.org/oojdrew/

3.3 Schema.org
Schema.org [35] is a joint operation by three major search engines to define a

standardized set of schema that all major search engines would use and understand. It was

jointly created by Google Inc., Yahoo Inc., and Microsoft Corporation to be used in their

search engines. Schema.org vocabularies are also used by Yandex, the largest Russian

search engine, and is open for everyone to use. It was created in the spirit of

Sitemaps.org12, a similar cooperation between search engine companies to create XML

sitemap protocol that major search engines would recognize.

Schema.org provides an ontology for classifying content on web sites. This helps

applications, like search engines, that are familiar with the schema, to understand what the

information presented on the Web site means. For instance, the word “2012” might refer to

a movie, a year, or just a number. Adding a Schema.org class “Movie” as an annotation to

the corresponding Web site element would allow search engines to recognize that the text

refers to the movie.

In the context of this thesis, Schema.org vocabulary is used to annotate widgets and

based on these annotations layout rules are applied to widget descriptions. Because of the

nature of widgets and web sites, only “CreativeWork” class of the Schema.org ontology

and its subclasses are used for layout generation purposes. At the moment these

annotations have to be added manually to the widgets, but in the future, once this standard

gets recognized in wider scale, these tags could be automatically gathered from the source

code of the widget.

3.3.1 Details
Schema.org provides a selection of commonly used content classes in a hierarchical

fashion. All classes are children of class “Thing”, the most generic class of an item. It has

properties “additionalType”, “description”, “image”, “name” and “url”. It is

extended with classes “CreativeWork”, “Event”, “Intangible”, “Medical-

Entity”, “Organization”, “Person”, “Place” and “Product”. All these classes

add new more specific properties and are extended further by more child classes. Common

data types are described in a separate “DataType” hierarchic, it includes “Boolean”,

“Date”, “DateTime”, “Number”, “Text” and “Time”.

12 http://www.sitemaps.org/

25

http://www.sitemaps.org/

In situations where Schema.org does not provide necessary vocabulary it is allowed to

use extensions of its elements in annotations. More specifically, users can extend existing

class names in their annotations with a slash character, followed with an identifier of the

introduced subclass. This allows existing applications to at least partially understand the

class, even though the applications are not familiar with the extension. For example, after

extending class “Person” with a subclass “Engineer” an annotation will be

“Person/Engineer”. If no suitable class exist in the schema to associate the extension

with then it is also allowed to create new schemas. Extensions may be proposed for

inclusion in Schema.org vocabulary, but this process is controlled by the companies that

created this schema.

For a markup language for annotations, Schema.org creators have chosen Microdata.

Microdata is HTML5 specification for embedding semantics into existing HTML

documents. More detailed description of Microdata is given in Section 3.4.

3.3.2 Example
Example 3.4 is an example widget annotated with category “http://schema.org/Table”.

In this way we expose that the widget is a table widget and the developed layout selection

can process it accordingly.

3.3.3 Shortcomings
Schema.org is not a truly open standard. Sponsors of Schema.org, Google, Yahoo and

Microsoft, cooperate with W3C WebSchemas task force to get feedback from the

community, but they keep control over the schema [36]. The vocabulary is closed to third-

party contributions, only classes used by consortium members will be incorporated. This

limitation may create interoperability problems since applications cannot be expected to be

familiar with all extensions and some extensions might not be compatible with each other.

Finally, Schema.org vocabulary is in its early steps and not yet very commonly used.

26

<?xml version="1.0" encoding="UTF-8"?>
<widget name="TableWidget" spec="1.0"
 xmlns="http://openajax.org/metadata"
xmlns:x="http://deepweb.ut.ee/automicrosite/OpenAjaxMetadataExtension
">
 <category x:iri="http://schema.org/Table" />
</widget>

Example 3.4: A categorized table widget

3.4 HTML Microdata
HTML Microdata [37] is an HTML5 specification for embedding semantics into

HTML documents. It allows defining HTML elements as items and their descendants as

properties of that item. Items can be given URIs to globally define their meaning.

In this project Microdata specification is only used for describing template

placeholders for widgets and Microdata DOM API is used for finding the placeholders and

replacing them with widget implementations. In future, when Microdata and Schema.org

become more widespread, Microdata DOM API could be used to get widget annotations

from the source code of widgets as well.

3.4.1 Details

Markup

An element is given an item scope with the itemscope attribute. It is a boolean

attribute, adding it to an element without specific value evaluates to true which creates an

item scope. To define the class of the item, itemtype attribute is used, which takes a

URL as a value and defines in this way the class of the element globally so that all

applications could understand the item in the same way. For example, the value of

itemtype attribute could be a Schema.org class. If the item is given a global identifier,

then it can be defined using itemid attribute. For example, for a book this value could be

the ISBN of the book, and for a blog post it could be the URL of the blog post.

Microdata items can have properties, which are defined using itemprop attribute. If

an item has several properties with the same name, then these are interpreted as a list of

values. Generally the value of the item property is the text content of the element.

However, if the item has an itemscope attribute, then the value is the item defined by

that element. Furthermore, if the element is a meta element then its content attribute

value is taken as the value of the property. For audio, embed and other media elements,

the src attribute is the value of the property. For a, area and link elements, the href

attribute value is the value of the propery. For object element the data attribute is the

value of the property. For date element the value attribute is the value of the property.

Finally, for the time element the datetime attribute is the value of the property.

27

DOM API

For easy access and manipulation of the data encoded in Microdata, a Microdata DOM

API is defined in Microdata specification. All the attributes defined for HTML elements

can be accessed using this API and a few extra calls have been defined:

• document.getItems([types]) call returns a list of HTML elements that

include all the items that include all the classes given as the attribute and are not

part of any other item. This call is only available on the “document” element;

• element.properties returns all the property elements of an item. If

element is not an item, i.e. it has no item scope defined on it, an empty list is

returned;

• element.itemValue returns the value of the property and if an element is not a

property then InvalidAccessError exception is thrown. It can also be used to

set the value of the property.

3.4.2 Example
In Example 3.5 a template placeholder is annotated using Microdata. It defines that the

div element is an item of class “http://deepweb.ut.ee/TemplatePlace-

holder” and it has several “category” properties and “min-width”, “min-

height”, “max-width” and “max-height” properties.

3.4.3 Shortcomings
HTML Microdata standard is still a W3C working draft at the time of writing this

thesis, which means it could still change. It also means that Microdata DOM API is not yet

28

<div class="placeholder"
 itemscope
 itemtype="http://deepweb.ut.ee/TemplatePlaceholder"
 itemid="contentWidget">
 Loading content...
 <meta itemprop="category" content="http://schema.org/Map" />
 <meta itemprop="category"
content="http://schema.org/MediaObject" />
 <meta itemprop="category" content="http://schema.org/Table" />
 <meta itemprop="min-width" content="1" />
 <meta itemprop="min-height" content="1" />
 <meta itemprop="max-width" content="9999" />
 <meta itemprop="max-height" content="9999" />
 </div>

Example 3.5: Example of a template placeholder

implemented in any browsers, but it can be simulated quite easily with existing DOM

tools.

3.5 Media queries
Media queries [38] is a W3C recommendation, which leverages media-dependent CSS

rules. It is based on CSS 2 Media types [39], which allow defining different CSS rules for

regular computer screen, printers, hand-held devices and couple of other screen types.

In the current project media queries combined with JavaScript code are used to adjust

the layouts to as many screen resolutions as possible. Since most widgets cannot be re-

sized indefinitely then the aim is to use column drop and off canvas patterns, as explained

in [40]. Column drop pattern displays more columns with content next to each other on

wider screens and on smaller screens while less important columns are moved below other

columns. Off canvas pattern divides layout into sections such that on a larger screens more

sections are shown at time and on a smaller screens some sections are hidden off the screen

and can be shown by performing some action, for instance by clicking a button.

3.5.1 Details
Media queries can be used either inside the media attribute of HTML link element

or by enclosing CSS rules inside within curly brackets and placing the media query before

the brackets. In the first case the whole style sheet file is only loaded in case the device

satisfies the query, otherwise only the enclosed CSS rules are applied in case the device

satisfied the media query. Several queries can be separated using a comma, which

expresses the logical “or”, or “and” keyword, which expresses the logical “and”.

In HTML 4 and CSS 2 media types, such as “screen”, “tv” and “print”, were

defined and these are still present in HTML 5. These are used to define media specific CSS

rules. For example “screen” means that the rules only apply when Web page is displayed

on a computer screen, but “print” means that the rules are only applied when printing

the Web page.

To define the dimensions of the display area, the min-width, min-height, max-

width and max-height keywords are used. The units of the values are the same as in

other parts of CSS, meaning that centimeters, pixels and em-s, which is the font size, are

allowed. Additionally, the device-width and the device-height keywords are

used to limit the actual screen size of the device. This may be different because for instance

29

Windows operating system based computers allow users to re-size the browser window

size, which would change the display area, but the device dimensions would remain static.

Similarily, Android based devices have address bar at the top of the screen and software

buttons in the bottom of the screen, which reduce the usable dimensions.

To apply rules only in case the device is in portrait or landscape mode, the

orientation keyword is used. The aspect-ratio and the device-aspect-

ratio keywords are used to limit the rules to specific media with certain aspect ratio. For

example, most new TV and computer screens are in 16/9 aspect-ratio, older screens were

often in 4/3 aspect-ratio while the same 4/3 layout is used on both screens with a large

blank space on the sides of 16/9 aspect-ratio screens.

Applying rules only to media with specific color output capabilities, color, color-

index and monochrome keywords are used. The color keyword limits the number of

bits per color component the device must be able to present. The color-index keyword

limits the number of entries in the color lookup table of the device. The monochrome

keyword is used to limit style sheet rules to black and white devices.

To further identify the device, the resolution keyword can be used to limit rules

based on screen resolution. For example, many new smart-phones come with very high

resolution screens, computer screens generally have less dots per unit and large TVs have

even smaller resolutions.

3.5.2 Example
The HTML code in Example 3.6 loads special “SmallStyle.css” style sheet file in

case the media type is screen and the screen is up to 600 pixels in width.

30

<link rel="stylesheet" media="screen and (max-width: 600px)"
href="SmallStyle.css" />

Example 3.6: Loading special CSS for small screens

The CSS code in Example 3.7 applies CSS rule that hides all elements with CSS class

“wideScreen” from all devices that have screen aspect ratio of 4/3, for example old TVs

and iPad.

3.5.3 Shortcomings
Media queries standard has just recently become a recommendation, so it is not yet

implemented in many browsers. For instance, it is only implemented in Internet Explorer

913 and currently is not supported at all in Internet Explorer mobile14. Mozilla Firefox and

Google Chrome have supported this specification since version 3.5 and 4.0, respectively15.

However, it is supported in current major smart-phone operating systems, Android and

iOS, and much of its functionality can be simulated using JavaScript.

3.6 Transformer widget
Transformer Widget [41] is a widget that when connected to OpenAjax Hub 2.0 hub

routes and integrates messages between widgets with respect to the semantics of the

messages. It is written using Google Web Toolkit and then compiled to JavaScript. In order

to support message caching, to prevent situations where widget, that is not yet initiated,

misses messages, it has is suggested to be used together with TIBCO PageBus16

implementation of OpenAjax Hub 2.0.

Such middleware widget is needed because messages exchanged by different widgets

created by different authors are often syntactically not compatible although they handle

semantically similar data. Even more complicated are situations where one widget expects

input message that is composed of output messages of several other widgets. Unless a

mashup developer is able to modify all the widgets to be compatible, some sort of middle-

13 http://caniuse.com/css-mediaqueries
14 http://www.quirksmode.org/mobile/tableViewport.html#mediaqueries
15 http://caniuse.com/css-mediaqueries
16 http://developer.tibco.com/pagebus/default.jsp

31

@media all and (device-aspect-ratio: 4/3) {

.wideScreen {
display: hide;

}
}

Example 3.7: A CSS rule that only applies to devices with 4/3 screens

http://developer.tibco.com/pagebus/default.jsp
http://caniuse.com/css-mediaqueries
http://www.quirksmode.org/mobile/tableViewport.html#mediaqueries
http://caniuse.com/css-mediaqueries

ware is needed which does the translation and composition.

In order to perform the integration, mappings of all the messages exchanged must be

defined. These mappings must be published to the Transformer Widget, there are 3 ways to

do this. First option, is to publish the URL of the mappings XML file to “ee.stacc.

transformer.mapping.add.url” topic. Second option, mappings may be placed in

“mappings.xml” file that is in the file system folder with the Transformer Widget.

These approaches are not always possible, because user needs access to the server where

the Transformer Widget resides, so the third and preferred way is to publish the mappings

data to “ee.stacc.transformer.mapping.add.raw” topic.

Mappings for a single message are defined using the frame element. All messages

exchanged under one topic must follow the same structure, otherwise it would not be

possible to map the message with annotations. Under the frame element topic,

format, schema, schema_data and mappings elements can be used to define

mappings:

• The topic element defines the name of the topic that the mapping describes. It

has an optional parameter outgoing_only which, when set to “true”, means that

there are no widgets subscribed to that topic. This lets the Transformer Widget

know that it does not have to compose such messages;

• The format element specifies the format of the data exchanged. Currently, the

Transformer Widget only supports JSON and string data formats;

• The schema element defines the location of the JSON schema file which is used

to generate a message for the topic. Since this was seen as inconvenient, Kirsimäe

[42] added support for schema_data element, which allows adding the JSON

schema data inline;

• The mappings element is the container for all the mappings. It may contain

mapping elements and repeating_element_group elements;

• The mapping element contains mapping of a single data element. It has

global_ref child element, which defines the reference to an OWL class. The

path child element defines the location of the data element inside a message. The

path is a slash (/) separated list of tokens which define the location of the element

from root element. A mapping element may also contain a default element,

32

which defines a default value for the data element in case none is received;

• The repeating_element_group element maps a repeating element, such as

an array. It must have a path attribute, which defines the location of the element in

the message. Additionally, it may contain repeating_element_group

elements and mapping elements.

Transformation widget maps messages based on the OWL classes specified for data

elements. It is also capable of combining messages in order to create new messages. Once

it has all the necessary data elements to form a message for a topic it is monitoring, it

creates it using the JSON schema specified for the topic.

3.7 Proxy widget
Proxy widget [42] is an OpenAjax widget for surfacing SOAP services. It enables

querying of SOAP services using OpenAjax Hub publish-subscribe APIs.

Proxy widget is necessary because consuming SOAP service from within browser with

existing technologies is problematic. This is because making a cross-domain requests with

JavaScript is limited due to browser same-origin policy [43], and generating and parsing of

SOAP messages is difficult, because of lack of good XML processing tools.

A commonly used method to bypass browsers' same origin-policy is JSON-P [44]. It

works by loading the third party content as a JavaScript file and passes the data to a

callback function. This solves the problem of cross-domain requests, but it cannot be used

to directly query SOAP services because the response message has to be inside a JSON-P

callback function wrapper. It also introduces security concerns – since the message is

evaluated as JavaScript then the publisher could run any code, potentially malicious, on

client computer.

Another, more recent, approach to cross-domain domain requests is Cross-Origin

Resource Sharing (CORS) [45]. It extends the existing domain-bound XMLHttpRequest

with cross-domain request capabilities while keeping the communication secure. It would

theoretically allow direct communication with the SOAP service, but since it requires that

the server must send Access-Control-Allow-Origin HTTP header then it may

still require server-side changes. This standard is also relatively new and only supported in

modern browsers: Internet Explorer 8, Chrome 3 and FireFox 3.5 [46]. Lastly, CORS does

33

not solve the complexity of parsing a SOAP XML messages.

Third way, of achieving cross-domain messaging, is routing the messages through a

less limited server-side proxy on the same domain. This means that no changes are

necessary on the service side and it is also possible to transform the message to more easily

understandable format by JavaScript, for example from SOAP XML to JSON. The only

downside is that a server-side proxy needs to be set up, which may require programming

knowledge and higher-level access to the server. The proxy widget handles all this

complexity.

Proxy widget consists of client-side component, which includes the non-visual

OpenAjax widget and utility functions, and server-side component, which generates

mappings and proxies the request to service. The client-side widget and the server-side

component must be hosted on the same domain. Client-side and server-side communicate

using XMLHttpRequest, which is restricted with the same-origin policy. In order to

generate the necessary mappings, the WSDL description of the service must be annotated

using SAWSDL17. SAWSDL is an extension to WSDL that allows semantic descriptions

within WSDL/XSD documents.

The client-side implementation consists of the widget code and utility functions for

setting up the environment and widgets. When creating a new proxy widget instance, the

URL of the WSDL for the service and the name of the operation to call are passed to the

widget. The URL of the server-side component is taken from the URL of the widget, since

they must reside on the same domain. Once the proxy widget has initiated, it constructs a

URL to server-side mappings generator component and publishes it to transformer widget.

Additionally, it generates URL to server-side SMD document generator component, that

Dojo JSON-RPC component uses to create requests to proxy service.

The server-side component provides JSON-RPC proxy service to a SOAP service. In

addition, it also generates mappings and JSON schema definition for the transformer

widget, and a SMD document for Dojo JSON-RPC service wrapper.

17 http://www.w3.org/2002/ws/sawsdl/

34

http://www.w3.org/2002/ws/sawsdl/

4 Solution

The proposed solution to automated mashup layout selection is a rule-based

matchmaker of widgets and layout templates. Rules are defined using RuleML and they are

used to modify the matching behavior. Widget data is represented with OpenAjax Metadata

1.0 files. Layout templates are created using standard HTML, but special widget

placeholders are placed inside the HTML code with Microdata markup. The mashup is

built on top of OpenAjax Hub 2.0, which enables widget communication while securely

separating widgets. This approach makes the application very flexible, since the result can

be improved by adding new rules or layout templates. Also, the effort needed to make

existing resources compatible with the application should be minimal because established

standards and technologies are used.

In the following 4+1 architectural view model [47] is used to describe the architecture

of the automated layout selection application. Process view describes the process of

automated mashup creation. Development view describes the implementation of the

components. Physical view gives an overview of the physical architecture. Logic view and

scenarios have been omitted. They were deemed unnecessary because there is very limited

direct user interaction with the application.

4.1 Process view
Mashup construction process is initiated when user submits a set of widgets with

parameters to the Auto Microsite system.

4.1.1 Server-side component
Input is received and interpreted by the request handler component. The request

handler first checks whether it can find a cached copy of the requested mashup. If if finds a

cached copy then this is returned as result. If no cached copy is found, the mashup

constructor component is initiated and the received widget references with parameters and

configuration options are passed to it. Next, the mashup constructor component reads static

rule files and sends them to the rule construction component which combines them and

returns the combined ruleset. Next, the mashup constructor sends a list of widgets'

metadata file URLs to rule construction component, which generates facts based on the

35

metadata. These facts are also combined with the previous ruleset. Next, template facts are

generated by rule generator component and also combined with previous ruleset. Finally,

the combined ruleset is sent to rule service.

Next, the mashup construction component starts querying the rule service. First, the

mashup construction component queries the rule service client for a template that can

accommodate all given widgets. Then, the mashup construction component separately

queries the rule service for each widget for its widget metadata. Once done, mappings are

generated for all semantically described widgets and added to the metadata.

Finally, the chosen template is prepared and widget metadata is appended to it. The

resulting HTML code is returned to the request handler component which caches it and

passes it back as response to the query.

4.1.2 Client-side component
Generated HTML code will be executed in client browser. First, OpenAjax Hub will be

instantiated. Next, all the widgets will be instantiated and connected to the hub and

placeholders. Data widgets will not be attached to a placeholder and instead will be added

to the end of the document. When there are several widgets in a placeholder, the ones with

higher priorities or lower work-flow order numbers are attached first. After loading of all

the widgets is completed, the client-side component publishes widgets' mappings, when

available, for the Transformer Widget. Next, menu widget, if available, is instantiated by

populating it with data about widgets. Finally, the widget constructor will resize the visual

widgets to appropriate dimensions. This resizing will also be done on each page resize.

This concludes the mashup construction process. Next, individual widgets will perform

tasks according to their individual logic. An overview of the whole process of generating a

mashup Web site is given in Figure 4.1 using BPMN diagram.

36

37

Figure 4.1: Process view BPMN diagram

4.2 Development view
On a high level, the Auto Microsite system can be divided into 3 main components:

client-side component, server-side component and RuleML rule service. Figure 4.2 shows

the component diagram of the application.

4.2.1 Server-side component
Server-side component processes widgets that it receives as input and constructs

HTML and JavaScript code for the client-side component.

The request handler component receives initial input from client in JSON format or as

query string fields. The request handler component initiates the mashup constructor

component, passing along widgets' data received as input. It also reads application

configurations file. Because the evaluation of the rules can be resource intensive and

generally just slow, then the request handler component also handles caching of the

mashup.

The server-side mashup construction process is orchestrated by the mashup constructor

component. It follows the process described in Section 4.1.1. It reads the static rule files,

generates template and widget facts using the rule generator component and finally

combines all the rules and facts into a single ruleset. Next, it initiates rule service client

38

Figure 4.2: Component diagram of the layout construction application

component. Using the rule service client, a template is selected and then all widgets' info is

queried one by one. Then, the mappings generation component is initiated, which generates

mappings for all the widgets. Finally, the mashup constructor extends the chosen template

file with necessary mashup JavaScript code and widget data such that the latter is appended

to the end of the head element of the template HTML code.

Rule generator component generates rules and facts for the rule service. Rules and facts

are generated from OpenAjax metadata files, described in Chapter 5.2, and layout template

files annotated using Microdata, described in Chapter 5.3.

Mappings generator component generates mappings for Transformer Widget from

OpenAjax Metadata files. In order to do this the topics have to be semantically described,

as shown in Chapter 5.2.

Rule service client component mediates communication between the mashup

constructor component and the rule service. It first sends the ruleset to rule service and

later queries it for an appropriate layout template and widget information.

4.2.2 Client-side application component
The client-side application component handles the final construction of the mashup

after necessary parameters have been set by the server-side application component. It is

further divided into OpenAjax Hub, mashup constructor, Transformer Widget and Proxy

Widget components.

The mashup constructor component orchestrates the life-cycle of the mashup from

construction to event handling. It follows the process described in Chapter 4.1.2. It creates

an instance of OpenAjax Hub that all the widgets are connected to.

OpenAjax Hub component is used as the backbone of the mashup. In order to support

message caching, TIBCO PageBus 2.0 [48] implementation is used instead of the reference

implementation of OpenAjax Hub 2.0. At the same time OpenAjax Hub basic functionality

is used to handle secure messaging between widgets. OpenAjax Hub also includes the

client-side JavaScript reference implementation of an OpenAjax Widget loader by

OpenAjax Alliance. The widget loader parses OpenAjax Metadata 1.0 files and constructs

OpenAjax widgets based on the metadata. Finally, the widget is connected to the hub and

added to the placeholder.

Transformer Widget is a widget that is attached directly to OpenAjax Hub and it aims

at assisting widget communication by semantically integrating syntactically different

39

messages with semantically similar content. This component is not required, when widget

topics and messages are compatible with each other in which case they can exchange

messages directly through OpenAjax Hub. Overview of semantic integration widget is

given above, in Section 3.6.

Proxy Widget is a widget that enables consumption of SOAP services. It is an

OpenAjax widget that also contains server side component for cross-domain requests.

Overview of proxy widget is given above, in Section 3.7.

4.2.3 RuleML service
The RuleML service is a RESTful service for rule evaluation written in Java. It is based

on OO jDREW RuleML engine and uses MySQL database for data storage. OO jDREW

[49] (the Object Oriented Java Deductive Reasoning Engine for the Web) is object oriented

extension to jDREW, a deductive reasoning engine for clausal first order logic. It

introduces object oriented RuleML terms, slots and rest, to jDREW, allowing more

flexibility, since all the constants do not have to be in the same order or even present in

order to match facts. OO jDREW supports Naf Hornlog RuleML sublanguage of RuleML

specification version 1.0. OO jDREW has support for some built in relations, such as

“greater than” and “less than”, additional built in relations may be implemented in Java.

Rulesets are stored in a MySQL database to persist them over requests. This allows

querying the ruleset without sending the whole ruleset with every request. New rules can

also be appended to existing rulesets.

40

4.3 Physical view
The physical architecture of the application is designed to be flexible - all the high-

level components may run on independent server nodes or on the same server node.

Requirements for the environment are not very strict, any HTTP server or PHP version,

newer than 5.3, may be used. Figure 4.3 is the deployment diagram of the application.

The server-side application component needs to be deployed on a node with HTTP

server software, such as Apache HTTP server18 or Lighttpd19, and PHP 5.320 or newer. The

client-side application component runs in a modern browser, such as Google Chrome,

Mozilla Firefox or Microsoft Internet Explorer 9. Browser must have enabled JavaScript

18 http://httpd.apache.org/
19 http://www.lighttpd.net/
20 http://php.net/

41

Figure 4.3:Physical view of the application

http://php.net/
http://www.lighttpd.net/
http://httpd.apache.org/

and depending on specific widget, Flash or Silverlight plug-in might be necessary.

RuleML service needs a node with Java application server software. Application has

been tested with GlassFish. In between requests, rules are stored in a database, for which

MySQL database server is used.

42

5 Implementation

5.1 Categories ontology
In order to provide adequate matching behavior, a new ontology was defined at domain

http://deepweb.ut.ee/21 which also imported Schema.org onotology. This new

ontology defines 6 new classes in addition to Schema.org ontology: “BarChart”,

“Chart”, “Dataset”, “Form”, “LineChart” and “PieChart”.

The “Datasets” class is an implementation of proposed “Datasets” [50] schema

for Schema.org. Once the proposal has been added to Schema.org it could be used instead

of the extension element. It is used to categorize content, i.e., non-visual, widgets.

The “Chart” class is for categorization widgets as charts widgets, it extends the

“http://schema.org/WebPageElement” class. “BarChart”, “LineChart”

and “PieChart” are all different more specific classes of charts. The “Form” class is for

categorization of a form widget, it extends the “http://schema.org/WebPage-

Element” class.

5.2 Widgets
Widgets are defined using OpenAjax metadata 1.0 specification, described in Chapter

3.1 above. This allows storing of all the necessary information in one standard based

metadata file, making the widgets portable. OpenAjax specification already has most of the

necessary vocabulary, but some new extending attributes were added using a new

namespace “http://deepweb.ut.ee/automicrosite/OpenAjaxMetadata-

Extension”.

For the widget element, the extension defines new min-width, min-height,

max-width and max-height attributes. These define the minimum and maximum

allowed widget dimensions in pixels. This way it is possible to avoid resizing to an extent

that makes the widget unusable. The application will chose appropriate dimensions when

none are defined.

21 http://deepweb.ut.ee/automicrosite/schema.org.owl

43

http://deepweb.ut.ee/automicrosite/schema.org.owl

For the category element a new iri attribute is defined. This defines the

internationalized resource identifier which has to belong to Schema.org class hierarchy or

the Schema.org extension, described in Section 5.1.

For the content element a new iri attribute is defined. This is a URL to traditional

OpenAjax widget HTML file that is implemented without metadata. The URL has to be

absolute. This type of widget is always loaded inside an HTML iframe element and

ignores the value of sandbox attribute for the widget.

In order to support semantic integration, all topics, that the widget communicates

through, must be defined in the metadata file using topic element and structures of the

messages must be defined using property elements. All property elements must have

name, datatype and urlparam attribute values. The name attribute value is the name

of the property in a JSON message that the widget consumes or publishes. The urlparam

attribute value is used for an annotation and used when generating mappings for the

Transformation Widget. The datatype attribute is the type of the property value,

“array”, “boolean”, “null”, “number”, “object” and “string” are supported.

Example 3.1 is an example of a topic that has been semantically described.

Widgets have to be “smart”, meaning that they should contain most of the necessary

logic and should be able to operate without dependencies to other widgets. The application

will initialize them, set dimensions, provide them with initial data and format exchanged

messages into acceptable format for all widgets, using the Transformation Widget, but

widgets should contain necessary logic to store, process and display the data.

44

<topic name="AutoMicrosite.BusinessRegister.QueryResponse"
type="object" publish="true">
 <example><![CDATA[
 {"name": "EVETERM OÜ",
 "code": 11375683}
]]></example>
 <property name="name" datatype="string"
urlparam="http://schema.org/Organization#legalName" />
 <property name="code" datatype="number"
urlparam="https://www.inforegister.ee/onto/business/2013/r1/registrat
ionCode" />
 <property name="registrationCountryCode" datatype="string"
urlparam="https://www.inforegister.ee/onto/business/2013/r1/registrat
ionCountryCode" />
</topic>

Example 5.1: A semantically annotated topic

5.3 Layout templates
Layout templates are regular HTML files that describe the layout of a mashup. These

files may also contain CSS and JavaScript or even external files, like CSS, JavaScript or

image files, but these must be defined using absolute URLs. Widget placeholders are

marked up using Microdata specification.

A new item class (“http://deepweb.ut.ee/TemplatePlaceholder”) was

defined in this thesis for layout template placeholders. The properties defined for the

template placeholder type are category, min-width, min-height, max-width,

max-height and optional. The category property defines the Schema.org

categorization of widgets that may be used in the placeholder. If multiple category

properties are defined then widget must match at least one of them. The min-width,

min-height, max-width and max-height properties define the minimum and

maximum dimensions of widgets that may be used in the placeholder. If no minimum or

maximum dimensions are defined then a widget of any dimensions may be used in the

placeholder. The boolean property optional defines whether the placeholder has to be

filled or may be left empty in the generated mashup. The default value is “false”, which

means that the placeholder must be filled with a widget.

Similarly to widget, templates have to be “smart”. The client-side application will

manage widgets, but a template will have to be implemented with respect to usability

guidelines described in Chapter 2.5.

5.4 Rules
Rules are defined using RuleML 1.0 specification OO Naf Datalog sublanguage. Rules

are either statically stored in ruleml files or generated dynamically based on widget and

template files. Relations in rules are defined using URIs such that they are globally unique.

For example, relation named “http://openajax.org/metadata#category”

defines that widget belongs to some category.

Statical rules are applied to all mashups in the same way. For the application, statical

rules are distributed to three types: generalization rules, priority rules and other rules.

Generalization rules allow Schema.org element children to inherit rules from parent

elements. For example, rules associated with Schema.org class “MediaObject” also

apply to its subclasses “AudioObject”, “ImageObject”, “MusicVideoObject”

45

and “VideoObject”. Priority rules, however, allow ranking of widgets by their

importance such that more important ones are positioned closer to the header in a Web

page or on the first pages of a more complex multiple-page Web application. For example,

if priority rule states that Schema.org “MediaObject” widget has priority “10”, while

“Table” widget has only “1”, then “MediaObject” must be positioned higher in the

layout. Other rules manipulate the widget-template matchmaking process. For instance,

there is a rule that says that when a widget categorized as Schema.org category “Table”

is placed inside a placeholder together with some visualization wiget and there exists a

menu widget, then the table widget must be placed on a separate page.

Dynamically generated rules and facts are generated based on widget OpenAjax

Metadata and Microdata layout template files. The widget facts generated from OpenAjax

metadata define their dimensions and categories. The layout template facts, generated from

template files, define allowed dimensions and categories of placeholder, plus whether a

placeholder is optional and may contain more than one widget. Additionally, implications

are generated for checking whether there are widgets for all required template placeholders

and that all widgets have compatible placeholders.

5.5 Usage of rules
The process of matching templates with widgets is guided by rules. Since all the rules

are available in RuleML format in the appendix, this section explains only the most

important rules in the matching process using first order logic.

The logic behind the rules aims at providing the best match between a set of given

widgets and available layout templates. Matchmaking is done by matching the categories

of templates' placeholders to widgets' categories. Additionally, rule engine considers

widget dimensions and layout template placeholder dimensions, in order to avoid

stretching the user interface of a widget or a layout. This is expressed with Rule 1.

46

Rule 1: When there is a template t with placeholder p and a widget w that is not a data
widget and widget w and placeholder t share a category c and there are no dimensions
conflicts then widget w matches placeholder t.

template (t)∧placeholder (p , t)∧widget (w)∧¬isDataWidget (w)
∧category (w , c)∧templateCategory(t , c)∧badDimensions(w , t , p)

→widgetPlace (w)

Rule engine will evaluate rules to try and find a placeholder for each widget and then it

will check that there is a widget for each required placeholder. It is also possible to match

several widgets into a single placeholder. This is expressed with Rule 2.

Generally we assume that a template with more placeholders is more specific. This is

because a layout that contains a specific placeholder for each widget is likely to be more

specific for a case than a layout template with one or two placeholders that are able to fit

widgets of any class. Therefore, whenever several layout templates match the widgets set,

the one with the most placeholders is chosen, i.e., the most specific template with respect

to a given selection of widgets. This is expressed with Rule 3.

Data widgets are not suppose to be placed in placeholder, so it is important to identify

data widgets. The Rule 4 identifies widget as a data widget.

In order to use a menu widget it must be recognized first. Widget is regognized as a

menu widget with the Rule 5.

5.6 Server-side component
Server-side automated microsite generation application is written in PHP 5.3

programming language. Most of the server-side application components are

implementations based on interfaces or abstract classes, with the exception of mashup

constructor component, and constructed using factory pattern. This enables loose coupling

of components, meaning that the implementation of one component can be altered without

47

Rule 4: When a widget w belongs to category “Datasets” it is a data widget.

widget (w)∧category (W ,Datasets)→isDataWidget (w)

Rule 3: When a template t matches widgets and there is no template with higher priority
then template is returned as query response

template (t)∧templateMatch (t)∧¬templateNotHighestPriority(t)→templateQuery(t)

Rule 5: When a widget w belongs to category “AutoMenu” it is a menu widget.

widget (w)∧category (W , AutoMenu)→isMenuWidget (w)

Rule 2: When template t has widgets for all non-optional placeholders and no widget w is
without a placeholder then template is matched

templateFilled (t)∧¬widgetMissPlace (w)→ templateMatch(t)

affecting the rest of the application, as long as the interfaces stays intact.

The request handling component implements the IRequest interface, that can be

seen in Figure 5.1. The setInput method parses user input and prepares in such a way

that it can be accessed using methods getTitle and getWidgets. Widget objects,

accessible using the getWidgets method, must implement the IRequestWidget

interface. The handleException method is called whenever an uncaught exception is

received from the mashup constructor. The latter must respond appropriately, for example

with an HTML error page. The response method is called with finished mashup HTML

code as input when the mashup constructor has finished constructing the Web site. It must

respond to client request, either by outputting the data in some format or by saving the data

and providing the target URL. An abstract class AbstractRequest has been

implemented based on the interface. The class provides common functionality for different

request handling implementations. It loads the configuration file “conf.ini” and makes

the contents accessible using getConf method. It also provides getCache and

saveCache methods for cashing of the request.

Cache handling is implemented based on hash values constructed from URLs of all the

widget OpenAjax metadata documents and widget properties in mashups together with

particular mashup names. When an existing cache entry with a matching hash is found, that

48

Figure 5.1: Request handling component

is also no older than the rule files, it is used to return previously generated mashup

instantly instead of running the server-side mashup generation process from scratch.

Currently, two request handling classes have been implemented: GET and JSON. The

GET request handling class receives the data from HTTP GET request query string fields,

and in case of the JSON request handling class the request will be encoded in JSON format

and sent as a HTTP POST request body. In both cases the following attribute-value pairs

are used. The title field sets the title of the mashup. The widget field is used to send

the widget metadata URLs. In the case of HTTP GET request it is an array of widgets

where the index is also used as work-flow order number, so the widget that is intended to

be used first should have the lowest index. The property field is used to set property

values. It is also an array where the index must correspond to widget index in widget

field. Example 5.2 is an example of GET request. In the case of HTTP POST request,

widget field is an array of objects with widget info. Widget info object contains url,

properties and flowOrder fields. The url field contains the URL of the widget

metadata file. The properties field contains an object of properties for the widget. The

flowOrder field contains the work-flow step order number of the widget, this is

optional. Example 5.3 is an example JSON request input.

The server-side mashup construction process is orchestrated by the mashup constructor

component. It follows the process described in Section 4.1.1. The component receives

widget data from the request handling component. The mashup constructor component

49

http://deepweb.ut.ee/automicrosite/json.php
{"title":"My Mashup","widget":
[{"url":"http:\/\/deepweb.ut.ee\/automicrosite\/Widgets\/Table\/Table
.oam.xml","properties":
{"backgroundColor":"#FFFFFF","foregroundColor":"#000000"},"flowOrder"
:1}]}

Example 5.3: Script JSON input

http://deepweb.ut.ee/automicrosite/?title=My+Mashup&widget
%5B1%5D=http%3A%2F%2Fdeepweb.ut.ee%2Fautomicrosite%2FWidgets%2FTable
%2FTable.oam.xml&property%5B1%5D%5BbackgroundColor%5D=
%23FFFFFF&property%5B1%5D%5BforegroundColor%5D=%23000000

Example 5.2: Example HTTP GET request

reads static RuleML files, defined in the configurations file under [rules] section with

configurations generalization, priority and other, and sends them to the rule

construction component which combines them into a ruleset. Next, it sends all the widget

metadata URLs to the rule generator component, for fact generation, and combines them

with the rest of the ruleset. Next, it reads all the layout template files from templates

directory, defined with configuration templates_dir. Template files are sent to the rule

generation component, for fact generation, and are combined with the ruleset. Next, rule

service client object is created by the mashup constructor component, passing the created

ruleset and queries, defined with template_query and widget_info_query

configurations, to it. First, a template is selected through the rule service client component.

Next, all widgets' info is queried one by one. Then, the mappings generation component is

initiated, which generates mappings for all the widgets. Once the server-side processing is

finished, mashup constructor returns created mashup to request handler component.

Widget data is combined into objects created from the Widget class, shown in Figure

5.2, which is then serialized as JSON and returned to the client-side component. The id

field is internally used unique widget identifier. The title field is loaded from the

metadata file, when available, it is used in a menu widget, when necessary. The

50

Figure 5.2: Mashup constructor component

metadataFile field holds a URL to widget's metadata file. The placeholder

attribute contains identifier of the template placeholder that the widget belongs to. The

minWidth, maxWidth, minHeight and maxHeight fields describe the maximal and

minimal dimensions of the widget. The priority field describes the priority of the

widget, higher priority means that it is placed higher in the mashup. The

workflowOrder field describes the widget execution order, lower value means that the

widget is placed closer to the header of the mashup. The isDataWidget field is “true”

when the widget is data widget only, i.e., it has no user interface. The isMenuWidget

field is “true” when the widget is menu widget usable by the application for widget

pagination. The loadFirst field is “true” when the widget has to be loaded before

other widgets, e.g., Transformer Widget has to be listening to mappings of other widgets so

it has to be loaded first. The properties field contains properties that are given to the

widget when it is loaded. It is an associative array, where the key is the name of the

property and the value is the value of the property. The separatePage field is “true”

when widget has to be placed on a separate page in a multiple-widget placeholder, e.g., a

table widget when there is a visualization widget in the same placeholder.

Rule generator component implements the IRuleGenerator interface given in

Figure 5.3. The fromTemplates and fromWidgets methods generate rules from

template and widget files. The fromTemplates method takes an array of objects based

on ITemplate interface as input and returns generated ruleset as a string. The

fromWidgets methods takes an array of objects based on IWidget interface and

51

Figure 5.3: Rule generator component

returns generated ruleset as a string. The combine method is used to combine rulesets.

The concrete implementation for this thesis generates rules for widgets from OpenAjax

Metadata 1.0 files, XSLT transformation is used to perform this task. XSLT transformation

rules are stored in file Rules/OpenAjaxToRuleML.xsl. Rules for templates are

generated from Microdata template files using DOM API. PHP 5.3 DOM extension does

not yet implement Microdata DOM API, so an implementation of the API by Lin Clark22 is

used for parsing the template files.

Mappings generator component realizes IMappingsGenerator interface shown in

Figure 5.4. The getMappings method takes a URL of a OpenAjax metadata widget file

and returns the resulting mappings as a string. The algorithm implemented for mappings

generator finds all the topic elements inside a metadata file and then by recursively

going through all the property child elements constructs JSON schema and XML

mappings necessary for the Transformer Widget. The datatype attribute is used as the

type of the element in JSON schema, the name attribute is used as the property name in

JSON schema and also for constructing the global_ref element value for the

mapping element. In case an element with datatype value “array” is met, a

repeating_element_group element is created in the mappings.

22 https://github.com/linclark/MicrodataPHP

52

Figure 5.4: Mappings generator component

https://github.com/linclark/MicrodataPHP

Rule service client implements IClient interface, shown in Figure 5.5. In the

concrete implementation, a client is implemented for the RESTful RuleML service

described Chapter 4.2.3. PHP Client URL Library (cURL) is used for communication.

URL, ruleset, template query and widget information query are passed as string parameters

to the constructor of the client class. The method getTemplate queries rule service for a

template that satisfies the ruleset, URL of the template is returned. The method

getWidgetInfo takes widget identifier and template URL as an input and constructs

the query based on these values. This method returns an implementation of the IWidget

interface.

5.7 Client-side component
The client-side application component is written in JavaScript programming language

using Dojo 1.8 library [51].

53

Figure 5.5: Rule service client component

The mashup constructor component orchestrates the life-cycle of the mashup from

construction to event handling, as described in Chapter 4.1.2. The process is programmed

in start method. The setUpMenuManager method registers a listener to

“AutoMicrosite.MenuClick” topic and forwards every message received in said

topic to Navigation object clickMenu method. Figure 5.6 is the class diagram of

client-side mashup constructor component.

The WidgetLoad class loads all the widget metadata files, starting with widgets that

have been defined for first loading, and passes them to OpenAjax Hub component which

constructs widgets. It then loads visual widgets and finally data widgets. When there are

several widgets in a placeholder, the ones with higher priority value and lower

workflowOrder are attached attached first. When a widget has mappings data available,

this class will extend onLoad event handler of the widget to publish the data to

“ee.stacc.transformer.mapping.add.raw” topic for Transformer Widget.

The Curtain class activates a black see-through overlay with loading message. It is

used while the widgets are being loaded. It blocks user interactions with the mashup in

order to prevent errors and gives visual feedback about the status of the mashup. It is

required by Guideline 5.

The Size class handles the sizing of widgets. It is first executed when all visual

widgets have finished loading, later it is invoked every time a browser window size

changes or a navigation button is pressed. The algorithm for resizing the widgets goes

through all the placeholders one by one. For each placeholder, it finds the dimensions of

the placeholder and all the widgets inside it. Then it goes through all the placeholder

54

Figure 5.6: Client-side mashup constructor component

widgets in the order of their priority. Widgets are placed next to each other as long as they

fit and then a new line is started. When no minimal or maximal dimensions are available,

the application will use dimensions that fit best with the layout. When all the widgets

cannot be fit in the width or height of the placeholder with their minimal dimensions, a

scrollbar is used. Resizing is required by Guideline 1.

The Navigation class handles navigation between widgets. When a widget has the

separatePage option value set to “true” it will be made invisible by default and will

be shown when the mashup constructor receives a click event from a menu widget. It

populates menu widget by setting its buttons property value. Example 5.4 represents an

example of a button property value. It is an array that contains menu button objects. Each

button object contains label property, which defines the visible label of the widget, and

href property, which contains the identifier of the widget. The value of href property is

published to “AutoMicrosite.MenuClick” topic when the button is clicked.

Navigation class also subscribes to that topic and switch widget visibility whenever it

receives a message.

OpenAjax metadata loader reference implementation was thesis extended to add

support for the iri attribute on the content element. This kind of widget is simply

attached with IFrame container without rest of the OpenAjax metadata widget headers.

5.8 Deployment
The deployment of Auto Microsite system consists of two parts: the deployment of the

Auto Microsite application itself and the deployment of RuleML service.

5.8.1 Auto Microsite application
The server-side Auto Microsite system component requires HTTP server with PHP 5.3

or later, as described in Chapter 4.3. In order to deploy the application, the application files

55

[
 {label: "My Mashup", href: {widget: null, placeholder:
"contentWidget"}},
 {label: "Table", href: {widget: null, placeholder:
"contentWidget"}}
]

Example 5.4: Menu widget input

have to be uploaded to a HTTP server and “log” directory has to be configured to be

writable by PHP user. Auto Microsite system is configured using conf.ini file.

Configurations file is distributed into general, rules and rule service sections.

General configurations section (“[general]”) holds configurations for cache,

templates, rule generator component and mappings generator configuration. To enable

caching the cache configuration has to be set to “1”. Directory for cache entries is set

with cache_dir configuration. Cache directory has to be accessible and writable by the

PHP user, so read and write permissions may have to be granted to all users. The

template_dir configuration sets the directory from within the application will read

template files. The rule_generator configuration sets the rule generator

implementation which is used for rule and fact generation and combination. Only

“RuleML” has been implemented for this thesis. The mappings_generator

configuration sets the mappings generator implementation which is used for Transformer

Widget mappings generator. Only “OpenAjaxMetadata” has been implemented for this

thesis.

Rules configuration section (“[rules]”) holds configurations for rule files locations.

The generalization configuration sets the location of generalization rules file. The

priority configuration sets the location of priority rules file. The other configuration

sets the location of other rules file. The template_query configuration sets the

location of template query file. The widget_info_query configuration sets the

location of widget information query file.

Rule service configuration section (“[rule_service]”) holds configurations for

the rule service. The type configuration sets the rule client implementation that is used

for querying the rule service. Only “OOjDREW” has been implemented for this thesis. The

url configuration sets the location of the rule service.

56

5.8.2 RuleML service
In order to deploy RuleML service the RuleMlApp2 project needs to be built into a

“RuleMlApp2.war” file. This file can be deployed on a Java application server, such as

Glassfish.

A MySQL database needs to be set up for RuleML service. The

“RuleMlApp2/db.sql” file needs to be imported to the database in order to create

necessary knowledgebase table. RuleML service connects to database using JDBC

Resource named “jdbc/MySQL”.

57

6 Proof of Concept

In order to validate the solution two proof of concept scenarios were constructed. First

one visualizes “Hourly labour costs in Euros (European Union 1997-2008)” [52] data as a

map and a table, while the second proof of concept visualizes debt information from

Inforegister.ee database as a table. Additionally, Schema.org ontology extension defined

for semantical notations of the service is described here.

6.1.1 Schema.org extension
For semantical annotation of the widgets in the following scenarios a new

https://www.inforegister.ee ontology23 was defined, which also imports

Schema.org ontology. It defines new “AccessKey”, “DebtSum”, “NumericRange”,

“Organization” and “PostalAddress” classes with properties.

6.2 Proof of Concept 1
The aim of this proof of concept is the creation of a mashup for visualizing “Hourly

labour costs in Euros (European Union 1997-2008)” data [52]. This mashup will load the

data from a text file and will visualize it using a map and a table. The table is considered a

secondary backup visualization, in case the map is difficult to understand, so it is hidden to

a separate page. Mashup also shows a summary of data selected on the map.

6.2.1 Components

Widgets

Five widgets are required for this mashup. Widgets are described using OpenAjax

metadata 1.0 specification:

• Data widget loads the data from the service and publishes it to other widgets for

further consumption. The data is loaded from data.txt file using AJAX. The widget

has category “http://deepweb.ut.ee/Datasets”.

• Map widget is the primary data visualization widget in this case. It displays data

about all countries and only about one year at time. Year, that is displayed, can be

selected by clicking on it in the menu that is above map. It receives data from

23 http://deepweb.ut.ee/automicrosite/business.owl

58

http://deepweb.ut.ee/automicrosite/business.owl

“AutoMicrosite.LabourCost.Data” topic and publishes summary of data

for the selected year to “AutoMicrosite.LabourCost.Summary” topic.

Map widget has category “http://schema.org/Map”. Allowed minimum

dimensions for this widget are 100 pixels in width and 50 pixels in height, no

maximum dimensions have been defined.

• Table widget is used as a secondary data visualization method. It displays data

across all years and countries at the same time. It receives data from

“AutoMicrosite.LabourCost.Data” topic. Table has category

“http://schema.org/Table”. Allowed minimum dimensions for this widget

are 100 pixels in width and 100 pixels in height, no maximum dimensions have

been defined.

• Summary widget displays a short summary of the data it receives from the map

widget. It receives data from “AutoMicrosite.LabourCost.Summary”

topic. Summary has category “http://schema.org/WPFooter”. Allowed

minimum dimensions for this widget are 100 pixels in width and 25 pixels in

height, no maximum dimensions have been defined.

• Menu widget allows switching between visual widgets. It reads the buttons to

display from a buttons property and publishes click events to

AutoMicrosite.MenuClick topic. Menu widget has categories

“http://schema.org/SiteNavigationElement” and “http://-

deepweb.ut.ee/AutoMenu”, the latter one is used by the application to

recognize menus the application is able to use for navigation widgets. Menu widget

has minimum width 200 pixels and minimum height 25 pixels.

Templates

For the given scenario a simple template with 3 placeholders is required. Template

consists of a header, a content and a footer area. According to Guideline 2, menu is placed

in the header area. According to Guideline 6 content is placed right below the header and

the footer is placed below the content area. Header allows categories

“http://schema.org/SiteNavigationElement” and “http://schema.-

org/WPHeader”. Content placeholder allows categories “http://schema.org/-

Map”, “http://schema.org/MediaObject” and “http://schema.org/-

59

Table”. Footer placeholder allows category “http://schema.org/WPFooter” and

it is optional.

6.2.2 Mashup construction

Input

All the widgets are combined into a JSON object, as described in Chapter 5.6. The

resulting object is sent as POST request body to JSON API of the application. Example 6.1

shows an example input for creating such a mashup.

Server-side component

Server-side procedure proceeds as described in Chapter 4.1.1. Menu widget is placed

into header placeholder, because they both contain “http://schema.org/Site-

NavigationElement” category. Summary widget is placed into the footer placeholder

because it matches “http://schema.org/WPFooter” category. Map and table

widgets are both placed into the content placeholder because they match categories

“http://schema.org/Map” and “http://schema.org/Table”, respectively.

Table widget is placed on a separate page because there is menu widget available and it is

placed inside the same placeholder with visualization widget.

Client-side component

After the server-side process has finished, the client-side process will proceed as

described in Chapter 4.1.2. Once all the widgets have finished loading, the data widget will

publish the data to visual widgets. Map widget will further publish the summary of the data

to Summary widget. A screenshot of the resulting mashup is depicted in Figure 6.1.

60

{"title":"My Mashup","widget":[{"url":"http:\/\/localhost\/Automated-
generation-of-
microsites\/AutoMicrosite\/widgets\/Data\/Data.oam.xml"},
{"url":"http:\/\/localhost\/Automated-generation-of-
microsites\/AutoMicrosite\/widgets\/Map\/Map.oam.xml"},
{"url":"http:\/\/localhost\/Automated-generation-of-
microsites\/AutoMicrosite\/widgets\/Menu\/Menu.oam.xml"},
{"url":"http:\/\/localhost\/Automated-generation-of-
microsites\/AutoMicrosite\/widgets\/Summary\/Summary.oam.xml"},
{"url":"http:\/\/localhost\/Automated-generation-of-
microsites\/AutoMicrosite\/widgets\/Table\/Table.oam.xml"}]}

Example 6.1: Mashup construction input

61

Figure 6.1: Screenshot of proof of concept 1 microsite

6.3 Proof of Concept 2
A second, more complex, scenario was used to validate that the application works in

cooperation with Transformer Widget, introduced in Chapter 3.6, and automated OpenAjax

hub SOAP Proxy Widget generator, introduced in Chapter 3.7. The mashup will query

Estonian business registry with a business name from where it will receive registration

code as response. It will then use this registration code to query Inforegister.ee SOAP

service “getOrganizationDetails” operation, to get information about the

business, and “getDeptSummary” operation, to get dept related information about the

business. It will then display business information in one table, dept information in another

table and business address will be visually displayed on a Google Map next to rest of

business information.

6.3.1 Components

Widgets

Seven different widgets are required for this mashup and two instances of Proxy

Widget are created. Widgets are described using OpenAjax metadata 1.0 specification:

• Google Maps widget is used for visually displaying business address. It is based on

Google Maps API, address will be marked using a red pin. It listens to topic

“AutoMicrosite.GoogleMaps” for an object that contains an address. Map

widget has a category “http://schema.org/Map”. It has min-width and

min-height values of 100 pixels.

• Organization information table widget is used for displaying business information

in a table form. It shows name of the organization, registration code, establishment

year, address and the field of business. It listens to topic “AutoMicrosite.-

Table.OrganizationData” for organization information. It has categories

“http://schema.org/Table”. and “http://schema.org/About-

Page”. It has min-width and min-height values of 100 pixels.

• Organization debt information table widget is used for displaying debt information

about the business. It display the summarized debt information of the company,

including tax debt and debt listen in Inforegister.ee database by third parties. It

62

listens to “AutoMicrosite.Table.OrganizationData.Debt” topic for

the information. Debt information table has “http://schema.org/Table”

category. It has min-width and min-height values of 100 pixels.

• Business registry query widget is a non-visual widget that takes business name as

input and publishes business registry code of that business. It queries Estonian

business registry through a server side proxy script to obtain this information. It

receives name to query from a property name and publishes the result of the query

to topic “AutoMicrosite.BusinessRegister.QueryResponse”.

Business registry query widget has category “http://schema.org/Data-

set”.

• Key widget publishes SOAP access key when necessary. It subscribes to

“AutoMicrosite.BusinessRegister.QueryResponse” to be notified

when the key is required. Access key is read from the property key. Key widget

has category “http://deepweb.ut.ee/Datasets”.

• Transformer widget integrates structurally different data by using semantic

information. This way visual widgets do not have to subscribe to exactly the same

topics that data widgets publish to and the structure of the messages exchanged

does not need to be exactly the same. Transformer widget has category

“http://deepweb.ut.ee/Transformer”. Longer description of this

widget is given in Chapter 3.6. All the other widgets have been semantically

described for this scenario.

• Proxy widget is a non-visual widget for surfacing SOAP services. Two instances of

this widget are necessary, one for “getOrganizationDetails” operation and

another for “getDebtSummary” operation. It takes three parameters as input:

wsdl, the URL of the WSDL file for the service, operation, the name of the

operation that is run when the proxy widget is called, and proxy, the URL of the

proxy service. Proxy widget has category “http://schema.org/Dataset”.

Longer description of this widget is given in Chapter 3.7.

63

Templates

Template necessary for this scenario contains 3 template placeholders. In the top of the

Web page there are two content placeholders. One on the left side for textual content and

one on the right side for illustration. This corresponds to Guideline 3. These content

placeholders both take 50 percentage width and 50 percentage height, to satisfy Guideline

1. The placeholder on the left side allows widget with category “http://-

schema.org/Table” or “http://schema.org/AboutPage”. The one on the

right side allows widget with category “http://schema.org/MediaObject” or

“http://schema.org/Map”. Below these two placeholders there is a content

placeholder that takes 100 percentage width and 50 percentage height, to satisfy Guideline

1. This placeholder has category “http://schema.org/Table”.

6.3.2 Mashup construction

Input

Mashup creation process is started by submitting widgets described above to Auto

Microsite system. All the widgets are combined into a JSON object, as described in

Chapter 5. For the business registry query widget the name parameter is sent with the

name of the business to query, e.g. “EVETERM OÜ“. Proxy Widget is sent twice, for both

of the instances wsdl parameter is set with the WSDL URL and proxy parameter is set

with the URL of the proxy service. In addition, the operation parameter is set. For the

first instance “getOrganizationDetails” is used and for the second instance

“getDebtSummary” is used. Example 6.2 shows an example input for creating such a

mashup.

64

Server-side component

The server-side component works as described in Chapter 4.1.1. The template

described above is chosen because matching visual widgets are found for all mandatory

placeholders in that template.

Business registry query widget, Transformer Widget and Proxy Widget are identified as

data widgets, since they have only “http://schema.org/Dataset” or

“http://deepweb.ut.ee/Transformer” category. This means that these widgets

do not get a placeholder, priority or dimensions. For the right side content placeholder,

Google Maps widget is found to be a match. Both have category

“http://schema.org/Map” and there are no size restrictions in that placeholder. For

the left side content placeholder organization information widget is found to be a match.

Both have categories “http://schema.org/Table” and “http://schema.-

org/AboutPage”, and there are no size restrictions in that placeholder. For the bottom

content placeholder organization debt information widget is found to be a match. Both

have category “http://schema.org/Table” and there are no size restrictions in that

placeholder.

65

{"title":"My Mashup","widget":
[{"url":"http:\/\/deepweb.ut.ee\/automicrosite\/Widgets\/GoogleMaps\/
GoogleMaps.oam.xml"},
{"url":"http:\/\/deepweb.ut.ee\/automicrosite\/Widgets\/OrganizationD
eptInfo\/OrganizationDeptInfo.oam.xml"},
{"url":"http:\/\/deepweb.ut.ee\/automicrosite\/Widgets\/OrganizationI
nfo\/OrganizationInfo.oam.xml"},
{"url":"http:\/\/deepweb.ut.ee\/automicrosite\/Widgets\/ProxyWidget\/
ProxyWidget.oam.xml","properties":
{"wsdl":"http:\/\/deepweb.ut.ee\/automicrosite\/wsdl\/krdxInterfaceSe
rvice-liisi-1-enhanced-
again.wsdl","operation":"getOrganizationDetails","proxy":"http:\/\/de
epweb.ut.ee\/proxywidget\/"}},
{"url":"http:\/\/deepweb.ut.ee\/automicrosite\/Widgets\/ProxyWidget\/
ProxyWidget.oam.xml","properties":
{"wsdl":"http:\/\/deepweb.ut.ee\/automicrosite\/wsdl\/krdxInterfaceSe
rvice-liisi-1-enhanced-
again.wsdl","operation":"getDebtSummary","proxy":"http:\/\/deepweb.ut
.ee\/proxywidget\/"}},
{"url":"http:\/\/deepweb.ut.ee\/automicrosite\/Widgets\/TransformerWi
dget\/TransformerWidget.oam.xml"},
{"url":"http:\/\/deepweb.ut.ee\/automicrosite\/BusinessRegister\/Busi
nessRegisterQuery.oam.xml","properties":{"name":"EVETERM O\u00dc"}},
{"url":"http:\/\/deepweb.ut.ee\/automicrosite\/Widgets\/Key\/Key.oam.
xml","properties":{"key":"API_KEY_HERE"}}]}

Example 6.2: Mashup construction input

Client-side component

The client-side component attaches all the widgets to the mashup, following the

process described in Chapter 4.1.2. Once all the widgets have been loaded, business

registry query widget will make a request to business registry with the property name. It

then publishes the response with registration code to “AutoMicrosite.Business-

Register.QueryResponse” topic where Transformer Widget routes it to SOAP

Proxy Widget topics. Proxy Widget responses are again routed to organization information

and organization debt information widgets by the semantic integration widget. A

screenshot of the resulting mashup is depicted in Figure 6.2.

66

Figure 6.2: Screenshot of proof of concept 2 microsite

7 Conclusions

This thesis describes a solution for the problem of automated layout selection for a

specific class of Web sites, namely microsites, which are visually simple Web sites

according to Harper et al. [5] and consist of one or a couple of content pages and fit on

page without scrolling. More specifically, in this thesis, Auto Microsite system was

implemented, which enables automated layout selection and packaging of microsites made

of widgets.

The literature review in this thesis revealed that usability studies generally concentrate

on regular Web pages, but mashups have some distinctive characteristics, which means that

not all the existing guidelines are applicable in the case of mashup Web sites. Also, several

existing mashup tools were compared. Most of the tools were found either too simplistic to

solve real-world problems or too complex for an average computer user.

To encounter shortcomings identified from the literature review rule-based

matchmaking of widgets with layout templates was proposed as solution. For this, widgets,

with categories and dimensions, and layout templates, with acceptable categories and

dimensions, are defined. The layout templates and widgets must also satisfy usability

guidelines, in order for the result to satisfy usability guidelines. Widgets and layout

templates are then matched and additional rules are applied to modify the result.

An overview of used technologies and standards was given. OpenAjax Metadata 1.0

specification was used to describe the widgets. Mashups themselves are constructed on top

of OpenAjax Hub 2.0, which enables secure widget separation and communication.

RuleML 1.0 rule markup language was used to write matching rules. Schema.org ontology

was used to categorize widgets and as the ontology for semantic integration of messages.

Microdata was used to mark up widget placeholders on layout templates. Semantic

integration widget by Rainer Villido was proposed to be used for semantic integration of

messages. Proxy widget by Karli Kirsimäe was proposed to be used for communication

with SOAP services.

The Auto Microsite system was validated on two proof of concept scenarios. The first

one was simple visualization of EU wages data from one source. The visualization

included a Google Chart Tools based map widget, a table widget, a summary widget and a

67

menu widget, that would enable switching between the map and the table widgets. The

second scenario, combined data from Estonian business registry database with

Inforegister.ee debt information SOAP service. The semantic integration widget was used

for easing widget communication and the proxy widget was used for querying SOAP

service. The visualization consisted of two tables, for displaying general organization and

debt information, and a Google Maps based widget, for visualizing address of the

organization.

The proof of concept scenarios gave satisfactory results, several ways of further

improving the application were recognized. These are given under future work chapter.

68

8 Future work

The application developed for this thesis allows automatic construction of visually

simple Web sites, i.e., Web sites that concentrate on one topic, fit on page without scrolling

and have no input forms. In real-world situations more complex mashups might be

necessary, especially in the case of enterprise mashups. In order to support more complex

Web pages, for example with forms and several pages, the layout selection solution should

be developed further. Existing infrastructure should be able to handle more complex Web

sites, but more rules and layout templates are required to be developed for results of better

usability.

The simplest way to improve the resulting mashup would be writing new rules and

layout templates for more cases. For the two proof of concept scenarios only a few layout

templates were created and the rules were also scenario-specific. These rules and templates

allow generation of mashups relatively similar to proof of concept scenarios, but when

there are more or different widgets then there are no compatible layout templates to map

them to.

Another way to improve the layout selection would be to use more detailed ontology

than Schema.org. This would allow describing the nature of widgets more specifically,

which in return would allow more specific rules. For instance, for the proof of concept

scenarios two different map widgets were developed: one based on Google Maps API and

the other based on Google Chart Tools API. Both of these widgets were described using the

Schema.org class Map, which means that for the application they are the same, but in fact

they are used in completely different scenarios. Google Maps API based widget is used for

illustrating addresses or coordinates of places, Google Chart Tools API based widget is

used for displaying summarized data. In some situations they may have to be positioned

differently.

Additionally, more data could be used in the decision process. For example, the topics

are already annotated in order to generate semantic integration mappings, the same data

could be used in the widget-template matchmaking process to group together similar

widgets.

Also the RuleML service component needs further development before it can be used

in a production environment. It is currently a very basic RESTful service with no

69

authentication or resource usage monitoring, anyone with service endpoint URL can run

any ruleset on it. This is a problem because certain rulesets can run for a very long time or

even crash the server.

70

9 Abstract (in Estonian)

Automaatne reeglitel põhinev veebilehe
struktuurimallide valimine ja rakendamine

Magistritöö (30 EAP)

Hans Mäesalu

Resümee
Veebi avatud arhitektuuron loonud soodsa pinnase veebisolevate andmete kasutamiseks

nii keerulisemates kui lihtsamates veebirakendustes. Andmete kogumise ja visualiseerimise

lihtsustamiseks lihtsates veebirakendustes on loodud hulganisti tööriistu, mille seas on ka

mashup'ide loomise tööriistad. Olemasolevate tööriistadega kõrge kasutatavusega mashup

veebilehe loomine võib aga paraku olla keerukas, kuna nõuab erinevate tehnoloogiate ning

programmeerimiskeelte tundmist, rääkimata kasutatavuse juhtnööridega kursisolemist.

Kuigi osad mashup'ide platvormid, a'la OpenAjax Hub, lihtsustavad olemasolevate

komponentide kombineerimist, on lahendamata probleemiks siiani nende rakenduste

kasutatavus.

Käesolev magistritöö kirjeldab reeglipõhist lahendust andmete visualiseerimise

vidinate jaoks sobiva veebilehe malli automaatseks valimiseks vastavalt enimlevinud

veebilehtede kasutatavuse juhtnööridele. Selleks laetakse vidinate ning struktuurimallide

kirjeldused koos kasutatavuse juhtnööridest saadud reeglitega reeglimootorisse ning

kasutatakse reeglimootorit ekspertsüsteemina, mis soovitab sobivamaid malle vastavalt

etteantud vidinate komplektile. Lahenduse reeglipõhine ülesehitus võimaldab uute vidinate

ning mallide lisandumisel või juhtnööride muutumisel operatiivselt reageerida nendele

muutustele reeglibaasi täiendamise kaudu.

Väljapakutud lahendus realiseeriti käesoleva töö raames Auto Microsite rakendusena,

mis koosneb serveri- ning kliendipoolsest osast. Serveri poolel toimub reeglite abil vidinate

komplekti visualiseerimiseks sobiva malli valimine kasutades OO jDREW RuleML

reeglimootorit ning rakenduse paketeerimiseks koodi genereerimine. Kliendi poolel

kasutatakse OpenAjax Hub raamistikkuvidinate turvaliseks eraldamiseks ning omavahel

suhtlemapanemisel. Samuti on kliendi poolel lahendatud genereeritud veebilehe vastavusse

71

viimine brauseri võimalustega.

Katsetamaks Auto Microsite rakendust praktikas loodi seda kasutades realisatsioonid

kahele lihtsale stsenaariumile. Esimesel juhul viusaliseeriti Euroopa 1997-2008

tööjõukulude (Hourly labour costs in Euros (European Union 1997-2008) ing. k.) andmeid

kaardi, tabeli, kokkuvõtte ja menüü vidinatega. Teisel juhul kasutati lisaks andmete

visualiseerimise vidinatele ka väliseid andmeallikaid, mis olid realiseeritud

mittevisuaalsete vidinatena. Saadud andmed visualiseeriti kahe tabeli ning ühe kaardi

vidinaga. Näidisveebilehtede loomise tulemusena järeldub, et rakendus sobib lihtsate

veebilehtede loomiseks. Lisaks on võimalik lahendust täiendada keerukamate

veebirakenduste automaatseks loomiseks läbi vastavate mallide ning reeglite lisamise.

72

10 Bibliography

Bibliography
[1] M. Caceres. Widgets 1.0: The Widget Landscape. 2008,

http://www.w3.org/TR/2008/WD-widgets-land-20080414/. Cited:

15.05.2013

[2] A. Namoun, T. Nestler, A. D. Angeli. Conceptual and Usability Issues in the

Composable Web of Software Services. ICWE'10 Proceedings of the 10th international

conference on Current trends in web engineering, pages 396-407, 2010

[3] A. Dingli, J. Mifsud. USEFul: A Framework to Mainstream Web Site Usability

Through Automated Evaluation. International Journal of Human Computer Interaction,

pages 10-30, 2011

[4] Web Accessibility and Usability Working Together.

http://www.w3.org/WAI/intro/usable. Cited: 10.01.2013

[5] S. Harper, E. Michailidou, R. Stevens. Toward a Definition of Visual Complexity as an

Implicit Measure of Cognitive Load. ACM Transactions on Applied Perception, Volume 6,

Number 10, pages 1-18, 2009

[6] 15th Annual Webby Awards Nominees & Winners.

http://www.webbyawards.com/webbys/current.php?season=15. Cited:

06.02.2012

[7] P. L. Thung. Improving a Web Application Using Design Patterns: A Case Study.

Information Technology (ITSim), Volume 1, pages 1-6, 2010

[8] K. E. Schmidt, Y. Liu, S. Sridharan. Webpage aesthetics, performance, and usability:

Design variables and their effects. Ergonomics, Volume 52, Number 6, pages 631-643,

2009

[9] D. Fox, S. Naidu. Usability Evaluation of Three Social Networking Sites. 2009,

http://usabilitynews.org/usability-evaluation-of-three-

social-networking-sites/. Cited: 20.05.2013

[10] Pawan Vora. Web Application Design Patterns. Morgan Kaufmann Publishers, 2009

73

[11] M. O. Leavitt, B. Shneiderman. The Research-Based Web Design & Usability

Guidelines. U.S. Government Printing Office, 2006

[12] S. Dahal. Eyes don't lie: understanding users' first impressions on website design

using eye tracking. MSc thesis, , Missouri University of Science and Technology, Missouri,

2010

[13] M. Russell. Using Eye-Tracking Data to Understand First Impressions of a Website.

Usability News, Volume 7, Number 1, 2005

[14] J. H. Goldberg, X. P. Kotval. Computer interface evaluation using eye movements:

methods and constructs. International Journal of Industrial Ergonomics, Volume 24,

Number 6, pages 631–645, 1998

[15] R.W. Bailey, S. Koyani, J. Nall. Usability testing of several health information Web

sites. National Cancer Institute Technical Report, 2000

[16] J. D. McCarthy , M. A. Sasse , J. Riegelsberger. Could I have the Menu Please? An

Eye Tracking Study of Design Conventions. In Proceedings of HCI2003, pages 401-414,

2003

[17] J. Harty. Finding usability bugs with automated tests. Communication of the ACM,

Volume 54, Number 2, pages 44-49, 2011

[18] C. Cappiello, F. Daniel, M. Matera. A Quality Model for Mashup Components. ICWE

'9 Proceedings of the 9th International Conference on Web Engineering, pages 236-250,

2009

[19] V. Hoyer, M. Fischer. Market Overview of Enterprise Mashup Tools. ICSOC '08

Proceedings of the 6th International Conference on Service-Oriented Computing, pages

708-721, 2008

[20] J. Maras, M. Štula, J. Carlson. Extracting Client-side Web User Interface Controls.

ICWE'10 Proceedings of the 10th international conference on Web engineering, pages 502-

505, 2010

[21] O. Chudnovskyy, T. Nestler, M. Gaedke, F. Daniel, J. I. Fernández-Villamor, V. I.

Chepegin, J. A. Fornas, S. Wilson, C. Kögler, H. Chang. End-user-oriented telco mashups:

the OMELETTE approach.. WWW '12 Companion Proceedings of the 21st international

conference companion on World Wide Web, pages 235-238, 2012

74

[22] S. Ceri, P. Fraternali, A. Bongio. Web Modeling Language (WebML): a modeling

language for designing Web sites. Computer Networks: The International Journal of

Computer and Telecommunications Networking, Volume 33, Number 1-6, pages 137-157,

2000

[23] S. Lok , S. Feiner. A Survey of Automated Layout Techniques for Information

Presentations. Proceedings of the 2001 SmartGraphics Symposium (SG2001), 2001

[24] A. Borning, R. K.-H. Lin, K. Marriott. Constraint-based document layout for the Web.

Multimedia Systems, Volume 8, Number 3, pages 177-189, 2000

[25] A. Gonzales-Uriel, E. Roanes-Lozano. A knowledge-based system for house layout

selection. Mathematics and Computers in Simulation, Volume 66, Number 1, pages 43-54,

2004

[26] K. Knight. Responsive Web Design: What It Is and How To Use It. 2011,

http://coding.smashingmagazine.com/2011/01/12/guidelines-for-

responsive-web-design/. Cited: 20.05.2013

[27] Home and Away: Iraq and Afghanistan War Casualties.

http://edition.cnn.com/SPECIALS/war.casualties/. Cited: 10.07.2012

[28] Yahoo! Design Pattern Library.

http://developer.yahoo.com/ypatterns/. Cited: 10.07.2012

[29] Skype.com. http://www.skype.com/intl/et/home. Cited: 10.07.2012

[30] Dropbox.com. https://www.dropbox.com/home. Cited: 10.07.2012

[31] K. Perzel, D. Kane. Usability Patterns for Applications on the World Wide Web.

Pattern Languages of Program Design 1999 Proceedings, 1999

[32] OpenAjax Metadata 1.0 Specification.

http://www.openajax.org/member/wiki/OpenAjax_Metadata_Specifi

cation. Cited: 20.05.2013

[33] H. Boley, T. Athan, A. Paschke, S. Tabet, B. Grosof, N. Bassiliades, G. Governatori, F.

Olken, D. Hirtle. Schema Specification of Deliberation RuleML Version 1.0. 2012,

http://ruleml.org/1.0/. Cited: 20.05.2013

[34] H. Boley, A. Paschke, O. Shaq. RuleML 1.0: The Overarching Specification of Web

75

Rules. 2012, http://cs.unb.ca/~boley/papers/RuleML-

Overarching.pdf. Cited: 03.02.2012

[35] Schema.org. http://www.schema.org. Cited: 20.05.2013

[36] D. Brickley. Web Schemas TF and Schema.org. 2011,

http://www.w3.org/2001/sw/interest/schema.org-collab.html.

Cited: 15.05.2013

[37] I. Hickson. HTML Microdata. , http://www.w3.org/TR/2012/WD-

microdata-20120329/. Cited: 20.05.2013

[38] F. Rivoal, H. W. Lie, T. Çelik, D. Glazman, A. Kesteren. Media Queries. 2012,

http://www.w3.org/TR/2012/REC-css3-mediaqueries-20120619/.

Cited: 20.05.2013

[39] Media types. http://www.w3.org/TR/CSS21/media.html. Cited:

20.05.2013

[40] L. Wroblewski. Multi-Device Layout Patterns. 2012,

http://www.lukew.com/ff/entry.asp?1514. Cited: 20.05.2013

[41] R. Villido. Semantic Integration Platform for Web Widget Communication. MSc

thesis, Institute of Computer Science, University of Tartu, Tartu, 2010

[42] K. Kirsimäe. Automated OpenAjax Hub Widget Generation for Deep Web Surfacing.

MSc thesis, Institute of Computer Science, University of Tartu, Tartu, 2011

[43] M. Zalewski. Browser Security Handbook, part 2. 2009,

https://code.google.com/p/browsersec/wiki/Part2#Same-

origin_policy. Cited: 4.03.2013

[44] K. Simpson. Defining Safer JSON-P. 2010, http://json-p.org/. Cited:

4.03.2013

[45] A. Kesteren. Cross-Origin Resource Sharing. 2013,

http://www.w3.org/TR/cors/. Cited: 4.03.2013

[46] M. Hossain, Using CORS. HTML5 Rocks. Cited: 12.03.2013

[47] P. Kruchten. Architectural Blueprints—The "4+1" View Model of Software

76

Architecture. IEEE Software, Volume 12, Number 6, pages 42-50, 1995

[48] TIBCO PageBus.

http://developer.tibco.com/pagebus/default.jsp. Cited: 20.05.2013

[49] M. Ball, H. Boley, D. Hirtle, J. Mei, B. Spencer. Implementing RuleML Using

Schemas, Translators, and Bidirectional Interpreters. 2005,

http://ruleml.org/w3c-ws-rules/implementing-ruleml-w3c-

ws.html. Cited: 15.02.2013

[50] WebSchemas/Datasets.

http://www.w3.org/wiki/WebSchemas/Datasets. Cited: 26.12.2012

[51] The Dojo Toolkit. http://dojotoolkit.org/. Cited: 05.04.2012

[52] Hourly labour costs in Euros (European Union 1997-2008). http://www-

958.ibm.com/software/data/cognos/manyeyes/datasets/hourly-

labour-costs-in-euros-europ/versions/1. Cited: 26.12.2012

77

11 Appendix

11.1 Source code
The source code of the implementation is available at GitHub repository:

https://github.com/hansm/Automated-generation-of-microsites

11.2 RuleML rules
RuleML rules written for the application are available through GitHub repository:

• https://github.com/hansm/Automated-generation-of-

microsites/blob/master/AutoMicrosite/Rules/General.ruleml

• https://github.com/hansm/Automated-generation-of-

microsites/blob/master/AutoMicrosite/Rules/Generalization.ruleml

• https://github.com/hansm/Automated-generation-of-

microsites/blob/master/AutoMicrosite/Rules/Priority.ruleml

78

https://github.com/hansm/Automated-generation-of-microsites/blob/master/AutoMicrosite/Rules/Generalization.ruleml
https://github.com/hansm/Automated-generation-of-microsites/blob/master/AutoMicrosite/Rules/Generalization.ruleml
https://github.com/hansm/Automated-generation-of-microsites/blob/master/AutoMicrosite/Rules/Priority.ruleml
https://github.com/hansm/Automated-generation-of-microsites/blob/master/AutoMicrosite/Rules/Priority.ruleml
https://github.com/hansm/Automated-generation-of-microsites/blob/master/AutoMicrosite/Rules/General.ruleml
https://github.com/hansm/Automated-generation-of-microsites/blob/master/AutoMicrosite/Rules/General.ruleml
https://github.com/hansm/Automated-generation-of-microsites

Non-exclusive licence to reproduce thesis and make thesis
public

I,

Hans Mäesalu

(date of birth: 07.02.1988),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of

the copyright,

Automated Rule-Based Selection and Instantiation of Layout Templates for

Widget-Based Microsites

supervised by Peep Küngas,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu, 21.05.2013

79

	1 Introduction
	2 Related work
	2.1 Web application and mashup usability
	2.2 Widgets
	2.3 Mashup tools
	2.4 Layout selection and construction
	2.5 Guidelines

	3 Background
	3.1 OpenAjax Metadata 1.0 Specification
	3.1.1 Details of the standard
	3.1.2 Example
	3.1.3 Shortcomings

	3.2 RuleML 1.0
	3.2.1 Details
	3.2.2 Example
	3.2.3 Shortcomings

	3.3 Schema.org
	3.3.1 Details
	3.3.2 Example
	3.3.3 Shortcomings

	3.4 HTML Microdata
	3.4.1 Details
	Markup
	DOM API

	3.4.2 Example
	3.4.3 Shortcomings

	3.5 Media queries
	3.5.1 Details
	3.5.2 Example
	3.5.3 Shortcomings

	3.6 Transformer widget
	3.7 Proxy widget

	4 Solution
	4.1 Process view
	4.1.1 Server-side component
	4.1.2 Client-side component

	4.2 Development view
	4.2.1 Server-side component
	4.2.2 Client-side application component
	4.2.3 RuleML service

	4.3 Physical view

	5 Implementation
	5.1 Categories ontology
	5.2 Widgets
	5.3 Layout templates
	5.4 Rules
	5.5 Usage of rules
	5.6 Server-side component
	5.7 Client-side component
	5.8 Deployment
	5.8.1 Auto Microsite application
	5.8.2 RuleML service

	6 Proof of Concept
	6.1.1 Schema.org extension
	6.2 Proof of Concept 1
	6.2.1 Components
	Widgets
	Templates

	6.2.2 Mashup construction
	Input
	Server-side component
	Client-side component

	6.3 Proof of Concept 2
	6.3.1 Components
	Widgets
	Templates

	6.3.2 Mashup construction
	Input
	Server-side component
	Client-side component

	7 Conclusions
	8 Future work
	9 Abstract (in Estonian)
	10 Bibliography
	11 Appendix
	11.1 Source code
	11.2 RuleML rules

