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Abstract

Individuals tend to establish ties in higher rate with individuals that exhibit some kind of

affinity than with dissimilar ones. This principle, referred to as homophily, has a impor-

tant impact in the shape of the social interactions, i.e., topologies of the underlying social

networks. In the context of bibliometrics, the effects of homophily can be observed in

patterns of citation: references often include a non-negligeable number of self-citations

and citations from close collaborators. In light of the above, we aim at designing bib-

liometric indicators that allow us to modulate the effect of homophily in the ranking in-

duced by metrics. Clearly, homophily-aware metrics would favor communities where ci-

tations involve a broader participation. In this thesis, we present homophily-trimmed and

homophily-weighted versions of the citation count and report on the patterns of citation

uncovered by such metrics over the citation network for three different communities.
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Chapter 1

Introduction

Commonly research results are published in scientific journals or presented on the confer-

ences. After publication, research results are used by other researchers in their subsequent

articles. The citation of one article by another is may be taken as a way to recognize the

impact of the cited paper. Therefor, this data can be used to statistically and mathemati-

cally measure the quality of scientific product or even the scientist himself. The methods

utilized in this measurement are known as bibliometrics.

In recent years the usage of bibliometric indicators in evaluation of research impact

has become mainstream. Various rankings and metrics have been developed and adopted,

such as citation count, h-index and Impact Factor. Such metrics are easy to compute and

they provide a meaningful estimation of the impact and productivity of the scientist or

his/her product. Oftentimes the simplicity of formulation makes them sensitive to noise

and even vulnerable to attacks. For instance the simple metric such as citation count might

be enough when someone is interested in having an idea about productivity and impact

of the results of the researcher. However, this metric would clearly be unfair with young

researchers. Lalo and Mosseri [1] suggested that having a paper with 5 or 6 co-authors

would positively affect metrics, as this practice would benefit from a larger number of

publications and potentially increased number of cross-references.

Citation of scientific literature is intrinsically a social process. Through the principles

of social systems citations refer to homophily. The principle of homophily implies the

fact that individuals are tend to establish ties with individuals who behave similarly than

with dissimilar ones. Moreover, homophily has an important impact into the shape of the

network that models social interactions. Homophily can be understood as being inversely

proportional to the distance in the social graph.

In light of the above, we define homophily-aware metrics as the attempt to understand

this social phenomenon in bibliometrics. Using public datasets, we analyze the patterns
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of citation observed in major conferences and journals in different scientific communities.

The remaining of the document is organized as follows. In Chapter 2 we review the

concept of homophily, then briefly summarize the field of bibliometric indicators, their

advantages and problems. Then we examine different aspects of social network analysis

applicable to citation and coauthorship graphs in details. In Chapter 3 we propose a

family of bibliometric indicators that takes into account the effects of homophily. In

Chapter 4 we discuss three different datasets that we used for assessing the usefulness of

the proposed metric. Thus we present an analysis of citation patterns observed in those

datasets, which corresponds to three different research communities, namely Computer

Science, High-Energy Physics and Computational Linguistics.
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Chapter 2

Background and state of the art

In this chapter we introduce the concept,that provide a background to our work. Firstly,

we define the concept of homophily. Secondly, we provide short overview of existing

bibliometric indicators. Thirdly, we discuss the social network analysis techniques which

used in present work. Finally, existing work on relevant fields is covered.

2.1 Homophily

People with different characteristics (gender, ethnicities, age, education) appear to have

different qualities. We tend to consider this qualities as essential aspects of their category

membership. For instance, women are emotional, educated people are tolerant, and gang

members are violent [2]. By interacting only with people who are like ourselves, anything

that we experience gets reinforced.

Homophily is the principle that each individual tend to establish ties with individuals

who exhibit kind of affinity than with dissimilar ones. It is expressed in proverb “Birds of

a feather flock together”. The fact of homophily means that any kind of information (cul-

tural, behavioral, genetic) tend to be localized in the scope of sociodemographic space.

Homophily implies the distance in social terms as a distance in network.

Probably the most influential source of homophily is space, people more likely to have

contact with those who are closer in geographic location than those who are distant. The

advent of new technologies like telephone and Internet may have loosened the bounds of

geography by decreasing the effort involved in contact, but in fact actually not eliminated

old patterns.

Other research in this area studied how ties in co-membership are affected by sim-

ilarity to other members of a group. Both strong and weak ties to others in the group,
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which are also likely to be among similar others, tend to increase the duration of mem-

berships [3].

2.2 Bibliometric indicators

Bibliometric indicators seek to measure the quality and scientific impact of books, articles

and other forms of publications. Indicators usually based on the number of scientific

papers and citations they received.

There are three types of bliometric indicators [4]: Quantity indicators measure the

productivity of the particular researcher or research group. Performance indicators mea-

sure the quality of a journal, researcher or group. Structural indicators measure connec-

tions between researchers, journals or research fields.

In the following Section we describe some example metrics of each type.

2.2.1 Quantity indicators

Number of publications. The most simple and straightforward method is to count the

number of articles published by particular author or research group. It is generally not

possible to compare authors or groups since the number of publication does not reflect

the quality of the article. When comparing groups, one has to keep in mind the fact that

number of publications depends on the group’s size[5].

To count number of publications in Top-ranked journals is the way to overcome this

limitations. However, this method do not cope with the effect of the group size.

2.2.2 Performance indicators

Performance indicators usually intended to measure performance along the quality di-

mension and can be used to measure the impact of the research into scientific community.

How often an article or a journal is cited by others is an indication of performance. Impact

factor and h-index, two highly discussed bibliometric indicators in this field, are briefly

discussed in this section.

ISI impact factor(IF) was first proposed by Gerfild in 1955 [6]. The IF of a journal

is established each year on the basis of previous two-year period. It is determined as

follows:

Cx- citations in year x to articles published in the two preceding years,

Px−1−2 - number of articles published in year x−1 and x−2,
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IISIx =Cx/Px−1−2 - impact factor in year x .

Strength of the indicator includes its independence from the size of the journal, sta-

bility and high comprehensibility. However, IF has several limitations. Firstly, it does not

reflect the quality of each article published in journal. Thus it is not clear whether the high

degree is a result of high quality of all articles or only some of them. Secondly, multidis-

ciplinary journals have a higher IF than specialized journals [7]. The possible explanation

of this fact could be that multidisciplinary journals have large relationships from variety

of fields and thus cited more frequently. Third, there are difference between research

fields. Highly ranked journals in each specialized field can have significantly different

IF, so it becomes impossible to compare interdisciplinary journals. Fourth, the type of

articles also influence journal IF. For example, some technical reports and review articles

are more likely to receive citations than original research articles and case reports[8]. And

finally, editors of journals can influence to increase journal IF, by recommending for au-

thors to cite articles published within the journal. The conclusion was given by Weingart

in 2005 [9]: impact factors in their undifferentiated form are outdated and should not be

used as measures in any evaluative context at all. Yet, they are probably the most popular

bibliometric measure of all.

H-index [10] attempts to measure productivity and the impact into research area of

the scientist. H-index is based on the scientist’s top cited papers and number of citations

they received. The Figure 2.1 shows the curve giving the number of citations versus paper

number, the intersection with 45 degree line gives h-index.

h

h

Number 
of 
citations

paper number

Figure 2.1: H-index visualization graph

But such metrics have a bunch of weaknesses. So Laloe and Mosseri [1] found that

according to this metrics the contribution of an author is exactly the same whether he/she

has 10 co-authors. Authors also emphasized that in some scientific areas after technical

breakthroughs appears flurry of publications and most of them becomes forgotten after
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some time. As a consequence, bibliometric indicators are vary sensitive to fashion. The

more popular scientific field, the easier to obtain higher metric. This research shows that

such bibliometric indicators are very sensitive to noise and vulnerable to attacks.

2.2.3 Structural indicators

There are some structural indicators that can be computed. For example, one can analyze

the field where the unit was published and field in which it is cited. Further one can make

description of the cognitive structure of the research field, or of their co-authors and co-

authors affiliations[4]. Since this part straightly related to the present research, it will be

discussed in section 2.4 more precisely.

2.3 Social network analysis

Social network analysis is the key technique in modern sociology. It is the mapping

and measuring relationships and flows between the connected entities. In our case the

nodes in the network are people, while links show collaborations or citation relationships

between the nodes. The shape of the network can determine the network usefulness to its

individuals. More open networks with weaker connections are more likely to introduce

new opportunities to their members. A group of individuals with connections to other

social networks is likely to have access to wider range of information. Also individuals

can play a role of connector by bridging two networks that are not directly connected.

Social network analysis produces an alternative view, where attributes of individuals are

less important than their relationships within the network.

Variety of metrics has been proposed to measure the social networks. The concept

were taken from [11].

Let G = (V,E) be an undirected, simple (no self-loops, no multiple edges) graph

(network) with a set of nodes (vertexes) V and a set of edges E.

Figure 2.2: Random graphs of 10 vertexes have diameter 3,4,5 and 7, respectively.

Graph’s diameter is the largest number of vertexes which must be traversed in order

to travel from one vertex to another when paths which backtrack, detour, or loop are ex-
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cluded from consideration. In other words, the length maxu,vd(u,v) of the longest shortest

path between any two graph vertexes (u,v) of a graph, where d(u,v) is a graph distance

(Figure 2.2).

Figure 2.3: Graph with vertexes labeled by degree

The degree d(v) of node v is defined to be the number of nodes in V that are adjacent

to v. On figure 2.3 minimum degree is 0 and maximum is 5.

Figure 2.4: Connected components of the graph

The connected component of undirected graph is the subgraph where each two nodes

are connected directly or indirectly. On the graph shown on figure 2.4 there are three

connected components. Largest connected component in this case is 22, which make

61% from whole graph.

Average distance between nodes is defined as average number of “hops” that required

to move from one any given node in the network to another.

2.4 State of the art

The usage of bibliometric indicators in the assessment of research outcomes is common-

place. A considerable number of similarity measures have been studied in the field of
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bibliometric. For example, in [12] authors estimated communities similarity in Orkut so-

cial network. They proposed 6 different measures, which are based on the number of

mutual users of communities, that was normalized in a different manner. Lehmann et

al [13, 14] tried to estimate authors quality on the basis of citation data. They examined

citation distribution in the High Energy Physics dataset. This approach emphasizes the

popularity of publications rather than their prestige. To address this limitation, variants

of PageRank have been proposed. The notion of PageRank firstly was proposed by Page

et al. [15] in 1998 in the context of relative web page importance based solely on the

page location in the Web’s graph structure. Lately, in 2006, Bollen et. al [16] proposed a

weighted version of PageRank algorithm to obtain the metric that reflects prestige in the

domain of scholarly assessment. These measures however still work on the basis of the

citation network only. As a result, they do not distinguish between intra-community and

inner-community citations. Liu et al. [17] propose an extension of PageRank that takes

into account citation networks and co-authorship networks. Meanwhile, Zhou et al. [18]

introduced Co-Rank, which makes use of three networks: the citation network, the co-

authorship network, and author’s social network. Despite of the plenty of networks, it

still does not differentiate between inter-community and intra-community citations.

In [19, 20] Newman characterized the patterns of collaboration among scholars of

several disciplines by analyzing the characteristics of the co-authorship graph. New-

man observed important differences in the collaboration patterns in several disciplines:

mathematicians and physicists seem to work mostly individually or with a few coauthors,

whereas biologists reveals highly collaborative settings.

In [21] authors studied information diffusion in the citation network. They proposed a

method to identify citations between communities and concluded that citations that occur

within communities lead to the slightly higher number of direct citations; and also citing

more recent papers corresponds to receiving more citations in turn.
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Chapter 3

Homophily aware metrics

The work presented in this chapter is related to the homophily aware metrics, which allow

to modulate the effect of homophily in the ranking induced by metrics.

In this work we study network of scientists in which two scientists considered con-

nected if they have at least one mutual paper. We did not considered the fact that some

scientists could know one another but have never collaborated. The other measure of

similarity is related to citation ties.

3.1 Similarity measures

As it was mentioned before, the concept of homophily describes relationships that are

based on some measures of similarity. Despite the fact that no single definition exists

for similarity, in the scope of this work, we consider two types of relationships to define

similarity: citations and co-authorship.

Using these relationships, we can measure similarity to be inversely proportional to the

distance that separates researchers in the co-authorship network and papers in the citations

network. Following this basic intuition, the rationale behind our homophily aware metrics

consists on using the distance on these graphs to ponderate traditional metrics, which in

this particular work is applied to citation count. Is therefore important to start these section

by defining both of these networks.

Definition 1 (Co-authorship Graph). A Co-authorship Graph is a tuple Ga =(A,Co,W,Ta),

where

• A is the set of vertexes on the graph, each vertex representing an author

• Co⊆ A×A is a set of undirected edges (i.e. unordered pairs), each edge represent-

ing a co-authorship relation between two authors
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• W : Co→ N is a weight function that maps each edge {a1,a2} ∈C to the number

of papers that a1 and a2 have co-authored

• Ta : Co→ N is a function that maps each edge {a1,a2} ∈Co to the year of publica-

tion of the first paper co-authored by a1 and a2.

Definition 2 (Citation Graph, Citation Count). A Citation Graph is a tuple Gc =(P,Ct,Tp),

where:

• P is the vertexes on the graph, each vertex representing a paper

• Ct ⊆ P×P is a set of directed edges (i.e. ordered pair), each edge (p1, p2) ∈ Ct

denoting the fact that paper p1 cites paper p2

• Tp : P→ N s a function that maps a paper p ∈Ct to the year of publication of paper

p.

Let p ∈ P be a paper. The Citation Count of paper p is defined as follows:

CC(p) = |{q | (q, p) ∈Ct}|

Given these two graphs, the homophily ponderation is done by using the concept of

neighborhood of a paper within the Co-authorship Graph and up to a certain distance. The

next element to define is therefore a function that given a paper return the set of authors

on its neighborhood Γ.

Definition 3 (Paper k-Neighborhood). Given a paper p, the 0-neighborhood of p,

written Γ(p,0), is the set of authors of the paper. The 1-neighborhood of p, written

Γ(p,1), is the set of authors who have coauthored at least one paper with one or more

co-authors of p, prior to the year of publication of p. Recursively, for a given integer

k > 0, the k-Neighborhood of p, written Γ(p,k), is the union of the Γ(p,k− 1) and all

authors who have co-authored a paper with at least one author in Γ(p,k−1) prior to the

year of publication of p. Formally:

Γ(p,0) = AuthorsO f (p)

Γ(p,k) = Γ(p,k−1)∪
{

a | ∃{a,b} ∈Co : Ta({a,b})≤ Tp(p)∧b ∈ Γ(p,k−1)
}

Where:
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• AuthorsO f : P→P(A) is a function to represent the set of authors of a single given

paper.

With the concept of neighborhood, the citation count can be redefined to include only

citations coming from the neighborhood, which is equivalent to count citations coming

from similar researchers, where similarity is based on the closeness between authors.

A1 A2

A3 A4 A5

A6 A7 A8 A9

P1 P3

P2

{A1,A2}

{P1,P2} {P1,P3,P4}

Г(p1,0)

Г(p1,1)

Г(p1,2)

{P1,P5,P6} {P3,P7,P8} {P4,P9,P10}

{P5} {P6,P7,P11} {P11,P9} {P8,P10}

(a) (b)

Figure 3.1: k-neighborhood for the paper P1

To illustrate the concept lets consider co-authorship (a) and citation (b) graphs in

figure 3.1. Assume that paper P1 coauthored by authors A1 and A2, then to the 0-

neighborhood for paper P1 corresponds authors A1 and A2 themselves, which is on

the bottom of the picture 3.1(a). The 1-neighborhood of paper P1 consists of authors

{A3,A4,A5}, they are on the middle of picture 3.1(a). The 2-neighborhood of paper P1 is

on the top of this picture and contains authors {A6,A7,A8,A9}.

Definition 4 (k-Neighborhood Citation Count). Let q, p ∈ P be papers in the citation

graph and k the paper neighborhood threshold. The k-Neighborhood Citation Count of

paper p is the set of papers citing p by authors up to distance k in the co-authorship graph

and is formally expressed as:

HCC(p,k) = {q | (q, p) ∈Ct ∧Γ(p,k)∩Γ(q,k) 6= /0}

The structure of collaboration networks usually shows clusters around collaboration

between authors and the classical six degrees of separation rule holds also for this kind

of networks[19]. This concept includes the fact that each node in social graph can be
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reached from any other node with at most 6 hops, in other words any two people in the

Earth can be connected in six steps or fewer.

The rational behind homophily-based citation count consist on penalize citations com-

ing from nearby collaborators and give higher relevance to those that are further away in

the graph. In this way, the measure can better represent the impact of an author in terms

of how far his/her contribution reach.

Based on this basic rationale and using definition 4, citation counts can be trimmed by

not counting citations coming from the neighborhood. The basic case is the citation count

without considering self-citations, which, according to definition 3, would be the case of

k = 0. Definition 5 formalizes this idea.

Definition 5 (Homophily k-Trimmed Citation Count). Let q, p∈ P be papers in the ci-

tation graph and k the paper neighborhood trimming threshold. The Homophily Trimmed

Citation Count of paper p is:

HkTCC(p,k) =CC(p)−HCC(p,k)

Having defined and clearly separated citations coming from the neighborhood and

citations coming from further away, it is possible to calculate a citation sum where closest

citations are weighted. The weighting function in this case is a simple linear function in

the range of [0,1). The analysis of different weighting functions is left for future research.

Definition 6 (Homophily k-Weighted Citation Count). Let q, p ∈ P be papers in

the citation graph and k the paper neighborhood trimming threshold. The Homophily

k-Weighted Citation Count of paper p is:

HkWCC(p,k) =
k

∑
l=0

HCC(p, l) · l
k+1

+HkTCC(p,k)

Figure 3.2 presents an example of k-neighborhood citation count. Note that the cita-

tion graph corresponds to the co-authorship graph on Figure 3.1(a). Citation count for pa-

pers p1 is 11 - the total number of incoming citations, CC(P1) = 11. The 0-neighborhood

of paper 1 is the set {P2,P3,P4}, that corresponds to the set of direct coauthors. 1-

neighborhood of paper 1 is the set of papers {P5,P6,P7,P8,P9,P10} since their authors

have coauthored at least one paper with co-authors of P1. Similarly, 2-neighborhood of

P1 corresponds to: HCC(p1,2) = {P11}.
Thus, HkTCC(P1,0) =CC(P1)−HCC(P1,0) = 11−3 = 8,

HkTCC(P1,1) =CC(P1)−HCC(P1,1) = 11−9 = 2

HkTCC(P1,2) =CC(P1)−HCC(P1,2) = 11−10 = 1

and HkWCC(P1,1) = HCC(P1,1)
2 +HkTCC(P1,1) = 3

2 +2 = 3.5
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P1

P3

P4

P5

P2

P6

P7

P8P9

P10
P11

HCC(p1,0)

HCC(p1,1)

HCC(p1,2)

P2
P12

Figure 3.2: An example of k-neighborhood Citation Count

HkWCC(P1,2) = HCC(P1,1)
3 + HCC(P1,2)∗2

3 +HkTCC(P1,2) = 3
3 +

1∗2
3 +1 = 2,66

So far, we have defined two variants of homophily-aware metrics, namely homophily-

trimmed citation count (cf. Definition 5) and homophily-weighted citation count (cf.

Definition 6). Both metrics are computed on individual publications. However, they can

be adapted to provide an insight about the impact of individual researchers as described

in the following Definition 7:

Definition 7(Single Author Homophily -aware citation counts). Let a∈A be an author

and Pa ⊆P(P) be the set of publications of author a. The author homophily-aware

citation counts up to neighborhood k are:

HkTCS(a,k) = ∑
p∈Pa

HkTCS(p,k)

and

HkWCS(a,k) = ∑
p∈Pa

HkWCS(p,k)

The metrics can also be extended to evaluate the aggregate production of research

groups (e.g. laboratories, Universities, research centers, etc.), journals, venues (e.g. Con-

ferences, Symposia, etc.) and so forth. Hereinafter, we refer to this as aggregate author-

ship entity. Thus to calculate any homophily-aware metric, we only need to determine the

set of publications that are associated to a given aggregate authorship entity and proceed
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in a similar way as for individual researchers.

3.2 Chapter summary

In this chapter we presented a family of bibliometric indicators that take into account

the effect of homophily. We defined two variants of homophily-aware citation counts:

homophily and weighted versions. The above metric rely on the notion of paper neigh-

borhood, which has also been introduced. Finally, we indicate the way to move from

single paper Homophily-aware metric to aggregate authorship that corresponds to collec-

tive research entities such as laboratory or research group.
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Chapter 4

Homophily and citation patterns

In this chapter we present an analysis of the impact of homophily in the patterns of citation

on three different scientific communities. The analysis was conducted on the citation

and coauthorship networks, which were constructed from real world datasets. Foremost,

we build the set of experiments on the distinct venues, and on the top ranked authors

afterwards.

4.1 Datasets

For evaluation we considered three datasets that are publicly available in the web. The

analysis of datasets given in Subsection 4.1.1.

DBLP is based on data from the DBLP Computer Science Bibliography. The dataset

was consolidated in the context of the academic search system ArnetMiner1 , as

described in [22]. The snapshot covers publications in the period from 1947 to

2010. Data was integrated from different sources, such as ACM digital library,

CitrSeer and others, cleaned and free from name ambiguity problem.

HEP-TH is a dataset containing publications on to high-energy physics theory. This

data initially was set for a competition held in conjunction with the Ninth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)

in August 2003 [23]. The data covers papers in the period from January 1993 to

April 2003. Data appears sufficiently cleaned and without name ambiguity.

ACL is a dataset containing publications on Bibliometric and Network Analysis of the

field of Computational Linguistics. The ACL Anthology Network was built from

1http://www.arnetminer.org/citation
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the original pdf files available from the ACL Anthology. Publication period is from

1965 till 2009. The ACL Network was originally created by Mark Thomas Joseph

and is currently being maintained by Pradeep Muthukrishnan under the supervision

of Professor Dragomir R. Radev [24]. The dataset was cleaned and did not required

additional cleaning.

For the work in hand, we parsed the available datasets and installed them into a local

MySQL database. The database schema is described in appendix A.

4.1.1 Dataset analysis

Short summary about datasets is presented in Table 4.1.

DBLP HEP-TH ACL

Number of papers 1397237 29554 15160

Total citation count 3021489 352807 62825

Citation per paper 2.16 11.9 4.14

Number of authors

(vertexes)

1063048 14939 12470

Number of collab-

orations(edges)

2763240 24760 34911

Collaborations per

author (n of

edges/n of

vertexes)

2.6 1.65 2.79

Papers per author 1.314 1.98 1.22

Average

collaborators per

paper

2.23 1.869 2.285

Largest component 69% 62% 72%

Average distance 5.78 7.3 4.99

Table 4.1: Short summary about studied datasets

The DBLP dataset if significantly wider than two other communities, it has about one

million of distinct authors, more then three million of citations and 1.3 million of papers

versus 14 thousands and 12 thousands of author in HEP-TH and ACL respectively. Mean-

time, an average citation count in DBLP is 2.16 citation per paper. This dataset teems with
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inaccuracies such as missing information (53% of papers do not have any citation ties at

all). This limitation is an effect of gathering information from different sources and some

citation ties can be missed. Meanwhile High-energy physics and Computational Linguis-

tics datasets have 11.9 citation/paper and 4.14 citation/paper respectively.

Number of collaborations per author is similar for ACL and DBLP datasets, about

2.6 in both cases and 1.8 for HEP-TH dataset. This fact may indicate more collaborative

character of computer scientists and linguists than physicists. This fact also confirmed by

the average number of collaborators: physicists are more used to work alone or with 1.8

collaborators per paper in average, while in rest datasets average paper is written by 2.2

collaborators. We will return to this question in Section 4.1.2.

The number of papers per author is similar among three studied fields, beween 1 and

2 in each case. However, despite the fact that physicists covers smaller time period they

produced slightly more papers than their more practically minded colleagues from ACL

and DBLP datasets.

Table 4.1 gives the size of largest connected component in each of the networks. For

each of the studied networks the size of largest connected component vary from 62% for

physicists to 72% for linguists. Overall, this picture tells us that some of the nodes are in

kind of intellectual isolation from the mainstream. Most scientists who do not belong to

the largest component are members of small disconnected components. As we can see,

physicists dataset has the smallest connected component, which means that bigger part of

scientists have never collaborated with others.

We computed the distance between 25% randomly chosen pairs of individuals in a

network using a breadth-first search algorithm and then take the average to give the num-

bers shown in Table 4.1. For each network this number is quite small, at least compared

with the size of the network.

4.1.2 Patterns of scientific collaboration

In Figure 4.1 we show the distribution of the number of coauthors that scientists have for

each of the three datasets. The distribution is quite similar, however physicists (squares)

are more likely to work alone than computer scientists. A little less than the half of the

papers were written alone (43%), 0.2% of papers was written in group of 6 and only 4

articles has 7 authors.

Meantime, about one third of computational linguists papers (rhombus) were written

alone. The distribution for linguists has a longer tail, reflecting the higher mean number

of collaborators that articles have in this field. At most this network has 19 authors per
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paper. Linguists more frequently write articles in pair than alone. High collaborative

nature of linguists confirms the average distance between authors, in this case it is 4.99

(Table 4.1), which means that in average 5 “hops” required along links if one needs to

move from one given node to another, it comparable with DBLP average distance - 5.78.

The average distance for physicists is 7.3.

The DBLP community (Figure 4.1(b)) has a bit different distribution, the tail is sig-

nificantly longer then in previous network. The interesting exception is that community

even has an article with 115 and another with 102 collaborators.
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Figure 4.1: Distribution of numbers of collaborators for scientists in each dataset (note that y-axis

is logarithmic)
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4.2 Community citation patterns evaluation

We analyzed the citation patterns observed in 3 foregoing datasets. As we mentioned

before, about half of DBLP papers do not have any citations. To overcome this limitation

in community analysis we have chosen only venues with at least 8 citations per paper.

Figure 4.2 presents the homophily-trimmed citation count of neighborhoods 0 up to 3 for

the conferences in the analysis. The values of the metrics have been normalized to the total

number of citations to allow a direct comparison of the citation patterns. The trimmed

version of the metric was chosen to emphasize the importance of citations coming from

close collaborators.

Without any additional experiments from the Figure 4.2 one could notice the fact that

the shape of trend lines in DBLP and ACL datasets are steeper, while the lines of HEP-TH

are smoother. The reason of such behavior is explained in section 4.1.2. The three lower

lines in Figure 4.2(b) are the exception, which correspond yo three highly ranked journals

in the High-energy physics field and that will be further discussed in subsection 4.2.1.
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Figure 4.2: Variations of homophily trimmed citation count
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4.2.1 Information diffusion in citation networks

Information diffusion is the communication of knowledge among members of a social

system. In order to analyze information diffusion, one needs to study the overall infor-

mation flow and individual information cascades in the networks [21]. In this subsection

we examine information flow between different journals in studied networks and consider

correlation between resulting clusters and homophily aware metrics.
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Figure 4.3: Visualization of inter-citation matrix for HEP-TH dataset. White and green cells rep-

resents the highest and lowest amount of citations respectively.

In order to quantify the density of information flow from journal to journal, we count

the number of citations between every pair of journals. The results for HEP-TH dataset

presented in Figure 4.3. Citing journals are on the y-axis and cited journals are on x-axis.

Journals are ordered with respect to increasing of Homophily Weighted citation count

with 0-hops.

By examining the matrix we can observe different densities of information flow among

journals:

On the left upper corner of the matrix stands out the cluster of four journals (Nucl.Phys.B,

JHEP, Phys.Lett.B and Phys.Rev.D). Journals in this cluster capture most of citations in

the dataset. Interestingly, papers in this set of journals also cite other journals homoge-
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neously. Three of this four journals deviate from others on the figure 4.2(b). The H0WCS

for this journals variate from 0.25 to 0.33, which means that 75% and 67% of citations

respectively comes from 0-neighborhood.

The next 4 journals also represent the cluster. The part of non-self citations among

this journals is between 0.54 and 0.66. The rest of the papers can form the third cluster,

which consists of journals that not grant much citations to each other.
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Figure 4.4: Visualization of inter-citation matrix for ACL dataset(a) and DBLP dataset(b).

In figure 4.4 we can observe the same matrix for ACL and DBLP datasets. In figure

4.4(a) the distribution of citation flow is quite uniform, however one journal stands out

form the crowd - “Annual Meeting Of The Association For Computational Linguistics”.

With 67% of citations from 0-neighborhood out of 14302 total citations of this venue.

DBLP dataset (Figure 4.4(b)) behave similarly. Only one venue stands out - VLDB

with 12% of citation from 0-hop neighborhood. Meanwhile, main diagonal contains all

big numbers, while the rest of the matrix full of low values. It is hard to emphasize clusters

from this picture. Probably the reason of this fact is the limitations of dataset, which were

discussed in Subsection 4.1.1. From the above matrix we can conclude that DBLP dataset

suffer from lack of inter-venue citation ties and most of citations are come from the same

venue.

4.2.2 Subgraph structure and Homophily-aware metrics

For every venue we computed coauthorship graph induced by the subset of authors having

published at least one paper in a given venue. We computed such parameters as size of the
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largest component, number of components, clustering coefficient, average distance, diam-

eter of the subgraph. In other words we tried to understand how the subgraph structure

influence Homophily-aware metrics in the scope of journals. It is important to remind that

each vertex corresponds to author and each edge corresponds to the collaboration between

two connected authors.

acronym #of

vertexes

# of

edges

edges/vertexesdiameter largest

compo-

nent

# of

compo-

nents

% of

self

citations

csur 1896 3706 1.954 22 1166 485 12%

toplas 1701 4051 2.381 17 1202 336 29%

ml 1848 3881 2.1 18 1090 403 25%

jacm 3311 7557 2.28 20 1907 931 28%

vldb 4257 18798 4.415 15 3520 402 57%

tog 2444 8147 3.333 15 1660 387 49%

sigmod 5210 18087 3.471 17 3191 1077 48%

Table 4.2: Subgraph structure summary for 7 venues in DBLP dataset

acronym #of

vertices

# of

edges

edges/vert diameter largest

compo-

nent

# of

compo-

nents

% of

self

citations

Adv.Theor.

Math.Phys.

221 341 1.54 6 149 46 0.17

Annals

Phys.

479 470 0.98 3 28 178 0.25

Class.Quant.

Grav.

1201 1678 1.39 11 585 333 0.47

Commun.

Math.Phys.

845 937 1.1 6 367 237 0.29

Eur.Phys.J.C 353 347 0.98 5 93 135 0.31

Fortsch.Phys. 282 365 1.29 6 147 76 0.28

Int.J.Mod.Phys.A 1898 2565 1.35 9 956 474 0.44

Table 4.3: Subgraph structure summary for 7 venues in SNAP dataset
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acronym #of

vertices

# of

edges

edges/vert diameter largest

compo-

nent

# of

compo-

nents

% of

self

citations

coling 694 1729 2.49 15 516 106 37%

HLTC 309 944 3.055 12 263 22 41%

MNAAFCL 57 90 1.57 8 30 16 22%

SIGDAT 175 365 2.085 14 132 17 24%

ANLPC 184 351 1.907 16 133 79 19%

AJCL 82 147 1.792 8 46 19 24%

AMACL 1759 5486 3.118 17 1408 221 67%

Table 4.4: Subgraph structure summary for 7 venues in ACL dataset

Table 4.2 represents the sample of our results, it contains subgraph summary for 7

highly ranked venues by the number of citations per paper for DBLP dataset. The same

set of experiments was conducted for 19 venues in each dataset.

It is intuitively evident that in highly collaborative communities the number of cita-

tions from close collaborators should be higher. To justify this statement we compared

the different subgraph parameters between each other.

In highly collaborative communites all authors are binded with each other, which leads

to decreasing of the number of disconnected components. For instance, in the commu-

nity where all authors are connected would be only one component and opposite, in the

isolated communities the number of components will seek to the number of nodes. This

statment confirmed by the Pearson correlation coefficient in the first column in Table 4.2.

Average node degree is also a measure of graph density. The more collaborators in

average has an author the more binded the network. Average degree of a node can be find

by deviding number of edges in the subgraph to the number of vertexes. As shown in the

second column in Table 4.5, the average degree of a graph is highly correlated with the

number of citations from 0-neighborhood. Differently behave HEP-TH dataset, which, as

we already know, famous by trend of authors to work alone. Lonely authors represents

in a graph as disconnected nodes with degree 0. They influence the average node degree

of a graph, but actually does not involved to the graph structure. Here is the reason of

inconsistency.
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dataset Pearson correlation

# of connected

components

VS. 0-hop

citations

edges/vertexes

VS. 0-hop

citations

DBLP 0.7 0.77

HEP-TH 0.73 0.1

ACL 0.62 0.81

Table 4.5: Pearson correlation coefficient between number of connected components and 0-hop

neighborhood

4.3 Analysis of citation patterns for individuals

Pearson correlation

dataset top-30 authors top-60 authors top-100 authors

DBLP 0.58 0.56 0.4

HEP-TH 0.48 0.45 0.43

ACL 0.53 0.52 0.44

Table 4.6: Pearson correlation coefficient between number of citations from 0-neighborhood and

number of collaborators

We now turn our attention to citation patterns exhibited by individual researchers. It is

intuitively evident that researchers are more aware of works from direct collaborators such

that significant amount of references account for self-citations and citations from close

collaborators. To justify above statement we compute number of collaborators for top-

30, 60 and 100 most prolific authors by the number of citations per paper versus the total

number of self citations received by given author (Figure 4.5). We use Pearson correlation

coefficient to find out if there is any correlation between this parameters. Such coefficient

can be seen from table 4.6. As we can see from the table, the correlation decreasing while

threshold growing. The cause of this fact is the noise coming with authors with smaller

number of citations per paper.

Above correlation is an essential principle in the definition of homophily. As a whole,

the positive correlation corroborates abundance of self citations from close collaborators.
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Figure 4.5: Dependency between number of collaborators and number of self citations for top-30

researchers.

4.3.1 Correlation between H-index and homophily aware metrics

H-index attempts to measure impact and productivity of scientific work. As homophily

aware metrics, h-index is based on the number of citations received by researcher. This

two metrics has conceptually different ideas of measuring productivity, such as h-index

exclude part of publications on the basis of citation count, while homophily aware metrics

get rid of citations from close collaborators considering them as unweighted.

Table 4.7 shows top-30 scientists in the field of computer science by the number of

citations per paper. As expected, all scientists are highly ranked with respect to h-index

(h-index varies from 40 to 105) and with high Homophily coefficient (from 0.75 to 0.93),

which mean that less then 25% of citations to this authors comes from collaborators.

Pearson correlation coefficient here equal 0.35. The correlation expresses the medium

depth.

H-index attempts to find balance between productivity and quality and to avoid papers

heavy weighted by citations. Lehmann et al [13] suppose that Hirsch establishes equality
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author h-index H0TCC author h-index H0TCC author h-index H0TCC

Anil K. Jain 96 0.93 Deborah Estrin 94 0.87 Raghu

Ramakrishnan

54 0.83

David A.

Patterson

42 0.93 Zohar Manna 60 0.87 Michael

Stonebraker

49 0.81

Jeffrey D.

Ullman

87 0.93 Rajeev Motwani 75 0.87 Jiawei Han 51 0.81

Ian H. Witten 40 0.92 Scott Shenker 105 0.87 Christos

Faloutsos

44 0.80

Christos H.

Papadimitriou

79 0.91 Hector

Garcia-Molina

89 0.87 Ken Kennedy 75 0.80

Randy H. Katz 56 0.90 Ian Foster 90 0.85 H. V. Jagadish 44 0.79

David E.

Goldberg

54 0.90 W. Bruce Croft 49 0.85 Giovanni de

Micheli

63 0.79

Prabhakar

Raghavan

45 0.89 Rajeev Alur 49 0.88 Saul Greenberg 51 0.79

Amir Pnueli 54 0.88 Umeshwar

Dayal

48 0.85 Serge Abiteboul 49 0.77

David Harel 46 0.88 David Maier 43 0.83 Oded Goldreich 44 0.75

Table 4.7: Top-30 authors in computer scince with h-index and 0-hop Homophily Trimmed Cita-

tion Count normalized to the number of citations

between incommensurable quantities, such as number of publications and number of cita-

tions. Meantime, our Homophily Aware metrics focus just on the quality of papers and do

not rely on the number of papers at all. As a result this disagreement leads to discrepancy

between above metrics.

H-index and Homophily-aware metrics can supplement each other. For instance,

high h-index confirmed with high Homophily-aware metric indicate really productive re-

searcher with high level of impact since high Homophily-aware metric verify that citations

was gained not from close collaborators. Integration of this two metrics can be left for

future work.

4.4 Homophily trimmed and weighted metrics compari-

son

Both trimmed and weighted versions of Homophily Citation Count metrics could be used.

Recall that trimmed version of Homophily Aware metric represents the absolute num-

ber of citations excluding citations from k-neighborhood, while the weighted version of
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Figure 4.6: Homophily trimmed and weighted citation count comparison for two venues in ACL

datasets.

metric favor citations from afar. To illustrate differences between them lets consider two

venues from each dataset (Figure 4.6). The trend line in all cases behave equally: trimmed

version of metric is slightly steeper and weighted version is flattened due to weighted co-

efficients.

4.5 Threats to validity

The experimental evaluation has been conducted using 3 foregoing datasets. The choice

of those datasets was driven by the fact that they are publicly available, sufficiently pre-

pared for scientific purposes, with wide range of publications and citations. However,

it is important to note that datasets could be uncompleted or some important data could

be missed, like incompleteness of DBLP dataset. This limitation has an impact on the

percentage of self citations relative to the total number of citations to a paper. Due to this

limitation, the absolute numbers shown in Table 4.1 need to be taken with care. Specif-

ically, the values we have computed for the zero-trimmed citation count are likely to be

lower than in reality.

Nevertheless, the biases created by DBLP dataset limitations was overcome: for anal-

ysis we choose venues with at least 5 citations per paper. This restriction affects all venues

in dataset in more or less equal ways. Also the overview of datasets in Subsection 4.1.1

was based on coauthorship graph and almost didn’t include citation relationships. There-

fore, we suppose that the comparisons between conference citation patterns made on the

basis of the above tables and figures remain valid despite this bias.
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4.6 Chapter summary

In this chapter we performed various experiments on the given datasets. First, we ob-

served three datasets in general, discussed their characteristics. We examined the ten-

dency of authors to work in conjunction on the article. The intermediate conclusion was

that physicists are more likely to work alone then other scientists under consideration.

Second, we went deeper into the datasets and dwell on the level of venues. There we

observed citation patterns in the scope of citation flow between different venues. Also we

precisely examined subgraph structures and found some meaningful correlations between

subgraph structure and homophily. Afterwords, we turned to individuals. We observed

correlation between h-index and homophily, it appears that those indexes do not corre-

late well. And finally, we observed the essential principle of the definition of homophily,

we have shown numerically the existence of correlation between the number of 0-hop

citations and amount of collaborators.

During the experiments it was found that HEP-TH dataset differs from the others.

Probably, this is a result of different modes of research, with computational linguists

and computer scientists being applied and theoretical and high-energy physicists being

primarily theoretical. The theoretical nature of the research field indirectly had an impact

to the effect of homophily.
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Chapter 5

Conclusion

The aim of this thesis was to define the family of homophily-aware metrics and then

comprehensively examine the effect of homophily on citation patterns in scientific com-

munities. Our metric consider two types of relationships: co-authorship and citation. This

feature allows us to distinguish between citations that come from close collaborators and

those which comes from afar.

Influence of homophily was tested on three different datasets. We numerically con-

firmed the existence of correlation between sociological aspect of homophily and patterns

of scholarly citation ties. We have tried to address the problem from three points of view:

datasets in general, at the level of venues and at the level of individual scientists. Also,

we concluded that effect of homophily less noticeable in the theoretical research field.

Additionally of the work we have provided a review of existing bibliometric indica-

tors, their advantages and limitations. We have also provided sociological point of view

to the phenomenon of homophily.

Future work

The work presented in this thesis can be extended into different directions. Here are some

of them:

• The analysis of different weighting functions for Homophily k-Weighted Citation

Count, to more accurately encourage citations that came from afar. Provide an

analysis of usage of other weighted functions.
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• Propose such bibliometric indicator, that would contain advantages of h-index and

also would be aware of homophily. This metric will cover the larger spectrum of

aspects that can be evaluated.

• Apply utilized method to adjacent field of research, such as analysis of Web service

networks.
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Sarnasuse mõju viitamise mustritele
teaduslikes kogukondades

Svetlana Vorotnikova

Indiviidid kipuvad looma sidemeid pigem nende isikutega, kellega neil on sarnaseid

huvisid või muud ühist. Bibliomeetria kontekstis avaldub sama põhimõte viitamise mus-

trites - artiklites viidatakse muuhulgas ka autorite endi ning nende koostööpartnerite ar-

tiklitele. Eelneva valguses on käesoleva töö eesmärgiks projekteerida bibliomeetrilised

indikaatorid, mis võimaldaks meil arvestada sarnasuse mõju teadlaste ning teadusasu-

tuste hindamisel. Konkreetsemalt defineeritakse käesolevas töös sarnasuse alusel kärbi-

tud ja kaalutud versioonid viidete arvu meetrikale. On ilmselge, et sarnasust arvestavad

meetrikad annavad kõrgema hinnangu kogukondadele, kus on tava viidata eelkõige teiste

kogukondade autorite artiklitele. Samuti kirjeldatakse ning analüüsitakse antud töös vi-

itamise mustreid, mis tuvastati kirjeldatud meetrikate rakendamisel viidete võrgule kolme

erineva teadlaste kogukonna puhul.
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Appendix A

Database schema diagram
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Appendix B

Supplementary materials

All related materials could be found on attached CD.

CD include:

• Datasets. Located in folder “Datasets” on the CD. Datasets represented as MySQL

dump files.

• Spreadsheets with the statistics presented in the document. Located in folder “Statis-

tics”.
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