

UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Madis Abel

Lightning Fast Business Process Simulator

Master Thesis (30 EAP)

Supervisors: Luciano García-Bañuelos, PhD

Marlon Dumas, Prof

Author: “ “ May 2011

Supervisor: “ “ May 2011

Supervisor: “ “ May 2011

Professor: “ “ May 2011

TARTU 2011

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Contents

Introduction ... 4

1. Business Process Management .. 6

1.1. Key Performance Indicators ... 8

1.2. Business Process Modeling .. 9

1.3. Business Process Simulation .. 10

1.4. Required Simulation Information ... 11

1.5. Related Work .. 12

1.5.1. Research Prototypes .. 12

1.5.2. Commercial Business Process Simulation Tools .. 13

1.6. Summary ... 15

2. Business Process Simulator ... 16

2.1. Requirements .. 16

2.1.1. Business Process Model in BPMN 2.0 .. 16

2.1.2. Simulation Data in the Process Model .. 17

2.2. Core of the Simulator .. 18

2.2.1. Process State .. 18

2.2.2. Post-Condition Table ... 20

2.2.3. Pre-Condition Table .. 21

2.2.4. Process Instance Creation .. 22

2.2.5. Queue of Elements to Complete .. 22

2.3. Processing Elements ... 23

2.4. Processing Advanced Constructions of BPMN .. 25

2.4.1. Branching with Exclusive and Inclusive Split Gateways 25

2.4.2. Sub-Processes .. 25

2.4.3. Intermediate Events ... 26

2.4.4. Boundary Catch Events ... 29

2.4.5. Inclusive Converging Gateways (Or-joins) ... 31

2.5. Resource Management .. 34

2.6. Safe Models .. 35

2.7. Summary ... 35

3. Architecture of the Simulator .. 36

3.1. Initialization of a Simulation .. 36

 3

3.1.1. Creation of Objects Representing the Model .. 36

3.1.2. Case Creation ... 38

3.2. Core Components ... 39

3.2.1. Process Scheduler .. 41

3.2.2. Resource Manager ... 42

3.2.3. Event Processor ... 42

3.2.4. Process Logger .. 43

3.3. Helper Components .. 44

3.4. Summary ... 45

4. Analysis of the Results .. 46

4.1. Performance Comparison with Commercial BPS Tools 46

4.2. Performance of Complex Business Process Models ... 48

4.3. Complexity of the Or-join ... 52

4.4. Summary ... 54

Conclusion and Future Work ... 55

Abstract (in Estonian) .. 57

References ... 58

Appendices .. 61

A. Business Process Model Serialized in BPMN 2.0 .. 61

B. CD Content ... 65

 4

Introduction

Background

Business process management is a discipline to make an organization’s workflow more ef-

ficient and more capable of adapting to changes in an ever-changing global environment.

Making changes in real-life business processes could lead to undesired results if potential

impact of change is not completely analyzed before the changes are applied. Business

process simulation is a widely used technique for analyzing business process models with

respect to performance metrics such as cycle time, cost and resource utilization before

putting them to production.

Problem Statement

Many commercial state of the art business process modeling tools incorporate a simulation

component, e.g. IBM Websphere Business Modeler [13], Savvion Process Modeler [14]

and others. However, these process simulators are often slow, cannot simulate complex

real-life business processes and sometimes cannot even deal with large-scale simulations.

For example, it is not possible to simulate process models with sub-processes, intermediate

events or inclusive merge gateways (Or-joins).

Objective

The objective is to build a lightning fast business process simulator engine which could al-

so handle advanced constructions in the process models that are used to represent real-life

processes. The simulator is designed and implemented from scratch in the Java program-

ming language and it will support the simulation of business process models defined in the

BPMN 2.0 [6] standard.

Contribution

This work presents a novel approach to business process simulation field by using the ar-

chitecture of a scalable and high-performance business process simulation engine. The

contribution of this thesis is a set of design principles, architecture supporting simulations

of models containing advanced BPMN constructions like loops, sub-processes, interme-

diate events and Or-joins.

 5

Document Organization

 Chapter 1 introduces the concept of business process management, modeling and

simulation in particular; it gives a brief overview of related work done so far in this

field and summarizes the shortcomings of the current research and commercial

state of the art simulation tools.

 Chapter 2 describes the new approach in detail including proposals of how to han-

dle advanced constructions available in BPMN 2.0.

 Chapter 3 describes the architecture using class diagrams of the simulator engine.

 Chapter 4 contains the analysis of achieved results, performance comparison with

several process models and an overview of simulation speeds with existing com-

mercial business process simulation tools.

 6

1. Business Process Management

A business process is a collection of related, structured activities or tasks that produce a

specific service or product. In general we can say that business processes exist in all com-

panies that serve a particular goal, but very often those are not written down or defined

formally. A goal of business analysts is to make such process as efficient as possible in or-

der to gain higher customer satisfaction, product or service quality, delivery and time-to-

market speed. This kind of goal can be achieved using a systematic approach called busi-

ness process management (henceforth BPM for short).

Business process management is a discipline to make an organization’s workflow more ef-

ficient and capable of adapting to changes in an ever-changing global environment. BPM is

an ongoing set of action items as shown in Figure 1.1.

Analysis

Modeling

ImplementationExecution

Control Iterative
improvement
of a business

process

Figure 1.1. BPM Lifecycle

The first step to BPM is the analysis phase. The aim of the analysis phase is to determine

what needs to be done, what are the key bottlenecks and weaknesses within a business

process being managed. If the business process is being analyzed for the first time, the in-

put information for this phase comes from the initial vision of the process. If the business

process already exists, the data to be analyzed is obtained from the previous iteration(s)

 7

and again, it is possible to determine the bottlenecks and weakness of the process to be im-

proved.

In the modeling phase the business process will be written down, usually using some stan-

dardized format like Business Process Modeling Notation (BPMN) [6], Unified Modeling

Language Activity Diagrams (UML) [15], Event-driven Process Chain (EPC) [16] or any

other flowchart type diagram. If the model of a process does not exist yet, it will be devel-

oped. Otherwise, the model is iteratively revised in order to improve it using the data from

the analysis phase. The goal of the modeling phase is to take an “as-is” version of the busi-

ness process and to refine it to define a “to-be” version of it. In order to select the best al-

ternative process model it would be useful if the new model could be tested out without

having to apply it in the real world. It can be done by simulating the business process

which in general is called the business process simulation (henceforth BPS for short).

The implementation phase is meant for preparing the current system, train the employees

and do additional preparations so that the new model would be applicable to the real world

business. The implementation may require some additional changes to be done before it

can be applied. For example if the new model introduces a change which means that some

part of the process will be automated using a service, then it would require additional

work, probably by the IT department, to integrate the new service to the existing system to

make it usable.

The execution step in the BPM lifecycle is to make the new “to-be” model effective in the

real world business.

In the control phase, when the new business process is in use, process instances are being

monitored and inspected. In this phase data will be collected for the next iteration of the

BPM lifecycle.

The business process simulator, built as the result of this master thesis, helps the business

analysts in the analysis and modeling phases of the BPM lifecycle. Business process simu-

lation is an essential part of the BPM analysis and design phases. Redesigning a process

always contains a risk of failure which could result in unnecessary reinvestments. BPS

helps to develop new business processes and try them out before making the new model ef-

fective in the real business. Implementation, execution and control phases are applicable to

the real world business process only and depend highly on the analysis and modeling phas-

es which can be developed with the help of a business process simulator.

 8

1.1. Key Performance Indicators

To measure the quality, performance, cost, duration, customer satisfaction and other indi-

cators that represent the goodness of a business process, some measurements need to be

defined. In the business process management domain such quantifiable measurements are

called the key performance indicators (henceforth KPIs). KPIs could also be related to

more generic company-wide business planning strategies which are the main drivers for

BPM.

Process time is the time measured from the beginning to the end of a single process case.

Process time for separate process instances could vary depending on how the process

works. Usually unsuccessful process paths (e.g. order cancelled or rejected) take less time

than successful process paths (e.g. order accepted, paid and shipped). Process time may be

different even for processes with the same end result. This may be caused by resource allo-

cation at some point in time or additional error handling that had to be done within one

process instance and not within the other. For example there are two possible paths in the

order management business process in Figure 1.3: one for rejected orders and other for

successfully finished orders. Therefore average process time might not always be the most

informative KPI, but it would give better results if processes with successful and unsuc-

cessful activity paths are measured separately.

Cycle time is the sum of time spent on all possible process paths considering the probabili-

ties of the path to be taken in a process instance. Therefore cycle time is not related to any

specific process instance and can be calculated without the simulation.

Waiting time is the time measured from enabling a task to the time when task was actually

started. For example it is the time that patient waits for in the queue of doctor’s cabinet.

Waiting time is caused by resources being busy and it introduces a queue of waiting

process instances.

Processing time is the time spent on all activities without waiting and transfer times. Thus

cycle time corresponds to the sum of processing and waiting times.

Process cost is the sum of all costs in a process instance. Costs may be related hourly wag-

es paid for human resources performing activities, shipping, taxes or any other fees that

need to be paid to perform an activity.

 9

Resource utilization is an indicator that expresses the rate of allocated resources on average

during the period that was inspected. This KPI depends on the activity execution time and

the number of total resources available.

Also there are other KPIs, but those that were pointed out in this chapter are most common

ones. For cost based KPIs there is always an economic trade-off between the cost of ser-

vice and waiting as illustrated in Figure 1.2. The goal for a business analyst is always to

maximize some and minimize the other KPIs to find the most optimal balance between

them.

C
o

st

Cost of Waiting
Cost of Service

Tota
l C

ost

Process Capacity

Figure 1.2. Economic Trade-off [27]

1.2. Business Process Modeling

There are several ways how to describe a business process. It could be just written down to

a paper so that it can be understood or it can be visualized with a flowchart as a sequence

of activities. Nowadays the Business Process Modeling Notation (BPMN) has become the

de facto standard for process modeling. The last version of this notation, namely BPMN

2.0 [6], was released by the Object Management Group [17] in January 2011. It defines a

graphical notation with a large set of elements, their semantics and a XML based serializa-

tion format.

The simulator built as the result of this work supports the business processes defined in the

BPMN 2.0. A simple business process model diagram (henceforth BPD in short) of an or-

der processing example in BPMN is shown in Figure 1.3. This BPD consists of nodes of

three types: events (represented as circles), activities (represented as rectangles) and gate-

 10

ways (represented as diamonds). Events denote things that happen at a particular point in

time, activities denote work that needs to be performed, and gateways serve to route the

flow of control along the branches of the BPD. Nodes are connected by means of directed

edges called sequence flows. A sequence flow basically says that the flow of control can

pass from the source node to the target node [26].

Quotation
Handling

Approve
Order

Order
Handling

Shipping
Handling

Review Order
Approved

Figure 1.3. BPMN - Order Handling Example

1.3. Business Process Simulation

Business process simulation (BPS) is a widely used technique for analyzing business

process models with respect to performance metrics described in section 1.1. BPS allows

business analysts to understand how a business process actually works without putting the

process to the production environment. With BPS it can be easily analyzed how the

changes in the process, in resource management or in the process parameters such as arriv-

al rate would affect the current KPIs. For example if an insurance company states in their

insurance contracts that all cases would be checked within 7 days from the issue date, the

company needs to make sure that they are actually capable of managing all claims in case

of some disaster like earthquake or conflagration where number of incoming claims in-

creases rapidly. In order to simulate that kind of scenarios, the existence of precise simula-

tion information with a good tool are critical.

There are several possible outcomes of a business process simulator. In general a simulator

takes a business process model diagram and additional simulation specific data and pro-

duces some type of output as shown in Figure 1.4. The output can be a set of process logs

of each process instance that can be analyzed with a process mining framework, it could

calculate only the KPIs or it could do some additional benchmarks and produce diagrams.

 11

Business Process
Simulator

Business
Process Model

Additional
Simuation

Information

Process
Logs

KPIs

Benchmarks

Figure 1.4. Business Process Simulator Input and Output

In the study presented in [2] the list of 70 evaluation criteria were provided for selecting

the simulation software for a specific need. The main requirements are always the same,

but those might vary depending on the goals set for the project. For example some tools

provide support for animation of the simulation to dig into the process, but it would often

slow down the simulation and visualization may not be needed at all if business analyst on-

ly wants KPIs and basic statistics of the process as fast as possible. The criteria presented

in [2] also included items related to programming aspects like access to the source code

and support; how the software can be integrated with other third party systems like DBMS

or frameworks for statistical analysis. According to [3] there are three important categories

of capabilities that must be considered when evaluating BPS tools: modeling, simulation

and output analysis capabilities. Software supporting all these criteria would be too com-

plex and often actually not required at all. Therefore it is important to select the simulation

software according to the goals of the project. In the section 1.5 the capabilities of some re-

search and commercial simulation tools are described which are prominent in the market

nowadays.

1.4. Required Simulation Information

BPMN 2.0 does not specify how simulation related information has to be serialized, be-

cause the simulation is considered to be outside the scope of BPMN. Although some at-

tempts have been made like up to now to overcome this problem (e.g. [1]), but at the mo-

ment there is no standard way of representing simulation information in BPMN.

In order to simulate a business process model additional simulation information has to be

provided for:

 12

1. Process instance initialization

2. Element execution

3. Resource allocation

4. Cost of activities

5. Branching probabilities

Process instance initialization data must contain the number of instances of the cases to

create and the information about the arrival rate which defines the time interval of when

the next instance started after the previous one. The process initialization data must contain

information about which and how many resources (actors or roles for tasks) are available

for the process instances defined in the model.

Element execution data has to be associated with all elements which last for some specified

time and it must define how many time units it takes to complete the element in average.

Resource allocation data has to be associated also with each task and it must define which

resource is responsible for and performs the task. Resource management is one of the key

elements in the simulation – a task cannot be started if all resources are in use which re-

sults in a queue of waiting activities.

Cost of activity is a monetary value of how much does it cost to perform an activity. Usual-

ly the cost of activity includes the cost related to the duration (e.g. the hourly wage for hu-

man resources) and additional costs (e.g. the shipping cost, road usage fees) that are fixed.

Branching probabilities must be defined for the outgoing flows from the Xor- and Or-split

gateways in the process model. Using the branching probability information, the simulator

determines which path(s) will be taken in a particular process instance.

In the real world task execution times and process arrival rates in the most cases are not

fixed values, but those can be defined by an average value and some distribution info. Be-

sides the fixed amount of time units there are three commonly used distributions to de-

scribe a variety of time values: standard, uniform and exponential distribution.

1.5. Related Work

1.5.1. Research Prototypes

A BPS tool survey, which was carried out in [3], looked into the following projects: Protos,

ARIS, FLOWer, FileNet, Arena and CPN Tools. In [3] modeling, simulation and output

 13

analysis capabilities have been compared with the previously listed tools and it has been

concluded that FLOWer, FileNet and Protos are unsuitable for BPS studies due to lack of

simulation capabilities. The three remaining tools, ARIS, Arena and CPN Tools, can be

considered for BPS studies in general. However, ARIS is based on informal process mod-

eling language of EPCs and does not have the full capability for modeling workflow pat-

terns. The modeling with Arena is based on predefined building blocks and it is important

to have full knowledge of those building blocks and the exact mode of operation [3].

There have been several research projects on business process simulation. For example, in

[23] a mapping from models in BPMN to Colored Petri nets (CPN) [25] has been provided

and has been implemented in [4]. CPN Tools [25] is a powerful tool for editing, simulating

and analyzing Colored Petri nets However, it is quite technical and not intuitive enough to

model real-life business processes. A profound knowledge is required of modeling CPNs

and the resulting models are difficult to understand by the general process owners who

should be able to comprehend and validate models [3]. The mapping introduced in [23]

and implementation in [4] help to overcome this shortcoming of the CPN Tools, but in the

end the intermediate layer on behalf of the CPN Tools, which causes additional overhead,

is still required.

In [24] an open source BPS tool has also been built, but this tool does not support process

models in BPMN and, therefore, the set of available constructions which can be used in

process models is limited.

1.5.2. Commercial Business Process Simulation Tools

There are several commercial BPS tools available nowadays. In this chapter, two commer-

cial BPS tools on the market will be compared to find out about their capabilities: IBM

WebSphere Business Modeler (WebSphere) and Savvion Process Modeler (Savvion).

Some other tools (e.g. TIBCO Business Studio) have been discarded due to the lack of do-

cumentation or difficulties in setting them up.

The vision of the simulator to be built as the result of this work was to support as much as

possible different BPMN constructs and to do it faster than any other available BPS tool.

Therefore this section of the thesis concentrates mostly on the support of more advanced

BPMN construct coverage and to the speed of the simulation.

 14

WebSphere Business Modeler is one of the leading commercial business process analysis

and simulation tools
1
. In WebSphere it is possible to model, assemble and deploy business

processes, then monitor and take actions based on key performance indicators (KPIs),

alerts and triggers to continually optimize these processes. WebSphere also supports the

capabilities of simulation, analysis and redesign [4]. Additionally, WebSphere supports

different locations and timetables assigned to resources used in the process models. WebS-

phere is not fully BPMN compliant but the internal modeling language used there is in-

spired by it as seen in Figure 1.5. Modeling notation by WebSphere is inspired by BPMN,

but it supports only a small subset of modeling elements like start events, end events; And-

and Xor-gateways; loops; timers and others. With this subset of elements it is complicated

or even impossible to model complex business processes to achieve a detailed simulation

[4].

Figure 1.5. Modeling in IBM WebSphere Business Modeler

Savvion is another commercial BPS tool which supports business process modeling, analy-

sis and optimization. Ease of use and simulation capabilities were criteria why this tool

was chosen for comparison in this thesis. From the modeling perspective, Savvion uses

BPMN as the modeling notation. Figure 1.6 shows a simple business process model in

Savvion. Similarly to WebSphere only a small subset of BPMN elements is supported:

start, end and message events; tasks; And-, Xor-split and And-, Xor- and Or-join gateways.

However, the intermediate message events can be used only for modeling purposes and the

Or-join gateway is not BPMN compliant. Or-join gateway in Savvion works basically like

1
 IBM WebSphere Business Modeler 7.0 (Advanced Edition) has been used.

 15

Xor-join and does not wait for all its started preceding elements to be completed. In con-

clusion, we can say that the set of supported BPMN constructions for simulation is current-

ly very limited and it is not possible to conduct simulations of more complex business

processes.

Performance and simulation speed comparison with Websphere and Savvion BPS tools is

described later in chapter 4.

Figure 1.6. Modeling in Savvion Process Modeler

1.6. Summary

In this chapter it has been shown that the existing BPS tool research prototypes are not al-

ways suitable for simulations, require profound knowledge of the tool-specific concept and

do not support the de facto standard modeling notation BPMN. It was concluded in the

previous section that the existing commercial and research BPS tools lack the support of

more advanced BPMN constructs such as intermediate, boundary and error events; event-

based gateways and inclusive converging gateways. Also, the simulation process with

these existing tools is rather slow and cannot deal well with sophisticated simulations con-

taining a large amount of process instances to generate.

 16

2. Business Process Simulator

Simulation is a complex process and there are some constraints for models that can be

processed. This chapter describes which models can be simulated by the built engine, what

exactly is required as input data and how the simulator works internally.

2.1. Requirements

The first and the most obvious requirement for the BPMN 2.0 model to be simulated is that

it must contain only those BPMN 2.0 elements that are supported by the simulation engine.

Secondly, simulation-specific data has to be provided with business process models.

BPMN 2.0 specification does not describe how simulation-specific data like task execution

times and process instance arrival rate should be stored. The Documentation property of

BPMN elements is used (in the built program) to store this kind of data in the JSON [18]

format.

The third constraint is related to the so-called unsafe models. The notion of a safe and un-

safe model is explained thoroughly later in this chapter.

2.1.1. Business Process Model in BPMN 2.0

BPMN 2.0 defines how a business process model in this notation has to be serialized in the

XML format. As a result it is relatively easy to read the structure of a model programmati-

cally. For example a start event, a task and a connector flow between these elements in

BPMN 2.0 are serialized as follows:

...

<startEvent name="Order Received" id="start"/>

<task completionQuantity="1" startQuantity="1"

 isForCompensation="false" name="Review Order" id="review"/>

...

<sequenceFlow sourceRef="start" targetRef="review" id="1"/>

...

A simple order handling business process shown previously in Figure 1.3 serialized in

BPMN 2.0 can be found in appendix A.

 17

2.1.2. Simulation Data in the Process Model

For simplicity it was decided to include the additional data required for simulation entirely

in the serialized BPMN 2.0 model. Alternative approach would have been to keep addi-

tional data in a separate file but that would have been difficult to maintain. Since all

BPMN elements have the Documentation property which is serialized as a string, the deci-

sion was made to store simulation data there.

The start event must contain information about how many instances have to be created,

what is the arrival rate including distribution info, and which and how many resources are

available. It is described in more detail in the API [10] of the simulator. To give a brief ex-

ample, the simulation data for the start event in JSON format can be as follows:

{

 "arrivalRateDistribution":

 {

 "type":"normal",

 "mean":100,

 "stdev":20

 },

 "instances":1000,

 "resources":

 {

 "Clerk":10,

 "Manager":3

 }

}

The example above describes the arrival rate by normal distribution with mean 100 time

units and standard deviation of 20 time units. 1000 instances of a process will be created

and there are two types of resources available: 10 clerks and 3 managers. The simulator

supports also fixed and variable arrival rate using uniform or exponential distribution.

For each task or event in the business process model that takes time to execute or uses

some kind of resource, data for simulation has to be provided. The format has been de-

scribed in detail in the documentation [10]. To give a brief example, a task that will be as-

signed to a resource “Clerk” and which takes 600 time units to complete using exponential

distribution can be defined as follows:

{

 "durationDistribution":

 {

 "type":"exponential",

 18

 "mean":600

 },

 "resource":"Clerk"

}

The resource has to be assigned for tasks only, but duration information is required for all

catch events that are not thrown from the model itself. For example, the duration distribu-

tion info for a timer event that will be fired after 100 units of time has passed since the

event was enabled, can be defined as follows:

{

 "durationDistribution":

 {

 "type":"fixed",

 "value":100

 }

}

2.2. Core of the Simulator

2.2.1. Process State

During the simulation, each element in the business process model has its own state per

each process instance. The elements representing tasks can be enabled, started, withdrawn

or completed. The element becomes enabled when it is discovered by the simulator and de-

termined to be handled. When a resource is assigned to a task, it is said that the task has

been started. After that “if” element gets completed without interruptions, the element is

said to be completed, otherwise it got withdrawn, as shown in Figure 2.1.

Enabled Started

Completed

Withdrawn

Figure 2.1. State Diagram of a Task in a Process Instance

Elements other than tasks do not have the state started because the only difference between

the enabled and started states is whether a resource has been assigned or not. Resources

 19

can be assigned only to tasks, and other elements can be completed after they are enabled.

Figure 2.2 shows a state diagram of other elements than tasks in a process instance.

Enabled

Completed

Withdrawn

Figure 2.2. State Diagram of Other Elements than Tasks in a Process Instance

Every process instance that is being simulated has a state. Similarly to Petri Nets [19],

enabling and completing elements can be described as a token game, where every comple-

tion of an element consumes tokens from its incoming flows and produces tokens to out-

going flows depending on the type of the element. Tokens will be passed along flows in

the process model until all of them have been consumed, indicating that the whole process

instance has been finished. To illustrate the concepts, let us consider the order handling

process presented in Figure 2.3.

Quotation
Handling (2)

Approve
Order (3)

Order
Handling (7)

Shipping
Handling (8)

Review Order
(10)

1 2 3 5

6

7

8

9

10

4

11

Approved

(4)

(5)

(6) (9)

(11)(1)

Process State {7, 8}

Figure 2.3. Order Handling Completed, Shipping Handling Started. State {7, 8}

Figure 2.3 shows a state of tasks “Order Handling” completed and “Shipping Handing” ei-

ther enabled or already started. To ease the explanation, elements and flows have a numer-

ic label. With these labels the process state can be denoted as {7, 8}, which means that a

token is present on flow #7 and other one on flow #8.

If the task “Shipping Handling” takes much more time to complete than “Order Handling”,

then the state {7, 8} shown in Figure 2.3 will eventually occur. After an element in the

model has been completed, the simulator has to determine the set of elements that get

 20

enabled. In the state {7, 8} simulator cannot place a token on flow #10, because it has to

wait for a token to arrive at flow #9. When “Shipping Handling” gets completed, the token

is consumed from flow #7 and produced on flow #9. This results in the state {8, 9} and the

And-join gateway (9) becomes enabled as seen in Figure 2.4. To detect efficiently which of

the elements are the candidates for becoming enabled and which can actually be enabled,

the simulator uses two auxiliary structures: the pre- and post-condition tables.

Quotation
Handling (2)

Approve
Order (3)

Order
Handling (7)

Shipping
Handling (8)

Review Order
(10)

1 2 3 5

6

7

8

9

10

4

11

Approved

(4)

(5)

(6) (9)

(11)(1)

Process State {8, 9}

Figure 2.4. Order and Shipping Handling Completed. State {8, 9}

2.2.2. Post-Condition Table

The post-condition table is an association from one element to the set of its successor flows

in the process model. In other words, the post-condition table is used to get all outgoing

flows from an element that was just completed. In Figure 2.3 and Figure 2.4 all elements

and flows were assigned numeric labels. Later unique numbers associated with elements

and flows are referred to as indexes. The post-condition table for the process model in Fig-

ure 2.3 is provided in Table 2.1 below.

Element #

(index)

Post-Condition

(flows)

1 {1}

2 {2}

3 {3}

4 {4, 5}

5 { }

6 {6, 7}

7 {8}

8 {9}

9 {10}

10 {11}

11 { }

Table 2.1. Post-Condition Table

 21

From the post-condition table it can be easily detected in which flows the tokens could be

produced after an element has been completed. The tokens will be put into those flows to

represent the new state of the process and the associated target elements need to be tested

to see if they can be enabled. The pre-condition table introduced in the next section con-

tains information about which process state is required to enable any element in the model.

2.2.3. Pre-Condition Table

The pre-condition table maps the element to the required process state to enable the ele-

ment. The pre-condition table is built by traversing the business process model using the

depth first search at the pre-processing phase of the simulation. When the depth first search

reaches an element, the required state is updated by including the index of the discovered

flow in the required state. This kind of approach produces similar pre-conditions for all

types of elements, including gateways. The gateway type is checked later when determin-

ing if the element can be enabled by requiring the tokens on all incoming flows for And-

joins; one token on any incoming flow for Xor-joins, split gateways, activities and events.

Inclusive converging gateway (Or-join) is handled separately by another component and is

thoroughly explained later in section 2.4.5. The pre-condition table for the process model

in Figure 2.3 is provided in Table 2.2 below.

Element #

(index)

Pre-Condition

(flows)

1 { }

2 {1}

3 {2}

4 {3}

5 {4}

6 {5}

7 {6}

8 {7}

9 {8, 9}

10 {10}

11 {11}

Table 2.2. Pre-Condition Table

In conclusion, the combination of pre- and post-condition tables allows determine effi-

ciently which successor elements can be enabled given a state of a process instance and an

element that has been completed.

 22

2.2.4. Process Instance Creation

When the pre- and post-condition tables have been constructed, the instances of the busi-

ness process can be created. Each process instance has a unique identifier; the state which

will be updated during the execution; start and end timestamps; and at the end the trace of

elements that were completed.

The first step of the simulation is process instance creation and enabling the start event for

each generated case. The total number of cases to generate has to be provided as additional

simulation-specific data which also contains arrival parameters. Arrival parameters (also

known as arrival rate) specify the interval between two started process instances. For ex-

ample, if the arrival rate is a constant c and the first instance is started at time t, then the

second instance will be started at time t + c, the third instance at time t + c + c, and so on.

Of course, the arrival rate is usually random based on some duration info but this does not

change the logic of the completion time calculation.

The generated start events with their start times will be added to the priority queue [20] of

elements to be completed, which will be discussed in the next section of the thesis.

2.2.5. Queue of Elements to Complete

All started tasks and other enabled elements will be added in the global event queue for

completion. Each element in the queue will have a completion timestamp that means prior-

ity for the queue. When an element is added to the “to be completed” queue, the comple-

tion time has to be provided as well. The completion time is calculated based on the cur-

rent type of the system and the execution time (or duration) of the element.

The event processor component of the simulator takes the item with the highest priority

from the queue. The item selected by priority will be the next to be completed in the chro-

nological order. Processing an item from the event queue might cause new elements to be

added to the queue or a process instance completion or withdrawal. The queue will be

processed until it gets empty meaning that all cases have been finished and simulation is

completed. The core components and the main interactions between them are presented in

Figure 2.5.

 23

Process Scheduler

Event Processor

Resource Manager

Start activities
Process activityNotify activity withdrawn

Enable activities

Notify activity withdrawn

Notify process instance withdrawn

Figure 2.5. Main Interactions between the Core Components

2.3. Processing Elements

Element processing is done by the process scheduler component of the simulator. Element

processing starts when the event is taken from the priority queue and submitted for com-

pletion which, in general consists of the following steps:

1. Updating the state of the process

2. Handing resources that became available

3. Doing additional handling based on the type of element

4. Discovering the elements to be enabled

5. Enabling the discovered elements or completing them immediately

In the first step all tokens on the incoming flows of the element being processed are con-

sumed (cleared from the state) and tokens will be placed on all outgoing flows of the ele-

ment.

If resources were allocated by the task element, those resources must be made available at

this point of time. Resource management is handled separately by the resource manager

component. Resource management is discussed in general in section 2.5.

Some elements of BPMN require additional handling besides just completion which de-

pends on the type of element being completed. For example, a sub-process contains anoth-

er independent process in it, which has to be started separately, and when the sub-process

gets completed, its container element in the parent process can be completed. The elements

that require special handling are called advanced constructions of BPMN and those are ex-

plained later in section 2.4.

 24

The last step in the process is the new element discovery using the pre- and post-condition

tables explained in section 2.2. All discovered elements will be enabled or completed. All

gateways discovered can be completed immediately because gateways do not use any re-

sources and their duration is always zero. All tasks are usually assigned to a resource, their

execution takes some time, and events usually occur after some amount of time. Therefore,

tasks and events need resource management and queuing logic to be applied.

The BPMN elements are divided into two categories based on the complexity of handling

them in the simulator: basic and advanced constructions. The following elements have

been considered as basic ones: start and end event; task; exclusive (Xor) and parallel (And)

join gateways. When the simulator reaches any of these activities, no additional or special

handling is required. All elements supported by the simulator are presented in Figure 2.6.

Start Start Message

End End Message End Error

Message Timer Error

Start Events

End Events Throwing Events

Message Escalation

Escalation

Task Sub-Process

Xor-split And-split Or-split Event-based

Xor-split

Catch Events

Split Gateways

Xor-join And-join Or-join

Join Gateways

E
v
e

n
ts

A
c
ti
v
it
ie

s
G

a
te

w
a

y
s

Figure 2.6. Supported Elements of BPMN

 25

Detecting whether any of the basic elements can be enabled after completing the previous

element is relatively easy as well. Let the process state be Sp and the pre-condition of an

element i Pi. Any basic or advanced element other than And-join gateway can be enabled

if and And-join can be enabled if . In other words, And-join can

be enabled if the process state contains tokens on all incoming flows and any other element

is enabled if at least one token exists on any of its incoming flows. Elements which can be

enabled in a given state represented by tokens on flows are shown in Figure 2.7. However,

the Or-join handling is more complex and described later in section 2.4.5.

Figure 2.7. Enabled Elements

2.4. Processing Advanced Constructions of BPMN

2.4.1. Branching with Exclusive and Inclusive Split Gateways

Depending on the gateway type either all, only one or any number of paths will be selected

and activated in a process instance. It means that each outgoing flow of an exclusive (Xor)

or an inclusive (Or) gateway must be assigned a probability from 0% to 100% of taking

this path in a process instance. Branching probabilities are not applicable for parallel (And)

split gateways that always activate all of their outgoing flows.

The simulator generates random numbers and then checks the branching probabilities as-

signed to flows. Exactly one outgoing flow will be selected for Xor-splits and each flow

from an Or-split is evaluated separately. Due to randomness it might happen that the Or-

split does not select any outgoing flows. In order to solve this issue, outgoing flows for an

Or-split in a particular process instance would be determined iteratively until at least one of

them is selected. Or-joins in particular are described in section 2.4.5.

2.4.2. Sub-Processes

In BPMN there are two types of sub-process elements (Figure 2.8): collapsed and ex-

panded sub-processes. In process modeling the sub-processes are often used to make larger

 26

models easier to understand by grouping the inner detailed process together and hiding the

details from the parent process. However, in the simulator the collapsed and expanded sub-

processes are handled similarly provided that all sub-processes are included in the BPMN

2.0 file.

For both types of sub-processes the parent process contains a single element which corres-

ponds to the child-process. The elements of the child process form a new process model

which will be linked to the parent container (the respective sub-process activity in the par-

ent process). Actually, in BPMN 2.0 an element of a collapsed sub-process just refers to

another process model by its identifier and the element representing an expanded child

process is a container (parent node in the concept of XML) for all its child elements. More

information related to that can be found from the BPMN 2.0 specification [6]. As already

mentioned, the simulator handles both cases similarly and the two constructs are distin-

guished only in the model parsing phase.

Expanded Sub-Process

Collapsed
Sub-Process

Task of Sub
Process

Start Sub-Process Sub-Process Finished

Figure 2.8. Collapsed and Expanded Sub-Processes

In the parsing phase, a separate process model will be constructed from all elements in the

sub-process and linked to the parent sub-process element. When a sub-process element is

enabled, a new process instance with the chain of elements in the sub-process will be

created and the start event of it will be added to the event queue for completion. The rest of

the elements in the sub-process will be processed on a regular basis. When a child process

gets completed or withdrawn, the parent container element will be notified of completion

and the parent process can proceed. Withdrawal of a child-process causes all its started

elements withdrawn as well.

2.4.3. Intermediate Events

The intermediate event in a business process model indicates where something happens in

the middle of the process. According to the BPMN 2.0 specification [6] intermediate

events can be used to:

 27

 Show where the messages are expected or sent within the process;

 Show where delays are expected within the process;

 Disrupt the normal flow through exception;

 Show extra work needed for compensation.

There are twelve types of intermediate events in total available in BPMN 2.0 [6], but with-

in the scope of this project the following are supported: none, message, timer, escalation,

and error event. The intermediate events can be thrown from a normal flow (e.g. send a

message to another process); or caught in a normal flow (e.g. receive a message from

another process or wait for some time to represent a delay) or by a boundary catch event

(described in section 2.4.4) of an activity. A simplified process of the news life cycle con-

taining two intermediate events (circles with double thin lines) in a normal flow of a fic-

tional news agency is shown in Figure 2.9. The “More information received” event

represents a message being waited for and the “30 Days” represents a time delay of 30

days that has to pass after the process can move on. Boundary event handling is discussed

later in section 2.4.4.

Check and
Validate

Enough Information?

Write and
Publish News

yes Archive News

Request
Additional

Info

no

News Hint
Received

30 Days

More Information
Received

Figure 2.9. Intermediate Message and Timer Events in a Normal Flow

Catching intermediate events in a normal flow without exclusive event gateway can be

handled easily by the simulator. When an intermediate catch event in a normal flow is

enabled, a message will be generated and added to the queue with the completion time

generated based on the additional simulation data of the event.

Throwing intermediate events is explained along with boundary events in section 2.4.4.

However, often there is the need to model a scenario where multiple events need to be

triggered, but only the first of them has to be completed. In BPMN, situations like this can

be handled with exclusive event-based gateways.

 28

To illustrate the concept of exclusive event-based gateway, the timeout handling is added

to the “More information received” event (a star symbol inside a diamond) as seen in Fig-

ure 2.10. As the name of the gateways already states, events followed directly by the gate-

way are exclusive, meaning that only one of them has to be completed without waiting for

the rest to be triggered. When the simulator reaches the gateway, subsequent events with

generated execution time will be added to the events to be completed queue. When one of

those events gets completed, others must be withdrawn. Simulator handles this by keeping

the reference to other exclusive events created by the same preceding gateway. When the

first one is completed, others will be marked as withdrawn to be skipped later. Withdrawn

events are still kept in the queue because the event-based gateway handling does not end at

this point yet.

Now the loop handling with event gateways is considered in the context of the same news

agency process model. When the event gateway was enabled, two exclusive events to be

completed were generated. For example, it is assumed that for a particular process instance

the “More information event” will arrive exactly in 2 days and 5 minutes (generated ran-

domly based on the duration distribution information) and the “Send Reminder” event

takes exactly 10 minutes to complete. In this case, both elements would be added to the

queue and processed in the following order: the “2 days” timer event, the “More informa-

tion received” message event (withdrawn though and skipped this time) and the “Send re-

minder” task. While the simulator was handling the timeout, a message was actually re-

ceived. When the “Send reminder” task gets completed, the event gateway will be enabled

again. Now, it would not be correct to register the new message to be received again, since

this message actually has already arrived. To overcome this problem, simulator uses a regi-

stry of arrived messages. In the first iteration, when the “More information received” event

was skipped, it gets added to the registry. In next iteration, if a message to be requested al-

ready exists in the registry for the same process instance, then the message will be “res-

tored” and removed from the registry. Completion time of the message event will be set to

the current system time which results the event to be completed immediately. In other

words, when considering the same example, duration of the “More information received”

message event was 0 in the second iteration and it was completed at the time when the

event gateway was enabled.

 29

Check and
Validate

Enough Information?

Write and
Publish News

yes Archive News

Request
Additional

Info

no

Send
Reminder

News Hint
Received

30 Days

More Information
Received

2 days

Figure 2.10. Intermediate Events with Exclusive Event-based Gateway

2.4.4. Boundary Catch Events

Intermediate events can be caught by the events attached to the boundary of an activity.

Such events are called the boundary catch events and they are used for exception or mes-

sage handling. For example, the timer event on the boundary of event would be triggered if

the duration of a task is longer than the specified timer. Another common usage of the

boundary event is with sub-process error handling. If a sub-process ends with some error

(exception), this error could be caught by a boundary catch event and the exception flow

would take place instead of the normal flow. See Figure 2.11 of an article procurement

sub-process which may throw two intermediate events and Figure 2.12 of an enhanced or-

der fulfillment process inspired by [7].

 30

Check

Availability with

Supplier

Deliverable?

Order from

Supplier
<= 2 days<= 2 days

Article

Received

Article

Procured

Late Delivery

> 2 days> 2 days

Undeliverable

nono

Figure 2.11. Procurement Business Process Model

Order

Received

Check

Availability

Article Available?

Ship Articleyesyes Financial

Settlement

Payment

Received

Procurement

nono

10 Days

Late

Delivery

Undeliverable

Inform

Customer

Customer Informed

Inform

Customer

Remove Article

from

Catalogue

Article Removed

Check Status

Figure 2.12. Order Fulfillment Business Process Model

In Figure 2.11 there are two new elements: an error end event “Undeliverable” and a

throwing escalation event “Late delivery”. The error end event is a special type of end

event which has to have a name assigned to it (“Undeliverable” in this example). The name

of the event can be used in the boundary error catch event for specifying the exception to

be handled. An escalation identifies a business situation that a process might need to react

 31

to [6]. Similarly to the error events, escalations can be identified and handled by the event

name. However, throwing an escalation event like in Figure 2.11 does not end the process.

In Figure 2.12 three types of boundary events have been defined for the “Procurement”

sub-process: timer, error and escalation. The boundary events can be either interrupting or

non-interrupting. Interrupting events have a solid and non-interrupting events have a

dashed boundary. The difference is that if a non-interrupting boundary catch event is ex-

ecuted, it is handled in parallel with the normal process flow. On the other hand, interrupt-

ing catch events are executed instead of the normal flow which also results the associated

activity being withdrawn. The error event in particular always interrupts the common path

of the process model.

When an element with the boundary timer event gets enabled, the timer event with their

durations would be placed to the event queue. If the attached timer event is marked as in-

terrupting, then similarly to the event-based gateways the activity and the timer events

must be mutually exclusive. When one of interrupting timer events fires or the associated

element gets completed, others will be marked as withdrawn so they will not be processed.

If an intermediate event is thrown from a process instance, the simulator has to check

whether there is a catch event defined in any of the parent processes. The simulator main-

tains a list of catch events by their name. Now, when an event is thrown, parent processes

will be checked for the catch event with the same name and if it exists, the catch event will

be completed immediately.

2.4.5. Inclusive Converging Gateways (Or-joins)

An inclusive converging gateway (Or-join) is an element in the process where several

paths merge. While exclusive join gateway (Xor-join) waits for one token to arrive from

any of its incoming paths and parallel join gateway (And-join) waits for tokens to arrive

from all incoming flows, Or-join waits for all those branches which contain tokens. If at

some point in time it is clear that no tokens will arrive along the given path, the gateway

will not wait for that branch anymore. Figure 2.13 presents one process model with an Or-

join from [8]. Unlike other routing constructs, the Or-join has a non-local semantics: in or-

der to determine whether or not an Or-join is enabled, it is not sufficient to examine the

presence of tokens in its immediate vicinity. Instead, enabling an Or-join may depend on

the presence or absence of tokens in places far away in the model [8].

 32

Abstract
Variability

Generate
Significant

Paths

Generate
Optimal Path
Combination

Specify
Integrated
Subsystem

Figure 2.13. Process Fragment with an Or-join from [8]

The first time the fragment of a process in Figure 2.13 gets executed, the parallel gateway

will result in the “Abstract variability” and the “Specify integrated subsystem” tasks being

enabled and the Or-join has to wait for both of them to be completed. After that the tasks

“Generate significant paths” and “Generate optimal path combination” are completed in

sequence. If the Xor-split takes the bottom path which enables the “Specify integrated sub-

system” task, then the second time around, the consecutive Or-join has to wait only for this

latter task to be completed.

Or-join handling in the simulator is particularly inspired by an approach introduced in [8].

In short, when the first token arrives on an incoming flow of an Or-join, it needs to be

checked if there are tokens in any other incoming path(s). If there are not, then the Or-join

can be enabled, but if there is at least one token, then the Or-join has to wait for it. It might

happen that if the only token that an Or-join was waiting for moves out from the Or-join

branch (e.g. caused by following Xor-split), then the Or-join needs to be enabled at this

point. To achieve this, a registry of Or-joins waiting for elements to be completed is intro-

duced. If at some point in time an element which has been registered in the Or-join registry

in a process instance gets completed, the Or-joins waiting for this element will be re-

evaluated again. The Or-join re-evaluation in this phase might result in the Or-join being

enabled or the Or-join waiting for the next element to complete. The challenge at this point

is to detect efficiently if the tokens exists in incoming branches and for which elements the

Or-join has to wait to be re-evaluated for enabling.

The process state is retained as a token on active flows. For all Or-joins and their incoming

flows similar states (masks) can be generated that contain only the flows from incoming

branch in the pre-processing phase of the simulation. Such a mask can be easily compared

to the process states to determine the presence or absence of tokens in Or-join branches. If

there is at least one common flow, the Or-join has to wait for the destination element of the

 33

flow to be completed. Figure 2.14 shows two incoming branches for the Or-join: branch A

containing flows 2-3 and branch B containing flows 4-10.

Abstract
Variability

2 3

Generate
Significant

Paths

7

Generate
Optimal Path
Combination

9

4 Specify
Integrated
Subsystem

5
6

10

1 11

Branch A

Branch B

8

Figure 2.14. Branches of an Or-join

The remaining part of Or-join handling is generating the masks for incoming branches. In

this project the following algorithm is used:

1. For all coming flows to the Or-join Oi do:

a. Let the mask of branch i for Or-join O be Preci

b. Traverse path back to the start event or to the Or-join Oi along unvisited in-

coming flows and include flow being visited in Preci

2. Update discovered masks: remove all flows which are common for all branches

Step 2 is required to support the vicious circles in well-structured process models described

in [5] and [8]. In short, a vicious circle is a situation where the two Or-joins are waiting for

each other and a deadlock occurs. A vicious circle in a well-structured model from [8] in

Figure 2.15 can be resolved by the proposed algorithm. The approach requires the business

process model to be safe. Notion of safeness is explained in section 2.6.

Figure 2.15. A Vicious Circle in a Well-Structured Graph

 34

2.5. Resource Management

For the simulation purposes additional information about resource availability and assign-

ment has to be provided. For example, if an insurance company has 5 clerks and at some

point in time 6 cases come in together, then only 5 of those can be processed in parallel.

The remaining case will be queued until any of started tasks gets completed and a clerk be-

comes available. As discussed in section 2.1.2, each available type of resource with quanti-

ty and resource usage for tasks has to be defined as additional simulation-specific data. If

resources have been assigned to tasks in the business process model, the simulator can do

resource management that involves:

 Resource assignment for instances of tasks being processed;

 Resource availability check with queuing of tasks if desired resources are busy;

 Making available the associated resource when a task gets either completed or

withdrawn;

 Making available all resources used by a process instance which gets withdrawn;

 Assigning a resource to the instances of tasks in the waiting queue when the desired

resource becomes available.

The current version of the simulator supports simplified resource management. Currently,

only one resource can be assigned to a task and the completion time does not depend on

the assigned resource. For example, in a business process a task can be assigned to either a

junior or a senior clerk depending on their availability. If a senior clerk was assigned, the

duration of the task is 50% less compared to a junior clerk. From the design perspective

this is not a limitation and advanced resource management can be implemented in the fu-

ture.

Resources in the simulator are managed by the Resource Manager component. At first, for

each defined resource it is maintained how many instances are available at any point in

time. When the Process Scheduler component discovers a task to enable, this task will be

submitted for resource management. If the defined resource for this task is available, one

instance of the desired resource will be assigned and the activity will be enabled. Other-

wise, if defined resources are busy, the task will be added to the “first in first out” (FIFO)

queue [9] of the resource. If a resource becomes available, the first task from its waiting

queue will be enabled. In order to maintain available resources and waiting queues and in

 35

order to enable queued tasks, the resource manager always has to be notified when a task

gets either completed or withdrawn; or a process instance gets withdrawn.

2.6. Safe Models

According to [5] a process state is unsafe or has a lack of synchronization if there is a flow

which carries more than one token, otherwise it is safe. If a business process model may

cause an unsafe state, the model is unsafe and otherwise it is safe. An example of an unsafe

model is shown in Figure 2.16.

Figure 2.16. Unsafe Model

Only safe models can be processed by the simulator. Semantics provided for the Or-join in

[5, 8] have the same requirement for business process models. The constructs similar to the

one shown in Figure 2.16 can be sorted out by static analysis as a modeling error.

2.7. Summary

In this chapter the entire simulation process has been described thoroughly starting from

the requirements for models that can be simulated, how a simulation is conducted, how re-

sources are managed and how various BPMN elements are handled. It has been shown that

even advanced constructions of BPMN like sub-processes, several types of intermediate

events and Or-joins can be supported by the simulator engine using the new proposed ap-

proach.

 36

3. Architecture of the Simulator

In this chapter the architecture of the simulator is described and illustrated with some class

diagrams. The classes and their relations are introduced in the order of when they are used

in the simulation process – starting from the BPSimulator, a class that initializes BPMN

2.0 parser and other components used later in the simulation process. Section 3.2 describes

the core components of the simulation and in the last section of the chapter, the helper

components are presented that only encapsulate some very specific business logic (e.g. ga-

teway path selection and random number generation).

3.1. Initialization of a Simulation

3.1.1. Creation of Objects Representing the Model

The entry point to the simulation process is the BPSimulator class. BPMN2Helper

contains the BPMN 2.0 parsing logic and provides the methods for the BPSimulator to

access the business process model. From all nodes, representing BPMN elements, and all

token flows, the pre- and post-condition tables will be built like described in section 2.2;

the list of Activity objects is created; and the component for Or-join handling is initia-

lized based on the business process model. The main components in the initialization phase

are shown in Figure 3.1.

 37

Figure 3.1. Classes Used at the Initialization Phase

The instance of an Activity represents an element of the business process model. An

Activity can be a type of task, a sub-process, a gateway or an event. In addition, the

type of the gateway or event will be assigned to the instance depending on the type of the

element. As shown in Figure 3.1, Activity has two self-relations. Both of them are used

in the boundary event handling so that one of them defines the parent activity in case of a

boundary event and the second one defines boundary events in case of a task or a sub-

process. Also, an instance of a Resource may be assigned for each activity. Figure 3.2

shows the relations of the Activity class.

 38

Figure 3.2. Activity Class with Relations

3.1.2. Case Creation

When the internal structure representing the business process model has been built, the

process instances will be generated and the start events of those will be put to the event

queue for processing as discussed previously in section 2.2.5. An instance of a process

(case) is represented by a ProcessInstance class and an instance of a BPMN element

in particular process instance is represented by a ProcessActivity object. Figure 3.3

shows relations with the ProcessInstance class. Similarly to the Activity class,

ProcessActivity has two self-relations for the boundary event handling. The pro-

cessInstance relation indicates the instance of a process which owns a particular ac-

tivity. If the ProcessActivity object represents a sub-process in BPMN, then, as dis-

cussed in section 2.4.2, the sub-process will be handled in a separate process instance

which will be referenced by the relation handlingProcessInstance.

 39

Figure 3.3. Activity, ProcessActivity and ProcessInstance Classes

3.2. Core Components

Before the simulation process starts, the process instances have been created and the start

events of those have been added to the event queue for processing. The classes and inter-

faces which conduct the simulation process by processing the event queue or completing,

enabling and starting the activities are considered as the core components. In this thesis

those components are interfaces IEventProcessor, IResourceManager, IPro-

cessScheduler and classes implementing these correspondingly EventProcessor,

ResourceManager and ProcessScheduler. Figure 3.4 shows the main interactions

between those components. An object of a ProcessActivity class is passed through

core components. At first, a ProcessActivity (like a start event or a task) to be com-

pleted next is taken from the event queue by the event processor. Then the element will be

given to the process scheduler component for completion. The process scheduler will up-

date the process state and discover consecutive elements in the business process model that

have to be enabled. After that an array of elements to be enabled is passed to the resource

manager. The resource manager will check if the resources are required and available for

 40

each given task. Finally, the tasks, for which resources are not available at this point of

time, are queued and the remaining elements are passed to the event processor, which adds

those to the event queue. This is the lifecycle of a task instance in the simulator. After that

the event processor takes the next element to complete from the event queue and the whole

process is repeated until the event queue is empty.

Process Scheduler

Event Processor

Resource Manager

Start activities
Process activityNotify activity withdrawn

Enable activities

Notify activity withdrawn

Notify process instance withdrawn

Figure 3.4. Main Interactions between the Core Components

The previously described lifecycle handles only the basic flow of activities. As shown in

Figure 3.4 there are actually more interactions between the core components. Other inte-

ractions occur mostly while processing advanced BPMN 2.0 constructs discussed in sec-

tion 2.4. For example, if an interrupting boundary timer event of a sub-process activity is

completed, the associated process instance, including its started activities has to be with-

drawn. Withdrawal of an activity may result in withdrawal of other activities or starting

them in case where resources become available.

Figure 3.5 shows the class diagram of the main components. Additionally, it is shown how

the core components are related to the BPSimulator class, which is the simulation entry

point as explained in section 3.1. Also, while the activities are being enabled, started and

completed, those actions must be tracked in order to create the audit trail entry logs for

process mining framework for calculating key performance indicators or for simply show-

ing the status of the simulation. Such a tracking component can be built by implementing

the IProcessLogger interface whose relations have been shown in Figure 3.6. In this

thesis we have implemented the mining XML (MXML) and console loggers using

MxmlLogger and ConsoleLogger classes.

 41

Figure 3.5. Class Diagram of Core Simulator Components

3.2.1. Process Scheduler

The process scheduler is the component which implements most of the simulation business

logic and is represented by the ProcessScheduler class. As already discussed, the

corresponding class is closely connected to other core components. The main purpose of

the component is to:

 Complete activities;

 Maintain states of process instances;

 Discover activities to enable using the pre- and post-condition tables;

 42

 After the completion of an element, provide a list of enabled activities to the re-

source manager.

3.2.2. Resource Manager

Resource management was already introduced in section 2.5. The corresponding class in

the simulator is the ResourceManager whose relations to other components can be

seen in Figure 3.6. The resource manager is responsible for starting all activities by provid-

ing the list of them to the event processor.

There are three types of triggers in the simulation process that may indicate that some ac-

tivities can be started when:

 A task has resources available or an event is enabled;

 A started task has been withdrawn (e.g. by an interrupting intermediate boundary

event);

 A process instance with started activities has been withdrawn (e.g. an instance of a

sub-process).

The triggers listed above can also be seen in the interaction diagram in Figure 3.4.

3.2.3. Event Processor

The event processor is represented by the class EventProcessor. The main purpose of

the component is to maintain the queue of events to be processed. In addition, the class has

to handle the cases where one or more events are mutually exclusive and one of them fires.

This is a common scenario for events connected by an event-based gateway or for inter-

rupting boundary events. If an event to be processed is withdrawn in the queue, then it

must have been caused by the completion of a previous event.

Events to start are provided by the resource manager and the event to be processed next is

passed to the process logger. Additionally, events to be added to the queue can be “discov-

ered” by the component itself. This happens if an activity with boundary timer events is

started. In this case the boundary timer events must be started as well and those which have

been marked as interrupting ones must be set as mutually exclusive. The simulation

process ends when the queue of events becomes empty.

According to the intermediate message event handling discussed in section 2.4.3, all with-

drawn events representing arrived messages should be still recorded as being potentially is-

 43

sued and requested later. Therefore, the component is also responsible for maintaining the

registry of arrived messages.

Moreover, the event processor also maintains the global system clock. Since the events are

processed in the ascending order of their completion times, global system clock is changed

to the completion time of the next event to complete.

3.2.4. Process Logger

Loggers implementing the IProcessLogger interface can be plugged into the simulator

to track actions in the simulation process. The logger is notified of actions by the event

processor, the resource manager and the process scheduler as shown in Figure 3.5. Figure

3.6 below shows the three classes that currently implement the interface:

 ConsoleLogger – logs actions to the console;

 MxmlLogger – logs actions in the mining XML (MXML) format to file;

 ComplexLogger – can consist of multiple logger objects and delegates actions to

inner objects.

Figure 3.6. Class Diagram of Loggers in the Simulator

In addition to the currently implemented loggers, more of them can be easily added in the

future to store logs in database or in any format supported by tools for statistic analysis, for

example. Moreover, KPIs could be calculated by implementing the logger interface.

 44

3.3. Helper Components

Smaller classes used to encapsulate some very specific logic for simulation process are

briefly described in this section of the thesis. Figure 3.7 shows four classes that have been

used by the main components of the simulator.

Figure 3.7. Helper Components

The class Environment is used for exclusive event generation. Its method genera-

teExclusiveEvents takes an array of events to be set as exclusive. The processing

time will be calculated for the generated timer events.

The Clock class was created for managing the global system clock. All other components

including loggers can get the current system from this class. Time handling was encapsu-

lated to a separate class to simplify the potential improvements related to complex clock

management (e.g. run simulation on workdays only). Currently, time is stored in the simu-

lator in a variable type called double, but in the future it could be easily replaced with some

other data type supporting a greater range of values.

The GatewayPathSelector, as its name indicates, is responsible for path selections in

split gateways. It contains only the public method for which an element representing the

gateway and an array of all outgoing flow indexes has to be given. Depending on the gate-

way type either all, only one or any number of flows will be selected and returned. For

each outgoing flow of a gateway, the probability of taking this path in a process instance

has to be provided. Although any number between 0 and the count of all outgoing flows

could be selected for Or-split gateways, the simulation requires at least one path to be se-

 45

lected. In order to solve this problem with Or-splits, the GatewayPathSelector gene-

rates outgoing flows until at least one of them is selected.

All random numbers during the simulation process are generated by the RandomGene-

rator class. This class can generate random numbers with normal, uniform and exponen-

tial distributions. The implementation of the component uses the Colt library [11], which is

a set of open source libraries for high performance scientific and technical computing for

Java, for random number generation.

Actually, there are more components used by the simulator, but those are not of great im-

portance to the simulation. The list and descriptions of all used classes, their attributes and

methods can be found from the simulator API documentation [10].

3.4. Summary

The architecture of the simulator including relations between different components used

was explained in this chapter. The components were divided into two categories by their

purpose and roles in simulation process: the core and helper components. It was shown

which components are engaged in handling the simulation of basic and advanced construc-

tions available in BPMN in relation to the approach discussed previously in chapter 2. Ad-

ditionally, the class diagrams of all introduced classes were provided.

 46

4. Analysis of the Results

As it turned out in section 1.5.1, state of the art commercial business process simulation

tools lack simulation support for advanced constructions available in the BPMN 2.0 like

sub-processes; intermediate events and event-based gateways; error handling with boun-

dary catch events; and inclusive converging gateways (Or-joins). It has been shown that

using the new approach introduced in the chapter 2 with the architecture described in the

chapter 3 it is possible to implement the simulator engine which can handle most of the ad-

vanced BPMN 2.0 constructs.

In this chapter the performance of the BPS tool built as the result of this thesis will be

compared to the commercial BPS tools and an overview is given of the performance of

business process models containing advanced constructions of the BPMN.

4.1. Performance Comparison with Commercial BPS Tools

Firstly, a series of experiments has been conducted to compare the performance the simula-

tion engine with those of WebSphere and Savvion tools. To that end, the insurance claim

handling process (taken from [12]) was specified in BPMN, as shown in Figure 4.1. In

short, there are two call centers with 90 call center agents and one back-office with 150

claim handlers. The process model is relatively simple and contains only those elements

which are supported by both BPS tools. Both call centers receive a given amount of calls

during a week and they register the claims for the back-office. For ease of simulation, the

constant call arrival rate of 11 seconds will be used. Full process model in BPMN is shown

in Figure 4.1. The experiments were conducted in an environment with Intel Core Duo

T5470 (1.60 GHZ) processor, 2 GB of memory (RAM) and 32bit Microsoft Windows 7

operating system.

In WebSphere it is possible to turn on and off several settings that have an impact on the

performance of the simulation. For example, animations, displaying statistics during simu-

lation and storing the simulation result can be turned off entirely. Turning all those options

off is not reasonable for real-world analysis because no reports or statistics would be pro-

duced about the simulation. However, for the purposes of this comparison all these settings

are turned off to measure the duration of the simulation only and have comparable data. In

this configuration the simulation takes from about 5 to 51 seconds to complete 10 000 to

100 000 process instances as seen in Figure 4.2.

 47

Phone Call

Received

Select

Call Center

Check Info
0.50.5

Check Info0.50.5

Register
Claim

0.90.9

Register
Claim

0.90.9

Determine
Likelihood

Advise
Claimant

Initiate
Payment

Close Claim

Claim Closed

Insufficient

Information

0.10.1

Insufficient

Information

0.10.1

Insurance is not

Liable

0.150.15

Assess
Claim

0.850.85

Claim Rejected
0.20.2

0.80.8

Call Center 1 Agent, 90

Call Center 2 Agent, 90

Call Center 2 Agent, 90

Call Center 1 Agent, 90

Claims Handler, 150

Claims Handler, 150

Claims Handler, 150

Claims Handler, 150

Claims Handler, 150

520 seconds 520 seconds

30 seconds30 seconds

20 seconds

660 seconds

120 seconds

30 seconds

180 seconds

Figure 4.1. Insurance Claim Handling Process Model in BPMN from [12]

 48

For Savvion such simulation configuration options are not available and the animation with

simulation-time statistics cannot be turned off. The simulation of 18 000 process instances

(case presented in [12]) lasts for about 2 minutes and 20 seconds using the given configu-

ration. As the Savvion simulator does not allow turn the user interaction off, it does not

make sense to compare the simulation times with those of WebSphere and our simulation

tool. However, it results surprising that such optimization is not provided in state of the art

BPS tools.

Running the same insurance claim handling process model in Figure 4.1 with our BPS tool

gives the following results: from about 0.4 to 4.0 seconds. When comparing the results to

the WebSphere, we can say that we have implemented a simulator which is more than 10

times faster.

Figure 4.2. Insurance Claim Handling Process Simulation Performance

4.2. Performance of Complex Business Process Models

In this section it is discussed how the complexity of a business process model affects the

performance of the simulation. Let us take four models containing various BPMN con-

structions as follows:

a) Simple insurance claim handling, taken from [12], Figure 4.1;

b) Loop with an Or-join, taken from [8], Figure 4.3;

c) Pizza ordering process with intermediate events, Figure 4.4;

d) Order fulfillment with sub-processes and boundary events, Figure 4.5.

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10

Si
m

u
la

ti
o

n
 T

im
e

 (
m

s)

Process Instances x 10 000

Our BPS

WebSphere

 49

Models b) and c) use one human resource with the total availability of 100. Both the main

process and the “Procurement” sub-process in model d) have 100 human resources availa-

ble for each process. For simplicity the arrival rate for models b) and c) is fixed to 100 and

for model c) to 1000 time units correspondingly. Simulation-specific data for model a) was

described previously and is shown in Figure 4.1.

The complexity of these four models can be seen in the following comparison: model a) is

the simplest one involving only the basic control flow, Or-join has to be handled in model

b), intermediate events are introduced in model c), and model d) adds additional complexi-

ty of sub-processes with event throwing and catching between the two processes.

Abstract
Variability

Generate
Significant

Tasks

Generate
Optimal Path
Combination

0.80.8

0.20.2

Specify
Integrated
Subsystem

10 min

30 min

10 min 10 min

Figure 4.3. Model b) Loop and an Or-join, from [8]

Hungry for Pizza

Select a
Pizza

Order a
Pizza

Pizza Received

Pay the
Pizza

Eat the
Pizza

Still Hungry?

Hunger

Satisfied

0.80.8

Ask for the
Pizza

60 Minutes

0.20.210 min 10 min

60 min, std dev 100 sec
10 min 10 min

10 min

Figure 4.4. Model c) Pizza Ordering, Inspired from [7]

 50

Order

Received

Check
Availability

Article Available?

Ship Article0.70.7 Financial
Settlement

Payment

Received

Inform
Customer

Procurement

Late

Delivery

Customer Informed

Inform
Customer

10 Days Undeliverable

Remove
Article from
Catalogue

Article Removed

Check Status

Check
Availability

with Supplier

Deliverable?

Order from
Supplier

0.70.7
Article

Received

Article

Procured

Late Delivery

0.20.2

Undeliverable

0.10.1

0.30.3

10 min 10 min 10 min

10 min

10 min

10 min

10 min

10 min

10 min

1 day,

exponential

Figure 4.5. Model c) Order Fulfillment with a Sub-Process and Boundary Events

The simulation was carried out from 10 000 to 100 000 process instances which resulted in

simulation times from 0.4 to 4.0 seconds on average for model a), from 0.5 to 4.6 seconds

for model b), from 0.4 to 3.4 for model c), and from 0.4 to 3.1 seconds on average for

model d). The simulation times for the four models can be seen in Figure 4.6.

 51

Figure 4.6. Simulation Times

The total number of processed elements in simulations has been counted as well and the

results are illustrated in Figure 4.7. From there it can be seen that the simulator has actually

processed a different amount of elements for each model. In order to make those results

comparable, the measure elements processed per second will be calculated. The results of

elements processed per second are shown in Figure 4.8. Figure 4.8 indicates that there ex-

ists a constant for each model which expresses the complexity of the model for the simula-

tor. It can be noticed that the special handling which is required for Or-joins, intermediate

and boundary events and sub-processes slows down the simulation process only a little and

the impact to the simulation process is not considerable. In Figure 4.8 it can be seen that

from 10 000 to 30 000 process instances the simulation speed is not as good as with greater

amount of instances. This is caused by the fact that the measured time includes the model

pre-processing which is constant per business process model, does not depend on the num-

ber of process instances and, therefore, has more effect on small-scale simulations.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10

Si
m

u
la

ti
o

n
 T

im
e

 (
m

s)

Process Instances x 10 000

a) Insurance Claim Handling

b) Loop with an Or-join

c) Pizza Ordering

d) Order Fulfillment

 52

Figure 4.7. Total Number of Processed Elements

Figure 4.8. Elements Processed per Second

4.3. Complexity of the Or-join

So far the simulation performance of several business process models with various set of

BPMN elements has been compared. In addition to that, a further comparison will be made

between the speed of simulation in the process models from Figure 4.3 containing an Or-

join and the equivalent process model without the Or-join shown in Figure 4.9. Model in

Figure 4.9 is basically an enhanced version of model b) from the previous section where

the Or-join has been eliminated by duplicating the “Specify Integrated Subsystem” task

when loop occurs in a process instance.

0

200000

400000

600000

800000

1000000

1200000

1400000

1 2 3 4 5 6 7 8 9 10

To
ta

l N
u

m
b

e
r

o
f

P
ro

ce
ss

e
d

 E
le

m
e

n
ts

Process Instances x 10 000

a) Insurance Claim Handling

b) Loop with an Or-join

c) Pizza Ordering

d) Order Fulfillment

0

50000

100000

150000

200000

250000

300000

350000

400000

1 2 3 4 5 6 7 8 9 10

El
e

m
e

n
ts

 P
ro

ce
ss

e
d

 p
e

r
Se

co
n

d

Process Instances x 10 000

a) Insurance Claim Handling

b) Loop with an Or-Join

c) Pizza Ordering

d) Order Fulfillment

 53

Abstract
Variability

Generate
Significant

Tasks

Generate
Optimal Path
Combination

0.80.8

0.20.2

Specify
Integrated
Subsystem

10 min

30 min

10 min 10 min

Specify
Integrated
Subsystem

30 min

Figure 4.9. Loop without the Or-join

Figure 4.10 shows the simulation time differences and Figure 4.11 illustrates the processed

elements per second for both models with and without the Or-join. As both models are

equivalent to each other, the total numbers of processed elements are the same in all scena-

rios. The simulation times vary from about 0.5 to 4.7 seconds in case of the model with the

Or-join and from about 0.4 to 3.5 seconds in case of the model without the Or-join. Ap-

proximately 320 000 elements in the particular model with and about 245 000 elements in

the particular model without the Or-join can be handled per second. The difference is only

about 23% and it can be concluded that the Or-join handling adds a little overhead to the

simulation process which, however, is not significant for real-world simulations due to the

fast simulation speed which can be measured in seconds.

Figure 4.10. Simulation Times with and without Or-join

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10

Si
m

u
la

ti
o

n
 T

im
e

 (
m

s)

Process Instances x 10 000

With Or-join

Without Or-join

 54

Figure 4.11. Processed Elements per Second with and without Or-join

4.4. Summary

In conclusion it can be said that the simulation time with the built simulator engine is al-

ways linear, relative to the number of process instances and elements in the model, and fi-

nally, affected by the complexity of the model which can be assessed by the usage of ad-

vanced BPMN constructions in the model. The complexity of the Or-join handling was

analyzed separately and the results have indicated that this additional overhead has almost

no effect on the speed of the simulation.

Although performance of the simulation is affected by the complexity of the model, it turns

out that the difference in simulation speed between models is not significant and probably

not noticed when simulating the real-world scenarios.

0

50000

100000

150000

200000

250000

300000

350000

1 2 3 4 5 6 7 8 9 10

To
ta

l N
u

m
b

e
r

o
f

P
ro

ce
ss

e
d

 E
le

m
e

n
ts

Process Instances x 10 000

With Or-join

Without Or-join

 55

Conclusion and Future Work

In this thesis the concept of business process management as a discipline of making organ-

izations more effective and productive was described. The thesis specifically focused on

the two phases of the discipline which involve analysis and modeling and it was shown

how the business process simulation technique can be used to try and make experiments

with potential candidates of “to-be” business processes without having to put them into

production. In the worst case, without thorough analysis, a new version of the business

process could lead to even more degraded performance. Business process simulation tools

have been used to make such experiments virtually and two state of the art tools have been

described: IBM WebSphere Business Modeler and Savvion Process Modeler. It turns out

that simulation tools available at the moment are often very slow, can handle only simple

process models and cannot deal with large-scale simulations.

To overcome these problems a new untraditional approach was introduced. The proposed

approach uses efficient lookup tables to detect which of the elements in the model can be

enabled at any moment given a state of a process instance. The state of a process instance

is represented by active flows in the model. By enumerating all flows in a model we can

express each possible state as a set of bits and perform fast bitwise operations. It was

shown that using such approach it is possible to simulate even more complex constructions

of BPMN like loops, sub-processes, intermediate events with or without event-based gate-

ways, error and timer handling with boundary catch events, and inclusive converging ga-

teway (Or-join).

Moreover, the simulator was implemented using the proposed approach and the architec-

ture of it is presented in this thesis. The core of the engine is split into separate components

to encapsulate functionality. For instance, there are separate components for resource man-

agement, handler for queue of started events, event scheduler and Or-join management.

Experiments have been conducted to compare the performance and coverage of BPMN

constructions with some commercial simulation tools. For example, the performance of

simulation has been compared to the IBM WebSphere Business Modeler and it has been

shown that the simulator using the proposed architecture and approach is more than 10

times faster. This experiment was conducted with rather simple business process model of

insurance claim handling discussed in [12] due to the fact that more complex models with

advanced constructions of BPMN could not be simulated at all using WebSphere. Internal-

 56

ly, the performance has been analyzed using several process models of various complexi-

ties in the meaning of BPMN constructions used in these. It can be concluded that the

complexity of the model affects the performance slightly, but in general the speed of the

simulation is always linear and can be considered very fast.

Although the fast simulation engine has been implemented, it is not complete yet and

should be improved in the future. At the moment it is possible to conduct the simulation

without getting any statistics of key performance indicators like resource utilization, wait-

ing times and cost directly from the simulator. There exists the logger component which

creates audit trail entries in mining XML (MXML) format that can be analyzed with a

process mining framework like ProM [21], but a new component for key performance in-

dicator measurements could be implemented as well. Currently it has not been specified

how to define costs, waiting or transfer times for tasks or working schedules for partici-

pants in BPMN 2.0, however, this is not a limitation from design perspective and can be

easily defined and counted in the simulation process.

At the moment the simulator supports business process models only in BPMN 2.0 format,

but it has been designed so that parsers for other standardized formats like XPDL [22]

could be added and simulated afterwards.

Finally, the majority of constructions available in BPMN 2.0 have been covered, but there

are still some of them remaining to implement to gain full coverage of BPMN 2.0. For ex-

ample the multi instance activities with different combinations of their markers, transac-

tions and compensations, signal and conditional events have not been implemented. Again,

from the design perspective this is not a limitation and the support for remaining elements

in BPMN 2.0 could be added using the proposed architecture and existing components.

 57

Ülikiire äriprotsesside simulaator

Magistritöö (30 EAP)

Madis Abel

Äriprotsesside juhtimine on teatud hulk järjepidevalt korratavaid tegevusi alustades äri-

protsessi analüüsist, millele järgneb modelleerimine, väljaarendamine, elluviimine ning

jälgimine. Korrektne äriprotsesside juhtimine on aluseks efektiivsele ning produktiivsele

ettevõttele ning võimaldab kiirelt muutuvas keskkonnas kohandada vastavalt ka ettevõtte

äriprotsesse. Rutakalt, läbimõtlemata või –proovimata tehtud muudatused ettevõtte töövoo

korralduses võivad halvemal juhul lõppeda veel ebaefektiivsemate tulemustega, mis põh-

justavad oodatud kasu asemel hoopis kahju. Seetõttu on oluline tehtavaid muudatusi enne

reaalset rakendamist põhjalikult analüüsida, mida omakorda saab teha läbi virtuaalse äri-

protsesside simuleerimise. Protsesside simuleerimine on laialdaselt levinud metoodika kat-

setamaks kavandatavaid mudeleid ning analüüsimaks mõju erinevatele ettevõtte tulemus-

likkuse näitajatele, mis tuleneb tehtud muudatustest.

Käesoleval ajahetkel on olemas erinevaid äriprotsesside simuleerimise rakendusi nii tea-

dusliku kallakuga kui ka kommertslahendusi nagu näiteks IBM Websphere Business

Modeler, Savvion Process Modeler ja teised. Osutub aga, et olemasolevad rakendused on

tihtipeale väga aeglased, nendega ei saa modelleerida või simuleerida keerukamaid äriprot-

sesse või need ei tule toime suuremahulisemate simulatsioonidega.

Käesoleva magistritöö esimeses osas on räägitud üldiselt äriprotsesside juhtimisest, nende

simuleerimisest ning olemasolevast tarkvarast. Seejärel esitletakse täiesti uut lahendust,

kuidas ehitada äriprotsesside simulaator, mis toetab ka keerukamaid konstruktsioone äri-

protsesside mudelite de facto esitusstandardist BPMN ning on kordi kiirem kui olemasole-

vad tasuliselt pakutavad simulatsioonitarkvarad. Kolmandas osas kirjeldatakse lähemalt

loodud simulaatorit ja selle arhitektuuri ning viimases peatükis võrreldakse saavutatud tu-

lemust eelpool nimetatud olemasolevate äriprotsesside simuleerimisrakendustega ja antak-

se ülevaade simulaatori jõudlusest üldiselt.

 58

References

[1] R. M. Dijkman, M. Dumas, C. Ouyang. Formal Semantics and Automated Anal-

ysis of BPMN Process Models, Queensland University of Technology, April

2007.

[2] V. Bosilj-Vuksic, V. Hlupic. Criteria for the Evaluation of Business Process Si-

mulation Tools. Interdisciplinary Journal of Information, Knowledge, and Man-

agement, Volume 2, 2007.

[3] M. H. Jansen-Vullers and M. Netjes. Business Process Simulation - A Tool Sur-

vey. In Workshop and Tutorial on Practical Use of Coloured Petri Nets and the

CPN, University of Aarhus, Denmark, 2006.

[4] K. Blum. Open and Extensible Business Process Simulator, Master Thesis, Insti-

tute of Computer Science, University of Tartu, 2010.

[5] H. Völzer. A New Semantics for the Inclusive Converging Gateway in Safe

Processes, IBM Research, 2010.

[6] Object Management Group. Business Process Modeling Notation 2.0, January

2011.

[7] Object Management Group. BPMN 2.0 by Example. Version 1, June 2010. .

[8] M. Dumas, A. Grosskopf, T. Hettel, M. Wynn. Semantics of Standard Process

Models with Or-joins. In Proceedings of the International Conference on Coop-

erative Information Systems (CoopIS). Algarve, Portugal. Springer Verlag, No-

vember 2007.

[9] FIFO Queue

http://en.wikipedia.org/wiki/FIFO (01.05.2010)

[10] Project Homepage in Google Project Including the Simulator API

http://code.google.com/p/ut-bpsimulator (21.05.2010)

[11] Colt Library

http://acs.lbl.gov/software/colt/ (03.05.2010)

 59

[12] W. M. P. van der Aalst, M. Rosemann, and M. Dumas. Deadline-based Escala-

tion in Process-Aware Information Systems. Elsevier Science Publications,

March 2007.

[13] IBM WebSphere Business Modeler Advanced Version 7

http://www.ibm.com/software/integration/wbimodeler/advanced (08.05.2010)

[14] Savvion Process Modeler

http://web.progress.com/en/savvion/process-modeler.html (08.05.2010)

[15] UML Activity Diagram

http://en.wikipedia.org/wiki/Activity_diagram (08.05.2010)

[16] Event-driven Process Chain (EPC)

http://en.wikipedia.org/wiki/Event-driven_process_chain (08.05.2010)

[17] Object Management Group (OMG)

http://www.omg.org (08.05.2010)

[18] JavaScript Object Notation (JSON)

http://www.json.org (08.05.2010)

[19] Petri Nets

http://www.scholarpedia.org/article/Petri_net (08.05.2010)

[20] Priority Queue

http://en.wikipedia.org/wiki/Priority_queue (08.05.2010)

[21] ProM – Process Mining Framework

http://www.promtools.org/prom6/ (08.05.2010)

[22] XML Process Definition Language (XPDL)

http://en.wikipedia.org/wiki/XPDL (08.05.2010)

[23] M. Zäuram. Business Process Simulation Using Coloured Petri Nets, Master

Thesis, Institute of Computer Science, University of Tartu, 2010.

[24] B. Rücker. Building an open source Business Process Simulation tool with JBoss

jBPM, Master Thesis, Stuttgart University of applied science, 2008.

 60

[25] Colored Petri Nets (CPN)

http://cpntools.org (17.05.2010)

[26] G. Decker, R. Dijkman, M. Dumas, L. G. Bañuelos. The Business Process Mod-

eling Notation. In A. H. M. Hofstede, W. M. P. van der Aalst, M. Adams, N.

Russell (eds). Modern Business Process Automation, pages 347-348, Springer,

2010.

[27] M. Laguna, J. Marklund. Business Process Modeling, Simulation and Design.

Prentice Hall, 2004.

 61

Appendices

A. Business Process Model Serialized in BPMN 2.0

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

<semantic:definitions id="_1275486223307" targetNames-

pace="http://www.trisotech.com/definitions/_1275486223307"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:di="http://www.omg.org/spec/DD/20100524/DI"

xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"

xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"

xmlns:semantic="http://www.omg.org/spec/BPMN/20100524/MODEL">

 <semantic:process isExecutable="false" id="_6">

 <semantic:startEvent name="" id="StartProcess">

 <semantic:outgoing>_6-468</semantic:outgoing>

 </semantic:startEvent>

 <semantic:task completionQuantity="1" isForCompensation="false"

startQuantity="1" name="Quotation Handling" id="TaskQuotationHandling">

 <semantic:incoming>_6-468</semantic:incoming>

 <semantic:outgoing>_6-470</semantic:outgoing>

 </semantic:task>

 <semantic:exclusiveGateway gatewayDirection="Diverging" name=""

id="GatewayOrderApprovedDecision">

 <semantic:incoming>_6-500</semantic:incoming>

 <semantic:outgoing>_6-502</semantic:outgoing>

 <semantic:outgoing>_6-552</semantic:outgoing>

 </semantic:exclusiveGateway>

 <semantic:task completionQuantity="1" isForCompensation="false"

startQuantity="1" name="Order Handling" id="_6-190">

 <semantic:incoming>_6-504</semantic:incoming>

 <semantic:outgoing>_6-508</semantic:outgoing>

 </semantic:task>

 <semantic:task completionQuantity="1" isForCompensation="false"

startQuantity="1" name="Shipping Handling" id="_6-241">

 <semantic:incoming>_6-506</semantic:incoming>

 <semantic:outgoing>_6-532</semantic:outgoing>

 </semantic:task>

 <semantic:userTask implementation="##unspecified" completionQuan-

tity="1" isForCompensation="false" startQuantity="1" name="Review Order"

id="TaskReviewOrder">

 <semantic:incoming>_6-534</semantic:incoming>

 <semantic:outgoing>_6-536</semantic:outgoing>

 </semantic:userTask>

 <semantic:endEvent name="" id="EndProcess">

 <semantic:incoming>_6-536</semantic:incoming>

 </semantic:endEvent>

 <semantic:parallelGateway gatewayDirection="Diverging" name=""

id="ParaSplitOrderAndShipment">

 <semantic:incoming>_6-502</semantic:incoming>

 <semantic:outgoing>_6-504</semantic:outgoing>

 <semantic:outgoing>_6-506</semantic:outgoing>

 </semantic:parallelGateway>

 <semantic:parallelGateway gatewayDirection="Converging" name=""

id="ParaJoinOderAndShipment">

 <semantic:incoming>_6-508</semantic:incoming>

 <semantic:incoming>_6-532</semantic:incoming>

 <semantic:outgoing>_6-534</semantic:outgoing>

 62

 </semantic:parallelGateway>

 <semantic:endEvent name="" id="TerminateProcess">

 <semantic:incoming>_6-552</semantic:incoming>

 <semantic:terminateEventDefinition/>

 </semantic:endEvent>

 <semantic:userTask implementation="##unspecified" completionQuan-

tity="1" isForCompensation="false" startQuantity="1" name="Approve Order"

id="TaskApproveOrder">

 <semantic:incoming>_6-470</semantic:incoming>

 <semantic:outgoing>_6-500</semantic:outgoing>

 </semantic:userTask>

 <semantic:sequenceFlow sourceRef="StartProcess" targe-

tRef="TaskQuotationHandling" name="" id="_6-468"/>

 <semantic:sequenceFlow sourceRef="TaskQuotationHandling" targe-

tRef="TaskApproveOrder" name="" id="_6-470"/>

 <semantic:sequenceFlow sourceRef="TaskApproveOrder" targe-

tRef="GatewayOrderApprovedDecision" name="" id="_6-500"/>

 <semantic:sequenceFlow sourceRef="GatewayOrderApprovedDecision"

targetRef="ParaSplitOrderAndShipment" name="Approved" id="_6-502"/>

 <semantic:sequenceFlow sourceRef="ParaSplitOrderAndShipment" tar-

getRef="_6-190" name="" id="_6-504"/>

 <semantic:sequenceFlow sourceRef="ParaSplitOrderAndShipment" tar-

getRef="_6-241" name="" id="_6-506"/>

 <semantic:sequenceFlow sourceRef="_6-190" targe-

tRef="ParaJoinOderAndShipment" name="" id="_6-508"/>

 <semantic:sequenceFlow sourceRef="_6-241" targe-

tRef="ParaJoinOderAndShipment" name="" id="_6-532"/>

 <semantic:sequenceFlow sourceRef="ParaJoinOderAndShipment" targe-

tRef="TaskReviewOrder" name="" id="_6-534"/>

 <semantic:sequenceFlow sourceRef="TaskReviewOrder" targe-

tRef="EndProcess" name="" id="_6-536"/>

 <semantic:sequenceFlow sourceRef="GatewayOrderApprovedDecision"

targetRef="TerminateProcess" name="" id="_6-552"/>

 </semantic:process>

 <bpmndi:BPMNDiagram documentation="" id="Trisotech.Visio-_6"

name="Order Process" resolution="96.00000267028808">

 <bpmndi:BPMNPlane bpmnElement="_6">

 <bpmndi:BPMNShape bpmnElement="StartProcess"

id="Trisotech.Visio__6_StartProcess">

 <dc:Bounds height="30.0" width="30.0" x="120.0"

y="393.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="TaskQuotationHandling"

id="Trisotech.Visio__6_TaskQuotationHandling">

 <dc:Bounds height="68.0" width="83.0" x="175.0"

y="374.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="GatewayOrderApprovedDecision"

isMarkerVisible="false"

id="Trisotech.Visio__6_GatewayOrderApprovedDecision">

 <dc:Bounds height="42.0" width="42.0" x="419.0"

y="387.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_6-190"

id="Trisotech.Visio__6__6-190">

 <dc:Bounds height="68.0" width="83.0" x="578.0"

y="312.0"/>

 <bpmndi:BPMNLabel/>

 63

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_6-241"

id="Trisotech.Visio__6__6-241">

 <dc:Bounds height="68.0" width="83.0" x="578.0"

y="442.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="TaskReviewOrder"

id="Trisotech.Visio__6_TaskReviewOrder">

 <dc:Bounds height="68.0" width="83.0" x="746.0"

y="374.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="EndProcess"

id="Trisotech.Visio__6_EndProcess">

 <dc:Bounds height="32.0" width="32.0" x="860.0"

y="392.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="ParaSplitOrderAndShipment"

id="Trisotech.Visio__6_ParaSplitOrderAndShipment">

 <dc:Bounds height="42.0" width="42.0" x="527.0"

y="387.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="ParaJoinOderAndShipment"

id="Trisotech.Visio__6_ParaJoinOderAndShipment">

 <dc:Bounds height="42.0" width="42.0" x="668.0"

y="387.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="TerminateProcess"

id="Trisotech.Visio__6_TerminateProcess">

 <dc:Bounds height="32.0" width="32.0" x="424.0"

y="320.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="TaskApproveOrder"

id="Trisotech.Visio__6_TaskApproveOrder">

 <dc:Bounds height="68.0" width="83.0" x="294.0"

y="374.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNShape>

 <bpmndi:BPMNEdge bpmnElement="_6-500"

id="Trisotech.Visio__6__6-500">

 <di:waypoint x="377.0" y="408.0"/>

 <di:waypoint x="419.0" y="408.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_6-536"

id="Trisotech.Visio__6__6-536">

 <di:waypoint x="830.0" y="408.0"/>

 <di:waypoint x="848.0" y="408.0"/>

 <di:waypoint x="860.0" y="408.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_6-534"

id="Trisotech.Visio__6__6-534">

 <di:waypoint x="710.0" y="408.0"/>

 <di:waypoint x="728.0" y="408.0"/>

 <di:waypoint x="746.0" y="408.0"/>

 64

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_6-532"

id="Trisotech.Visio__6__6-532">

 <di:waypoint x="662.0" y="476.0"/>

 <di:waypoint x="689.0" y="476.0"/>

 <di:waypoint x="689.0" y="429.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_6-470"

id="Trisotech.Visio__6__6-470">

 <di:waypoint x="258.0" y="408.0"/>

 <di:waypoint x="294.0" y="408.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_6-552"

id="Trisotech.Visio__6__6-552">

 <di:waypoint x="440.0" y="387.0"/>

 <di:waypoint x="440.0" y="352.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_6-508"

id="Trisotech.Visio__6__6-508">

 <di:waypoint x="662.0" y="346.0"/>

 <di:waypoint x="689.0" y="346.0"/>

 <di:waypoint x="689.0" y="387.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_6-506"

id="Trisotech.Visio__6__6-506">

 <di:waypoint x="548.0" y="429.0"/>

 <di:waypoint x="548.0" y="476.0"/>

 <di:waypoint x="578.0" y="476.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_6-504"

id="Trisotech.Visio__6__6-504">

 <di:waypoint x="548.0" y="387.0"/>

 <di:waypoint x="548.0" y="346.0"/>

 <di:waypoint x="578.0" y="346.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_6-468"

id="Trisotech.Visio__6__6-468">

 <di:waypoint x="150.0" y="408.0"/>

 <di:waypoint x="164.0" y="408.0"/>

 <di:waypoint x="175.0" y="408.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_6-502"

id="Trisotech.Visio__6__6-502">

 <di:waypoint x="461.0" y="408.0"/>

 <di:waypoint x="527.0" y="408.0"/>

 <bpmndi:BPMNLabel/>

 </bpmndi:BPMNEdge>

 </bpmndi:BPMNPlane>

 </bpmndi:BPMNDiagram>

</semantic:definitions>

 65

B. CD Content

The accompanied CD-ROM contains the following content:

1. /samples – example business process models in BPMN 2.0 that have been tested

2. /src – source code of the simulator

3. /utbpsimulator_lib – used libraries

4. Readme.txt – instructions to simulate the example process models

5. utbpsimulator.jar – executable Java Archive File to run the simulator

