
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER

SCIENCE

Institute of Computer Science

Information Technology

Rainer Villido

Semantic Integration Platform for Web
Widgets’ Communication

Master’s thesis (30 ECTS)

Advisor: Peep Küngas

Author: .. ”...” May 2010

Advisor: ... ”...” May 2010

Approved for defence

Professor: ... ”...” May 2010

Tartu 2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

Introduction 4

1 Mashups 7

2 Related Work 12

2.1 Mashup Providers . 13

2.2 Related Work on Semantic Integration 18

3 Semantic Integration of Exchanged Data 20

4 Transformer Widget 28

4.1 Mappings Configuration . 29

4.2 Installing Widgets . 35

4.2.1 Requirements for Widgets and Portals Using

OpenAjax Hub 2.0 . 38

4.2.2 Installing OpenAjax Hub 45

5 Implementation of the Transformer Widget 51

5.1 Directory and Package Layout 52

5.2 Compiling the Project . 57

5.3 Implementation . 58

5.3.1 Fetching Mappings . 59

5.3.2 The Structure of Mappings 62

5.3.3 Communication with the Hub 64

5.3.4 Handling Incoming Messages 65

5.3.5 Data Model . 67

2

5.3.6 Data Aggregation . 74

5.4 Adding Support for a New Data Format 78

6 Validation of the Transformer Widget 82

7 Future Work 100

Conclusion 104

Abstract (in Estonian) 106

Bibliography 108

Appendix 114

3

Introduction

Semantic integration platform for web widgets communication is a frame-

work for providing collaboration capabilities between loosely coupled Web

components in a mashup-like Web application.

Mashups are Web applications that allow reuse of excising resources by

combining different widgets that use data from various sources in the Web.

Current mashup platforms do not support collaboration between widgets

if widgets have been developed and maintained by different vendors and are

not able to interpret messages sent by other widgets. This limits the creation

of sophisticated mashups where Web widgets could interactively share and

exchange data between each other and make it possible to have collaboration

between independent Web components.

This thesis intends to solve the problem that widgets are not able to share

information with each other and collaboration between widgets is limited.

Making the data published by a widget on a Web application available to all

the other widgets connected to the application is the main goal of this work,

which would allow interactively combine data from various sources to enable

collaboration between loosely coupled components on a Web application.

The thesis proposes a solution for aggregating data from messages sent

by different widgets and reusing the data to generate new messages to other

widgets which could use the combined data. The main problem is collect-

ing useful data from the exchanged messages and transforming the collected

data into new messages that would be interpretable by widgets that are using

different data formats and structures. Integrating and sharing data from var-

ious sources is the main research problem in the field of semantic integration

and this thesis proposes one solution for sharing data between independent

4

Web widgets in a mashup.

The solution proposed in the thesis is built on the OpenAjax Hub [2]

framework that provides the means for Web widgets to exchange messages

between each other. OpenAjax Hub provides a central hub that allows mes-

saging between widgets that are connected to the hub.

The main problem is the use of different data structures in messages ex-

changed by widgets developed by different vendors. Even though the widgets

can use the hub for exchanging messages, the content of the exchanged mes-

sages remains unknown for the widgets because they are not able to interpret

messages sent by other widgets.

The solution proposed and implemented in this thesis is a JavaScript ap-

plication that is connected to the OpenAjax messaging hub to transform the

exchanged data to be interpretable to all the widgets. The proposed appli-

cation is a widget called Transformer Widget that uses semantic integration

to transform data.

The Transformer Widget listens to the messages exchanged by the wid-

gets connected to the hub and uses preconfigured mappings to identify and

combine data elements it receives from messages. Mappings that describe

the structure and the semantics of the messages are being used to collect

data elements from existing messages and to generate new messages from the

collected data elements. Mappings contain descriptions of the atomic data

elements in the messages where each atomic data element is matched with a

term in an ontology1 that describes the meaning of that particular data ele-

ment. This allows automatic understanding of the content of the exchanged

messages regardless of which data structures are used in the messages. With

the help of mappings, it is possible to collect atomic data elements from the

received messages to generate new messages that can be sent to the widgets

that can interpret generated messages.

The Transformer Widget allows building of mashups with complex appli-

cation logic where loosely coupled components (widgets) can collaborate and

perform tasks that would otherwise be difficult to implement using widgets.

1Ontology is a specification of a representational vocabulary for a shared domain of
discourse – definitions of classes, relations, functions, and other objects [17].

5

The rest of the thesis is organized as follows. The problem is introduced

further in the next chapter 1 which discusses the paradigms of Web 2.0,

mashups and widgets which are the fundamental concepts underlying the

thesis. The chapter 2 gives an overview of the current standards, platforms

and problems that relate to mashups. The chapter 2 also introduces the main

conventional problems in the field of semantic integration. The proposed so-

lution for semantic integration of data exchanged by widgets is discussed in

the chapter 3 where the main ideas of how to transform messages are dis-

cussed. The chapter 4 describes the specification of mapping configurations

that can be created to integrate data on a mashup. The chapter also gives in-

stallation instructions of how to implement and install mashups and widgets

using OpenAjax Hub and Transformer Widget. The chapter 5 discusses the

technology behind the Transformer Widget and gives a detailed overview of

the implementation of the project. The usability of the Transformer Widget

is discussed in the chapter 6 which gives an overview of the test application

that was used to verify if the Transformer Widget can be used in integrating

data to enable collaboration between widgets. The possible improvements

of the Transformer Widget are introduced in the chapter 7 where possible

future developments are discussed.

The author would like to thank his supervisor Peep Küngas for his in-

sightful guidance and support.

6

Chapter 1

Mashups

Mashups have emerged from the idea of Web 2.0 [30] which is a concept

(but not a new technical specification) of Web pages having more qualities

of interactive information sharing, interoperability, user-centered design, and

collaboration (like web communities, social networking sites, video sharing

sites, wikis, blogs etc). A Web site would allow interaction between users

or to change website content by users in contrast to non-interactive websites

where users only passively view information that is provided to them by static

Web.

Web 2.0 consists of principles like “The Web as Platform” [30] where

applications have moved from desktop to Web, “Harnessing Collective Intel-

ligence” [30] where end-users generate content for the applications, where it

is hard to distinguish who owns the data in the Web.

The idea of Web 2.0 has resulted in widgets and mashups technologies

where end-users mash reusable components (widgets) together to personal

Web pages. That breaks the traditional software development model with a

system analysis, programming, testing, and deployment of the application.

With widgets and mashups the applications can be built more rapidly by

combining reusable components.

Widgets (sometimes also called gadgets) are small reusable client-side

Web applications meant to be distributed to multiple locations. They can be

installed on a client machine or can be embedded into Web pages and run

7

in a Web browser. According to The World Wide Web Consortium (W3C)

[41], they range from simple widgets that simply display information (e.g.

weather forecast) to complex applications that combine data from multiple

sources and allow user to interact with it in a useful way.

Widgets are created using Web technologies which means that they are

easier to create than traditional binary applications developed with lower-

lever programming languages.

W3C categorizes [42] widgets into desktop widgets, Web widgets and mo-

bile widgets. All of them are built on Web technologies and offer mostly the

same functionality, but are packaged differently, have different security mod-

els and APIs. Web widgets have the same restrictions [42] as regular Web

applications that are limited by the security models of Web browsers (e.g.

applications cannot autonomously access resources on a device) but desk-

top and mobile widgets have less strict security models that can allow more

access to devices. No matter in which environment widgets are used, they

are still regular Web applications that are mainly composed of HTML, CSS,

JavaScript and other Web technologies where HTML and CSS are used in

user interface layout and JavaScript is used in application logic and com-

municating with external services and resources. Widgets are designed to

provide a specific function that can be used together with rest of the appli-

cation. They are meant to be used in different applications and by different

users and therefore are usually designed to be customizable and flexible to

be adoptable in wide range of applications.

These environments or platforms that allow combination of widgets into

a single application are called Mashups [7]. Mashups come from a phrase “to

mash up” [7] that literally means an activity when a user putting together

existing widgets – the user is “mashing up” a new application. The idea of

mashups is to allow end users to combine together existing Web components

and resources from different providers to make up new applications that could

provide desired functionality. This makes mashups personal and unique to

every user.

The traditional software development model with requirements, design,

implementation and testing is no longer valid when building mashups.

8

Figure 1.0.1: Enterprise Mashup Stack [18]

Mashups create a new paradigm [7] for software development where devel-

opers create new Web services (the SOA approach) and build new widgets

using existing services and resources and end users simply take existing wid-

gets and combine them to perform desired tasks. This is much faster way of

building new applications than going through the whole process in building

traditional applications.

The Figure 1.0.1 [18] represents mashup architecture. Resources are at

the bottom layer and are various Web services and resources that can provide

source of information and data for widgets. The resources can be provided by

different vendors and are not restricted by only one provider, making them

core building blocks for creating functionality for the widgets. The Gadget

layer represents widgets that combine various resources from the Resource

layer into small reusable Web applications. On top in the Mashup layer

which combine the collection of widgets into a complex application. It allows

linking and exchanging of information between widgets.

Many software vendors have mashup platforms available for personal and

enterprise use. The more popular mashup platforms are IBM Mashup Center

[19], Kapow Mashup Server [37], JackBe Presto [6], iGoogle [11], Netvibes

9

[26], Yahoo! Pipes [46] etc. Mashup providers differentiate between consumer

mashups and enterprise mashups. Consumer mashups (iGoogle, Netvibes,

Yahoo! Pipes) allow individual users to create their own individual mashups

that are hosted on the providers’ infrastructure (i.e. on cloud). Enterprise

mashup providers (IBM Mashup Center, Kapow Mashup Server, JackBe

Presto, etc) provide mashup platforms for enterprises and allow building

more sophisticated mashups than personal mashup providers. Most enter-

prise mashup platforms allow collaboration between widgets whereas only few

consumer mashup platforms (Yahoo! Pipes) allow some kind of messaging

between widgets which makes it difficult to create more complex applications

based on widgets.

There are many shortcomings regarding current mashup platforms. The

main problem is lack of collaboration between widgets on mashup platforms.

Most widgets today are very simple and made only for displaying information.

There is a lack of infrastructure that would support communication and

exchange of data between widgets.

There are few mashup platforms available that support collaboration be-

tween widgets within their platform, but those solutions are too vendor spe-

cific which do not allow communication with external widgets. There are also

few data-flow model [48] approaches available (e.g. Yahoo! Pipes) which

allow combination of different data sources while a mashup page is being

loaded, but they lack event-based [48] messaging which would allow more

interactive mashups to be built where widgets could exchange messages and

data in real-time without reloading the page.

To allow building of more complex mashups, an infrastructure and stan-

dards for collaboration between widgets are needed. If widgets could be

combined to exchange messages with each other so that independent Web

components could collaborate on a Mashup, then more sophisticated appli-

cations can be built using widgets.

Another problem is incompatibility between mashup platforms and wid-

gets of different vendors. All mashup platforms have different packaging

formats, API and standards for widgets which restricts the combination of

widgets from different vendors. To build a mashup means locking in to the

10

technologies and standards of a particular mashup provider which makes it

impossible to use widgets developed for another platform.

A study about mashups and modularity [35] found that in order to ac-

complish mashups that uses components and other content from all over the

Web, improvements are needed in security and modularity which is critical,

because it is quite impossible to build maintainable systems unless all the

reusable elements have well-defined interfaces. Additionally, according to

the article [48], despite of recent advanced in mashup creation still too much

manual effort is required to build mashups, and the article [49] adds that the

problems developers encounter when creating mashups are the reliability of

the API documentation and coding details, and the JavaScript skills needed

to integrate the APIs.

11

Chapter 2

Related Work

The lack of common standards in widgets and mashups reduce interop-

erability between components made by different providers. This has lead to

many initiatives to develop common standards for all widget providers.

The World Wide Web Consortium (W3C) [41] has worked on a standard

for widgets’ packaging format and the requirements of installable, desktop

or mobile widgets. This standard is not meant for distributing widgets in

Web applications, but rather in various user agents for devices like mobile

phones and other environments like desktop sidebars. The idea is to have

one common packaging standard so that no matter for which platform you

develop the widget for, it can run in any other platform also (for example,

you can run the same widget in Windows Sidebar, Apple Dashboard, and

Google Desktop).

OpenAjax Alliance [1] is an organization of vendors, open source projects

and companies includes members from IBM, Microsoft, Tibco, Google,

JackBe, Adobe, Opera, Oracle and many others. The objective of this stan-

dardization effort is to define a metadata format and a lightweight runtime

environment that allows developers and users of widgets to easily assemble

loosely coupled components from a variety of widget providers [39]. The

specification does not provide a new widget model but provides a metadata

layer to the widget environment. This metadata layer provides enough in-

formation to a widget assembly tool so that it can understand the properties

12

and messaging exchanging capabilities of a particular widget. Widgets re-

tain their original component model and are capable to be easily portable to

different platforms [39].

OpenAjax Hub [2] is another initiative from OpenAjax Alliance. The

OpenAjax Hub defines a standard for using the JavaScript library of the

OpenAjax Hub to isolate widgets into secure containers and allowing them

to communicate with each other through a central messaging hub that ex-

changes messages sent by widgets. It also provides a security mechanism for

controlling widgets communication and preventing malicious widgets from

accessing and harming rest of the application.

The OpenAjax Hub is currently the only framework for allowing third

party widgets to exchange messages between each other. The hub provides

necessary infrastructure to build complex mashups using widgets that are

built by different vendors.

The Open Mashup Alliance has developed open Enterprise Mashup Markup

Language (EMML) [4] that improves mashup portability of mashup designs,

and increases the interoperability of mashup solutions. Mashups written in

EMML can be deployed to any EMML-compliant application.

OpenSocial [8] is a standard established by Google to access the social

data contained in the various social networking sites. It provides a set of

common APIs for building social applications across the Web. An advantage

of OpenSocial is that it is supported by at least 20 [8] social networking

websites.

2.1 Mashup Providers

There is wide range of mashup providers available with each one with

their own platforms, technologies and APIs that makes up very diverse land-

scape of mashup technologies. The most popular consumer mashup platforms

are iGoogle [11], Netvibes [26] and Yahoo! Pipes [46] which allow users to

create their own simple mashups. Consumer mashup platforms usually have

communities that are developing new widgets for everyone to use. Popular

enterprise mashup platforms are IBM Mashup Center [19], Kapow Mashup

13

Figure 2.1.1: Mashups and Widgets

Center [37], WSO2 Mashup Server [45], JackBe Presto [6] and many others

that provide businesses with more sophisticated mashup platforms, but they

usually lack large collection of widgets created by community that is more

common for the consumer mashups.

Most mashup providers usually have their own widget packaging formats

and APIs used to add widgets to mashups. Google [11] has its own Google

Gadgets and Google Wave Gadgets standards and APIs for iGoogle and

Google Wave, Microsoft [23] has Microsoft Gadgets standards used in Mi-

crosoft Sidebar and Windows Live Spaces, Netvibes [26] has Netvibes UWA

and there are many more to choose from. There are also some widget con-

tainers available (e.g. Apache Wookie [20] and Apache Shinding [9]) to host

widgets in any web page rather than just in a particular mashup platform. In

the Figure 2.1.1 there is an overview of the most popular mashup platforms,

widget API standards and widget containers.

Netvibes [25, 26] allows assembling widgets, feeds, social networks, email,

videos and blogs on one customizable page. It uses the Universal Widget

API (UWA) for building widgets for their mashup platform. The UWA

supports iGoogle, Apple Dashboard, Windows Live Spaces, Opera and some

14

more as a publishing platform meaning that Netvibes widgets are portable

to other platforms not just Netvibes platform. Netvibes has also made their

technology publicly available for everyone to download their UWA JavaScript

Runtime for running UWA widgets and PHP Libraries for handling server

operations rather than relying on Netvibes infrastructure.

Yahoo! Pipes [46, 39] allows mashing up pipes from different sources (e.g.

JSON, RSS, Atom feeds) without programming and by drag and dropping

components to a workspace. The Visual development environment is based

on dragging pipes from a toolbox and dropping them in work space, specifying

data inputs, interconnecting widgets through pipes and finally specifying data

output formats. Yahoo! Pipes is a quite data-oriented approach of building

mashups by directly combining different data feeds, unlike other mashup

platforms which combine available widgets.

Intel Mash Maker [21] is a browser extension that capable of learning what

information user is interested in and creating personalized mashups. Mash

Maker allows building mashups by combining content from multiple sources

such as web content, videos, maps, RSS feeds and photos. It adopts mashups

to the user behavior and suggests mashups that it thinks the user would like

based on the user past behavior and the behavior of other users. Intel Mash

Maker has its separate open Widget API for creating widgets. Each widget

can see data added by other widgets, allowing composing a collection of

widgets into a Mashup. Mash Maker also supports use of Google Gadgets

but they cannot do as much as Mash Maker widgets. Nevertheless, Intel

Mash Maker’s expressive power is limited since it doesn’t support RSS and

Web APIs

IBM Mashup Center [19, 7] is an enterprise mashup platform allowing

creation of widgets and combining them to new mashups. IBM has many

different tools like WebSphere sMash, WebSphere Portal, Lotus Widget Fac-

tory, MashupHub and Lotus Mashups for creating and storing widgets and

mashups. MashupHub is a Web-based editor for creating, storing and trans-

forming feeds from different sources (e.g. XML, SQL queries, spreadsheets)

that can be used in IBM mashups. Lotus Mashups (formerly called IBM

QEDWiki) is a lightweight mashup environment for assembling personal, en-

15

terprise and Web content into simple applications [19] that provides internal

communication between widgets.

Kapow Mashup Server [36, 7] is a mashup platform for enterprise mashups

and the OpenKapow is a free community version of the mashup platform

with some limitations. Kapow widgets are called Robots that are individ-

ual mashups with variety of data outputs and with communication capabil-

ities between other Robots. The Kapow Web Data Server [37] is capable of

wrapping Web applications into data feeds and RoboMaker [37] is a visual

scripting application to build Robots by visual process flow steps.

WSO2 Mashup Server [45] is open source platform for mashups to acquire

data from a variety of sources including Web Services, HTML pages and feeds,

and process and combine it with other data. The Mashup Server enables

recursively mashing up services, meaning that a mashup can be consumed

by another mashup.

Google Gadgets [11, 39] are widgets for platforms like iGoogle, Google

Apps, Google Desktop, Google Maps, Google Toolbar, Orkut, Blogger, Google

Calendar, Google Spreadsheets, Gmail, and Google Sites. There are also

third-party platforms for Google Gadgets like MyAOL, IBM websphere por-

tal, Red Hat JBoss portal, SUN portal, and BEA weblogic portal. It is pos-

sible to deploy widgets on third party Web pages but with some restrictions

as the options available to widget publishing are not standardized.

Apache Shindig [9] provides infrastructure for hosting OpenSocial widgets

on third-party websites. It was originally started by Google but it is now an

Apache project. It provides necessary JavaScript libraries and an application

server to create, store and host OpenSocial compatible widgets.

Apache Wookie [20, 44] is an open source Java server application that

allows uploading and deploying widgets to a local server for hosting them in

Web applications. It includes a Widget Engine together with a plug-ins for

popular Web applications such as Wordpress, Moodle and ELGG. Wookie

uses the W3C Widgets Packaging specification and widgets can be imported

directly to Wookie Server if they are in this format. It also supports Google

Gadgets and OpenSocial widgets. Widgets can have collaborative or social

functionality by making use of the Wookie shared data API which provides

16

methods for storing and accessing data that can be shared among all instances

of widgets that share a common context.

useKit [32] is a software platform that allows users to add individual

selected functionalities to any Web site without installing software. It allows

manipulating content, presentation and behavior of a Web site and mixing

it with content or functionality coming from other Web sites. It focuses on

personalized applications and services that can be applied to any Web site.

Ousia Weaver [47] provides a visual editor which enables users to create

and publish mashups without writing code. Users can visualize a mashup

results by using desired visualization widgets. It also involves a simple Web

server which automatically publicizes mashup results on the Web. It provides

visualization widgets to visualize mashups, data transformation operators to

add attributes to data and transform data to visual form, and a mashup server

with a simple Web server functionality to automatically publish mashups re-

sults on the Web. User can define how a mashup collects, combines, and

processes data. Users create mashup data-flows which represent rules of col-

lecting, combining and processing data, and in the visualization phase, users

define how to visualize the result obtained by the mashup data-flows. Ousia

Weaver is similar to Yahoo! Pipes, but with Yahoo! Pipes it is impossible to

publish mashup results as independent Web pages and its operators cannot

be extended by users.

Widgets on desktop and mobile devices are similar to Web widgets but

are meant to run on widget engines on desktop and mobile environment.

The most popular mobile and desktop runtime environments for widgets are

Opera Widgets [24] for various mobile devices and operating systems, Apple

Dashboard [5] for Mac OS, Windows Sidebar [23] for Windows operating sys-

tems, Google Desktop [12] (for Windows, Linux and Mac OS), and BONDI

[29] widgets for mobile devices. Widget platforms for desktops and mobiles

are not limited to browser’s security restrictions (that Web widgets are lim-

ited with) and can provide additional functionality that Web widgets cannot

(e.g. a widget can access physical resources of a device and show memory

and CPU usage or access camera of a mobile phone). Mobile devices set

additional requirements on widgets because of smaller screen and difficult

17

navigation of small devices.

Opera widgets [24, 39] can be used in every device (desktop, mobile, TV)

where the Opera Widgets runtime is installed. Opera Widgets are compati-

ble with the W3C Widgets 1.0 specification and are not being locked into the

Opera specific technology. Opera Widgets’ security model prohibits any in-

formation sharing between different widget insistences meaning that separate

widget instances cannot share any information (e.g. no sharing of settings

or cache) and accessing other widgets is not allowed. This means that it is

not possible to have any collaboration between widgets to take place on the

Opera platform.

BONDI [29] is a widget runtime environment for mobile devices that

uses existing W3C widgets 1.0 standard with additional standard for Web

interfaces and security. BONDI widgets can be run on all devices that are

using BONDI runtime environment. It provides an API for widgets to access

resources on a device (e.g. use of the camera, location or contact details) so

that a widget could run on every mobile device without modifications.

2.2 Related Work on Semantic Integration

There is a need for integration of exchanged data in mashups, because

mashups use data from different sources and widgets communicate using

different data structures. This problem is being researched in the field of se-

mantic integration. An introductory article [28] about semantic Integration

states that it is a field related to problems that arise with sharing data across

different sources which requires solving many problems, such as matching on-

tologies or schemas, detecting duplicate values, reconciling inconsistent data

values, modeling complex relations between concepts in different sources, and

reasoning with semantic mappings.

An article [31] about schema matching indicates that a fundamental op-

eration in the integration data is matching, which takes two schemas as input

and produces a mapping between elements of the two schemas that corre-

spond semantically to each other. The semantic integration introductory

article [28] agrees that one of the main problems in semantic integration is

18

establishing semantic correspondences (also called mappings) between vo-

cabularies of different data sources and asks if two ontologies, two database

schemas, or any other structured resources are given, then how to determine

which concepts are similar or related? The article continues by naming tech-

niques for integrating different data sources, which are linguistic analysis of

terms, comparison of graphs corresponding to the structures, mapping to a

common reference ontology, use of heuristics that look for specific patterns

in the concept definitions, and machine learning.

Correspondences between two sources must be represented in a machine-

interpretable way and according to the article [28], those correspondences

must then be used for specific integration tasks, for example representing

mappings as instances in an ontology of mappings, defining bridging axioms

in first-order logic to represent transformations, and using views to describe

mappings from a global ontology to local ontologies. The article [28] then

continues by naming integration tasks to use after the resources have been

correlated, which are data transformation from one source to another, merg-

ing of ontologies and schemas, robust reading of natural text, query and data

mediation in peer to peer settings, and data integration.

Although there are many proposed approaches (some of them analyzed in

[31, 43, 27]) for automatic integration of data from various sources, then this

thesis proposes a solution for a manual matching of data elements that would

allow automatic data integration. Ontologies are used in defining mappings

between similar data elements where references to ontology concepts (e.g.

references to OWL1 classes and attributes) that encode meaning about data

elements are used (i.e. data is linked with ontologies to allow integration of

information).

1Web Ontology Language (OWL) is a family of knowledge representation languages for
describing ontologies [40].

19

Chapter 3

Semantic Integration of

Exchanged Data

Current mashups available are not compatible with each other. There is a

lack of standards and platforms that would provide collaboration capabilities

between various widgets. Current widgets do relatively well in displaying

information from various sources but that is not enough for composing more

advanced application logic in mashups. Piping information through many

different widgets in a mashup is a difficult task. Current mashup platforms

that provide collaboration between widgets within their platform are using

vendor-specific solutions that restrict collaboration between widgets provided

by third parties.

It would be reasonable to have communication on the presentation layer

(using JavaScript in a browser) as shown in the Figure 3.0.1. Presentation

layer would have its own hub for handling communication between various

widgets which would allow collaboration between widgets that are hosted by

various vendors. Communication would not have to rely on a central server

because the communications’ hub would be based on the presentation layer.

That would allow loosely coupled components hosted at different servers to

be combined together to collaborate with each other without a central server.

Widgets could be held in secure IFrame containers limiting their access to

the rest of the Web page which would increase security of mashups and would

20

Figure 3.0.1: Widgets communication with other widgets and external ser-
vices

allow the use of widgets that are not trusted. Widgets would communicate

with each other only through the communications’ hub and malicious widgets

would not be able to access rest of the application.

Widgets that are loaded to the Web portal from different domains would

not be able to manipulate properties of the rest of the application. That

is due to the browsers’ Same Origin Policy [33] that sets additional access

restrictions to scripts loaded from other domains. It is also true for docu-

ment retrieval when the XmlHttpRequest method is used [34], meaning that

widgets that are loaded from other domains will not be able to retrieve doc-

uments that are not in their domains.

The Same Origin Policy can often be too restrictive for widgets that want

to combine services from various sources outside their domain. A workaround

to this restriction is to have a proxy to mediate information between domains,

as shown in the Figure 3.0.1. Widget providers would be able to provide

proxies in their domains for their widgets which would be able to access

external services through the proxy.

21

OpenAjax Alliance has released OpenAjax Hub 2.0 [2] which provides

architecture and standards for widgets to exchange messages through a hub in

a Web application as discussed above. It provides a communication platform

for mashups and allows widgets to communicate with each other but does not

solve all the problems with collaboration. Widgets, which are not created by

the same vendor, may use different data structures and formats and would

therefore not be able to communicate directly with each other.

The problem can be illustrated in a following example where we would

have a mashup with two widgets which are created by different vendors. Let

us say that the first widget would be an event listing widget for showing a list

of events and the other widget would be a map widget for showing objects

on the map. If we would like to make those widgets to collaborate and share

information with each other so that events from the events listing widget

would show up as objects on the map in the map widget and, vice versa, the

events listing widget would show list of events relevant to the geographic area

to where the user has zoomed in on the map, then it would be quite difficult.

Since those widgets would have been created by different vendors then they

would be unaware of each other and would use different data structures in

their messages. Messages sent by one widget would not be interpretable by

other widget. The use of different data structures makes it hard for widgets

to interact with one another.

A solution to this problem would be to translate a message sent from wid-

get A to a format that would be interpretable by widget B. It would require a

component that would listen to all exchanged messages and transform them

to formats interpretable by all widgets.

The problem with translating messages directly from one widget to an-

other is that messages from widget A may contain only partial data necessary

to form a message for widget B. Widget B may require some data that wid-

get A does not provide but, let us say, widget C provides instead. We would

need to aggregate data from widget A and widget C to form a message useful

to widget B. Instead of just directly translating messages from one widget

to another, we would have to aggregate data from various sources and form

new messages by picking useful data from aggregated data and transforming

22

Figure 3.0.2: Data aggregation

it to formats that are interpretable by different widgets.

In the Figure 3.0.2 the messages are transformed in the data aggregation

component that receives messages from widget A, widget B and widget D,

and, based on aggregated data, composes new messages that are sent to

widget C and widget E.

Aggregating data from various sources (from widgets connected to the

hub) and transforming this data to messages readable to all widgets means

that the component which is responsible for such transformations (let us call

it the transformer) would have to understand the semantics and structure of

the data that is being exchanged between widgets. The transformer compo-

nent should be able to link atomic data elements from exchanged messages

with other potential messages which are useful to widgets so that if a widget

is linked with enough atomic data elements then a new message could be

composed to that widget.

In the Figure 3.0.3 the message to widget C is formed from messages

from widgets A and B. A message from the widget A contains two atomic

elements of data (A1 and A3) that can be used as C1 and C2 when composing

a message to the widget C, and a message from widget B contains one atomic

23

Figure 3.0.3: Message composition

data element B1 that can be used as C3 when composing a message to the

widget C.

This means that we would have to describe the semantics of each message

that is being exchanged in the hub. It can be done by linking contents of a

message with ontologies so that each atomic element of data in the message

is given specific meaning in the context of ontology. Atomic elements of data

in messages can be linked with specific ontology concepts that carry certain

meaning within them. This allows semantic integration of data from different

sources by picking atomic data elements according to their related concept in

ontology and then forming messages from those data elements. If message A

and message C both contain an atomic data element that refers to the same

concept in ontology then they both carry a part of the same meaning within

them and message C can be formed from the data in message A.

To describe the semantics of each message we have to map the elements

in a message to elements of ontologies. Ontologies can be described us-

ing Web Ontology Language (OWL) [40] that represents knowledge about

24

Figure 3.0.4: Semantic integration

a domain. Atomic data elements can be linked to ontology elements (in-

stances of OWL classes or properties) using URI-s. For example, an URI of

http://www.example.org/geoinfo/owl#Latitude would represent a refer-

ence to an OWL concept of latitude that represents a part of geographical

coordinate. If two widgets would both be exchanging geographical coordi-

nates in their messages and if those messages would both have references

to the same OWL concept of latitude, then it would be possible to trans-

late those messages interpretable to both of these widgets. This would allow

communication to take place between widgets even if widgets are unaware of

each other.

Descriptions of messages’ semantics can be held in a separate file that

maps the atomic data elements of each message with corresponding OWL

classes that represent the meaning of those data elements. This approach

would allow automatic interpretation of messages that would make aggrega-

tion and transformation of data possible.

In the Figure 3.0.4 there is an example of mappings of two messages which

both contain geographical coordinates. Let us say that there is widget A that

can process coordinates and accepts messages that contain coordinates in an

XML document similar to the one in the bottom right. There is also widget

B that publishes messages containing coordinates in JSON format similar to

25

the message in the bottom left. They both deal with coordinates but use

different data structures in their messages.

We can describe the semantics of those messages similarly to the example

above by mapping all the atomic data elements with corresponding OWL

classes and their physical locations in messages. In the example, both mes-

sages contain two atomic data elements, latitude and longitude. An atomic

data element is described with an URI of the corresponding OWL class and

path to the location of the data element in the message. Reference to an

OWL class (marked as global_ref) is used to specify the meaning of a data

element, and absolute path (marked as path) is used to specify the location

of an atomic data element.

In the example above, the message on the left contains two atomic data el-

ements: latitude and longitude. The first atomic data element mapping, lati-

tude, has global_ref URI value

http://www.example.org/geoinfo/owl#Latitude, which is the reference

to the corresponding OWL class Latitude that makes it possible to interpret

that data element as a part of coordinates’ pair. Also, the data element map-

ping has attribute path referring to location

/location/coordinates/latitude, which points to the exact location

where the atomic data element is located in the message, allowing retrieval of

the data element from the message. The second data element mapping in the

example is longitude which has global_ref referring to

http://www.example.org/geoinfo/owl#Longitude and path pointing to

/location/coordinates/longitude. This shows where the longitude, a

second part of coordinates’ pair, is located.

This information is sufficient to map messages’ content with ontologies

and attach meaning to data elements in messages. Data element from one

message can be used in forming another message if both of them have the

same OWL class referred in their mappings. In the example above both mes-

sages use references to the same OWL classes

http://www.example.org/geoinfo/owl#Latitude and

http://www.example.org/geoinfo/owl#Longitude which means that one

message can be formed from the data in another message.

26

New messages can be generated using schemas (XSD schemas for XML

documents and JSON schemas for JSON documents) that describe the struc-

ture of those messages. That makes it possible to generate messages in every

format with different structures using mappings and schemas.

27

Chapter 4

Transformer Widget

Transformer Widget is an application to solve semantic integration prob-

lems in mashups that are using OpenAjax Hub 2.0 for exchanging messages

between widgets. It is an invisible widget that is connected to the hub like any

other widget, but unlike regular widgets, it gathers all the exchanged data

sent by widgets through the hub. It aggregates data sent from all the wid-

gets, composes new messages based on the aggregated data and mappings,

and sends generated messages to widgets that are interested in particular

data.

Widgets exchange data through hub by publishing messages under spe-

cific topics. Widgets that are interested in particular messages subscribe to

topics where those messages are exchanged. Unfortunately, widget providers

do not know all the topics and data structures of messages that could be

exchanged in mashups by other widgets. That makes direct collaboration

Figure 4.0.1: Widgets connecting to the hub

28

between widgets impossible unless the whole application and its widgets are

developed by the same provider who has knowledge and control over all of

his widgets. If third party widgets are used in a mashup and there is a

need for collaboration then an additional aggregation component like Trans-

former Widget is needed to support collaboration. Transformer Widget can

be added in the same way as any other widget in a mashup (as shown in the

Figure 4.0.1) to make data aggregation and collaboration between widgets

possible.

Transformer Widget uses special mappings in an XML file to interpret

semantics behind data packages that widgets exchange. The mappings XML

file describes the structure and semantics of a data packages in each topic

so that the transformer widget can understand which data elements can be

useful to other widgets. If the transformer widget has collected enough data

elements to form a new data package, then it composes all the necessary data

together and forms a new data package in a format that is interpretable to

the widget interested in that particular message. The data package is then

published through the hub to the widget.

4.1 Mappings Configuration

To enable data aggregation and messaging in the Transformer Widget, a

mappings.xml file has to be configured to include all the semantic mappings

of messages exchanged by the widgets. The configuration file has to include

mappings of all the messages each widget publishes or receives.

For example, let us say that there is a widget that is capable of receiving

geographical coordinates in JSON format as shown in the Example 4.1 on

the following page. The message shown in the Example 4.1 holds one pair

of coordinates: latitude of 58.36611 and longitude of 26.73611 meaning that

there are two atomic data elements. Let us say that the widget has subscribed

to the topic ee.stacc.coordinates in order to receive similar messages.

To map the information shown on the Example 4.1 to the mappings con-

figuration file, we would have to add the following lines with XML notation

to the mappings.xml file as shown in the Example 4.2 on the following page.

29

Example 4.1 An example message in JSON format of geographical coordi-
nates.
{location:{

coordinates:{
latitude:58.36611,
longitude:26.73611

}
}}

Example 4.2 Mappings configuration corresponding to the JSON object
shown in the Example 4.1
<frame>

<topic>ee.stacc.coordinates</topic>

<format>json</format>

<schema>schemas/coordinates.js</schema>

<mappings>

<mapping>

<global_ref>http://www.example.org/geoinfo/owl#Latitude</global_ref>

<path>/location/coordinates/latitude</path>

<default>26.73611</default>

</mapping>

<mapping>

<global_ref>http://www.example.org/geoinfo/owl#Longitude</global_ref>

<path>/location/coordinates/longitude</path>

</mapping>

<constant path="/location/coordinates/srs" value="EPSG:4326" />

</mappings>

</frame>

30

In the mappings configuration’s XML notation one frame represents meta-

data about messages that are sent under single topic. It is assumed that all

messages exchanged under one topic follow the same structure otherwise it

would be difficult for widgets to parse those messages. The topic represents

a name of a channel that widgets use in exchanging particular data and is

specified in the topic element in the XML notation.

The format element specifies the data format which is used in those

messages. Currently, JSON and string data formats are available to use, but

it is possible to add support to many other data formats like XML, CSV etc.

The schema element specifies the location of the schema which describes

the structure of the messages exchanged under that topic. This schema is

used by the Transformer Widget to generate messages on aggregated data.

If there are no widgets that are subscribed to that topic and there are some

widgets that only publish messages under that topic, then the schema is

not necessary and can be left out, because it is not necessary to generate

messages if there are no widgets to receive them. But even if widgets are

only publishing messages under the topic and no one is listening, then it

is still necessary to add the mappings to the configuration file so that the

Transformer Widget would know how to aggregate data from those messages.

It is important to note that the physical location of those schemas must be

in the same domain with the Transformer Widget due to the Web Browsers’

Same Origin Policy, unless a separate proxy is used. This basically means

that schema files must be in the same folder (or in a subfolder) where the

transformer widget is located.

The mappings element contains mappings for each atomic data element

in messages exchanged under the topic. Each atomic data element’s mapping

is specified in a separate mapping element in the mappings element group. A

mapping element contains two mandatory attributes global_ref and path.

The global_ref attribute in a mapping element refers to the OWL class

that defines the meaning of the atomic data element. All the atomic data

elements that contain the same kind of data should refer to the same OWL

class. For example, if some messages contain atomic data elements with co-

ordinates, e.g. latitude, then they should all refer to the same OWL class

31

Example 4.3 A simple message in XML format.
<location>

<coordinates>

<latitude>58.36611</latitude>

</coordinates>

</location>

http://www.example.org/geoinfo/owl#Latitude to notate that all those

atomic data elements contain information about latitude. This makes it pos-

sible for the Transformer Widget to aggregate and distribute data properly.

The path attribute in a mapping element notates the location (absolute

path) of the atomic data element in messages published under the specified

topic. The path attribute is used to locate atomic data elements in received

messages and it is also used to insert atomic data elements to new mes-

sages that are created according to schemas. The delimiting character used

to distinguish elements in a message is slash (/). As an example, a typical

path would look like /location/coordinates/latitude where the lati-

tude would notate the atomic data element that is located in a coordinates

element which itself is located in a location element. A simple message in

XML format that would correspond to such structure would look as shown

in the Example 4.3.

An additional parameter default can be added to a mapping to specify

the default value of the atomic data element. The default value is used in

message creation when no data has been aggregated which would correspond

to the same OWL class. This also means that the message can be created

before any data has been aggregated that would correspond to the OWL

class specified in the global_ref attribute.

Messages in the JSON data format also support separate default values

in JSON schemas (based on the JSON schema standard) if not defined in

the mappings configuration. When the Transformer Widget generates a new

message from a JSON schema and discovers a data value that does not have

corresponding data value in the aggregated data that the Transformer Wid-

get could use in generating the message, then it uses the value defined in the

default element. The following example illustrates the use of default values in

32

Example 4.4 Mappings containing repeating element groups.
<frame>
<topic outgoing only=”true”>ee.stacc.coordinates.list</topic>
<format>json</format>
<mappings>
<mapping>
<global ref>http://www.example.org/lang/owl#Name</global ref>
<path>/location/placename</path>

</mapping>
<repeating element group path=”/location/coordinates”>
<mapping>
<global ref>http://www.example.org/geoinfo/owl#Latitude</global ref>
<path>/location/coordinates/latitude</path>

</mapping>
<mapping>
<global ref>http://www.example.org/geoinfo/owl#Longitude</global ref>
<path>/location/coordinates/longitude</path>

</mapping>
</repeating element group>

</mappings>
</frame>

JSON schemas: {"z":{"type":"number", "default":1235}}. In the ex-

ample, the JSON object contains one element z which is a numeric type with

the default value of 1235. The value 1235 is used when the corresponding

data value for z is not found from the collection of atomic data values the

Transformer Widget has aggregated.

The element constant in the mappings element can be used to specify

constant values in messages. It contains an attribute path and an attribute

value where the path is used to specify the location of the constant value in

the message, and the attribute value is used to specify the constant value of

the atomic data element in the message.

If messages contain repeatable data elements (e.g. in arrays) than these

repeatable elements must be specified in the element

repeating_element_group that is added inside the mappings element.

An example of a mappings configuration of a message for sending a list of

multiple coordinates (i.e. repeating data elements as coordinates) is shown

33

Example 4.5 JSON object containing an array.

{location:
{ placename:”Railway Station”,
coordinates:[
{latitude:58.36611, longitude:26.73611},
{latitude:59.45723, longitude:27.24301},
{latitude:60.54561, longitude:27.53413}

]}
}

in the Example 4.4 on the preceding page. An example message in JSON

format that would correspond to such mapping configuration is shown in the

Example 4.5.

In the Example 4.5 is shown an array of three coordinate pairs of latitude

and longitude that represent geographical coordinates of three railway sta-

tions. There is an array of similar elements (i.e. repeatable data elements),

three coordinates’ pairs, that has to be represented as a separate element re-

peating_element_group containing mappings of those atomic data elements

that are represented in the array. If the message contains more than one ar-

ray then a separate element repeating_element_group must be specified

for each array.

The repeating_element_group element must contain a path attribute

that specifies the location (absolute path) of the array in a message (the

delimiting character used to distinguish elements in a message is the slash (/)

symbol). Note that each mapping’s path attribute in the repeating element

group must begin with the same path as the repeating element group’s path

because those data elements are contained physically inside the array.

Note that in the Example4.4 there is no schema specified. That is be-

cause in the element topic has an attribute outgoing_only with a value of

true meaning that there are no widgets that are subscribed to that topic (in

this example ee.stacc.coordinates.list) and therefore there is no need

to generate these messages by the Transformer Widget and there is no need

for a schema for the message. Even though there are no widgets receiving

those messages it is still important to add the mappings to the mappings

34

Figure 4.2.1: OpenAjax Hub 2.0, taken from [2]

configuration file if there is at least one widget that publishes messages un-

der that topic because then it is possible for the Transformation Widget to

aggregate data from those messages and use that data to compose messages

to other widgets.

4.2 Installing Widgets

The Transformer Widget uses OpenAjax Hub 2.0 [2] architecture which

defines a standard for how widgets can be isolated into secure containers and

how widgets can communicate with each other through a messaging hub.

OpenAjax Hub 2.0 is a JavaScript library [2] for mashups that can isolate

third party widgets into secure containers and provide messaging capabilities

for those widgets (as shown in the Figure 4.2.1 [3]). OpenAjax Hub 2.0 allows

widgets to communicate with each other through the hub but isolates widgets

to IFrame elements to prevent them from accessing other components in the

mashup.

The Openajax hub has a security manager [2] within the hub to con-

trol messaging between widgets. Every widget attempt to publish or to

subscribe to topics is controlled by the security manager’s logic [3]. The ap-

35

Figure 4.2.2: Managed Hub Initialization, taken from [3].

plication must provide security manager callback methods (onPublish and

onSubscribe) that implement access control policy for messaging between

the widgets [3].

The Figure 4.2.2 [3] provides a conceptual overview for how an application

initializes the hub (called Managed Hub) and containers for widgets (called

Client Applications) in the Web page [3]. First, the Managed Hub instance

has to be created along with security manager’s callback methods. After the

hub has been created, the containers for widgets have to be created. The

containers then load and initialize widgets on the page and while the widgets

are being initialized they subscribe (and publish) to topics they are interested

in.

If an application has finished initializing hub and widgets, then the wid-

gets can start passing messages to each other using the OpenAjax Hub’s

publish and subscribe API [3]. The Figure 4.2.3 [3] shows how a message

from one widget (Component-B) is sent to another widget (Component-A).

Component-B is located in an IframeContainer and Component-A is lo-

36

Figure 4.2.3: Messaging in OpenAjax Hub from, taken from [3].

cated in an InlineContainer (presumably because, from the security per-

spective, the Component-A is more trustworthy widget than the Component-

B).

The InlineContainer holds widgets in a HTML element (like div for ex-

ample) which tends to be faster and require less memory than the

IframeContainer where widgets are placed to an IFrame element [3]. How-

ever, IframeContainer does not isolate widgets and therefore it should be

used only with trusted widgets because widgets then have complete access to

the Web application [3]. Any widget that may contain malicious script should

be isolated from the application by being placed in an IframeContainer.

The primary feature of the OpenAjax Hub is publishing and subscribing

functionality that allows different components to send messages to each other.

It supports broadcasting anonymous messages within the mashup. Widgets

that publish messages are unaware of how many widgets have subscribed to

the same topic and widgets that receive messages do not know which widgets

published those messages.

37

Components can broadcast messages by invoking the hub’s publishing [3]

function with topic and data as parameters. The topic parameter is a string

specifying the common name for the messages published under the topic, and

the data parameter specifies the message (a JavaScript object) that is being

sent.

Topic names are expressed by tokens separated by the dot (.) character.

An example of a topic name is org.example.location which could be used

to send locations (e.g. coordinates). Widgets can use special characters for

more dynamic subscription of topics. The wildcard character, asterisk (*),

can be used to subscribe to all the subtopics of a particular topic [3]. For

example, we could subscribe to all of the subtopics of the topic org.example

by using the asterisk as in the following example org.example.* in which we

would receive messages sent both under the topics org.example.location

and org.example.coordinates.

4.2.1 Requirements for Widgets and Portals Using

OpenAjax Hub 2.0

OpenAjax Hub supports widgets that are either built as separate HTML

pages held in IFrame containers, or as snippets of code that are held in

inline containers. Regardless of which container is used, the requirements

for widgets are largely the same. The widget has to create a client instance

(either IframeHubClient or InlineHubClient instance), define a method

for handling security alerts, and connect to the hub.

An example of a widget (based on [3]) in an IFrame container will be

constructed in the following way. In the Example 4.6 on the following page is

shownhow the widget creates an IframeHubClient instance hubClient with

a parameter of a HubClient object. The HubClient object takes a parameter

onSecurityAlert with a reference to the method’s name that is called when

security alerts are raised.

If a widget is held in an inline container, then the client initialization

is similar to the IFrame container’s initialization, but the InlineHubClient

instance should to be created instead. An InlineHubClient object has to

38

Example 4.6 Initialization of a IframeHubClient instance [3].

hubClient = new OpenAjax.hub.IframeHubClient({
HubClient: {

onSecurityAlert: clientSecurityAlertHandler
}

});

Example 4.7 Initialization of an InlineHubClient instance [3].

var hubclient = new OpenAjax.hub.InlineHubClient({
HubClient: {

onSecurityAlert: clientSecurityAlertHandler
},
InlineHubClient: {

container: container1
}

});

be created and passed as a parameter to the InlineHubClient in addition to

the HubClient object (with the onSecurityAlert parameter) that is created

similarly when the IframeHubClient is initialized. The InlineHubClient

object should have a parameter called container that should reference to the

container instance to which the HubClient would connect. In the Exam-

ple 4.7 is shown a creation of an InlineHubClient instance.

The problem with managing widgets in inline containers is that the con-

tainer’s name is known only to the portal creator and not known to the widget

developer making inline containers not suitable for hosting third party wid-

gets. In general, widgets should be held in IFrame containers unless a widget

is developed in-house by the same developers that develop the Web portal

that is hosting the widget.

After the hub client instance has been created (regardless of which con-

tainer was used), it has to connect to the hub as shown in the Example 4.8 on

the following page. The optional callback method (called connectCompleted

shown in the Example 4.9 on the next page) can be provided which would

be called after the connection with the hub has been established.

In the Example 4.9 on the following page, there is an optional callback

39

Example 4.8 Connecting to the hub [3].

hubClient.connect(connectCompleted);

Example 4.9 An example callback method called when the widget has fin-
ished connecting to the hub [3].

function connectCompleted (hubClient, success, error) {
if (success) {

// hubClient.publish(...)
// hubClient.subscribe(...)

}
}

method that would be called (if the method was specified) after the widget

has finished connecting to the hub. The method connectCompleted would

called when the widget has connected to the hub. The method has parameters

hubClient which is a reference to the hub client instance, success which is

a boolean value stating whether the connection was successful, and error

specifying the error message used if the connection was not successful.

4.2.1.1 Widgets’ Messaging in OpenAjax Hub 2.0

Widgets can subscribe topics to start receiving messages that are pub-

lished under the topic. Widgets can also publish messages (objects) to other

widgets under specific topics.

Widgets can publish messages using the method shown in the Example

4.10 on the next page (after the widget has initiated hubClient object

and has connected to the hub). The parameter topic is a string spec-

ifying the topic of the message that is being published and the parame-

ter data is a message object that is being published. The message can

be any JavaScript object like string, boolean etc, including JSON ob-

jects with complex data structures. In the Example 4.11 on the follow-

ing page is shown a message ‘Hello World’ which is sent with the topic

org.example.topics.textmessage.

Widgets can subscribe to topics using the method shown in the Exam-

40

Example 4.10 Method for publishing messages [3].

hubClient.publish(topic, data);

Example 4.11 Publishing “Hello World” [3].

hubClient.publish(’org.example.topics.textmessage’,’Hello World’);

ple 4.12 (assuming that the widget has initiated hubClient object and has

connected to the hub). The parameter topic specifies the topic to use when

sending a message and the parameter onData refers to the method which

is called every time the widget receives a message with that topic. The

method subscribe can have additional optional parameters called scope,

onComplete and subscriberData that can be specified when needed. The

parameter scope refers to the JavaScript keyword this when onData or on-

Complete callback method is called. The parameter onComplete refers to

the callback method that is called when the subscribe operation has finished,

and the parameter subscriberData can be used to provide data which is

handed back to the onData callback function. A practical application to the

subscriberData parameter is enabling event caching when using TIBCO

PageBus extension to OpenAjax Hub. Event caching is explained in the

section 4.2.1.2 on the following page.

In the Example 4.13 on the next page is shown where a widget subscribes

to the topic called org.example.topics.textmessage and will start receiv-

ing all the messages that widgets publish under this topic. Second parameter

onData is the name of the callback method that will be called every time the

widget receives a message with that topic.

The callback method header for handling received messages is shown in

the Example 4.14 on the following page. The onData is the callback method

which name is specified in the subscribe method when subscribing to topics. If

a widget subscribes to many different topics, then separate callback methods

can be defined for each of those topics. In our examples the method name

Example 4.12 Subscribing to topics [3].

hubClient.subscribe(topic, onData);

41

Example 4.13 Subscribing to an example topic [3].

hubClient.subscribe(’org.example.topics.textmessage’, onData);

Example 4.14 Callback method header for handling received messages [3].

function onData(topic, data, subscriberData)

is onData. The parameter topic specifies the topic of the messages and

the parameter data is the message object that was received by the widget.

The parameter subscriberData is an object that was specified when the

subscribe method was called.

In the Example 4.15, there is a callback method onData to handle re-

ceived messages. In the example the method checks if the received message

is a string object and then appends the message to the div element called

messageArea.

4.2.1.2 Message Caching with Tibco PageBus

A widget can start publishing messages after it has been initialized. Since

loading and initialization of widgets is an asynchronous process then the

order of how widgets are being initialized is undetermined. This means that

widgets are being loaded in a random order and it is never certain which

widget finishes initialization first and which one finishes last.

When a widget finishes initialization and starts publishing messages be-

fore other widgets have finished initialization, then these messages are not

received by the widgets that finished initialization later. This leads to loss

of data exchanged by widgets during a Web page initialization.

Example 4.15 An example callback method for handling received messages
[3].

function onData(topic, publisherData) {
if (typeof publisherData === ”string”) {

var messageArea = document.getElementById(’messageArea’);
messageArea.innerHTML = publisherData;

}
}

42

Example 4.16 Enabling event cache

hubclient.subscribe(’org.example’,onData,null,null,{PageBus:{cache:
true}});

To overcome the problem of loosing exchanged data during Web page

initialization, TIBCO has extended OpenAjax Hub with PageBus [38] ex-

tension to support event caching so that the widgets would receive messages

that were published before they were initialized. That would prevent any

data loss if event caching is enabled.

To enable support of event caching with TIBCO PageBus the PageBus

library has to be used instead of the native OpenAjax Hub library. To en-

able event caching in a particular topic the parameter PageBus: { cache:

true } has to be added [38] to the subscriberData parameter object when

subscribing to a topic with the subscribe method call.

In the Example 4.16 is shown subscribing to a topic with enabling event

cache.The parameter ’org.example’ is the name of the topic that is being

subscribed to and the parameter onData is the name of the callback method

that is called every time the widget receives a message with that topic. The

two parameters which are null are respectively scope object and onCom-

plete callback method which are not used in this example, and the last pa-

rameter {PageBus:{cache: true}} is used to enable Tibco PageBus event

cache.

If event cache has been enabled on a topic and a widget subscribes to

the topic with the PageBus parameter, then its onData callback method is

invoked with each cached message. Caching on a topic is maintained until

the last cache enabled subscription is destroyed on that topic [38].

4.2.1.3 Security Restrictions to Third Party Widgets

Widgets communication with outside world is limited with the Same Ori-

gin Policy [33] enforced by Web browsers. Widgets in can make connections

only to the servers in their subdomain they belong to (e.g. widgets can only

communicate with the server they are being hosted from). Widgets in cannot

make direct connections to servers outside their domain.

43

The Same Origin Policy can be too restrictive to those widgets that want

to use services outside their domain (e.g. accessing RSS feeds from various

news channels). Accessing such services is not harmful for mashups when

widgets are held in IFrames, because IFrame prevents widgets from accessing

and manipulating other components of the Web application and messaging

is done only through the hub.

One option to bypass the restriction which does not allow a widget to use

Web services outside the widget’s domain is to create a proxy in the widget’s

domain which would mediate connections between the widget and outside

servers. The widget would then connect to the proxy that is in the same

domain with the widget and the proxy would mediate messages between the

widget and any server outside the widget’s domain. This would allow access

to services outside widget’s domain through the mediating proxy.

For example, let us say that we have a widget in an IFrame that is be-

ing hosted from the location http://stacc.ee/~villido/mashup/widgets/

hubTestDataFetcher/index.html. If the widget would want to fetch data

from the BBC News RSS feed in the following location

http://newsrss.bbc.co.uk/rss.xml, then it would be impossible for the

widget to do so directly. The problem is that the BBC News feed is hosted at

a different domain (newsrss.bbc.co.uk) than the widget (hosted at stacc.ee).

If the widget would try to fetch data directly from the BBC’s server then the

browser’s same origin policy would restrict such an attempt.

To enable the widget to fetch data from the BBC server we would have to

set up a proxy service in the stacc.ee domain. We can do that by setting up a

proxy service at the location http://stacc.ee/~villido/proxy.php. After

we have set up a proxy service, the widget can fetch data from BBC server

through the proxy by using following URI: http://stacc.ee/~villido/

proxy.php?url_path=http://newsrss.bbc.co.uk/rss.xml. The proxy

would then fetch data from the BBC’s server and would then forward it back

to the widget. This approach would allow bypassing the browser’s Same

Origin Policy to allow widgets to make connections to all required servers

regardless of their domains.

44

Example 4.17 Creating a ManagedHub instance [3].

var managedHub = new OpenAjax.hub.ManagedHub(
{

onPublish: onMHPublish,
onSubscribe: onMHSubscribe,
onUnsubscribe: onMHUnsubscribe,
onSecurityAlert: onMHSecurityAlert

}
);

4.2.2 Installing OpenAjax Hub

To add widgets’ collaboration functionality to a Web page an OpenAjax

Hub 2.0 has to be initialized [3]. To initialize a hub, first the ManagedHub

instance has to be created along with particular security callback methods.

Then, widgets’ containers can be added to the hub after a ManagedHub in-

stance has been created.

4.2.2.1 Creating a ManagedHub Instance

A ManagedHub instance provides the Hub API for the manager applica-

tion (Web portal). An example of a ManagedHub creation is shown in the

Example 4.17. The ManagedHub constructor takes in a parameter of an ob-

ject with references to various security callback methods. When creating

a ManagedHub instance four methods have to be created and referred to as

parameters. The parameter names that refer to the security callback meth-

ods are onPublish, onSubscribe, onUnsubscribe, and onSecurityAlert.

In the Example 4.17, the names of the corresponding implemented method

names are onMHPublish, onMHSubscribe, onMHUnsubscribe, and onMHSe-

curityAlert.

The callback method header referred in the onPublish parameter for han-

dling publishing requests is shown in the Example 4.18 on the next page.The

onPublishMethod is the name of an implemented callback method referred in

the onPublish parameter when the ManagedHub instance was created. The

parameter topic is the name of the topic of the message that is being pub-

45

Example 4.18 Callback method for handling publishing requests [3].

function onPublishMethod(topic, data, publishContainer, subscribeCon-
tainer)

Example 4.19 Callback method for handling subscribing requests [3].

function onSubscribeMethodName(topic, container)

lished, the parameter data is the message object that is being published, the

parameter publishContainer refers to the widget’s container that published

the message, and the subscribeContainer refers to the widget’s container

that has subscribed to the topic and is about to receive the message. The

method is called every time a message is being published and should return

a boolean value of either true or false depending on whether the current

message exchange is allowed to take place. The minimum implementation of

this method would simply always return true, which would allow all messages

to be exchanged regardless of which widgets are involved.

The next callback method header is for handling subscribing requests.

It is being referred by the onSubscribe parameter in the ManagedHub con-

structor and would look like shown in the Example 4.19. The onSubscribe-

MethodName is the name of the callback method, whereas the parameter

topic is a string representation of the topic name that is being subscribed

to, and the parameter container refers to the widget’s container that is

subscribing to a topic. This method is for controlling which widgets can

subscribe to which topics. If a widget is allowed to receive messages from

a particular topic then the method should return a boolean value of true,

otherwise, if a widget is not allowed to receive messages from a topic, then

the method should return false to restrict that topic to the widget. The

minimum implementation of this method would simply return true to allow

every widget to subscribe to every topic.

Similarly to the previous method, which is called each time a widget

subscribes to a topic, the following callback method is called every time

a widget is unsubscribing from a topic. The method’s header is shown in

the Example 4.20 on the next page. The onUnsubscribeMethodName is the

46

Example 4.20 Callback method for handling unsubscribing requests [3].

function onUnsubscribeMethodName(topic, container)

Example 4.21 Callback method for handling security alerts [3].

function onSecurityAlertMethodName(source, alertType)

name of the callback method which is being referred from the ManagedHub

constructor’s parameter onUnsubscribe. The parameter topic is the name

of the topic which is being unsubscribed from, and the parameter container

refers to the widget that is unsubscribing. This method is optional and

intended for just only providing information about a widget unsubscribing

from a topic.

The last callback method referred from the ManagedHub instance construc-

tor is to handle security alerts. The method is referred form the Managed-

Hub constructor’s parameter onSecurityAlert, and the method’s header is

shown in the Example 4.21. The onSecurityAlertMethodName is the name

of the callback method to handle security alerts raised when widgets have

been blocked from attacking. The parameter source refers to the widget

that has been misbehaved and been blocked, and the parameter alertType

specifies the type of the alert that caused the alert.

4.2.2.2 Adding an IFrame Container

An IFrame container is used to handling widgets in secure IFrame el-

ements. Widget containers (either IFrame or Inline containers) can be

created after the ManagedHub object has been created. The constructor for

IFrame containers is shown in the Example 4.22 on the next page. Here

the parameter hub is a reference to the ManagedHub instance, the parameter

clientID is a unique container id that identifies a particular client for the

ManagedHub, and the parameter params is an object with two parameters

that allows additional information to be used in instantiating the Iframe-

Container. The parameters in the object params consist of two objects:

Container and IframeContainer, both with their additional parameters.

The object Container in the parameter params consists of parameters

47

Example 4.22 The constructor of the IframeContainer [3].

OpenAjax.hub.IframeContainer (hub, clientID, params)

of methods that are called in various events related to the container. The

only mandatory parameter of a Container object is the onSecurityAlert

parameter which has to refer to a method that is called if there is a client-

side security alert (for example if a widget is misbehaving). The two optional

parameters are onConnect which refers to the method that is called when the

client connects to the hub, and onDisconnect which refers to the method

that is called when the client disconnects from the hub.

The object IframeContainer in the parameter params is an object with

following parameters: the parameter parent is to specify the widget’s parent

DOM (Document Object Model) element (where the widget is to be located

on the Web page), the parameter uri is to specify the widget’s location URI

(that specifies where the widget is located in the Web), and the parameter

tunnelURI is to specify the URI of the location of the tunnel which tunnels

the widget to the IFrame (tunnel URI must origin the same domain as the

Web page which instantiates the IframeContainer). There are also optional

parameters like iframeAttrs for specifying the IFrame attributes (e.g CSS

styles) for the widget. More detailed overview of the optional parameters can

be obtained from the OpenAjax Hub 2.0 specification [3] wiki.

In the Example 4.23 on the following page is shown adding of a widget

to an IFrame container in a Web page. In the example, the first div2 object

is created that is a div element and used as a parent element for hosting the

IFrame container. Then an IframeContainer is created with various param-

eters. The first parameter of the IframeContainer is the managedHub which

have been created earlier as a ManagedHub instance. The second parameter,

“client2”, is a unique ID that uniquely identifies the widget client container

to the ManagedHub.

In the same example, the Container object contains three parameters

(onSecurityAlert, onConnect, and onDisconnect) that refer to the fol-

lowing implemented callback methods onClientSecurityAlert (called out

when there is a client-side security breach), onClientConnect (called when

48

Example 4.23 An example of a widget being added to an IFrame container
[3].

var div2 = document.createElement(”div”);
var container2 = new OpenAjax.hub.IframeContainer(managedHub ,
”client2”,
{

Container: {
onSecurityAlert: onClientSecurityAlert,
onConnect: onClientConnect,
onDisconnect: onClientDisconnect

},
IframeContainer: {

// DOM element that is parent of this container:
parent: div2,
// Container’s iframe will have these CSS styles:
iframeAttrs: { style: { border:”black solid 1px” }},
// Container’s iframe loads the following URL:
uri: ”http://c0.foo.bar.com/samples/ClientApp2.html”,
// Tunnel URL required by IframeHubClient:
tunnelURI: ”http://mashup.foo.bar.com/hub20/tunnel.html”

}
}

);

49

client connects to the hub), and onClientDisconnect (when client discon-

nects from the hub).

In the same example above, the IframeContainer object has four pa-

rameters. The parameter parent specifies that the widget is to be cre-

ated into the div2 object (which in this example is a div element). The

parameter iframeAttrs specifies IFrame attributes which in this example

are CSS style parameters (black solid one pixel wide border). The param-

eter uri specifies that the widget is located at http://c0.foo.bar.com/

samples/ClientApp2.html, and the parameter tunnelURI specifies that the

tunnel is located at http://mashup.foo.bar.com/hub20/tunnel.html.

50

Chapter 5

Implementation of the

Transformer Widget

Transformer Widget is essentially a widget that can be plugged in to any

application that is using OpenAjax Hub 2.0. It is using TIBCO PageBus

which is an extension to OpenAjax Hub to support event cache whenever a

Web application wants to cache messages while its widgets are being initial-

ized. Transformer Widget is a separate Web application meant to be held

in an IFrame of a Web page. It is intended to be invisible and it has no

graphical output (besides messages log which is shown only for development

purposes). Its application logic is built on JavaScript and it uses TIBCO

PageBus JavaScript library to communicate with OpenAjax Hub.

Transformer Widget is written in Java but compiled to JavaScript by

using Google Web Toolkit (GWT) [15]. GWT and Java was adopted in

order to simplify creation of JavaScript code to cope with different browser

standards so it would be optimized to work best with all the browsers. Also,

GWT provides a debugger and abstraction for browser’s DOM manipulation

which increases overall development efficiency.

51

5.1 Directory and Package Layout

The Transformer Widget project is divided into two main folders: src

and war. The src folder contains Java source code of the project which is

used to generate JavaScript that would be able to run in any browser. The

whole Transformer Widget application logic is meant to run fully in a browser

and there is no server-side application logic. The war folder contains static

Web resources like HTML pages, JavaScript libraries, compiled output of

the application logic, mappings and schema files. The contents of the war

directory can be deployed to any Web server to make Transformer Widget

available over the web.

In the table 5.2 on the next page is a summary of the contents of the

war directory. The TransformerWidget.html is the main entry point for

the widget and is called when the widget is being loaded to a Web page. It

loads the pagebus.js file which is TIBCO PageBus JavaScript library that

is an extension of OpenAjax Hub 2.0.

The war directory also includes the mappings.xml file which is an XML

file to describe the semantic integration logic of the messages that are being

exchanged by the widgets in the main Web application. The mappings.xml

file should be configured according to the Web application where Trans-

former Widget is being used.

The schemas folder in the war directory is used to keep schemas that are

used by Transformer Widget to generate messages from aggregated data col-

lected from the messages exchanged by the widgets in the main application.

Only JSON schemas are currently supported by the Transformer Widget but

if more data formats (like XML, CSV etc) will be supported in the future,

then other schema types could be held in the folder as well. The schema files

are referred from the mappings.xml file and loaded by Transformer Widget

when the mappings.xml file is being parsed while Transformer Widget is

being initialized when the main Web application is being loaded.

The compiled output generated by GWT is kept in the transformer-

widget folder in the war directory. The TransformerWidget.html loads the

GWT generated bootstrap [13] file transformerwidget.nocache.js which

52

Directory File Description

/war TransformerWidget.html Contains static Web
resources (including
schemas, mappings, JS
libraries) and compiled
output. Can be deployed
to any Web server.

/war pagebus.js The main HTML file for
loading the
TransformerWidget.

/war mappings.xml The TIBCO PageBus
extended version of
OpenAjax Hub 2.0
JavaScript library.

/war The mappings
configuration file for
defining the semantic
integration rules of the
Web application.

/war/schemas Directory containing the
schema files used to
generate messages by
Transformer Widget via
semantic integration. The
schema files are referred
from the mappings.xml
file.

Table 5.2: The main directory of the Transformer Widget

53

is a JavaScript file used to load the correct version of the application logic

compiled to the specific browser. GWT compiles the application logic from

Java to JavaScript for each browser into separate files and the bootstrap file

imports those files according to the browser used by user. GWT supports

following browsers [14]: Firefox 1.0, 1.5, 2.0, 3.0, and 3.5; Internet Explorer

6, 7, and 8; Safari 2, 3, and 4; Chromium and Google Chrome; and Opera 9.0.

The precompiled application logic files are located in the same directory as

the bootstrap file and are named by MD5 sums generated from the code dur-

ing compilation. This assures good caching so that application logic would

be up to date and old files would not be cached in browsers’ memory if the

files have been updated, because the name of the file containing application

logic would change every time the application logic has been updated.

The table 5.4 on the following page contains the contents of the

transformerwidget directory. The source code of the Transformer Wid-

get is held in the src folder and it contains Java classes which are being used

to generate JavaScript that would run in browsers. The main class of Trans-

former Widget is ee.stacc.transformer.client.TransformerWidget and

it implements the GWT EntryPoint interface. It is compulsory for the main

class to implement the GWT’s EntryPoint interface to be compatible with

GWT framework. When the application is being initialized, the onMod-

uleLoad method is called from the main class implementing the EntryPoint

interface.

The module XML file TransformerWidget.gwt.xml is located in the

same package ee.stacc.transformer with the Transformer Widget and con-

tains settings for the GWT compiler specifying the main entry class of the

project and the modules to be loaded. The table 5.6 on page 56 contains a

summary of the project source code files.

The testing files to run Transformer Widget in a simple Web page to test

the functionality are located in the test folder in the war directory. The

test folder contains the test.html file which is a simple Web application

that initializes three widgets and Transformer Widget to exchange messages

between those three widgets. The tunnel.html file is used to support mes-

saging by the widgets in IFrame containers with the rest of the application

54

Directory File Description

/war/
transformerwidget

Directory for the compiled
output generated by
GWT. Contains
browser-specific
application JS files loaded
depending on the browser
used.

/war/
transformerwidget

transformerwidget.
nocache.js

The bootstrap file
generated by GWT to
load browser specific
application logic to
Transformer Widget when
initialized. This file must
be included in the
TransformerWidget.html
file.

/war/
transformerwidget

<MD5 sum>.
cache.html files

HTML files containing
JavaScript of the
TransformerWidget’s
application logic which
are generated by GWT
from Java source code.

/war/
WEB-INF

web.xml Configures the
Transformer Widget for a
Web server and specifies
the main html file which is
the
TransformerWidget.html.

/war/
WEB-INF/
classes

Compiled Java classes
used by GWT to run an
application in
development mode
without compiling source
code into JavaScript.

Table 5.4: The directory of the compiled output.

55

Directory File Description

/src Folder containing the
source code of the project.

/src/ee/stacc/
transformer

Transformer-
Widget.gwt.xml

The module XML file with
the project configuration
for the GWT compiler.
Specifies the main class of
the project.

/src/ee/stacc/
transformer/client

Java source code of the
Transformer Widget.

/src/ee/stacc/
transformer/client

Transformer-
Widget.java

The main class of the
project implementing the
GWT’s EntryPoint
interface with
onModuleLoad method.

/src/ee/stacc/
transformer/client/
data

Contains Java source code
for keeping data elements
and generating data
packages. Subdirectories
of this directory contain
implementations for
specific data types.

/src/ee/stacc/
transformer/client/
mapping

Contains Java source code
for handling mappings
logic.

Table 5.6: The directory structure of the Java source code

56

Directory File Description

/war/test For testing purposes only. Contains files to
test Transformer Widget.

/war/test test.css Style sheet to set layout in the test.html
page.

/war/test test.html HTML page for running a simple Web
application to test Transformer Widget.

/war/test tunnel.html /war/test/testWidgets Directory containing
three test widgets: widget a.html,
widget b.html and widget c.html. Those
three widgets exchange simple test messages
to test the aggregation and combination of
data elements from different messages and
generation of new messages based on the
aggregated data.

Table 5.7: Directory of the test files

through the OpenAjax Hub. The tunnel.html file should also be used in

every Web application that wants to allow messaging between widgets in

IFrame containers using OpenAjax Hub. Table 5.7 summarizes the contents

in the test folder.

5.2 Compiling the Project

The Transformer Widget project is heavily dependent on the Google Web

Toolkit (GWT) and the compiler of the GWT which transforms Java source

code into JavaScript. Therefore it is necessary to configure the project to use

GWT.

To help compiling the Transformer Widget and running the test appli-

cation, a GWT generated build.xml file is used to build project files using

Apache Ant [10]. Apache Ant is a command-line tool for building and as-

sembling Java applications.

The build.xml file needs to be configured with the correct path to the

GWT SDK directory by setting the property gwt.sdk with the right location

value.

57

It is possible to run the project in Development Mode [13] which does

not compile Java classes to JavaScript but instead Java Virtual Machine is

executing the application code which makes it possible to debug code while

running the application and see the changes made in the source code without

recompiling the application. The Development Mode can be run with the Ant

target devmode (run ‘ant devmode’) which opens the GWT Development

Mode window where the application can be launched. To simply compile the

Transformer Widget the Ant target build must be called (run ‘ant build’)

which compiles the whole project into JavaScript that can be deployed to a

Web server. It is also possible to make a war file that can be deployed to

any Web server. To make a war file, the Ant target war must be called (run

‘ant war’) which then compiles the project and compresses the files to the

TransformerWidget.war file.

To see the compilation results, the project files should be deployed to a

Web server and the test.html file in the test folder should be opened. It

should then display three widgets that can exchange messages between each

other with help of the Transformer Widget. To add Transformer Widget to

any Web application, the TransformerWidget.html file must be loaded as a

widget.

It is also possible to integrate the Transformer Widget project to Eclipse

or to any other IDE (Integrated Development Environment) [13]. In Eclipse

the GWT Plug-in and SDK can be directly installed through the software

installation feature of Eclipse. The project should then be configured to use

the GWT SDK. More detailed instructions of how to set up GWT in Eclipse

can be found from the GWT resources page [13].

5.3 Implementation

The main class of the Transformer Widget application logic is Trans-

formerWidget, which implements the Google Web Toolkit’s EntryPoint in-

terface with its onModuleLoad method. The onModuleLoad method is called

when the widget is being initialized. The onModuleLoad method fetches

mappings from the mappings.xml file and loads them to memory, and then

58

it connects to the OpenAjax hub.

5.3.1 Fetching Mappings

To fetch mapping from the mappings.xml file, the TransformerWidget

object makes an asynchronous RPC call from the private method fetchMap-

pings (called from the onModuleLoad method) which sends a HTTP re-

quest to the server where the mappings.xml file is located. The GWT’s

RequestBuilder class is then used to send HTTP requests and the Map-

pingsRPCResponseHandler class is used to handle asynchronous responses.

When the response is received from the server where the HTTP request was

sent, the onResponseReceived method is called from the MappingsRPCRe-

sponseHandler class. The onResponseReceived method then calls the pro-

cessMappings method with the XML string of the mappings received from

the response. The processMappings method then creates an XML docu-

ment object from the XML string and calls the loadDataFrames method

from the DataFrame class which calls the loadDataFrames method from the

MappingsXmlParser class. The loadDataFrames method takes the XML

document created from the mappings XML string and parses through the

document to create a list of data frames (DataFrame objects) based on the

received mappings. The class diagram with classes to fetch mappings is

shown in the Figure 5.3.1 on the next page.

DataFrame objects (also called as data frames) represent messages being

exchanged between the widgets in the Web application. Each DataFrame

object represents one frame element in the mappings.xml file. The frames

describe the information and structure of the messages. Each data frame has

a topic which is a unique name identifying the instances of messages being

sent with that topic. Messages with the same topic have similar internal

structure, data type and deliver data, which conforms to a specified schema.

That makes it possible for widgets to interpret similarly all the messages

with the same topic. Therefore, each topic and its messages structure is

represented by one data frame (DataFrame object).

In addition to topic, the DataFrame object keeps information about schema

59

Figure 5.3.1: Loading Mappings.

60

which is used to generate new messages from aggregated data, mappings

which describe the structure and semantics of the messages, and constant val-

ues which are used when new messages are being generated. The DataFrame

object keeps information whether the messages are “outgoing only” which

means that those messages are being used only for aggregating data and new

messages are not being generated by the Transformer Widget. Some widgets

can send messages with topics that no one is subscribed to receive, therefore

there is no reason for the Transformer Widget to generate new messages with

that topic, but it is still necessary to describe the mappings of those mes-

sages so that it would be possible to aggregate data from those messages. If

messages are marked as “outgoing only” then it is not necessary to specify

schemas for those messages because no messages are being generated with

those topics.

The DataFrame object is an abstract class that is extended by implemen-

tations of different data type specific classes (whether the related messages

are in JSON format or in plain string text). The data type specific imple-

mentations of the DataFrame class contain methods to handle schemas (with

the updateSchema method) loaded from schema files that can later be used

in generating new messages and to generate new data package instances used

to store aggregated data to generate new messages. The abstract DataFrame

class is currently extended by StringDataFrame and JsonDataFrame classes.

The StringDataFrame class implements string data type specific data frame

functionality and the JsonDataFrame class implements JSON data type spe-

cific data frame functionality. If support for another data type is to be

implemented, then a new class with the new data type specific functionality

has to be created to extend the DataFrame object. Overview of the data

frame classes can be seen from the Figure 5.3.2 on the following page.

After the mappings have been loaded to DataFrame objects in the Map-

pingsXmlParser class, the schemas of each data frame are fetched using

HTTP requests. In each DataFrame object the loadSchema method is called

which uses the schema URL specified in the mappings file to fetch the schema

file. If the schema URL is not specified in the mappings file then the schema

is not fetched. The GWT’s RequestBuilder class is used to send HTTP

61

Figure 5.3.2: Data frames.

requests and the SchemaRPCResponseHandler class is used to handle the re-

sponses of the HTTP requests. The HTTP requests fetch schema files which

are text files containing descriptions of the messages’ structures.

5.3.2 The Structure of Mappings

DataFrame objects keeps a list of Mapping objects loaded from the map-

pings’ XML file which describe the structure and semantics of those messages.

The Mapping class is an abstract class that is extended by classes Mappin-

gElement and RepeatingMappingsGroup. A MappingElement object repre-

sents one atomic data element in a message represented by a mapping element

in the mappings.xml file. A RepeatingMappingsGroup object represents one

group of repeatable data elements (i.e. an array of objects) in a message, rep-

resented by a repeating_element_group element in the mappings file. The

RepeatingMappingsGroup contains a list of Mapping objects which are the

elements in the repeatable data elements group. These Mapping objects can

62

Figure 5.3.3: Class diagram of the mapping classes

again be either MappingElement objects or RepeatingMappingsGroup. This

makes it possible for the RepeatingMappingsGroup to have other Repeat-

ingMappingsGroup in the list of Mapping objects. In other words, Repeat-

ingMappingsGroup is an array for holding either atomic data elements or

other arrays. The Figure 5.3.3 shows a class diagram of the mapping classes.

Two main components of mapping elements are path and global reference

(with the variable globalReference) where path specifies the physical loca-

tion of an atomic data element in a message and global reference specifies the

OWL class which describes the meaning of the atomic data element. This

information is enough to be able to aggregate data elements from messages

and generate new messages based on aggregated data. With global reference

it is possible to identify messages that carry the same kind of data and with

path it is possible to locate those data elements from those messages.

The RepeatingMappingsGroup class does not contain a global reference

value because it represents arrays which contain elements that themselves

contain global references. To find out which global references are stored in

the elements of a mapping group, an iterator is needed that would iterate

63

through all the elements of a mapping group. Since one mapping group can

have elements that are also mapping groups (an array can contain objects

that are also arrays), then recursive iteration through all the elements would

be computation-intensive process.

To optimize the speed of the Transformer Widget’s algorithms, a map

data structure (with the HashMap object) is used instead of a regular list to

allow fast access to the elements stored in the map without iterating through

the list of elements every time a new element is needed to be found. In the

RepeatingMappingsGroup class the Mapping objects are held in a map data

structure to allow fast look up of elements using a global reference key.

Atomic data elements can have default values so that new messages can

be created with default values if no data with corresponding global reference

keys have been found, but are still needed for aggregation. This makes it

possible to generate new messages even if not all the necessary data has

been aggregated. If an atomic data element contains a default value then

the hasDefaultValue in the MappingElement object is set to true and the

corresponding default value is stored in the map of constant values in the

DataFrame object. The constant values are kept in a map data structure

and values can be accessed with a path key, so that when a message is

being generated, the algorithm can find the corresponding default value by

using the path of an atomic data element that is being inserted to the newly

generated message body.

5.3.3 Communication with the Hub

Communication with the hub is implemented through the Transformer-

HubProxy class, which is a proxy class for communicating with the OpenAjax

Hub library. The TransformerHubProxy class uses GWT’s JavaScript Na-

tive Interface (JSNI) [16] to integrate third party JavaScript libraries within

Java source code by allowing handwritten JavaScript to be mixed with Java

code. The TransformerHubProxy acts as a wrapper for JavaScript methods

that are needed to be called from JavaScript.

During the initialization of the Transformer Widget the onModuleLoad

64

method of the TransformerWidget class connects to the hub through the

TransformerHubProxy class using its method connectToHub. The connect-

ToHub method uses JavaScript Native Interface (JSNI) to create an Iframe-

HubClient instance from the OpenAjax hub library where the IframeHub-

Client is being used by widgets to communicate with the hub. The Iframe-

HubClient instance is then used to connect the Transformer Widget to the

hub with the connectCompleted callback method which is called from the

TransformerWidget class when the widget has successfully connected to the

hub. The TransformerHubProxy class can be seen in the Figure 5.3.1 on

page 60.

The connectCompleted method in the TransformerWidget class then

calls the subscribeToTopics method from the TransformerHubProxy class

to subscribe to all of the topics that are exchanged through the hub. To

subscribe to all of the topics, the widget subscribes to the topic “**” which

matches the pattern of all the topic names. The subscribeToTopics method

is also using a JavaScript Native Interface to use custom JavaScript neces-

sary for integrating with the hub library. The widget subscribes to the topics

with the callback method onIncomeData which is called from the Trans-

formerWidget class every time a message is being exchanged through the

hub.

5.3.4 Handling Incoming Messages

Every time the hub sends a message to the Transformer Widget the on-

IncomingData method is invoked from the TransformerWidget class. The

onIncomingData method is called with parameters topic and publisher-

Data which are the topic and the message object that a widget that sent the

message used to pass the message through the hub. A related class diagram

can be seen in the Figure 5.3.4 on the next page.

The onIncomeData method then uses method getUpdatedPackages of

the Matcher class to aggregate data from the incoming message and generate

new messages based on the mappings and aggregated data. The getUpdat-

edPackages returns a list of generated messages which are then published

65

Figure 5.3.4: Handling incoming messages.

66

through the hub to other widgets connected to the hub that are interested

in those messages. The messages returned from the getUpdatedPackages

method are DataPackage objects which contain necessary information about

the structure and semantics of the message so that message object can be

extracted from them that can be published to the hub. The message objects

extracted from the DataPackage objects are then published to the hub using

the publish method of the TransformerHubProxy class. The publish method

uses GWT’s JavaScript Native Interface to integrate with the hub and can

be used to publish any objects with any topic.

The OpenAjax hub then forwards the message to every widget that has

subscribed to the topic that the message was published with. Since the

Transformer Widget has subscribed to all of the topics then the hub forwards

the Transformer Widget all the messages it receives, even the ones that the

Transformer Widget itself sends to the hub. This means that the Transformer

Widget receives back every message it publishes to the hub. That could cause

recursive loop because the Transformer Widget would start aggregating data

from the messages it has generated and sent by itself. To avoid those endless

recursive loops, the Transformer Widget discards messages that were sent

by itself. It keeps the list of topics (in the latelyPublishedTopics list) it

lately used to send messages to the hub and when the Transformer Widget

receives a message, then it checks if the topic of the incoming message is in

the list. If the topic is in the list, then it means that the message belongs to

the Transformer Widget and can be discarded. After the message has been

discarded, then the topic is removed from the list of lately published topics so

that the Transformer Widget could process messages sent by other widgets

with that topic.

5.3.5 Data Model

Single atomic values (a single number, string etc) in a message are called

atomic data elements. A message may contain many atomic data elements

(e.g. a person’s first name, last name, birth date etc) and they are held as

AtomicDataValue objects. The AtomicDataValue class is an abstract class

67

Figure 5.3.5: Atomic Data Values.

which is currently implemented by JsonDataValue class for holding atomic

data values in JSON format and StringDataValue class for holding atomic

data values in String data format. If support for additional data formats

(XML for example) is to be implemented in the future then a new class that

extends the AtomicDataValue class has to be created to manage the atomic

data values in that new data format. The atomic data value classes can be

seen in the Figure 5.3.5.

Sometimes it is necessary to have an array of complex objects in a message

(e.g. an array containing personal data of many persons). In case of arrays it

is necessary to group data elements that belong together (e.g. we do not want

to mix up first and last names of different persons). In the mappings con-

figuration file the data elements are grouped together in a repeating element

group (repeating_element_group element). The CollectedDataGroup is

a class for holding data values that are part of the same repeatable element

group. It is necessary to group the data values together that are located in

the same repeatable element group, because that allows relating to the data

68

Figure 5.3.6: Data Values.

elements that are in the same repeatable element group. For example, if a

message contains an array of persons, each containing data about a person’s

first name and last name, then a separate instance of the CollectedData-

Group class has to be made for each person for containing the person’s first

and last name. The CollectedDataGroup would store the first name and

last name of a person in an array. Overview of the data value classes can be

seen in the Figure 5.3.6.

The CollectedDataGroup class keeps a collection of data values that are

grouped together (e.g. first name and last name) in a map data structure

(HashMap object) and the values are stored according to their global refer-

ences as keys for faster retrieval of those values. The CollectedDataGroup

objects are stored in the CollectedDataGroupsCollection class that keeps

a collection of data element groups. For example, if the CollectedData-

Group class is for keeping first names and last names of persons then the

CollectedDataGroupsCollection class is for keeping all the persons in the

array. Overview of the data value groups can be neen in the Figure 5.3.7.

It is necessary to group together certain data elements that are aggregated

from a message (e.g. collected data value groups), but it is also necessary to

group together data elements when creating new messages. A separate group-

ing of data elements is necessary based on repeating data element groups of

messages that are to be generated from aggregated data. The Generated-

69

Figure 5.3.7: Data Value Groups.

70

DataGroup class groups data values together (e.g. a person’s first name and

last name) that are grouped together in the mappings configuration file to

form a new message. The data values are stored in a map data structure

(HashMap object) for fast retrieval of data values. The GeneratedDataGroup

objects are stored in the GeneratedDataGroupsCollection class that stores

groups of data values necessary to form new messages. For example if the

GeneratedDataGroup class is for storing first name and last name of a person,

then the array of person objects are stored in the GeneratedDataGroupsCol-

lection class.

The collected data values (e.g. CollectedDataGroup objects) and gener-

ated data values (e.g. GeneratedDataGroup objects) look similar but perform

different tasks. Data values that are aggregated (or collected) from a message

are called collected data values and data values that are used to generate (or

to assemble together) new messages are called generated data values. There

is no difference between collected data values and generated data values in

the level of atomic data elements where a single atomic data element (a num-

ber, string or something else) can be used in forming a new message after it

has been aggregated from a received message without any further structural

manipulations. The difference between collected data values and generated

data values is in grouping of data values where generated data values can be

grouped together from data values aggregated from different messages.

The CollectedDataValue is an interface for all the classes that deal with

data values that are collected (or aggregated) from messages and Gener-

atedDataValue is an interface for classes that deal with data values that

are used to generate new messages. The abstract AtomicDataValue class

implements both the CollectedDataValue and the GeneratedDataValue

interfaces because atomic data values do not need any restructuring after

they have been aggregated from a received message to generate a new mes-

sage. Since the abstract AtomicDataValue class implements both interfaces

(the CollectedDataValue and the GeneratedDataValue interfaces), then

the JsonDataValue and StringDataValue classes that extend the Atomic-

DataValue class can be used either as collected data values or as generated

data values. The CollectedDataValue interface is implemented also by the

71

Figure 5.3.8: Data Packages.

CollectedDataGroup class and by the CollectedDataGroupsCollection

class (in addition to the AtomicDataValue class) but those classes do not im-

plement the GeneratedDataValue interface and cannot be used as generated

data values. The GeneratedDataValue interface is implemented by the Gen-

eratedDataGroupsCollection class (in addition to the AtomicDataValue

class) and the GeneratedDataGroupsCollection class can be used only as

generated data value.

Data values are held in data packages (DataPackage objects) that rep-

resent messages that are being generated from aggregated data. Each data

package relates to a corresponding data frames (DataFrame objects) that

define the structure of a message. Data values are collected to the data pack-

72

ages according to the mappings of the messages. When a new message is

received, then data elements are collected from the message and added to

the data packages that can use those data elements in generating new mes-

sages. When enough data has been collected for a data package, then a new

message can be generated from the data in the data package based on the

schema and mappings in the corresponding data frame. When a new mes-

sage is generated from a data package, then the data package is discarded

and erased from the memory. Overview of the data package classes can be

seen in the Figure 5.3.8 on the preceding page.

A new data package is created when the Transformer Widget receives

a message that contains data elements that can be used in generating a

message that does not have a corresponding data package. In this case, a

new package is created and the data element is added to the data package.

One data frame can have many data packages meaning that if messages

are generated from aggregated data collected from different sources and one

source produces more data than other source then data packages are stacked

and filled partially with data from the more productive source. When the

Transformer Widget receives a message from a less productive source then

the data elements from the message are sent to the older data packages in

the stack.

The DataPackage class is an abstract class extended by the JsonData-

Package class for generating messages in JSON format and the StringDat-

aPackage class for generating messages in String format. Most of the logic

regarding adding new data values and checking if a data package contains

enough data for a message to be generated is situated in the abstract Data-

Package class. The extending classes implement the final message generation

logic where the collected data is put together using mappings and schema to

generate the final message object that can be published to other widgets.

To generate a message object from the data in a data package, the abstract

method getObjectToPublish must be implemented by a class that extends

the abstract DataPackage class. If support for additional data formats (XML

for example) is to be implemented in the future then a new class that extends

the abstract DataPackage class must be created.

73

The addDataValue method is used to add any collected data value to

the data package. If an atomic data value is added, then the data value is

added directly as a generated data value because the AtomicDataValue class

implements both CollectedDataValue and GeneratedDataValue interfaces

and atomic data values do not need any structural rearrangements as data

value groups need. If a collected data group (CollectedDataGroup) object

is added, then all the data values that can be used in forming the message

are taken from the collected data group object and added to the data pack-

age. If the mappings corresponding to a data package contain a repeatable

element group (i.e. an array), then the data values are added according

to the mappings of the repeating element groups as generated data values

(GeneratedDataValue objects) which are held in a generated data groups

collection (a GeneratedDataGroupsCollection object). This assures that

the data values that are added are grouped together according to the map-

pings configuration and individual values are not mixed up during the adding

of elements.

The isReadyToBePublished method is used to check if a data package has

collected all the necessary data values so that it would be possible to generate

a new message to be published to the hub. The method iterates through every

mapping of the data package and checks if corresponding data values are

stored in the data package. In case of repeating element groups, the method

checks integrity of every generated data group (GeneratedDataGroup) object

related with the repeating element group. Every generated data group object

must contain all the necessary data values defined in the repeating element

group mapping before the data package is ready to be published to the hub.

If there is at least one group that does not contain all the necessary data

values, then the data package is not yet ready to be published.

5.3.6 Data Aggregation

The main data aggregation and messages generation is done in the Matcher

class where most of the messages transformations’ logic is located. The

Matcher class has the collection of all the data frames (DataFrame objects)

74

that represent the structures of the messages that are defined in the mappings

XML file. The data frames are stored in a map data structure (in a variable

called dataFrames that is a HashMap object) to avoid iterating through all

the data frames and being faster when looking up data frames by their topic

name.

The data frames are also kept in another map data structure (in a variable

called referenceMappingsToFrames which is a HashMap object) by the global

references to allow fast look up of data frames that contain mappings with

particular global reference. This allows finding of all the data frames that

contain data values with references to the same OWL class or attribute. The

two map objects with data frames allow finding of data frames either by

their topic names or by their global references. The reason for keeping two

map objects with redundant data is solely for better optimization for speed

of the data aggregation algorithm by keeping the necessary iterations over

collections minimal.

The method that loads the data frames to a map according to the global

references associated with the data frames is called loadMappingsToMap. The

method goes through every mapping in each data frame and adds data frames

to the map to the global references.

The getUpdatedPackets method in the Matcher class is the main method,

which is called from the TransformerWidget class every time a new message

is received from the hub, to aggregate data from the message sent by an-

other widget. The method aggregates data from the received message and

generates new messages based on the data it has aggregated. The messages

that are being generated are held as data packages (DataPackage objects)

which refer to the corresponding data frames (DataFrame objects) that define

the structure of the messages. If not enough data has been aggregated for

a data package to generate new message, then the data package is kept in a

list of unfinished data packages until the necessary data elements have been

collected from aggregating further messages. When enough data has been

collected for a data package and it is considered to be finished, then a new

message can be generated from the data in the data package based on the

schema and mappings in the corresponding data frame. The finished data

75

package is then moved to the list of finished data packages which is used later

to generate and publish new messages based on those finished data packages

after the received message has been processed.

The getUpdatedPackets method’s parameters are topic and data where

the topic is the name of the topic of the received message and the data is

the received message object. The getUpdatedPackets method first locates

the data frame (data type specific implementation of an abstract DataFrame

object) which represents the structure and semantics of the received mes-

sage. If the corresponding data frame was found, then the message object is

processed in the extractMessageData method using the mappings from the

data frame. If the data frame was not found then the mappings for the mes-

sages with that topic were not defined in the mappings XML configuration

file and the message object is not processed any further.

The extractMessageData method which is called from the getUpdat-

edPackets method processes the received message object according to the

mappings from the data frame that correspond to the message to aggregate

all the data elements from the message object. The method iterates through

every mapping and extracts the data values in the message based on the

mappings. Every data value is extracted in the getDataValue method ac-

cording to the location specified in the path of a mapping and is processed

in the processDataValue method.

The getDataValue method in the InstanceFactory class called from the

extractMessageData method extracts the data value from the raw data ob-

ject according to the mapping that describes the location and the meaning of

the data value in a message. If the mapping is a RepeatingMappingsGroup

object, meaning that the data value is an array of collected data groups (in

case of a repeating element group mapping), then the whole array of collected

data groups that contain data values are extracted from the message to keep

the data values in repeating element group grouped together (e.g. so that

persons first and last names would not get mixed up). The array of collected

data groups extracted from the message is held in the CollectedDataGroup-

sCollection object that represents a single data value containing groups of

data values (i.e. a data value containing an array of CollectedDataGroup

76

objects that each contain AtomicDataValue objects with the data values

stored in the repeating element group). The CollectedDataGroupsCollec-

tion implements the CollectedDataValue interface and can be handled as

a regular collected data value object. If the data value is atomic, then it is

extracted as a single atomic data value as an AtomicDataValue object.

If support for another data format is to be implemented, then the get-

DataValue method must be updated for it to be able to extract data values

from messages in the new data format. The method must be able to extract

a data value according to a path from a mappings configuration.

The processDataValue method, which processes data values, checks if

the collected data value extracted from the message is an atomic data value

or is it an array of collected data groups (a CollectedDataGroupsCollec-

tion object). If the extracted data value is an atomic data value, then it

is passed directly to the updateDataPackagesWithNewData method which

updates data packages with the new data value. If the extracted data value

is an array of collected data groups, then the method iterates through ev-

ery collected data group and passes those groups to the updateDataPack-

agesWithNewData method.

The updateDataPackagesWithNewData method updates all the data pack-

ages with an extracted data value (either atomic data value or data value

group). First, the method finds all the data frames that contain mappings

with the same global reference as the global reference of the data value. If

the data value is a group of data values, then all the global references of each

data value in the group are taken into account when the data frames with

the same global references are being looked up. The method then iterates

through those data frames and updates the related data packages with the

data value.

The data packages that are not finished and do not contain enough data

to be able to generate new messages are kept in the list of unfinished data

packages (unfinishedDataPackages). If the list of unfinished data packages

does not contain a data package related to a data frame, then a new data

package is created and added to the list of unfinished data packages for further

updates with data values.

77

Both an atomic data value (AtomicDataValue object) and a group of

data values (CollectedDataGroup object) can be added to a data package

that is not finished. When a group of data values is added to a data package,

then those data values from the group are picked that have the same global

reference than those that are defined in the mappings of the related data

frame. This assures that the data values that are grouped together (e.g. first

and last name of a person) would not get mixed up with other data values

in an array of repeating element groups when added to a data package.

If a data package has collected enough data values necessary to form a

new message, then it is moved from the list of unfinished data packages to the

list of finished data packages (finishedDataPackages). Data packages that

generate messages containing arrays are not moved to the list of finished data

packages, because infinite number of elements can be added to an array. After

all the data values extracted from a message have been processed and added

to the corresponding data packages, then the list of unfinished data packages

are iterated through and data packages containing arrays are checked if they

contain enough data to generate new messages. Those data packages that

are ready to generate messages to be published through the hub to other

widgets are then also moved to the list of finished data packages. The list

of finished data packages are then returned back to the TransformerWidget

class which generates publishable messages (usually JSON objects) from the

data packages and publishes those messages to the hub using topics from

related data frames.

5.4 Adding Support for a New Data Format

It is possible to extend the Transformer Widget to add support for a new

data format so that it would be possible to aggregate data from messages

and form new messages in that data format. To add support for a new data

format extensions to three abstract classes (AtomicDataValue, DataFrame

and DataPackage) have to be implemented with the data format specific

functionality. Additionally, the InstanceFactory class has to be extended

to support the creation of the newly implemented classes.

78

The abstract AtomicDataValue class has to be extended with the func-

tionality for handling atomic data values in the new data format. There are

currently two abstract methods needed to be implemented: getStringValue

and getJson. The getStringValue method should return atomic data val-

ues of the new data format as String objects (i.e. in plain text) so it would

be possible to transform the atomic data values of the new data format into

string data format. Similarly, the getJson method should return the atomic

values of the new data format in JSON objects so it would be possible to

transform the atomic data values of the new data format into JSON data for-

mat. That makes it possible to transform messages in the new data format

to another data format.

Additionally, a new abstract method should be added to the abstract

AtomicDataValue class to transform atomic data values in every data for-

mat into the new data format (similarly to the getStringValue and getJson

methods). The new abstract method should return object instances of the

newly implemented class. The new abstract method should then be imple-

mented by every other atomic data value class that extends the abstract

AtomicDataValue class. That makes it possible to transform atomic data

values to the new data format and compose new messages in the new data

format.

The DataPackage class has to be extended with the functionality specific

to the new data format and the abstract method getObjectToPublish has to

be implemented. The method getObjectToPublish must return a message

object in the new data format that can be published through the hub to

other widgets.

The message object returned by the getObjectToPublish method must

be transformable into JavaScript by Google Web Toolkit (GWT) compiler,

because the Java source code of the Transformer Widget is compiled into

JavaScript and used in Web browsers. GWT is capable of transforming

following Java objects into JavaScript [16]: String, boolean, any numeric

value (int, double, float etc) except for long numeric type which is not

allowed, and JavaScriptObject which is GWT’s class for handling native

JavaScript objects (e.g. JSON objects which can be generated from the

79

GWT’s JSONObject class).

The abstract DataFrame class has to be extended also with the function-

ality specific to the new data format and three abstract methods gener-

ateDataPackageInstance, getDataType and updateSchema have to be im-

plemented. The generateDataPackageInstance method has to return an

instance of the DataPackage class that was extended with the functionality

specific to the new data format and the getDataType method has to return

the name of the new data type. The updateSchema method has to handle

the schema content that the Transformer Widget loads from the schema files

specified in the mappings configuration file. If the new data format does not

contain schemas, then the updateSchema method can be left empty. The

schemas can be used in generating new messages but they are not required

if the new data format does not use schemas.

After all three abstract classes have been extended with the new data

format specific implementation, the two methods in the InstanceFactory

class have to be extended. The two methods are getDataFrame and get-

DataValue.

The getDataFrame method should return an instance of the extended

DataFrame class that implements the functionality specific to the data format

specified as a parameter (called dataType) of the method. If the parameter

specifying the data format equals with the name of the new data format,

then an instance of the class that extends the DataFrame and implements

the functionality specific to the new data format must be returned.

The getDataValue method should return a collected data value instance

extracted from a message object (parameter called data) according to a data

format (parameter called dataType) and a mapping object (parameter map-

ping that specifies the OWL class and the path with the location of the data

value in a message). To add support to a new data format, the method must

be extended to return a collected data value (CollectedDataValue) object

from a message in the new data format based on the mapping given as a

parameter. If the data value referred in the mapping is an atomic data value,

then the atomic data value should be returned as an instance of the class

that extends the abstract AtomicDataValue class and implements the func-

80

tionality of the new data format. If the data value referred in the mapping is

not an atomic data value, but is an array of repeating element groups, then

the whole array must be returned as a collected data value, because it is nec-

essary to keep related data values grouped together if they are in a repeating

element group. In case of repeating data element group, a CollectedData-

GroupsCollection object must be returned that contains an array of groups

(CollectedDataGroup objects) of data elements (CollectedDataValue ob-

jects) to store the grouping of data values.

81

Chapter 6

Validation of the Transformer

Widget

In order to validate if the Transformer Widget would be usable in Web ap-

plications to provide collaboration between widgets that would not be able to

communicate with each other directly, a test Web application called Portal1

with three test widgets was created.

The test Web application called Portal shown in the Figure 6.0.1 is a sim-

ple Web page containing OpenAjax Hub and three widgets that are connected

to the Hub. Those three widgets can all send and receive various messages,

but they use different topics and data formats which make it impossible for

1Test Web application for validating the Transformer Widget is located at
http://stacc.ee/~villido/Portal/Portal.html

Figure 6.0.1: The Web application for testing the Transformer Widget.

82

them to communicate directly with each other.

That is a perfect scenario for using the Transformer Widget for aggre-

gating data from the messages sent by those widgets and generating new

messages based on the aggregated data that the widgets would be able to

receive and interpret. To validate the usability of the Transformer Widget in

such scenarios, we would have to create the necessary mappings and schemas

that correspond to the messages that the widgets exchange. If the widgets

can receive data exchanged between the widgets, then it means that the

Transformer Widget works as intended and can be used in other Web appli-

cations that require aggregation and transformation of messages the widgets

exchange.

In the Portal, four widgets are loaded: Widget A, Widget B, Widget C

and Transformer Widget. Widget A is capable of sending messages contain-

ing timestamps of current time and capable of receiving messages containing

x, y and z coordinates. Widget B is capable of receiving messages with

timestamps and capable sending messages containing coordinates. Widget C

is capable of receiving messages which contain both coordinates and times-

tamps in the same message. None of those widgets use the same topics and

data structures so they are not able to communicate with each other directly

without Transformer Widget. The only message that can be exchanged di-

rectly for testing purposes is the “Hello JSON” message that can be sent from

Widget A directly to Widget B. The“Hello JSON”message is to test whether

the OpenAjax Hub works in case the Transformer Widget has failed to load

and transformations do not work. The Figure 6.0.2 on the following page

illustrates the messages exchanged between the widgets with the help of the

Transformer Widget in the test application.

Widget A has a button “Send Date” which sends a message with a times-

tamp of the current time when clicked. The timestamp is converted to string

and sent with the topic ee.stacc.date as plain text. This message is to

test whether the Transformer Widget is capable of interpreting messages in a

string format. To make the message interpretable by the Transformer Wid-

get, the mappings describing the message must be added to the mappings

configuration file. The mappings that describe the message are shown in the

83

Figure 6.0.2: Data exchanged between the widgets in the test application.

Example 6.1 Mappings corresponding to the timestamp messages (with
topic ee.stacc.date).

<frame>
<topic outgoing only=”true”>ee.stacc.date</topic>
<format>string</format>
<mappings>
<mapping>
<global ref>http://www.example.org/lang/owl#Date</global ref>

</mapping>
</mappings>

</frame>

Example 6.1.

In those mappings, the frame element notates the messages that are

sent with topic ee.stacc.date. The topic of the messages is specified

in the topic element with the parameter outgoing only which is set as

true. The outgoing_only, if set as true, notates that those messages

are not being received by any widgets and are only being published by a

widget. The only reason the message is defined in the mappings configura-

tion file is to enable the Transformer Widget to interpret those messages.

The format element in those mappings is set with a value string which

means that those messages are all plain text (string) messages. This message

has only one mapping element with the global reference (global_ref) of

http://www.example.org/lang/owl#Date which indicates that the atomic

data values in the messages encode information about date (timestamp in

84

Example 6.2 Mappings of the messages containing coordinates.
<frame>
<topic>ee.stacc.location</topic>
<format>json</format>
<schema>schemas/location.js</schema>
<mappings>
<mapping>
<global ref>http://www.example.org/geoinfo/owl#Latitude</global ref>
<path>/position/y</path>

</mapping>
<mapping>
<global ref>http://www.example.org/geoinfo/owl#Longitude</global ref>
<path>/position/x</path>

</mapping>
</mappings>

</frame>

this case). The global reference refers to an example OWL class that does

not exist but the reference to the OWL can be used to distinguish different

meanings in atomic data values. Since the message format is string, then

only one mapping element is allowed and the messages can contain only one

atomic data value at the time. In the example, the atomic data value is a

timestamp.

In addition to sending timestamp messages, the Widget A is capable of

receiving messages with x, y and z coordinates in the JSON format with the

topic ee.stacc.location as in the following example:

{"position":{"x":26.73611, "y":58.36611, "z":1235}}. If the Widget

A has received a similar message, then it outputs the x, y and z parameters

(i.e. coordinates) from the message. To make those messages transformable

by the Transformer Widget, then the mappings must be described that spec-

ify the content of those messages. The mappings configuration that describes

those messages is shown in the Example 6.2.

The topic element is set to specify that the topic of those messages is

ee.stacc.location and the format element specifies that the data format

is JSON. The schema element specifies the location of the schema file in the

local server so that the Transformer Widget could fetch the schema file from

85

Example 6.3 A message containing geographical coordinates.

{”type”:”object”,
”properties”:{

”position”:{
”type”:”object”,
”properties”:{

”x”:{”type”:”number”},
”y”:{”type”:”number”},
”z”:{”type”:”number”, ”default”:1235},

}
}

}
}

the server. The schema file is used by the Transformer Widget to generate

new messages according to the specified mappings.

The configuration contains two mappings which specify the coordinates

in the messages. The first mapping is a y coordinate with the global ref-

erence of http://www.example.org/geoinfo/owl#Latitude and path of

/position/y. The path indicates the location of the atomic data element

in the message. In the example, the atomic data value of a y coordinate

is located in the y element which is in the position element of the JSON

object. The second mapping is an x coordinate with the global reference

of http://www.example.org/geoinfo/owl#Longitude and path of /posi-

tion/x. To test the support for default values in JSON schemas, the z coor-

dinate was not specified in the mappings, but only in the JSON schema with

a default value that would always be used when new messages are generated,

because no other widget provides data values with z coordinate.

After the mappings have been defined for those messages, then a JSON

schema must be specified which describes the structure of the messages indi-

cated in the mappings that the Transformer Widget must generate. A JSON

schema that corresponds to the messages that the widget A can receive is

shown in the Example 6.3:

The above JSON schema corresponds to messages that contain x, y and

z coordinates which the widget A can interpret. The z coordinate has the

86

Example 6.4 Mappings corresponding to a message receiving timestamps.
<frame>
<topic>ee.stacc.time</topic>
<format>string</format>
<mappings>
<mapping>
<global ref>http://www.example.org/lang/owl#Date</global ref>

</mapping>
</mappings>

</frame>

default value of 1235. The schema is located in the file called location.js

which is located in the schemas directory as indicated in the mappings config-

uration. This schema along with the mappings above is enough to configure

messages from the Widget A “understandable” to the Transformer Widget.

The Widget B is capable of receiving messages with timestamps and

is capable of sending geographical coordinates. The topic the Widget B

is subscribed to receive timestamp messages is ee.stacc.time. Note that

the Widget A publishes timestamp messages with the topic ee.stacc.date

which differs from the one that the Widget B is subscribed. The Transformer

Widget can forward messages from the Widget A to Widget B. The map-

pings configuration for the timestamp messages in the Widget B is similar to

the one in the Widget A and is shown in the Example 6.4.

In the mappings configuration shown in the Example 6.4., it is specified

that the topic of the messages is ee.stacc.time, the data format is string,

and the global reference referring to the OWL class indicating the characteris-

tics of the data value in the messages is

http://www.example.org/lang/owl#Date. Note that the global reference

of a timestamp is the same with the global reference of the mappings of the

timestamp messages in the Widget A. This makes it possible for the Trans-

former Widget to collect atomic data values and put them into the messages

where needed. The global reference is like an ID which allows binding of data.

Since the messages in the example are in string data format, then schema

definition is not necessary.

87

Example 6.5 Message for sending coordinates.

{”location”:{
”coordinates”:{

”latitude”:58.36611,
”longitude”:26.73611

}
}}

If those mappings are specified in the mappings configuration file of the

Transformer Widget, then the Transformer Widget is now capable of for-

warding timestamp messages from the Widget A to Widget B. This can be

tested by clicking on the “Send Date” button on the Widget A and If the

Widget B output something like “Time is: Tue May 18 14:52:44 GMT+300

2010”, then the Widget B has received a message from the Widget A. This

means that the Transformer Widget has done the transformations correctly.

The Widget B has also two buttons for sending coordinates. The “Send

Coordinates” button sends one pair of coordinates: latitude and longitude,

and the “Send Multiple Coordinates” button sends three pairs of coordinates

(also latitude and longitude) in an array which is useful for validating trans-

formations of repeatable element groups (like an array of coordinates).

The message in a JSON format that the Widget B publishes with the

topic ee.stacc.coordinates when the button “Send Coordinates” is clicked

is shown in the Example 6.5. That message encodes one pair of coordinates:

latitude of 58.36611 and longitude of 26.73611. To make this message in-

terpretable by the Transformer Widget, a following mappings configuration

must be defined as shown in the Example 6.6 on the next page.

In the mappings shown in the Example 6.6 on the following page, the

topic of the messages is marked as ee.stacc.coordinates and the true

value of the outgoing_only parameter in the topic element indicates that

there are not any widget that are able to receive those particular messages and

therefore those messages are not needed to be generated. The data format is

JSON and because the outgoing_only parameter is true, then schema is not

needed to be defined. It contains two mapping elements, one for latitude and

other for longitude atomic data elements in the message. The global reference

88

Example 6.6 Mappings configuration corresponding to the message shown
in the Example 6.5.
<frame>
<topic outgoing only=”true”>ee.stacc.coordinates</topic>
<format>json</format>
<mappings>
<mapping>
<global ref>http://www.example.org/geoinfo/owl#Latitude</global ref>
<path>/location/coordinates/latitude</path>

</mapping>
<mapping>
<global ref>http://www.example.org/geoinfo/owl#Longitude</global ref>
<path>/location/coordinates/longitude</path>

</mapping>
</mappings>

</frame>

of the first mapping element is

http://www.example.org/geoinfo/owl#Latitude and path is

/location/coordinates/latitude which indicate the location of the atomic

data element of a latitude value in the message. The global reference of the

second mapping element is

http://www.example.org/geoinfo/owl#Longitude and the path is /lo-

cation/coordinates/longitude which indicate the location of the atomic

data element of a longitude value in the message.

Note that the global references of the latitude and longitude atomic data

elements match with the global references of the latitude and longitude

atomic data elements in the x, y and z coordinates message that the Widget

A is able to receive. That makes it possible for the Transformer Widget to

transform the message from the Widget B to interpretable to the Widget A.

If those mappings (shown in the Example 6.6) are added to the mappings

configuration file, then the Transformer Widget is capable of transforming

those messages. It can be tested by clicking on the “Send Coordinates” but-

ton on the Widget B which publishes a message containing coordinates and if

the Widget A receives a message containing x, y and z coordinates and out-

puts something like “Position x = 26.73611; y = 58.36611; z = 1235” under

89

Example 6.7 Message containing an array of three pair of coordinates.

{”location”:{
”placename”:”Railway Station”,
”coordinates”:[
{”latitude”:58.36611, ”longitude”:26.73611},
{”latitude”:59.36611, ”longitude”:27.23611},
{”latitude”:60.36611, ”longitude”:27.73611}

]}}

the received messages section, then it means that the Transformer Widget

has transformed the message from the Widget B interpretable to Widget A,

and the Transformer Widget can be used in transforming messages in similar

scenarios.

A message sent when clicking on the “Send Multiple Coordinates” button

on the Widget C is similar to the message when clicking on the“Send Coordi-

nates”button, but the first one sends out an array of three pair of coordinates

with the topic ee.stacc.coordinates.list as shown in the Example 6.7.

This message is sent to test the usability of repeating element groups in

the mappings and arrays in messages. The JSON object above consists of

two elements within the location element, one called placename and other

coordinates. The placename element is just for noise in this example and

is not used by any other widgets. The coordinates element is an array

which contains coordinates (latitude and longitude). To make this message

interpretable to the Transformer Widget, we would have to add following

mappings to the mappings configuration file that are shown in the Exam-

ple 6.8 on the next page.

In the mappings configuration shown in the Example 6.8 on the follow-

ing page, the topic is set as ee.stacc.coordinates.list with the outgo-

ing_only parameter as true which means that there are not any widgets

that could receive messages with that topic and therefore these messages are

not needed to be generated by the Transformer Widget and no schemas are

therefore necessary. It contains three mapping elements and two of them

are in the repeating_element_group element which means that those two

mappings indicate that those atomic data values repeat together in an array.

90

Example 6.8 Mappings containing a repeating element group.
<frame>
<topic outgoing only=”true”>ee.stacc.coordinates.list</topic>
<format>json</format>
<mappings>
<mapping

global ref=”http://www.example.org/lang/owl#Name”
path=”/location/placename” />

<repeating element group path=”/location/coordinates”>
<mapping

global ref=”http://www.example.org/geoinfo/owl#Latitude”
path=”/location/coordinates/latitude” />

<mapping
global ref=”http://www.example.org/geoinfo/owl#Longitude”
path=”/location/coordinates/longitude” />

</repeating element group>
</mappings>

</frame>

The first mapping element represents the placename element in the mes-

sage with the path of /location/placename, indicating the location of the

atomic data element in the message, and with the global reference attribute,

referring to http://www.example.org/lang/owl#Name, which is an example

OWL class that does not exist but indicates that the atomic data element

represents a name.

The two mappings in the repeating element group element represent

the atomic data values of latitude and longitude. Both of them have the

same global references (http://www.example.org/geoinfo/owl#Latitude

and http://www.example.org/geoinfo/owl#Longitude) referring to lati-

tude and longitude that other messages use in their messages. They both

also have path attribute (/location/coordinates/latitude and /loca-

tion/coordinates/longitude) indicating to the location of the atomic data

values in the message. This information can be used to extract the atomic

data values from the message and use those atomic data values in creating

other messages. Note that the repeating_element_group element has also

the path attribute which indicates to the location of the array where the

91

repeating data values are located.

To test whether the Transformer Widget can transform that message,

the “Send Multiple Coordinates” can be clicked which publishes the message.

If the transformations were successful, then three messages with coordinates

should appear to the Received Messages area on the Widget A (and also mes-

sages should appear on the Widget C). Note that since the published message

contained an array of three coordinates, then three separate messages were

generated for the Widget A because it cannot receive arrays, therefore for

each element in the array, a separate message was generated and sent to the

Widget A. This proves that the Transformer Widget can be used in similar

scenarios where messages are exchanged that contain arrays.

The Widget C has receives messages based on the data published by the

Widget A and Widget B. The Widget C is for testing whether the Trans-

former Widget is capable of generating messages from data elements collected

from different sources, i.e. if the Transformer Widget is capable of aggregat-

ing data from different widgets and using it to generate new messages (not

just doing plain translation from one data format to another). The Widget C

has subscribed to receive messages with the topic ee.stacc.timespace.json

that contain a timestamp and a pair of coordinates and with the topic

ee.stacc.places.list that contain a timestamp and an array of coordi-

nates. To allow the Transformer Widget to generate messages for the Widget

C, a mappings configuration must to be added to the mappings configuration

file that would specify the content of those messages.

An example of messages with the topic ee.stacc.timespace.json that

the Widget C is able to interpret is shown in the Example 6.9 on the next

page. The message above contains four atomic data values: latitude, lon-

gitude, srs (coordinate reference system) and timestamp. The srs has

a constant value of EPSG:4326 which is added to every message that the

Transformer Widget generates. In our example, it is used to test whether

the Transformer Widget is capable of generating messages with constant val-

ues.

The mappings configuration corresponding to that message would be as

shown in the Example 6.10 on the following page. The mappings configura-

92

Example 6.9 A message containing aggregated data.

{”location”:
{”coordinates”:
{”latitude”:58.36611, ”longitude”:26.73611, ”srs”:”EPSG:4326”},
”timestamp”:1271690470671}}

Example 6.10 Mappings of the message shown in the Example 6.9.
<frame>
<topic>ee.stacc.timespace.json</topic>
<format>json</format>
<schema>schemas/timespace.js</schema>
<mappings>
<mapping>
<global ref>http://www.example.org/lang/owl#Date</global ref>
<path>/location/timestamp</path>
<default>1271690470671</default>

</mapping>
<mapping>
<global ref>http://www.example.org/geoinfo/owl#Latitude</global ref>
<path>/location/coordinates/latitude</path>

</mapping>
<mapping>
<global ref>http://www.example.org/geoinfo/owl#Longitude</global ref>
<path>/location/coordinates/longitude</path>

</mapping>
<constant path=”/location/coordinates/srs” value=”EPSG:4326” />

</mappings>
</frame>

93

tion contains three mappings and one constant. The three mappings specify

the timestamp, the latitude and the longitude atomic data values in the mes-

sage. The global references of those mappings correspond to the same global

references in the other messages in the Web application that use timestamp,

latitude and longitude.

The global reference with the value of

http://www.example.org/lang/owl#Date which identifies the timestamp

element is the same global reference as in the mappings configuration of

the message that the Widget A is publishes when sending timestamps of

the current time. The path of the timestamp atomic data value is /loca-

tion/timestamp that indicates the location of that element in the message.

The timestamp mapping has a default value of 1271690470671 which is de-

fined in the default element. The default value is used when a corresponding

timestamp value has not been collected by the Transformer Widget. In our

example application, if the Widget A has not published a timestamp message,

then this message for the Widget C is generated with the default value.

The mappings of latitude and longitude elements contain also the same

global references (http://www.example.org/geoinfo/owl#Latitude and

http://www.example.org/geoinfo/owl#Longitude) as the other mapping

configurations of messages that use latitude and longitude. The path ele-

ments (/location/coordinates/latitude and

/location/coordinates/longitude) indicate the location of the latitude

and longitude atomic data values in the message.

The constant in the mappings configuration defines the value of EPSG:4326

which is inserted to every generated message. The path attribute specifies

the location of the element where the constant value is to be used.

The JSON schema schemas/timespace.js referred in the mapping con-

figuration is used to generate those messages in JSON and is shown in the

Example 6.11 on the next page.

To test whether the Transformer Widget is capable of transforming mes-

sages to the Widget C, then one of the buttons on the Widget B can be

clicked which publish messages containing coordinates. If the widget C has

successfully received a message that correspond to the mappings shown in

94

Example 6.11 JSON schema corresponding to the message shown in the
Example 6.8.

{”type”:”object”,
”properties”:{

”location”:{
”type”:”object”,
”properties”:{

”coordinates”:{
”type”:”object”,
”properties”:{

”latitude”:{”type”:”number”},
”longitude”:{”type”:”number”},
”srs”:{”type”:”string”}

}
},
”timestamp”:{”type”:”integer”}

}
}

}
}

the Example 6.10 on page 93, then a similar text is outputted by the Widget

C surrounding a black border: “Package: lat: 58.36611; long: 26.73611; srs:

EPSG:4326 time: Mon Apr 19 18:21:10 GMT+300 2010”. If the Widget A

has previously sent a message containing a timestamp value, then the mes-

sage sent to the Widget C contains the same timestamp value, otherwise the

default timestamp value is used. This proves that the Transformer Widget

is capable of aggregating data from different widgets and using data from

different locations to generate new messages.

The Widget C is also capable of receiving messages with the topic

ee.stacc.places.list that contain timestamp values and arrays of coor-

dinates. In the Example 6.12 on the next page is shown such a message.

The message contains a time element containing a timestamp value and a

places element containing an array of objects containing latitude (lat el-

ement), longitude (long element), srs (a coordinate reference system) and

height elements. The Widget C is receiving those messages to test whether

95

Example 6.12 Message containing an array.

{”route”:{
”time”:1274273219312,

”places”:[
{”lat”:58.36611, ”long”:26.73611, ”srs”:”EPSG:4326”, ”height”:800},
{”lat”:59.36611, ”long”:27.23611, ”srs”:”EPSG:4326”, ”height”:800},
{”lat”:60.36611, ”long”:27.73611, ”srs”:”EPSG:4326”, ”height”:800}

]}}

the Transformer Widget is capable of generating arrays of data values which

have been aggregated from messages of other widgets.

The mappings configuration corresponding to the above message is shown

in the Example 6.13 on the following page. In the mappings it is specified

that the topic of the messages is ee.stacc.places.list, the data format is

JSON and the schema is located at schemas/placesList.js. The mappings

configuration contains three mappings and one constant value.

The first mapping element represents a timestamp atomic data value with

the global reference of http://www.example.org/lang/owl#Date (same as

in other messages containing timestamps) and with the path of /route/time.

That defines the time element in those messages.

The two other mapping elements are located in the

repeating_element_group element which means that they represent data

values in an array. The repeating_element_group element has a path

attribute /route/places which indicates to the location of the array in

those messages. The two mappings inside the repeating_element_group

element represent the latitude (lat element) and longitude (long element)

atomic data values. Again, they have the same global reference values

(http://www.example.org/geoinfo/owl#Latitude and

http://www.example.org/geoinfo/owl#Longitude) as other mapping con-

figurations that represent messages containing coordinates. The correspond-

ing path elements with values of /route/places/lat and

/route/places/long indicate the location of latitude and longitude in the

messages.

The element constant in the mappings configuration defines the constant

96

Example 6.13 Mappings corresponding to the message shown in the Exam-
ple 6.12.
<frame>
<topic>ee.stacc.places.list</topic>
<format>json</format>
<schema>schemas/placesList.js</schema>
<mappings>
<mapping

global ref=”http://www.example.org/lang/owl#Date”
path=”/route/time”

/>
<repeating element group path=”/route/places”>
<mapping

global ref=”http://www.example.org/geoinfo/owl#Latitude”
path=”/route/places/lat”

/>
<mapping

global ref=”http://www.example.org/geoinfo/owl#Longitude”
path=”/route/places/long”

/>
<constant path=”/route/places/height” value=”800” />

</repeating element group>
</mappings>

</frame>

97

Example 6.14 JSON schema corresponding to the message shown in the
Example 6.12 on page 96.

{”type”:”object”,
”properties”:{

”route”:{
”type”:”object”,
”properties”:{

”time”:{”type”:”number”},
”places”:{
”type”:”array”,
”items”:{

”type”:”object”,
”properties”:{

”lat”:{”type”:”number”},
”long”:{”type”:”number”},
”srs”:{”type”:”string”, ”default”:”EPSG:4326”},
”height”:{”type”:”number”}

}
}}}}

}}

value that is used in the messages. The value is 800 and the path indicating

the location of the value is /route/places/height.

The JSON schema at schemas/placesList.js referred in the schema

element that represents the structure of those messages is shown in the Ex-

ample 6.14. Note that the schema contains the element srs which was not

referred in any path element in the mappings configuration. The srs element

has a default value of EPSG:4326 which is defined directly in the schema and

used when new messages are generated.

To test if the Transformer Widget is capable of generating such mes-

sages, then the “Send Data” on the Widget A that publishes timestamps and

the “Send Multiple Coordinates” or the “Send Coordinates” button which

publishes coordinates must be clicked. If then the Widget C outputs text

“Coordinates package” which contains a timestamp (for example a row with

the text “time: Wed May 19 16:56:32 GMT+300 2010”) and a list of co-

ordinates (for example a row with the text “lat: 58.36611 - long: 26.73611,

98

srs: EPSG:4326, height: 800”), then the Transformer Widget has successfully

composed a message as specified in the mappings and can be used in similar

scenarios where messages containing arrays and constant values are needed

to be generated from aggregated data.

The example application validates the usability of the Transformer Wid-

get that can be used in transforming messages exchanged by widgets con-

nected to a hub in a Web application. It also proves that the semantic

integration approach proposed in this work is valid and sound. The example

application has proven that it is enough for transforming messages by spec-

ifying the mappings configuration and the schemas (when necessary) of the

exchanged messages.

99

Chapter 7

Future Work

It is possible to improve the Transformer Widget by adding various fea-

tures that could make the collaboration of widgets and building of mashups

better. The Transformer Widget can be improved by adding support to new

data formats (XML, CSV etc) that widgets can use in exchanging messages.

That would make the Transformer Widget useful for boarder range of widgets

that may use various data formats.

One more immediate extension would be to add support for recursive

use of arrays (i.e. arrays inside arrays or repeating element groups within

repeating element groups) which would allow using of more complex data

structure where an array can contain other arrays as elements which again

can contain arrays inside those arrays and so on.

It is also possible to extend the Transformer Widget by implementing

support for additional aggregation rules in the mappings configuration file

that would allow more complex control over combining data from messages

exchanged between different widgets.

Aggregated data values are not stored separately from data packages, so

if the message has been generated and published from a data package, then

the data package is removed along with the data it has stored. One possible

option of extending the Transformer Widget is storing aggregated data values

separately from data packages so if a new data package is generated with a

newly received data values, then the previously stored data values can be

100

used in filling the rest of the data package with data. That would make it

possible to publish a new message every time at least one data value in the

message has been updated.

That would raise new questions regarding storing and aggregating data

values. It should be then specified how many similar data values with the

same global reference should be stored before the older data values are re-

placed with newer ones when messages that are being generated contain ar-

rays. The number of data values to be stored separately can be constrained

either with a maximum number to be stored or with a time limit of how

much time are data values kept. Another option would be to specify that

the same data is not sent twice to the same widget so that if an array of

data values is sent to a widget, then the message does not contain any data

values that the widget has already received, but this is how the Transformer

Widget currently works. One option would be to store separately only the

latest data value with the same global reference and then to specify which

messages should use previously stored data values to fill in missing data when

a new data package is generated.

In the other way around, one mapping rule that can be added could be

used to specify the size of arrays to be created, i.e. how many elements should

an array contain. For example, if there is a widget that receives messages

that contain an array of coordinates, then how many coordinates should be

collected for the array before the message is sent out. Again, there can be

time constrains and numeric constrains, i.e. it could be specified what is

the minimum number of elements the array should contain, or it could be

specified what is the maximum time limit for collecting elements for the

array (e.g. there should be minimum of five seconds before a new message

is generated). A time constraint could be added not only for constructing

arrays, but in generating messages in general, so that a time limit could be

specified for how frequently new messages are generated for a widget (e.g. do

not send messages with a topic more frequently than in every five seconds).

In addition to specifying the number of data values stored, it would also

be possible to extend the Transformer Widget to specify the number of data

packages stored in memory. For example, if there are two widgets, one capa-

101

ble of sending an array of coordinates, but other widget capable of receiving

(and processing) only one pair of coordinates at the time, so if the first wid-

get sends an array of coordinates with three locations, then which of those

three should be sent to the other widget? Currently the Transformer Widget

would generate, in this example, three separate message of each location and

send it to the second widget. The Transformer Widget could be extended to

allow specifying rules to either send only the latest generated data package,

only the first generated data package, or a number of latest data packages.

For example, if a widget sends an array of five coordinates and the receiving

widget accepts only one coordinate at the time, then it would be possible

to specify to generate a message to the receiving widget either with the first

coordinate from the array, with the last coordinate from the array, or with

the last three coordinates with each in a separate message. The package

count limitation could also be applied in cases a message is composed of data

from two sources where one widget publishes messages more frequently than

the other one and if the maximum number of data packages stored would be

set to one, then only the latest data values from the more frequent source

would be used in composing a message when the less frequent data values

are received. If this rule would be applied then some data values from the

more frequent source would be lost and not used in any generated message.

The aggregation rules can be extended to be able to specify topics of

messages that can be used in collecting data values for generating a certain

messages. This would limit by topics of where widgets can receive informa-

tion. This means that not only the global reference of a data value must

match, but also the topic where the data value was extracted. For example,

if a set of widgets exchange coordinate in their messages, but half of the

widgets exchange coordinates of railway stations and other widgets exchange

coordinates of court houses, then if we would like to keep those concerns

separates so that the coordinates of railway stations and the coordinates of

court houses would not get mixed up in messages, then a more context aware

aggregation rules are needed to be implemented.

The Transformer Widget could also be extended by adding various data

operations to the mappings rules which would allow more complex aggrega-

102

tion and manipulation of data. The data operations could be sorting, fil-

tering, looping, regular expressions, counting, keyword extraction etc which

is similar to the data-flow model of how Yahoo! Pipes [46] allows building

mashups from aggregated data.

A similar approach is introduced in a complex event processing system in

distributed systems [22] where causal event histories, event patterns, event

filtering, and event aggregation are introduced. Many of the ideas like casual

event history visualization which can be used for diagnostics in more abstract

level can also be used in this project since events (messages) in distributed

systems (independent widgets) are dealt in the Transformer Widget as well.

The Transformer Widget could also be extended with a graphical user in-

terface that would help developers in creating configurations of mappings for

mashups. A graphical user interface would allow visualizing configurations

of mappings in a more user friendly manner and would reduce the time of

learning to understand mappings and create new configurations. For exam-

ple, the user interface could allow using a drag-and-dropping of data values

between different messages to imply connection and similarity of those data

values which can be then used in message generation.

A graphical user interface would make it easier for a user to configure

mappings, but it may still be tedious if exchanged data and schemas become

more complex where manual configuration of mappings would take too much

effort. A possible extension to the Transformer Widget would be to add sup-

port for automatic schema matching instead of manual creation of mappings.

There are numerous approaches (some of them reviewed in [31, 43, 27]) for

automatic semantic integration which could then be considered further if

automatic matching is to be implemented.

103

Conclusion

This thesis focuses on the semantic integration of data exchanged in mes-

sages sent by independent widgets developed by different vendors to enable

collaboration between widgets on a Web application. The Transformer Wid-

get, which was implemented in the thesis, allows building of mashups with

complex application logic where loosely coupled components (widgets) can

collaborate and perform tasks that would otherwise be difficult to implement

using widgets.

The thesis fist gave an overview of current mashup providers and related

standards to introduce the problems current mashup platforms and widgets

have with content collaboration. It was found that there are no platforms

available that would allow Web widgets (developed by different vendors)

to properly collaborate with each other, which poses a severe limitation to

creating sophisticated Web applications that require integration of different

data sources.

A solution for a semantic integration of messages exchanged by widgets

was proposed to overcome the limitations current mashup platforms have.

The thesis proposed a solution for defining mappings of data elements in

the exchanged messages that would allow linking of data with correspond-

ing terminology in ontologies. That would allow automatic understanding of

content in messages and data elements could be collected from the data pub-

lished by widgets. New messages could be generated from the collected data

and sent to widgets that could interpret those messages. This would allow

integration of data from different sources so that interactive collaboration

could be supported.

The proposed solution was implemented as an independent widget called

104

Transformer Widget. It uses OpenAjax Hub that provides a central hub

where all the widgets on the Web application can connect and exchange

messages. The Transformer Widget receives all the messages that are being

published by other widgets and uses preconfigured mappings to aggregates

data from those messages and generate new messages that would be inter-

pretable by widgets interested in the aggregated data.

The thesis gives an overview of the implementation of the Transformer

Widget and validates the usability of the Transformer Widget with the help

of another Web application that is using three widgets that cannot commu-

nicate with each other directly. The thesis proposes a solution for enabling

communication between those widgets with the help of the Transformer Wid-

get by configuring the mappings corresponding to the messages exchanged

by those three widgets and adding the Transformer Widget to integrate the

data exchanged between the widgets. The test results proved the solution

and the Transformer Widget to be valid. The successful transformations of

the messages by the Transformer Widget allowed the widgets in the test ap-

plication to exchange data between each other and proved that the solution

of integrating data proposed by the thesis is indeed valid and can be used in

enabling collaboration between widgets.

105

Semantiline Integratsiooni Platvorm Veebivi-

dinate Suhtlemiseks

Magistritöö (30 EAP)

Rainer Villido

Resümee

Semantiline integratsiooni platvorm veebividinate suhtlemiseks on raamistik

mashup-tüüpi veebirakendusel suhtlemise võimaldamiseks erinevate lõdvalt

seotud veebikomponentide (veebividinate) vahel.

Antud magistritöö pakub välja lahenduse integreerimaks semantiliselt

erinevate vidinate poolt saadetud andmed, nii et vidinad oleks võimelised

omavahel andmeid jagama, kui nad vahetult üksteise poolt saadetud sõnu-

meid tõlgendada ei oska. Kõikide vidinate poolt vahetavate sõnumite and-

meelemendid seotakse erinevate ontoloogia terminitega, mis võimaldab sõnu-

mite sisu masinloetavaks ja -arusaadavaks muuta, nii et saadetud sõnumitest

oleks võimalik korjata kokku kõik vajalikud andmeelemendid, milleks oleks

võimalik koostada uusi sõnumeid. See võimaldab kombineerida erinevate

vidinate poolt saadetud andmeid ja luua uusi sõnumeid erinevatest allikatest

kombineeritud andmetest ning seejärel saata loodud sõnumid edasi nendele

vidinatele, kelle jaoks on need andmed kasulikud.

Lahendus vidinatevahelise koostöö hõlbustamiseks realiseeriti kasutades

raamistikku OpenAjax Hub [2], mis on keskne sõnumite jaotur (hub ing. k.)

lubamaks vidinatel jaoturi kaudu sõnumeid vahetada. Jaoturi kasutamine

võimaldab küll vidinatel omavahel sõnumeid vahetada, kuid ei lahenda prob-

leemi, kui vidinad kasutavad sõnumite vahetamiseks erinevaid andmefor-

maate ja -struktuure. Lahendusena realiseeriti magistritöö raames erald-

iseisev vidin nimega Transformatsioonividin (Transformer Widget ing. k.),

mis kogub andmeelemente kõikidest sõnumitest, mida vidinad publitseerivad.

Seejärel genereerib Transformatsioonividin uusi sõnumeid varemkogutud and-

meelementidest ja saadab need teistele vidinatele, mis oskavad kogutud and-

meid kasutada. Magistrtöö raames defineeriti eeskirjad sõnumite sisu kirjel-

106

damiseks, kus sõnumis esinevad andmeelemendid vastandatakse ontoloogia

terminitega, mille põhjal oskab Transformatsioonividin erinevate vidinate

poolt saadetud sõnumeid interpreteerida ja uusi sõnumeid genereerida.

Transformatsioonividina kasutatavust testiti kolmest vidinast koosneva

näidisrakenduse peal, mille vidinad omavahel otse suhelda ei osanud. Testi

eesmärk oli selgitada, kas transformatsioonividinat saab kasutada sellelaad-

sete juhtumite puhul vidinatevahelise suhtlemise tagamiseks, kus olemasol-

evad vidinad ei saa üksteiste poolt saadetud sõnumitest aru. Testi käigus

kirjeldati vidinate poolt saadetud sõnumite semantika ja struktuur Transfor-

matsioonividinale arusaadavale kujule, mis võimaldas vidinate poolt saade-

tud andmeid transformeerida nii, et andmed, mida vidinad publitseerisid,

muudeti arusaadavaks ka teistele vidinatele. Näidisrakenduse test oli edukas

ja kinnitas Transformatsioonividina kasulikkust selliste probleemide lahen-

damisel.

107

Bibliography

[1] OpenAjax Alliance. Openajax alliance. http://www.openajax.org,

2010. Cited: 9 May, 2010.

[2] OpenAjax Alliance. Introducing openajax hub 2.0 and secure mashups.

http://www.openajax.org/whitepapers/Introducing%20OpenAjax%

20Hub%202.0%20and%20Secure%20Mashups.php, 2009. Cited: Novem-

ber 13, 2009.

[3] OpenAjax Alliance. Openajax hub 2.0 specification - managed hub

overview at openajax alliance wiki. http://www.openajax.org/

member/wiki/OpenAjax_Hub_2.0_Specification_Managed_Hub_

Overview, 2009. Cited: December 15, 2009.

[4] The Open Mashup Alliance. The open mashup alliance for enterprise

mashups. http://www.openmashup.org/. Cited: November 13, 2009.

[5] Apple. Apple dashboard. http://www.apple.com/downloads/

dashboard/, 2010. Cited: May 14, 2010.

[6] JackBe Corporation. Presto: An enterprise-ready mashup solution.

http://www.jackbe.com/products/, 2009. Cited: May 17, 2010.

[7] Miguel Carrillo Pacheco et al. Morfeo fast (fast and advanced sto-

ryboard tools). major scientifc objects of the fast project. Technical

report, Morfeo, 30 July 2008. https://files.morfeo-project.org/

fast/public/8.2_major_scientific_objectives.pdf.

[8] OpenSocial Foundation. Opensocial. http://www.opensocial.org/,

2010. Cited: May 9, 2010.

108

[9] The Apache Software Foundation. Overview of apache shindig. apache

incubator. http://incubator.apache.org/shindig/overview.html,

7 July 2009. Cited: November 16, 2009.

[10] The Apache Software Foundation. Apache ant. the apache software

foundation. http://ant.apache.org/, 2010. Cited: May 13, 2010.

[11] Google. Api overview - gadgets api. google code. http://code.google.

com/apis/gadgets/docs/overview.html, 2009. Cited: November 10,

2009.

[12] Google. Google desktop. http://desktop.google.com/, 2009. Cited:

May 14, 2010.

[13] Google. Compile & debug - google web toolkit. google

code. http://code.google.com/webtoolkit/doc/latest/

DevGuideCompilingAndDebugging.html, 2010. Cited: April 21,

2010.

[14] Google. Google web toolkit - get started - faq. google

code. http://code.google.com/webtoolkit/doc/latest/FAQ_

GettingStarted.html, 2010. Cited: May 16, 2010.

[15] Google. Google web toolkit overview. google code. http://code.

google.com/webtoolkit/overview.html, 2010. Cited: April 21, 2010.

[16] Google. Javascript native interface (jsni). google web

toolkit. http://code.google.com/webtoolkit/doc/latest/

DevGuideCodingBasicsJSNI.html, 2010. Cited: April 28, 2010.

[17] Thomas Gruber. A translation approach to portable ontology specifica-

tions. Knowledge Acquisition, 5:199–220, April 1993.

[18] Volker Hoyer. Enterprise mashups. http://sites.google.com/site/

fastonlinecontest/what-are-enterprise-mashups, 2009. Cited:

November 2, 2009.

109

[19] IBM. Ibm mashup center. http://www-01.ibm.com/software/info/

mashup-center/. Cited: November 4, 2009.

[20] The Apache Incubator. Wookie proposal. apache incubator whiteboard.

http://wiki.apache.org/incubator/WookieProposal, 20 September

2009. Cited: November 20, 2009.

[21] Intel. Intel mash maker. http://mashmaker.intel.com/web/

learnmore.html, 2009. Cited: November 6, 2009.

[22] David C. Luckham and Brian Frasca. Complex event processing in dis-

tributed systems. Technical report, Stanford University, 1998.

[23] Microsoft. Windows sidebar and gadgets. http://www.microsoft.

com/windows/windows-vista/features/sidebar-gadgets.aspx,

2010. Cited: May 14, 2010.

[24] Chris Mills. Opera widgets specification 1.0 fourth edition. opera

development community. http://dev.opera.com/articles/view/

opera-widgets-specification-fourth-ed/, 15 September 2009.

Cited: November 11, 2009.

[25] Netvibes. Netvibes download. http://netvibes.org/download/.

Cited: November 11, 2009.

[26] Netvibes. Netvibes developers network. http://dev.netvibes.com/

doc/, 3 July 2009. Cited: November 12, 2009.

[27] Natalya F. Noy. Semantic integration: A survey of ontology-based ap-

proaches. SIGMOD Rec., 33(4):65–70, 2004.

[28] Natalya F. Noy, AnHai Doan, and Alon Y. Halevy. Semantic integration.

AI Magazine, 21(1):7–9, 2005.

[29] OMTP. Bondi. http://bondi.omtp.org, 2009. Cited: January 11,

2010.

110

[30] Tim O’Reilly. What is web 2.0? o’reilly media. http://oreilly.

com/web2/archive/what-is-web-20.html, 30 September 2005. Cited:

January 6, 2010.

[31] Erhard Rahm and Philip A. Bernstein. A survey of approaches to auto-

matic schema matching. The VLDB Journal, 10(4):334–350, 2001.

[32] Sven Rizzotti and Helmar Burkhart. usekit: a step towards the exe-

cutable web 3.0. In WWW ’10: Proceedings of the 19th international

conference on World wide web, pages 1175–1176, Raleigh, North Car-

olina, USA
”

2010. ACM.

[33] Jesse Ruderman. Same origin policy for javascript. mozilla developer

center. https://developer.mozilla.org/En/Same_origin_policy_

for_JavaScript, June 2009. Cited: January 4, 2010.

[34] Justin Schuh. Same-origin policy part 1: Why we’re stuck with things

like xss and xsrf/csrf. the art of software security assessment. http://

taossa.com/index.php/2007/02/08/same-origin-policy/, Febru-

ary 2007. Cited: January 10, 2010.

[35] Antero Taivalsaari and Tommi Mikkonen. Mashups and modularity: To-

wards secure and reusable web applications. In Automated Software En-

gineering - Workshops, 2008. ASE Workshops 2008. 23rd IEEE/ACM

International Conference on, pages 25–33, L’Aquila, 2008. IEEE.

[36] Kapow Technologies. Getting started : Learn more

about openkapow robots. openkapow. http://openkapow.

com/blogs/getting_started/archive/2007/02/15/

Learn-more-about-openkapow-robots.aspx, 15 February 2007.

Cited: November 6, 2009.

[37] Kapow Technologies. Kapow web data server. http://kapowtech.com,

2009. Cited: November 6, 2009.

111

[38] TIBCO. Tibco pagebus developer’s guide. http://developer.

tibco.com/resources/gi/pagebus2/tib_pgbs_dev_guide.pdf, Oc-

tober 2009. Cited: March 3, 2010.

[39] Ivan; Hoyer Volker; Janner Till; Rivera Ismael; Aschenbrenner Nina;

Fradinho Manuel; Lizcano David Urmetzer, Florian; Delchev. State of

the art in gadgets, semantics, visual design, sws and catalogs. Technical

report, Morfeo, 27 February 2009.

[40] The World Wide Web Consortium (W3C). Owl web ontology language

– w3c recommendation. http://www.w3.org/TR/owl-features/, 10

February 2004. Cited: May 20, 2010.

[41] The World Wide Web Consortium (W3C). Widgets 1.0: Packaging and

configuration. http://www.w3.org/TR/widgets/, 23 July 2009. Cited:

October 27, 2009.

[42] World Wide Web Consortium (W3C). Widgets 1.0: The widget land-

scape (q1 2008), 2008.

[43] H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neu-

mann, and S. Hubner. Ontology-based integration of information - a

survey of existing approaches. In Proceedings of IJCAI-01 Workshop:

Ontologies and Information Sharing, pages 108–117, Seattle, WA, 2001.

[44] Wookie. Wookie widget develope’s guide. http://getwookie.org/

Widgets_files/widget_dev_guide.pdf, 8 December 2008. Cited:

November 20, 2009.

[45] WS02. Mashup server data sheet. http://wso2.com/wp-content/

themes/wso2ng/images/wso2_mashup_product_data_sheet.pdf.

Cited: November 13, 2009.

[46] Yahoo! Yahoo! pipes. http://pipes.yahoo.com/pipes/, 2010. Cited:

May 9, 2010.

112

[47] Ikuya Yamada, Wataru Yamaki, Hirotaka Nakajima, and Yoshiyasu

Takefuji. Ousia weaver: A tool for creating and publishing mashups as

impressive web pages. In MEM 2010: 3rd Workshop on Mashups, En-

terprise Mashups and Lightweight Composition on the Web, in WWW

2010: Proceedings of the 18th International World Wide Web Confer-

ence, Raleigh, North Carolina, USA
”

2010. WWW 2010.

[48] Jin Yu, Boualem Benatallah, Fabio Casati, and Florian Daniel. Un-

derstanding mashup development. IEEE Internet Computing, 12:44–52,

2008.

[49] Nan Zang, Mary Beth Rosson, and Vincent Nasser. Mashups: who?

what? why? In CHI ’08: CHI ’08 extended abstracts on Human factors

in computing systems, pages 3171–3176, Florence, Italy, 2008. ACM.

113

Appendix

Source Code

The source code of the Transformer Widget and the test application used

to test transformations, which were discussed in the thesis, is available upon

request from Software Technology and Applications Competence Center.

114

