
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Karl Blum

Open and Extensible Business Process Simulator

Master Thesis (30 EAP)

Supervisors: Luciano García-Bañuelos, PhD

Marlon Dumas, PhD

Author: ……………………………….. “…... “ June 2010

Supervisor: ……………………………….. “…...” June 2010

Supervisor: ……………………………….. “…...” June 2010

Professor: ……………………………….. “…...” June 2010

TARTU 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Contents

1. Introduction ... 4

2. Business Process Management .. 5

3. Simulation of Business Process ... 7

3.1. State of the art ... 8

3.1.1. Process simulation in research prototypes ... 9

3.1.2. Process simulation in commercial tools ... 10

3.2. Conclusions ... 14

4. Simulation of BPMN with CPN .. 15

4.1. BPMN to plain Petri nets .. 15

4.2. BPMN to CPN with simulation support .. 19

4.2.1. Case generation ... 19

4.2.2. Control flow ... 20

4.2.3. Execution time ... 22

4.2.4. Resource management .. 22

4.3. Advanced constructs ... 23

4.3.1. Intermediate events ... 24

4.3.2. Task boundary events .. 25

4.3.3. Event-based gateways ... 27

4.3.4. Sub-processes .. 29

4.3.5. Sub-process timer .. 30

4.3.6. Sub-process messages ... 33

4.3.7. Sub-process error events ... 34

4.4. Conclusions ... 36

5. Architecture ... 37

5.1. Independence from process input format .. 39

5.2. Independence from the simulation data file format .. 40

3

5.3. Independence from modelling notation ... 41

5.4. Our converter in an end-to-end simulation system ... 42

5.5. Conclusions ... 43

6. Case of study ... 44

6.1. Preparing the process model and simulation data ... 44

6.2. Converting the process ... 48

6.3. Simulating the process .. 49

6.4. Simulation result analysis ... 51

6.5. Conclusions ... 52

7. Conclusion and future work ... 53

Abstract (in Estonian) ... 55

References.. 56

Apendices .. 58

A. BPMN .. 58

B. Coloured Petri Nets ... 60

C. CPN Tools ... 63

D. Simulation schema .. 64

E. CD Contents .. 67

4

1. Introduction

Business process simulation is a widely used technique for analyzing business process

models with respect to performance metrics such as cycle time, cost and resource

utilization. There are many commercial process simulation tools available that also

incorporate a simulation engine, e.g. ARIS, Oracle Business Process Architect (Oracle

BPA), FirstSTEP, TIBCO Business Studio, IBM Websphere Business Modeler and many

others. Most of the currently available tools have two important architectural limitations

that will be discussed within this thesis. These limitations are:

 They allow to simulate processes that are designed only in the same tool;

 The simulation engine is built-in and it is not extendable.

The aim of this thesis is to move towards overcoming these problems in existing tools. The

core of this thesis is twofold. First we provide some of the commonly used Business

Process Notation (BPMN) mappings to Coloured Petri Net (CPN) modules while

considering the need to use these converted models for simulation purposes. This means

that the mappings have to be able to handle simulation data and can generate simulation

output into log files. Secondly we provide a new process model converter architecture that

is open and extendable and it is responsible for generating a ready to simulate CPN

models.

The following of this thesis is structured as follows. In section 2 we give an overview of

business process management and process simulation. We discuss what they are and why

are they important. In section 3 we give an overview of existing state of the art tools and

conclude their shortcomings. In section 4 we discuss process mappings from BPMN

elements to CPN modules with simulation support and also show how we can benefit from

this conversion. In section 5 we provide an overview of our new simulation framework that

has been developed with extendibility and openness in mind. In section 6 we look at how

our converter architecture can play a part in an end-to-end process simulation lifecycle.

After that in section 7 we describe the potential future work to extend our architecture and

use it in an end-to-end process simulation environment.

5

2. Business Process Management

Business process is a collection of activities that take inputs and creates an output that is of

value to the customer. Business processes consist of coordinated set of activities carried

out by both automated systems and people to achieve a desired outcome. Michael Porter in

his book [8] suggested that the activities within the organization and thus in the processes

can be split into primary activities and support activities. Primary activities are essential for

the company and support activities assist the primary activities. Primary activities are

usually customer centric and customers interact with these activities directly (e.g. marke-

ting and sales). Supporting activities provide more of the back-office and administrative

activities (e.g. procurement).

People use the term “BPM” in many different ways. Some use BPM to refer to “Business

Process Management” and others use BPM to refer to “Business Performance

Management.” Some use BPM to refer to a general approach to the management of

business process change, while others use it more narrowly, to refer to the use of software

techniques to control the runtime execution of business processes [19]. In this thesis we

use BPM as “Business Process Management” to refer to a top-down methodology that is

designed to organize, manage and measure the organization, based on the organization’s

processes. In this case business process management provides governance of a business

process environment to improve performance through the optimization of business pro-

cesses. Business processes are the key instruments to organizing activities in the process

and to improve the understanding of their interrelationships [3]. Business process manage-

ment activities can be grouped into four different categories as seen on Figure 1.

Figure 1 - BPMN lifecycle.

Process Modelig

Process
Implementation

Process Execution

Process Analysis

6

The lifecycle of BPM begins with process modelling where the order of tasks is specified

in the currently used processes. This means that currently used processes will be modelled

in some representable format. This is often called “as-is” modelling. In process

implementation phase the processes will be converted into executable form. This can be

done in the software simulation environment for example. In the next phase the

implemented business processes will be executed and the outcomes will be recorded for

analyzing in the next phase. In process analysis phase, business experts review the business

issues to be resolved and in that context evaluate the end-to-end processes of the company,

along with its strategy, governance documents and other process information. By defining

key performance indicators and creating business cases, the business process expert

identifies the needs of the business and defines the requirements to create and implement

the new or enhanced processes and applications [2].

Business process modelling and simulation are an important part of BPM discipline.

Process modelling allows abstracting real world processes and representing them in a

graphical form. Graphical models can be used in discussions between different stake-

holders as it provides understanding of the processes in a common way. Simulation is

important part of BPM discipline because it gives the ability to test the outcome of a

certain process. With simulation it is possible to evaluate the performance of the existing

process model (as-is model) and to compare the current model with its modified versions

to verify the increase in some key performance indicator.

7

3. Simulation of Business Process

Process model is a simplified representation of the actual process. It draws the boundaries

in the process and is intended to promote understanding of how the real system works.

Process simulation is a tool for validating and getting answers from the provided process

model. Simulation can also be seen as a tool for managing change and it is an important

part of BPM life-cycle. Practitioners of BPM know the critical importance of carefully

leading organizations and people from old to new ways of doing business, and simulation

is one way to accelerate change. This capability derives largely from the ability of

simulation to bring clarity to the reasons for change. Simulation provides more than an

answer: it shows you how the answer was derived; it enables you to trace from cause to

effect; and it allows you to generate explanations for decisions [13]. It can be used in the

design phase to support dynamic experiments with the process and evaluate the decisions

that have been made to see how the process behaves under various circumstances, where

the problems may lie and how should the process be improved. Simulation gives the

process manager the possibility to experiment with different variables like staff size,

working hours, etc. and it makes easier to correct problems or discover weaknesses before

the new model is implemented and put into execution.

The needs for the simulator tool can vary depending on the modelled process, but the core

requirements remain the same. A range of features desired from a simulation tool are:

modelling flexibility, ease of use, animation, general simulation functions (e.g. warm-up

period, multiple runs), statistical functions, interface with other software, product help and

support, price and expandability [9]. The study presented in this article [9] also provides a

list of 70 evaluation criteria or even the whole evaluation framework for simulation

software selection methodology. Amongst other things the framework includes criteria

regarding coding aspects (e.g. programming flexibility, access to source code, support, of

programming concepts) and software compatibility (e.g. integration with statistical

packages, integration with DBMS). Flexibility and access to the source code are

considered to be of high importance if models are to be used for modelling complex or real

time systems.

It is not realistic to expect any of the currently available tools to satisfy all these criteria.

Increasing functionality tends to increase also the complexity of the tool. It then becomes

8

reasonable to choose the right tool with right functionality for given models. In the

following we will discuss the extensibility aspect in current state of the art tools.

3.1. State of the art

Extensibility is a systemic measure of the ability to extend a system and the level of effort

required to implement the extension. Extensions can be through the addition of new

functionality or through modification of existing functionality. The central theme is to

provide support for change while minimizing impact to existing system functions [10].

With an extendable tool it would mean that it is not so important whether it supports all of

the needed functionality – workflow elements, simulation capabilities, analysis capabilities

because the tool can be extended to support what is needed.

Currently most available simulation tools aim to provide end to end capabilities without

any specific business domain in mind, e.g. TIBCO Business Studio and ARIS Business

Simulation. Despite the list of currently available simulation tools, there has been made

conclusions that most of them have architectural limitations [20] that decrease their support

for extensibility. It could mean that the availability of different control flows, resource

patterns or simulation measurements is fixed by the tool provider. We can see an

evaluation of different commercial tools regarding the support of different workflow

patterns here [23]. The limitations are not only in the inability to use some workflow

pattern due to the lack of its support in the used simulation tool. Problems may also arise if

the simulation to be done needs to measure something specific. For example most of the

current tools use task duration and execution cost as the primary simulation data, but if we

would like to add some specific tax calculation to the analysis, then implementing it might

be complicated or even impossible. It is arguable that most of such analysis can be done

later by a separate analysis tool from the data on the simulation logs, but this solution has

another problem. That is because many of the current tools do not provide standardized

simulation log output and therefore the analysis is limited to the functionality provided in

the tool. In the following we will discuss some of the state of the art research prototypes

and also some of the commercial tools.

9

3.1.1. Process simulation in research prototypes

In [5] and [6] some of the state of the art business process management tools were

evaluated in respect of their simulation capabilities. In [5] the tools were divided into three

different areas based on their capabilities. First category contains business process

modelling tools that are specially developed to describe and analyze business processes.

Protos was evaluated in this category. The second category was for business process

management tools which core functionality is in the automation of the workflow processes.

In this category FileNet and FLOWer where evaluated, although FLOWer lacks of

simulation facilities. In the third category general purpose simulation tools were evaluated.

General purpose tools are not tailored towards a particular domain, such as logistics,

military or any other. In this category CPN Tools and Arena were evaluated. The overall

conclusion in this study [5] is that the tools in business process management and process

modelling category fell short on their simulation capabilities. Protos provides simulation

capabilities based on the ExSpect simulation engine, but the interface between the two

parts of the system omit important details with respect to data and resources. Within a

research discussed in paper [16] a transformation from Protos models to CPNs was

developed to provide extensive measurement and verification for processes. Protos2CPN is

able to convert Protos XML output to CPN Tools file with XSL transformation. The

simulation of Protos models in CPN Tools makes the running process visible by depicting

the moving cases as tokens within the process model. It therefore allows for a detailed in-

spection of the running process. In addition, the monitoring features of CPN Tools enable

the generation of complex statistics. The models created by Protos2CPN transformation

already include some basic measurements which can be extended by experienced users

[16]. The conclusion was that the resulting CPN model has complex modelling and simu-

lation capabilities, but although the simulation capabilities of CPN Tools is its good side, it

requires profound knowledge to model in Petri Nets and the resulting models are hard to

understand, especially by a non-technical background business analyst. Despite this short-

coming CPN Tools is based on the formal modelling technique and opens many

possibilities for complex process simulations. The thesis [6] also discussed process

simulation in CPN and provided a complete simulation data metamodel. One of the

differrences with this paper is that here we will provide more advanced CPN mappings and

concentrate on building an extendable converter architecture and implementing a version

of the converter prototype.

10

3.1.2. Process simulation in commercial tools

IBM WebSphere Business Modeler (WebSphere) is one of the comprehensive commercial

business process analysis tool that offers modelling, simulation and analysis capabilities. In

WebSphere it is possible to model, assemble and deploy business processes, then monitor

and take actions based on key performance indicators (KPIs), alerts and triggers to

continually optimize these processes. WebSphere also supports the capabilities of

simulation, analysis and redesign. WebSphere offers robust functions for business process

analysis as well as modelling capabilities for business processes, enterprises, essential data,

artefacts, organizations, resources, timetables and locations [6]. It is possible to perform

dynamic and static analyses. Static analyses are performed on process simulation profiles

and also on processes without actually running the simulation. With this it is possible to

recognize decisions and loops in the process flow and get a comprehensive idea of the

possible paths through processes including costs and revenue generated by each possible

path. Dynamic analysis is performed on the data from a simulation run and it can be done

at three levels of granularity:

1. Aggregated analysis – Most broadly scoped of the dynamic analyses. They use all

the data from the entire simulation run for their information. This analysis is used

to gain understanding of the behaviour of the whole process.

2. Process case analysis – This analysis uses the data from specific process case and it

is used to gain understanding of a certain process flow.

3. Process instance analysis – It is the most granular of the dynamic analysis and it

uses data from a single process case instance for their information.

WebSphere process modelling notation is not fully BPMN-compliant, but it is influenced

by BPMN. Some of the icons used in WebSphere process modelling environment are

based on those from the BPMN specification. An example of a process model in

WebSphere can be seen on Figure 2.

11

Figure 2 - Example process in IBM WebSphere Business Modeler.

Process simulation attributes that define conditions and behaviour for the whole process

during a simulation run can be set from the settings dialog as seen on Figure 3. Setting the

simulation data for activities is rather limited as can be seen on Figure 4 and Figure 5.

Figure 3 - Adding simulation data in IBM WebSphere

12

Figure 4 - Adding simulation data to a task.

Figure 5 - Adding cost and revenue data to a task.

Although the modelling notation used in WebSphere is influenced from BPMN, it does

support only small subset of modelling elements like: start events, end events; forks; loops;

merges; joins; timers and some others. With this subset of elements it is complicated or

even impossible to model complex business processes to achieve more detailed simulation

13

results for further analysis. For example, it is not possible to model intermediate events as

they are described in BPMN specification and thus such process cannot also be simulated.

Another state of the art commercial tool for business process modelling and simulation is

TIBCO Business Studio. It has a better support for different BPMN elements as it claims to

be 100% BPMN version 1.2 compliant. On the other hand, it only means that it is able to

build process models with using all of the BPMN elements, but it does not mean that all of

the BPMN elements can be used in models for simulation purposes. For example it is not

possible to add an intermediate timer or message boundary event to a task for simulation

purposes. Also it is not possible to use event based gateways or any other intermediate

gateway in a simulation model. Example of a business process model in TIBCO can be

seen on Figure 6.

Figure 6 - Process model in TIBCO modelling environment.

ITP Commerce is another tool for process modelling in BPMN notation and it also

provides full support for BPMN 1.2 and also BPMN 2.0 elements. Although it provides

simulation support for also intermediate events and event-based gateway it is not possible

to use boundary events for tasks. The simulation support for intermediate message events

is also rather limited because for example it is not possible to use intermediate message

with message receiving probability. The coverage for intermediate events and event-based

14

gateways for process simulation is a problem for all of these discussed tools. The support

for this has been summarized in Table 1.

 BPMN 1.2 coverage

for modelling

Intermediate events

in simulation

Event-based gateways

in simulation

TIBCO Full support. No simulation support. No simulation support.

IBM

WebSphere

Almost none No modelling support. No modelling support.

ITP Commerce 100% Limited simulation

support.

Limited simulation

support.

Table 1 - BPMN events coverage coverage in state of the art tools.

3.2. Conclusions

The tools described here are either research prototypes or expensive commercial tools that

are the flagships of currently available business process simulation environments. Most of

them provide support for the whole business process management lifecycle and have a

huge number of features including support for process simulation. They also have good

graphical interfaces with a drag and drop functionality for easy process modelling. Despite

this they all tend to have limited support for simulation capabilities and they mostly use

their own closed and built-in simulators that cannot be extended by the end user to satisfy

their needs. CPN Tools is considered to have good support for complex process simulation,

but it can be too difficult to use for business persons. In the following we will discuss how

it would be possible to convert BPMN models to CPN models by presenting a set of

mappings for different BPMN constructs.

15

4. Simulation of BPMN with CPN

Business Process Modelling Notation (BPMN) gives the possibility to model all kinds of

business processes in a way that is easily readable to people with no technical background.

It is a de-facto standard for modelling business processes. Although BPMN is the most

widely used notation, it lacks the support for process simulation. Current version of BPMN

provides only a few properties in elements that can be considered as simulation data (timer

execution time for example). In the forthcoming BPMN version 2.0 there will be some

additional support for simulation data but it will not be as complete as the modelling

notation itself. BPMN provides only the visual representation of a business process model

and it does not have any formal semantics. Without formal semantics it is impossible to

automatically simulate an existing process model. To overcome this problem there have

been made some proposals of formal semantics [11], but there is no standard semantics

currently available.

Coloured Petri Net (CPN) is another graphical oriented modelling language that is used for

designing and simulating processes. CPN syntax and semantics have a formal definition

which is the basis for simulation of a process model. CPN can be used in places where

formal semantics is essential in the modelling project. It is possible to model very complex

business processes in CPN, but the modelling notation has only a small set of low level

elements. The graphical representation of the model will not be as readable as BPMN

model and might not be as understandable for business persons with no technical

background.

In the following we will discuss the mappings from BPMN elements to Petri net modules.

We start with the mappings to plain Petri nets and then discuss the mappings to CPN

modules incrementally starting from the simple elements. Short introduction to BPMN and

CPN can be seen in appendix A and 0 accordingly.

4.1. BPMN to plain Petri nets

An example of a BPMN model for order processing can be seen on Figure 7.Figure 7 -

Example of process model in BPMN. It is a simplified model with five tasks, exclusive

gateway, and gateway, join, end event and start event. The leftmost circle represents the

process start and the circles on the right represent process endpoints. The first gateway

after the task “Check availability” is an exclusive gateway and exactly one of the two

16

output paths is always taken. The second gateway after order confirmation is a split

gateway. It means that all the paths will be taken concurrently.

Figure 7 - Example of process model in BPMN.

The conversion from BPMN to plain Petri net model is done in a way that each control

flow element has usually at least on central transition that is able to capture their routing

behaviour. Examples of conversion mappings can be seen on Table 2.

Mapping from BPMN start event to Petri net is straightforward and it has been also

discussed in earlier papers, for example here [20], [11]. Most of the conversions can be

done by adding a silent transition to a Petri net for each BPMN element. For example the

start event in BPMN will have a transition in Petri net that moves tokens out of the start

place. In Petri net it is not possible to connect two places with an arc and this means that

the tokens from the starting place can move only via the existing transition. Converting an

end element is similar to the start event as there is an end place and the transition that is

able to put a token to this place. There is no outgoing arc from the place because it

represents the end of a process.

Check
availability

Reject order

Confirm
order

Ship product

Send invoice

Not available

Available
Start

End

End

17

BPMN Object Petri-net module BPMN Object Petri-net module

Note: x,x1 and x2 represents an incoming object. y,y1 and y2 represent an outgoing object.

Table 2 - Petri net mappings.

BPMN Task can be simply represented as a transition in Petri net module as can be seen in

Table 2. The transition in Petri net is needed to capture the behaviour of the model. AND

gateways in BPMN mean that an incoming case will take all of the outgoing branches

concurrently. Modelling AND gateway in Petri net is also done with a central transition

and the splitting is done with two or more outgoing arcs. Each outgoing arc corresponds to

one outgoing branch in BPMN model. In Petri net it means that the transition will consume

one incoming token and generate two or more outgoing tokens (depending on the amount

of outgoing branches. Data based exclusive gateways can be modelled in Petri net using

several transitions. If we have a separate transition for all of the outgoing arcs then it

means that each branch can be taken and if one of them fires then a token is consumed and

the other transitions are not enabled anymore. Joining two process branches has to be done

with one central Petri net transition that is able to fire only if there is a token from each

incoming arc. This means that the transition will consume a token from all of the incoming

places and produce only one output token.

18

Using these conversion patterns discussed before, we are able to convert a simple process

modelled in BPMN as seen on Figure 7. The corresponding Petri net model can be seen on

Figure 8. As Petri net uses only a small set of elements (place, transition, arc), it may

sometimes not be as simple to read as a BPMN model. In this case if we use only simple

tasks and gateways the CPN model is not complex. If we would add boundary events and

resource management then the model would become more complex.

Figure 8 - Process model in Petri net.

The mappings previously discussed provide an easy way of converting BPMN processes to

plain Petri Nets. This conversion is straightforward but this conversion does not help much

Start

Check
availability

Decision
Not

available
Available

RejectConfirm

Fork

Ship
product

Send
invoice

End

End

Join

19

as it is not possible to do proper model simulation. In the converted model, as seen on

Figure 8, it is only possible to manually “play” with the control flow by moving the token

from the start place towards the end. To do this, we have to place a token to the first place

on the left in our model. This token represents the process instance and the start transition

is able to execute. This way we can manually simulate different process situations but it is

not usable for advanced process analysis.

One aim of this thesis is to provide the mapping solutions from BPMN modelling elements

to Petri net constructs in a way that the converted model is ready for simulation. In some

cases the basic mappings can be still used but most of the mappings will become more

complex if we add support for simulation data and resource consumption for example. In

the following paragraph we discuss the solutions developed within this thesis for adding

simulation and resource handling support. Because Petri net is very constraining for

advanced process modelling, we decided to use higher level version of Petri net called

Coloured Petri net (CPN).

4.2. BPMN to CPN with simulation support

In the following we discuss the process conversion mappings to get a CPN model with

simulation and resource management support. The mappings that were developed as part

of this thesis have been done in a way that when doing a model conversion with any

traversal method, then in each next conversion we do not have to remove CPN elements

from the previous mappings. This means, that for example after mapping a gateway we

start mapping a task, then we do not remove places or transitions from the gateway. This

makes our mappings robust and stable because connecting the next element to the previous

mapping does not change its structure although it can modify the arc inscriptions and

transition texts or create a new structure by adding elements.

4.2.1. Case generation

In process simulation we can consider the start element as a process initiator. This is the

starting point for the whole process. With this in mind we incorporated the process case

generator into the start event itself and to model it in CPN we used a sub-page to

encapsulate the whole generator into one virtual transition. It basically means that the start

event produces process tokens or cases. Our implementation of the process generator is

derived from the work [6] and the process generator itself consists of a central CPN

20

transition that after firing will generate a new case to an output port. The frequency of

cases created and other variables in the process generator can be defined with the arc

inscriptions as seen on Figure 9.

Figure 9 - Case generator in CPN.

The generator transition itself is connected to the counter place where exists only one

token. This token is a simple integer type case identifier and after each time the generator

transition uses it, the identification number (ID) is increased by one. If the generator

transition puts the token back to the counter place, it increases also the timing to simulate a

delay between two process instances. If the simulation needs a bundle of cases to be

generated in the same time unit, the time is not increased when the full bundle has not yet

been created. The generator transition has an assigned function generateCase(i) that is

responsible for initializing the logging functionality. In this place the log file in a file

system for this process case is generated and this file can be later updated to add more

simulation events.

4.2.2. Control flow

In BPMN there are several ways to do branching in a process. One of the most used

elements for process branching in BPMN is data based exclusive gateway [12] and an

example of this can be seen on Figure 10.

To use this branching in a simulation model we have to add branching probabilities to

know how many times each of the branches will be taken. To convert this kind of bran-

ID

1`1

CASE
i

c

[generatorGuard(i) = true]

Generator gen_start

OutOut

Counter
i+1@+
(
 if i mod noOfTokensPerBundle = 0
 then calcDisValue(timeBetweenBundles)
 else 0
)

input (i);
output (c);
action
(
 generateCase(i)
);

21

ching to a CPN model we developed a version of mapping that also supports branching

probabilities. A simple example of this mapping can be seen on Figure 11.

Figure 10 - Exclusive gateway in BPMN.

Figure 11 - Exclusive gateway in CPN.

The CPN model has one central transition that is responsible of determining the path to be

taken. The simulation information will be added there to the transition action function.

This function will pick a random value between 0 and 99 and with this number the

c

CASECASE

CASE

OUT 1 OUT 2

Exclusive gateway

input ();

output (path);
action

(
 let

 val p = discrete(0, 99);
 in

 if p>0 andalso p<75 then 139
 else 141

end
);

(if path=148 then 1`c else empty)(if path=137 then 1`c else empty)

IN

XOR Gateway

Path 1

Path 2

22

outgoing path is determined. Each outgoing arc from the transition has a conditional ex-

pression that will allow the token to pass only if it the token was intended to take this path.

4.2.3. Execution time

Extending our previously defined Petri-net conversion pattern for a task to support simple

simulation with the ability to model processing time is really straightforward. In CPN we

can define a delay in the outgoing arc inscription which means that after the transition fires

the token will have its time changed. On Figure 12 we can see a task that has an execution

time of 100 time units.

Figure 12 - Simple task in CPN.

In our mappings we use a method assigned to a task to calculate the total time consumed. If

we add for example the resource management then the outgoing arc inscription also has to

consider the resource waiting time. Instead of using fixed time values it is possible to used

time functions in the arc inscriptions.

4.2.4. Resource management

To support resources in simulation we had to extend our mapping model a bit further. Our

proposed solution for a task mapping can be seen on Figure 13. To add support for tasks

that also need resources to execute, there has to be made a few enhancements that we will

discuss in the following.

c c@+100
IN OUTTask

23

Figure 13 - Task with resource management support in CPN.

In our mapping we use only one central resource pool and its initial marking shows all of

the available resources. In CPN it is possible to assign a colour to token and this can be

used to differentiate between different types of resources. In each task transition there has

to be a guard that checks the availability of a needed resource and can fire only if a certain

resource is available. When a task uses a resource to execute then it will put the resource

back to the resource pool after it has finished and also sets a new time to the used resource

token. This way the resource is not available to other elements while the task is executing.

In our example model on Figure 13 the Task1 also uses resources to execute. The function

defined to the right from the task is the transition function. This function calls the simu-

lation logger with the defined parameters to generate log trail. This function we used is

taken from [6].

4.3. Advanced constructs

Besides the previously discussed simple process modelling constructs there are also a lot of

elements that can be considered more complex. In the following we discuss the mappings

of some of these elements.

c

CASE

CASE

[check_roles(#Roles(r),["WORKER"])]

Task1

IN

OUT

CASE.set_ts c (pt+intTime()) @+pt

input (c,r);
output (pt);
action
(let
 val transParams = {
 pt={dtype=specific, specificValue=100, mean=0, std=0},
 pCost={dtype=specific, specificValue=0, mean=0,std=0},
 sCost={dtype=specific, specificValue=0, mean=0,std=0},
 revenue={dtype=specific, specificValue=0, mean=0,std=0},
 pWaitTimeDur=0,
 pWaitTimeCost=0,
 transitionName="Task1",
 NoOfResources=1}
in
transitionActionR(c,r, transParams)
end);

3`WORKER

RESOURCES

RES

r @+pt

r

24

4.3.1. Intermediate events

Events can happen between any other activities and these are called intermediate events.

Examples of timer intermediate event between two tasks and its corresponding CPN

mapping can be seen on Figure 15. On Figure 14 we have a timer intermediate event

between two tasks and its corresponding CPN mapping.

Task A Task B

Timer

Figure 14 - CPN mapping (bottom) for BPMN intermediate timer event (top).

Intermediate events in the process flow mean that the execution of the process has to pause

and wait for the certain event to happen before the execution can continue. Timer event

means that the process has to wait for a specific amount of time and message event means

that the process has to wait until the message has arrived before continuing. For the

message event there can be various implementations of how to define the receiving of a

message. Our implementation in the CPN mapping is done in a way that the messages will

be received periodically after every defined amount of time. Considering this assumption

we can also say that the messages are received in uniform distribution between 0 and

period time. An example of intermediate message event and its mapping to CPN can be

seen on Figure 15.

c@+10000c
CASECASE

IN OUTTimer

25

Task A Task B

Message

Figure 15 - CPN mapping (bottom) for BPMN intermediate message event (top).

Mapping for timer event is straightforward because an intermediate timer is intended to

generate a fixed delay in process execution and therefore in CPN mapping we have to add

a fixed time delay to the timer transition outgoing arc inscription as can be seen on Figure

14.

4.3.2. Task boundary events

We consider a task as an atomic transaction that cannot be cancelled while the execution

has already started. This means that a certain task can be represented as a single transition

in CPN. While simulating a model where resources are involved we might want to cancel

an activity that has been waiting too long for a free resource and has not been started yet.

This kind of behaviour can be modelled in BPMN with boundary events and these events

can fire any time while waiting for the task to start executing. Another type of boundary

event for a task is receiving a message. Example of a BPMN task with a timer and message

boundary event can be seen on Figure 16.

OUTIN

CASE
c

Message Event
c@+round(uniform(0.0,5400.0))

CASE

26

Figure 16 - BPMN task with message and timer boundary events.

To model this kind of behaviour in CPN, we used pre-empting time stamps in arc

inscriptions. These timestamps are used in incoming arcs and it means, that the token can

be consumed the expressed amount of time ahead of model time. On Figure 17 we can see

the CPN mapping for a BPMN task with boundary timer and message events. If the task

receives an input token then it is first evaluated if a message will arrive. This is done with a

probability function before timer and task itself. It is so because the arriving of the message

is derived from the probability from simulation data and it does not depend on the availa -

bility of resources. If the message will arrive, then the message transition will generate a

delay that is between 0 and message arrival interval and the message output will be taken.

The values for arrival time are taken in uniform distribution.

If a message does not arrive then the timer is started by putting a token with the added

timer delay to the place just before timer event transition. It means that the timer can fire if

the time has reached @+1000 in our example. The task is still able to fire because in its

incoming arc inscription we use pre-emptive timing with the same amount of added time

which means that the token is available before current simulation time. In our example if

the token will arrive at time x. Then after the transition “Timer Events” the token will be

available at time x+1000. But for the transition Task the token is available 1000 time units

before and this means the token is available for task at time: x+1000-1000 = x. This gives

to the task the ability to execute before the timeout. If the task is not executed within a

given time then the timer output path will be taken. The time delay for timeout has then

already been added.

Task

Message Timer

27

Figure 17 – CPN Mapping for a task with boundary timer and message events.

4.3.3. Event-based gateways

An event-based gateway is a BPMN flow control gateway where the path to be taken is

decided on the event that occurs first. Event-based gateway can have different types of

events connected to it, but only one timer. It is not prohibited to use more than one timer

but if fixed time timers are used then we know that one of them fires always first and thus

the others are never used. From this conclusion we can say that the event-based gateway

output path can be derived from the occurrence probabilities of each event. Each event

fires with some fixed probability and the timer fires when no other events occur. If the

timer path is taken, we add the fixed timer delay. Message events can occur at a time

between arriving to the gateway and timer triggering time. If we have more than one

c

c

c

c

RESOURCES (ID1124)RES

CASE

CASE

CASECASE

CASE

c@+1000

CASE.set_ts c (pt+intTime()) @+pt

CASE

MESSAGE EVENTS

TIMER EVENTS

c
CASE

c@+1000

Task

OUTOUT

c@+round(uniform(0.0,1000.0))

Message IN

input ();

output (p);
action
(round(uniform(0.0,100.0))
);

Task IN

Timer EVENT
MESSAGE

OUT

if p>= 10 then 1`c else empty

if p>=0 andalso p<10 then 1`c else empty

28

message event, they all have the same delay function. An example of event-based gateway

with a timer and two message events can be seen on Figure 18.

Figure 18 - BPMN event-based gateway with at timer and two message events.

The mapping for event-based gateway is rather straightforward when supporting timers

and message events. For an example if we would have a process model with an event

based gateway as seen on Figure 17, then we know that the branching probability can be

predefined and is independent from the timer timeout limit. This allows us to calculate the

branch taken right after the case has arrived in the gateway. It means that when both

messages have a receiving probability of 25% of the cases, then the timeout occurs 50% of

the time (100% - 25% - 25%). If the timeout is set to 1000 time units then if the timeout

path is taken the delay will be exactly 1000 time units. But if any of the messages are

received then it means the time delay is evenly distributed between 0 and timeout time. An

example of this mapping can be seen on Figure 19.

Timer

Message 1

Message 2

29

Figure 19 - CPN mapping for BPMN event based exclusive gateway.

4.3.4. Sub-processes

Another commonly used construct in a BPMN model is a sub-process. A sub-process is a

collection of activities that can be viewed as a whole and it provides a natural way to draw

a condensed top-down view. Process flow in the sub-activity cannot cross the boundaries

of the sub-process. Example of a simple sub-process in BPMN can be seen on Figure 20.

A sub-process is in connection with the parent process through events. Most basic flow in a

sub-process can be modelled with a start and end event and the mapping to a CPN model is

then straightforward. The sub-process start has to be connected directly with the activity

before the sub-process in the main process. The sub-process can also use intermediate

events to throw events outside the sub-process boundaries. For example a BPMN sub-

process can have an error, message or timer events that will be caught from the boundary

of the sub-process. This means that the sub-process cannot be seen as an atomic activity

c

c

c

c

c

CASE.set_ts c (pt+intTime()) @+pt

c@+round(uniform(0.0,1000.0))

c

c

c

c

c

CASE.set_ts c (pt+intTime()) @+pt

c@+1000

c

T1 (ID1108)

input (c);
output (pt);
action

(let
 val transParams = {

 pt={dtype=specific, specificValue=0, mean=0, std=0},
 pCost={dtype=specific, specificValue=0, mean=0,std=0},
 sCost={dtype=specific, specificValue=0, mean=0,std=0},

 revenue={dtype=specific, specificValue=0, mean=0,std=0},
 pWaitTimeDur=0,

 pWaitTimeCost=0,
 transitionName="T1",
 NoOfResources=1}

in
transitionAction(c, transParams)

end);

T2 (ID1041)

input (c);
output (pt);
action

(let
 val transParams = {

 pt={dtype=specific, specificValue=0, mean=0, std=0},
 pCost={dtype=specific, specificValue=0, mean=0,std=0},
 sCost={dtype=specific, specificValue=0, mean=0,std=0},

 revenue={dtype=specific, specificValue=0, mean=0,std=0},
 pWaitTimeDur=0,

 pWaitTimeCost=0,
 transitionName="T2",
 NoOfResources=1}

in
transitionAction(c, transParams)

end);

RESOURCES (ID1160)3`WORKERRES

T1 OUT (ID1149)

CASE

CASE

CASE

CASE

T2 OUT (ID1084)

CASE

CASE

CASE

CASE

CASE

CASE

c

c

CASE

c

input ();
output (path);

action
(
 let

 val p = discrete(0, 99);
 in
 if p>0 andalso p<75 then 175

 else if p>75 andalso p<50 then 176
 else 182

end
);Event Gateway

Cancel purchase order

(if path=182 then 1`c else empty) (if path=175 then 1`c else empty)

Modify purchase order

(if path=176 then 1`c else empty)

Confirm purchase order

OUT

CASECASECASE
OUT OUT

c@+round(uniform(0.0,1000.0))

30

and the mapping for sub-processes with these events is more complex. We will discuss

these mappings in more depth in the following chapters.

Figure 20 - Simple BPMN sub-process.

4.3.5. Sub-process timer

We can also attach a timer to a sub-process to control the amount of time the sub-process

can run. If the certain amount of time has passed the process execution will be interrupted.

Interrupting the sub-process flow with an intermediate timer event means that the whole

execution of the sub-process needs to be cancelled just after already executing tasks will

finish. This means that if timeout occurs, we cannot start new tasks and in a CPN model

the tokens in a sub-process have to be taken out to stop executing the normal flow. To

model this kind of behaviour we have to add some additional constructs to the model.

Sub-process

Register
order

Cancel order

Approve
order

Start

Start End

End

31

Figure 21 - Simple sub-process with a timer boundary event.

Each task in a sub-process with a timer boundary event has to have a skipper function as

seen on the Figure 22. The corresponding BPMN model can be seen on Figure 21. At the

input of the sub-process the token goes to a place where it indicates, that the process is

ready to execute and the timeout has not happened yet. In our example this place is named

OK. This status place is connected to each task in the sub-process and each task can start

executing if a corresponding token is in the OK place. The token is put back after the

execution of the task has been ended. If the task has finished it allows the timer event to

execute if timeout has occurred. For this the exception transition fires and takes the token

from OK (OK to continue) place and moves it to NOK (Not OK to continue) place. With a

token in NOK place no other tasks can execute and all the task skip transitions are active.

This means that artificial transitions transfer the tokens through the model without

executing the real tasks and this way it is possible to move tokens out of the model and

start an alternative flow (e.g. timeout). This also means that the time does not advance

anymore in this sub-process because no task can execute and therefore no delay can

happen.

Sub-process

Task A Task B

EndStart Start End

Timer

End

32

Figure 22 - CPN sub-process timer mapping.

It is important to note that the connection between task and OK place, and between task

and NOK place, has to use different arc variables. Also the skip transitions and task

transitions have to have additional guard functions. This function allows to fire either of

these transitions if there is a token with a needed identifier in either OK or NOK place. It is

important to use different variables in the incoming arcs to tasks and skip functions,

because this allows us to use guard functions to check if only the identifiers mach. If the

variables would be the same (e.g. only c), then without the guard function the transition

will be active only if all incoming places have the same token available. It will be a

problem when for the case token has been changed (for example after the execution of the

first task).

The last skip transition is directly connected to the timeout exception output and the

process flow goes to the event handler from there. If the timeout does not happen, then the

process flow goes to the normal output. With this kind of mapping solution we can be sure

that the model is able to handle concurrently running processes although it does not behave

properly if the sub-process itself is part of a loop. If we have to support more than one

alternate path (e.g. when using sub-process boundary message event), then this solution

has to be extended. We will discuss this extension in the next chapter when we introduce

message event mappings.

c

c

c

c1

c1

c

cc1

c1

cc

c

c1

c1

c

C.set_ts c (12)@+12

c
Task B

[#ID c= (#ID c1)]

Skip

[#ID c= (#ID c1)]

Ex

Task A

[#ID c= (#ID c1)]

C

B

C

C

A

1`{ID=1,ts=0}

NOK

C

OK

C

C

C

C

c

c@+100 c1

C

Input

c1

Skip 2

[#ID c= (#ID c1)]

C.set_ts c (5)@+5
OUT

Timer

[#ID c= (#ID c1)]

EX

1
1`{ID=1,ts=0}@0

33

4.3.6. Sub-process messages

During the execution of a sub-process we can also model the arrival of different messages.

For this sub-process boundary message events are used. These messages can be

interrupting and non-interrupting. Interrupting message will cancel the normal sub-process

execution exactly like the timer event we discussed earlier. The only difference between

the timer and message event is that messages can arrive during the sub-process execution

with some kind of time function. To add support for multiple sub-process boundary events

we have to extend our previously introduced CPN mapping. An example model with two

message events and a timer can be seen Figure 23.

Figure 23 - BPMN model with multiple boundary events.

We previously introduced task skip functions to transfer process instance tokens out of the

sub-process to the timer exception output. We do not have to add more skip functions if we

are using more than one boundary event but we have to add additional data to the token

that will go to the control flow (OK place, NOK place etc). The result of this extended

mapping can be seen on Figure 24. First if the process instance token enters the sub-

process the exception path will be selected immediately, because we are able to calculate

the first occurring event in case any of them is able to fire. The ability to fire depends on

how much time it takes for the tasks to execute and on other time consuming activities.

Sub-process

Task A Task B

EndStart Start End

Timer

End

Message 2

End

Message 1

End

34

This selection is done in the transition action as can be seen in our example. The action

function will decorate the token with the output exception path identifier that will be used

when the exception occurs. For example if the arrival time for the second message will be

10 time units, then after the first task the exception will occur, the second task will be

skipped and Message 2 transition will fire.

Figure 24 - CPN mapping for multiple sub-process boundary events.

4.3.7. Sub-process error events

Error events are used in a sub-process to cancel the execution in a sub-process instance. In

a BPMN process model an error is represented as a special type of end node as can be seen

on Figure 25, where we have an error event after the Cancel order task. The Error will be

caught by the intermediate Error event which is on the boundary of the sub-process.

Converting this kind of error throwing and catching to a CPN module is rather complex,

because we have to make sure that after an error has occurred, none of the tokens in a sub-

process will move to the normal end. For example, if we have an error event after an AND

split, then the path without error event has to be cancelled and the token has to be taken out

c

c

c

c

c

ctsb

tsb

tsb

tsb@+dl

tsb

C.set_ts c (5)@+5c

tsb

tsb

c

ctsb

tsb

cc

tsb

tsb

tsb

C.set_ts c (12)@+12

c

Message 2

Message1

input (c);
output (tsb,dl);
action

(
let

 val paths = [10,20,30]
 val timings = [

 100,
 round(uniform(0.0,200)),

 round(normal(0.0,75.0)
]

 val delay = minL(timings,[])

 val p = List.nth(paths, findLoc(timings,delay,0))
 val result : TS = {pr=c,path=p}

in
 (result,delay)

end
);

Task B

[#ID c = (#ID (#pr tsb))]

Skip 2

[#ID c= (#ID (#pr tsb))]

Timer

Skip

[#ID c= (#ID (#pr tsb))]

Ex

Task A

[#ID c= (#ID (#pr tsb))]

C

C

CB

TS

C

A

1`{ID=1,ts=0}

C

NOK

TS

OK

TS

C

C

C

c
c

Path

[#ID c= (#ID (#pr tsb)), (#path tsb) = 20]

MES2

[#ID c= (#ID (#pr tsb)),(#path tsb) = 30]

MES1

EX

[#ID c= (#ID (#pr tsb)),(#path tsb) = 10]

OUT

35

from the sub-process without executing any tasks and the token is also not allowed to

continue its flow after the normal sub-process end event. To achieve this we have extended

our previous mapping model on Figure 24. The result of this extension can be seen Figure

6, where we provide only the added exception task and status places.

Figure 25 - Sub-process with an error event.

First when we trigger an error event after receiving a token in Error IN place, as seen on

Figure 26, we have to activate the skip functions by moving the process instance token

from OK place to NOK place. This is done by the error event transition. Note that the error

transition can move the process instance directly to the error event output. Secondly we

have to make sure that if there are more tokens in the sub-process then they do not start

more tasks and do not go to the normal sub-process end event also via the skip transitions.

To achieve this we place the status token from OK place to NOK place and set its path

identifier to 0. This means that in the end of the sub-process flow this corresponding case

token will not take normal output and is destroyed. On Figure 26, there is a transition

Clean that will take the token from NOK place and from the last skip function end place

and destroys them both, because the process flow has already continued from the exception

handler.

Note that this solution behaves correctly, but it does leave a token in the place B if the error

occurs, because the error event does not wait until the timeout has occurred. This problem

can be solved by adding another cleaner function.

Sub-process

Register
order

Cancel order

Approve
order

Start

Start End

End

Error

Error

End

36

Figure 26 – CPN Mapping of sub-process error event.

4.4. Conclusions

BPMN is a widely used process modelling notation, but it lacks a standardized support for

process simulation. To overcome this problem it is useful to convert BPMN process

models into CPN models to support advanced simulation techniques. These previously

presented mappings show us that it is possible to convert different BPMN elements into

Petri net constructs. When using plain Petri nets then the end result is not usable for simu-

lation purposes and the mappings are only important to gain understanding of the BPMN to

CPN conversion method. To overcome the limitations and add support for advanced simu-

lation models, some higher level Petri net has to be used. Coloured Petri net is highly

flexible and allows us to convert more sophisticated constructs with also simulation sup-

port. Some of these mappings provided in this thesis have already been discussed in vari-

ous papers. Our contribution is mostly in the advanced mapping constructs like task

boundary events and sub-process boundary events.

37

5. Architecture

As a part of this thesis we designed and also implemented open and extensible process

converter architecture. The architecture is designed in a way that it would be dependent on

only a small subset of tools (e.g. CPN, CPN Tools simulator) and allow it to be used with

many other existing software packages available. The core and fixed part of this archi-

tecture deals with a CPN model that will be the basis for this architecture. It means that the

input process modelling notation; input file type; output format and even the CPN simu-

lator itself are exchangeable and only the usage of CPN as the intermediate process

description language is mandatory. This allows us to overcome the problematical limi-

tations of current tools described also in the paper [20].

Figure 27 - Process converter architecture.

An overview of the architecture can be seen on Figure 27. The first part is the process

converter that takes a process model and simulation data files as an input. The purpose of

converter is to generate a simulation ready CPN model that can be handed over to the

simulator. Simulation data can also be in the same file, but we have designed the archi-

tecture in a way that the simulation data can be also added independently from the process

model itself. The file parsers have to implement an interface to assure a common interface

Converter

Process file

parser

Simulation data

parser

Process CPN converter

Process

file

Simulation

data file

CPN file

Interface Interface

Relay Factory

Element

Factories

Element CPN

Mappings

In
te

rf
ac

e

38

between the converter and the file parser. The same is also true for the element in-memory

CPN mapping generation. This solution is discussed in more depth in the following.

In the converter architectural design we used design patterns to assure openness and

extendibility. The design patterns we used include abstract/concrete factory pattern and

strategy pattern. With abstract/concrete factory pattern we ensured that each model map-

ping can be changed to another implementation. For example it is possible to define the

used mapping implementations from text file. This allows us to switch quickly and easily

between different mappings.

To assure extendibility we had to make our architecture independent from process input

file format, simulation data input file format and also from the modelling language. An

overview of these extendibility aspects can be seen in Table 3.

Extendibility aspect Motivation Solution

Process input format. To support different process

serialization formats.

Data file is handled through a

separate and independent

parser that follows the

predefined communication

rules.

Simulation data input

format.

To support different simulation data

input formats. Can be from the

process model file or from a separate

file.

Modelling language. To support various available

modelling notation and different

subsets of their modelling elements.

Modelling notation is

independent from the file

parsers and the generation of

modelling elements is handled

through factories to allow

changing and extending.

Different subsets of

modelling elements.

Different processes need different

subsets of modelling elements.

It is possible to add, remove or

modify modelling elements

that have to be converted.

Table 3 - Different extendibility aspects.

39

5.1. Independence from process input format

The architecture does not rely on any currently available process exchange file format.

Currently there are various process serialization formats available, e.g. Business Process

Modelling Language (BPML), Business Process Execution Language and XML Process

Definition Language (XPDL). They are all developed with a different target usage in mind

and each of them is good for a certain purpose (e.g. using in an execution environment to

automate the process). Despite the differences in the target usage there is often a need to

simulate the process regardless of its serialization format. This is why we need an

extensible architecture for process simulation to handle any of these available process file

formats.

In our architecture the process file is read into memory through a concrete file parser. This

parser is independent from the other parts of the system and therefore it is easily ex-

tendable and changeable. The other parts can communicate with the parser through the

communication rules defined in the interface file. It basically means, that any process file

parser has to be able to answer simple questions like: what are the elements in the file;

what is the type of a certain element and the parser itself does not have to know what will

be converted and how. As a proof of concept to show how this architecture works, we have

implemented an XPDL 2.0 parser in our prototype solution [17] (The prototype is also

available on the accompanied CD-ROM. Look appendix CD ContentsE for more

information). It is possible to start using the upcoming BPMN 2.0 standard serialization

model by just creating a new concrete parser implementation.

Figure 28 - Parser class diagram.

40

Part of this Java code is represented on Figure 28 as a class diagram. Class Parser is the

central starting point for the whole conversion process and it has a reference to the con-

crete process file parser. In our example the XPDL2ElementParser is the concrete parser

that implements ElementParser interface and is thus exchangeable. To use another con-

crete process file parser (e.g. BPMN 2.0), another parser class has to be created that

implements ElementParser interface. The concrete element parser reference is set in the

Parser class before the parse() method can be run.

5.2. Independence from the simulation data file format

Not all currently available process model serialization formats and modelling environments

support adding simulation data. Usually when there is no simulation engine built into the

modelling environment it is also not possible to add simulation data. Therefore our archi-

tecture supports simulation data from a separate input file. Although some of the process

exchange file formats support adding extended attributes, it is good if the original process

file does not have to be changed. Therefore we have a separate simulation file parser

interface defined in our architectural solution. It means that the parser for simulation data

is independent from the process model parser, but it is also possible to use the same file for

both parsers. If we consider BPMN 2.0 where there is support for some simulation data,

this same file can be handled to both process parser and to simulation data parser. This part

of the implementation in Java code is represented on Figure 29.

Figure 29 - Parser class diagram.

41

5.3. Independence from modelling notation

As our goal was to design a process converter that is open and extensible, it must not

impede the usage of any advanced modelling construct. It is important to support different

modelling notations currently available and to be prepared for future changes in current

modelling standards. For example in the next version of BPMN a new type of intermediate

event will be introduced – non-interrupting event. Adding conversion support for this kind

of event would be easy in our process converter.

The creation of CPN mappings for different modelling notation elements is handled

through abstract/concrete factory pattern. The main parser instance has a reference to a

central relay factory that handles the collection of different factories, one for each certain

modelling notation element. For instance as seen on Figure 30 we have the abstract relay

factory RelayFactory and this is extended by a concrete BPMNRelayFactory which is

responsible for the registration of different BPMN element factories. BPMNRleayFactory

is responsible for selecting the right factory to generate a needed CPN mapping for certain

BPMN elements. To do this the concrete factory has to register the needed element

factories (e.g. BPMNTaskFactory, BPMNGatewayFactory). When the factories are

registered, then it is easy for the parser to just ask the relay factory, which it has reference

to, to create CPN mapping for a certain element. This makes the main parser independent

from the element factories and thus the mappings and factories are easily exchangeable.

Each modelling notation element has a CPN mapping in a separate Java class and instances

of these classes will be generated through the element factories. In our prototype solution

BPMN element Task CPN mapping is created from BPMNTaskFactory.

To add support for another type of modelling notation there has to be made another relay

factory that will handle factories for each new modelling element. Also for each modelling

element there has to be the CPN mapping class. For example if we are adding support for

Event-driven Process Chain (EPC) models we would create EPCRelayFactory. From this

new relay factory we would reference to the element factories (e.g. EPCEventFactory,

EPCFunctionFactory). Each of these element factories would be responsible for

generating one certain EPC modelling elements. In this way we can set the main parser to

reference EPCRelayFactory to handle all the element generation. To add support for a new

element we only have to make a new mapping implementation.

42

Figure 30 - Parser factories class diagram.

5.4. Our converter in an end-to-end simulation system

We consider end-to-end simulation system to consist of three main components:

1. Modelling environment;

2. Process simulator;

3. Analytical capability.

There are different commercial and also open source tools available that implement at least

one of these components. Some of the well known tools are for example:

1. Oryx-editor – Web-based process modelling environment that has the support for

various modelling languages (e.g. BPMN, EPC);

2. CPN Tools simulator – Supports simulation of the Coloured Petri Net models and

is able to generate simulation log output as a standardized MXML format;

3. ProM – Generic open-source process mining and analysis tool.

43

This list is just an example of one specific tool for each part of the process modelling

environment. In this thesis we propose an extended version of this previously discussed

simulation system. We have extended the initial end-to-end system in a way to support

using these already available and previously mentioned freely available tools.

Figure 31 - Extended simulation system.

This system has been extended in a way that all of the business processes will be converted

into CPN modelling language to support advanced simulation functionality that most

current end-to-end tools lack of. CPN gives us enough flexibility to support almost any

imaginable workflow pattern and simulation need. An overview of this extended system

can be seen on Figure 31. We also implemented a prototype version of this converter.

5.5. Conclusions

Most of current simulation tools provide a built-in simulation engine that has limited

support for simulation functionality and is not extendable. Here we provided a process

converter architecture that is the basis for building process model CPN converter for

different modelling notations. Process models in CPN can be extended with the conversion

mappings and thus can support advanced simulation constructs. In this thesis we also

implemented a version of a converter prototype built on this architecture. It is able to

convert BPMN models to simulation ready CPN models, based on the mappings provided

in previous chapter.

Process modeling environment

Process converter

(part of this thesis)

 CPN simulator

Log analysis software

Process

model

CPN

model

Simulation

logs

44

6. Case of study

In the following we demonstrate the usage of our process converter as a part in the whole

end-to-end simulation system. To support an end-to-end simulation system, we used

different tools. These tools that we used throughout the case study are the following:

1. Modelling the process model – We used an open-source project Sketchpad BPMN

as our modelling environment. This tool is currently under development and is

available here [18].

2. Simulation data – To add simulation data for the process model we used a simple

XML file created with text editor.

3. Process converter – We converted our BPMN model to a CPN simulation ready

model with our prototype converter.

4. Simulation – To simulate the converted CPN model we used process simulator

from the CPN Tools project. This simulator can be used separately from the CPN

Tools editor, but as we did the simulation manually, we used the editor to execute

the simulation.

5. Simulation log conversion - The simulator tool generated one file for each process

instance. To merge these separate files we used ProM Import Framework. This tool

has special support for merging log files that were generated from CPN Tools

simulator.

6. Results analysis – To analyze the simulation results we used ProM 5.2. This is an

open source project and it is available here [15].

6.1. Preparing the process model and simulation data

To demonstrate the whole simulation lifecycle we use a BPMN process model that is

complete and ready for simulation and it can be seen on Figure 32.

45

Figure 32 - Example BPMN model.

It is a simplified purchase order management process that after modelling in BPMN

includes different BPMN elements which conversion is currently supported by our

prototype CPN converter. It includes tasks, different gateways, a sub-process, sub-process

timer and different end events.

The process starts when a new purchase order is received. The purchase is first

automatically registered in the system (task in the model: Register purchase order). As this

registration is done by the system automatically, it does not need the interaction of any

worker and thus we consider the execution time as 0 minutes. After the registration there is

a manual approval process that will be handled by a clerk. This task takes 20 minutes on

average and after that the purchase order is either approved and the process continues or

the order is not approved and the process ends with an error output in our BPMN model.

Register
purchase

order

Verify
purchase

order

Order not
approved

Order
approved

Confirm
purchase

order

Modify
purchase

order

Order timed
out

Purchase order received

Start

Confirmation

Modified purchase order

End

Timer Error

End

End

End

46

As can be seen on Figure 32, the error occurs in the sub-process and it is handled with the

sub-process boundary event. This error handling ends the process as it is directly connected

to the process end event. We also know that 30% of the approval requests are not

approved and 70% of the time the case is approved accordingly. This is in our process

modelled as an exclusive gateway. After the order has been approved it can be confirmed

or modified by the order submitter. This confirmation or modification proposal is sent to

the clerk as a written document. We also know that 20% of the time after the order has

been approved the customer writes a modification proposal. 80% of the time the purchase

order does not have to be changed anymore and the customer approves the order. The

confirmation and modifications to the purchase order are received in uniform distribution

between 0 and 1.5 hours. This part is in our BPMN model represented as an event-based

gateway with two intermediate message events connected to it. If the confirmation is

received from the buyer then it takes 10 minutes for the clerk to finally confirm the

purchase order. If the buyer sends modifications, then it takes the clerk 20 minutes to

process these modifications and this new modified version of this purchase order will be

again verified. This verification can be done by any of the available clerks.

This process starting from registering the purchase order and ending with a non-approval

or confirmation can take a maximum of 4 hours. If this time has passed after the order is

registered, this order is not valid anymore and the whole approval process has to be

cancelled. This means that after the time has passed no new activities in the process will be

started and the process ends with a timeout.

We also assume that the initial orders are received after every 10 minutes and we have

always 4 clerks working. This simulation data can be also seen in Table 4 and Table 5.

If the process has been modelled in BPMN Sketchpad tool, it allows saving the process

into XPDL 2.0 file format. Our prototype converter has an implementation of XPDL 2.0

parser and therefore this file can be converted after adding the simulation data from a

separate file.

To add simulation data we use separate XML file which has references to the previous

BPMN model elements in the XPDL file. An example of this XML file can be also seen on

Figure 33. We used our own simulation data metamodel and it only supports the values

that were needed to run basic simulations with our prototype converter. The completion of

47

simulation schema was not part of this thesis because our converter architecture is

independent from the simulation data input format and can be extended in the future. This

example metamodel XSD schema can be seen in Appendix D.

Task Performer Duration

Register purchase order System 0 (automatic process)

Verify purchase order Clerk 20 minutes (1200 seconds)

Confirm purchase order Clerk 10 minutes (600 seconds)

Modify purchase order Clerk 20 minutes (1200 seconds)

Order not approved - These tasks are needed only

for generating log events.

Order approved -

Order timed out -

Table 4 - BPMN tasks simulation data.

Element Simulation data

XOR gateway Order not approved – 30%

Order approved – 70%

Event-based gateway Confirmation message – 80%

Modifications message – 20%

Confirmation message Received in uniform distribution between 0 and 1.5 hours

Modification message

Table 5 - Control flow simulation data.

48

Figure 33 – Simulation data in XML file.

6.2. Converting the process

To convert our process into CPN representation, we used our prototype converter. It is

possible to run the conversion directly from the Java code. To do this we have to define the

<SimulationData>
 <SimulationProfile>
 <StartTime>2000,1,1,0,0,0</StartTime>
 <EndTime>2001,1,1,0,0,0</EndTime>
 <TokensInBundle>1</TokensInBundle>
 <TotalTokens>100</TotalTokens>
 <CostPerToken>0</CostPerToken>
 <TimeBetweenBundles>600</TimeBetweenBundles>
 </SimulationProfile>
 <Tasks>
 <Task>
 <Id>53</Id>
 <ProcessingTime>1200</ProcessingTime>
 <ResourceType>CLERK</ResourceType>
 </Task>

…
 </Tasks>
 <Gateways>
 <Gateway>
 <Id>48</Id>
 <GateRefs>
 <GateRef>
 <IdRef>58</IdRef>
 <Probability>20</Probability>
 </GateRef>
 …
 </GateRefs>
 </Gateway>

…
 </Gateways>
 <MessageEvents>
 <MessageEvent>
 <Id>64</Id>
 <Time>5400</Time>
 </MessageEvent>
 …
 </MessageEvents>
 <Resources>
 <Resource>
 <ResourceType>CLERK</ResourceType>
 <ResourceAmount>4</ResourceAmount>
 </Resource>
 </Resources>
</SimulationData>

49

location of the input simulation process file and simulation data files created previously.

Doing this from Java code is straightforward and an example of this can be seen on Figure

34. To do the same from a precompiled Java jar file, we would have to execute the

following command: java –jar cpnConverter.jar process.xpdl output.cpn

simulation_data.xml.

Figure 34 – Part of the Java code to start the conversion process.

6.3. Simulating the process

There are different options to run the simulation on the generated CPN. We did this by

using CPN Tools graphical environment because if the simulation is to be executed

manually it is easier to use GUI than to use the same simulator from a plain system console

environment. Short introduction to CPN Tools can also be seen in appendix 0. CPN Tools

generates a separate log file for each executed process instance. This log consists of audit

trail entries that are generated in each BPMN task. It is possible to generate log entries

from every element but the entries from tasks are the most important ones. An example of

a log entry can be seen on Figure 35.

File xpdlFile = new File("process.xpdl");

 File simDataFile = new File("simulation_data.xml");

 Parser p = new Parser();

 p.setElementFactory(new BPMNRelayFactory(p));

 p.setElementParser(new XPDL2ElementParser(xpdlFile));

 p.setSimDataParser(new KBSimDataParser(simDataFile));

 p.parse();

 p.save("output.cpn", true);

50

Figure 35 – Simulation log trail entries.

As a final result we only need on MXML standard simulation log file. To convert all these

log files generated from CPN tools simulator, we used ProM Import utility. A screenshot

of this tool can be seen on Figure 36.

<AuditTrailEntry>

 <Data>

 <Attribute name="WaitingTime">0</Attribute>

 <Attribute name="WaitTimeCost">0</Attribute>

 <Attribute name="ModelTimeStamp">0</Attribute>

 </Data>

 <WorkflowModelElement>Approve purchase order</WorkflowModelElement>

 <EventType>start</EventType>

 <Timestamp>2000-01-01T00:00:00.000+01:00</Timestamp>

 <Originator>CLERK</Originator>

</AuditTrailEntry>

<AuditTrailEntry>

 <Data>

 <Attribute name="ProcessingTime">1200</Attribute>

 <Attribute name="NoOfResources">1</Attribute>

 <Attribute name="ModelTimeStamp">1200</Attribute>

 </Data>

 <WorkflowModelElement>Approve purchase order</WorkflowModelElement>

 <EventType>complete</EventType>

 <Timestamp>2000-01-01T00:20:00.000+01:00</Timestamp>

 <Originator>CLERK</Originator>

</AuditTrailEntry>

51

Figure 36 - Screenshot of ProM Import tool.

This utility asks for a directory where the process instance log files are and then generates

a new combined log file as an output.

6.4. Simulation result analysis

As a result of running the simulation and merging the log files we now have one standard

MXML log file that can be analyzed with ProM. This tool allows us to open the log file

and do different analysis with it. First thing when you open the log file is a dashboard

where you can see the summary of key data in your log file. This is also presented on

Figure 37. From there we can see the number of cases that were executed and how many

events these cases generated in total.

To see the basic information about how the order process ended, we can use log summary

analysis. It finds all the end events and shows their occurrence probabilities. An example

of this can be seen on Figure 38.

52

Figure 37 - ProM dashboard.

Figure 38 - Log summary in ProM.

6.5. Conclusions

In this chapter we demonstrated our process converter architecture and showed how it can

be part of an end to end simulation environment to support advanced simulation constructs.

First a process model was designed in SketchpadBPMN and exported into XPDL file

format. This file format is supported our prototype and it converted our model to a CPN

simulation ready process model. Simulation data was added separately from another XML

file. The converted CPN file was then simulated in CPN Tools environment which

produced an output in multiple log files. Then ProM Import framework was used to

combine these log files to one log file that we could analyze later in ProM process mining

tool.

53

7. Conclusion and future work

In this thesis we analyzed several general purpose simulation tools and we concluded that

most of these products provide only a fix set of simulation capabilities and that they cover

only a subset of constructs of the underlying modelling notation. They mostly support de-

facto standard process modelling notation BPMN, but lack the support for its simulation.

Some of the tools allow to simulate only the minimum set of BPMN elements (tasks,

gateways, start event, end event) and do not provide simulation support for other elements

like intermediate events. Also the simulation data that can be added to the supported

elements is usually very limited and in case there is a need to construct and simulate a

process model in some specific domain, it can turn out to be impossible. The second

problem with these tools is that besides the limited support for process model simulation,

they also do not provide any extensibility mechanisms to add the needed functionality.

To overcome these problems our contribution is two-fold. We defined an open and

extensible architecture for process converter and a set of advanced BPMN to CPN

mappings. Process conversion to a CPN model allows the process to be extended with a

comprehensive simulation support. Some of these mappings have also been discussed

before in different papers (e.g. [6], [11] and [20]). Our main contribution in this part of the

thesis is the mappings of boundary and intermediate events for tasks and sub-processes.

The process converter architecture we implemented is able to solve the problems that are

seen in current tools. It makes use of the powerful CPN modelling language and CPN

Tools simulator to handle complex simulation models. Upon this architecture it is possible

to build a domain specific or general purpose process simulation framework. The CPN

mappings we provided in the first part of this thesis are also used in a prototype built on

our process converter architecture. This prototype already supports many BPMN elements

like: tasks, start events, end events, different gateways, intermediate message and timer

events, sub-processes and sub-process boundary events. All of these elements also have

support for simulation.

Firstly future research should be done to extend the list of BPMN element to CPN

mappings to gain full support for BPMN elements. Also the upcoming BPMN 2.0 should

be considered as it adds some new modelling constructs (e.g. non-interrupting events) and

extends the notation modelling capabilities.

54

The simulation schema that we used in our converter prototype supports only the main

simulation data elements (e.g. task duration, branching probabilities, simulation profiles,

etc). Implementing an extensive support for simulation data was not part of this thesis and

is considered an important future work. Our architectural solution is built to be extendable

also for adding simulation data and it can be extended based on the work [6] for example.

Thirdly the implemented prototype can be extended in the future to work as a RESTful

service, or even Software as a Service. This allows it to be integrated into a full-fledged

simulation environment to support end-to-end process simulation.

55

Abstract (in Estonian)

Magistritöö (30 EAP)

Karl Blum

Äriprotesesside haldamise üheks väga oluliseks osaks on protsesside simuleerimine. Simu-

leerimine annab hea võimaluse kontrollida protsesside toimimist ning leida muutmist vaja-

vaid kitsaskohti. Käesolevas magistritöös vaatleme olemasolevaid protsesside simuleeri-

mise keskkondi, mida peetakse hetkel selle valdkonna tippudeks (näiteks TIBCO, IBM

WebSphere jt), ning uurime nendes esinevaid probleeme seoses funktsionaalsuse ja laien-

datavuse puudumisega. Praktiliselt kõikidel uuritud vahenditel oli probleeme keerukama

ülesehitusega protsesside simuleerimisel ning puudub võimalus töövahendit äridomeeni

spetsiifikast lähtuvalt vajadusel muuta või täiendada.

Magistritöö põhiosa on jagatud kaheks. Esimeses osas toome välja protsessielementide

teisendused defacto standard modelleerimisnotatsioonist BPMN, madalama taseme model-

leerimiselementideks CPN keeles. Teisenduse kasulikkus seisneb selles, et CPN keeles

olev protsess on simuleeritav vahendiga CPN Tools, ning konverteerimist on võimalik

kohendada vastavalt vajadustele. Näiteks on võimalus lisada ärispetsiifilisi simulatsiooni-

andmeid või kasutada mittestandardseid tööde jaotamise mustreid.

Magistritöö teises osas töötame välja täiesti uue protsesside konverteerimise arhitektuuri,

mis on kättesaadav avatud lähtekoodina, ning on kergesti laiendatav. Siinkohal tähendab

laiendatavus seda, et välja töötatud arhitektuuri on võimalik kasutada erinevatest model-

leerimiskeeltest protsesside konverteerimiseks CPN keelde. Näidisena oleme loonud ka

prototüübi, mis on suuteline teisendama enamlevinud BPMN elemente simuleerimis-

valmidusega CPN elementideks. Edasiste töödena näeme me võimalust laiendada olemas-

olevat prototüüpi toetamaks kõiki BPMN elemente ning keerulisi simulatsiooniandmeid.

Prototüüpi on võimalik ka edasi arendada simuleerimise veebiteenuseks, mida saaksid

edukalt kasutada erinevad modelleerimiskeskkonnad simulatsioonide läbiviimiseks.

Avatud ja laiendatav äriprotsesside simulator

56

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The

Journal of Circuits, Systems and Computers, 8(1):21-66, 1998.

2. Business Process Cycle: Analyze Phase. http://www.sdn.sap.com/irj/bpx/analyze, (last

visited: 06.06.2010).

3. M. Weske. Business Process Management: Concepts, Languages, Architectures.

Springer, 2007.

4. Object Management Group, Business Process Model and Notation (BPMN) – Version

1.2. 2009.

5. M.H. Jansen-Vullers, M. Netjes. Business Process Simulation - A Tool Survey. In

Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN,

University of Aarhus, Denmark, 2006.

6. M. Zäuram. Business Process Simulation Using Coloured Petri Nets. Master Thesis,

Insitute of Computer Science, University of Tartu, June 2010.

7. K. Jensen, L. M. Kristensen, L. Wells. Coloured Petri Nets and CPN Tools for

Modelling and Validation of Concurrent Systems. International Journal on Software

Tools for Technology Transfer (STTT), 9(3):213-254, 2007.

8. M. E. Porter. Competitive Advantage: Creating and Sustaining Superior Performance.

Free Press, 1985.

9. V.Bosilj-Vuksic, V. Hlupic. Criteria for the Evaluation of business Process Simulation

Tools. Interdisciplinary Journal of Information, Knowledge, and Management, 2:73-88

2007.

10. Extensibility. http://en.wikipedia.org/wiki/Extensibility (last visited: 06.06.2010).

11. R. M. Dijkman, M. Dumas, C. Ouyang, Formal Semantics and Automated Analysis of

BPMN Process Models, 2007.

12. M. zur Muehlen, J. Recker. How Much Language is Enough? Theoretical and Practical

Use of the Business Process Modeling Notation. Proceedings of the 20th international

conference on Advanced Information Systems Engineering, LNCS, 5074:465-479,

2008.

13. M. W. Barnett. Modeling & Simulation in Business Process Management. BP Trends

Newsletter, White Papers & Technical Briefs, 10(1), 2003.

14. Petri net. http://www.scholarpedia.org/article/Petri_net, (last visited: 06.06.2010).

http://www.sdn.sap.com/irj/bpx/analyze
http://en.wikipedia.org/wiki/Extensibility
http://www.scholarpedia.org/article/Petri_net

57

15. ProM – Framework for Process Mining. http://sourceforge.net/projects/prom/, (last

visited: 12.06.2010).

16. F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, H.M.W. Verbeek.

Protos2CPN: Using Colored Petri Nets for Configuring and Testing Business

Processes. Workshop and Tutorial on Practical Use of Coloured Petri Nets and the

CPN, University of Aarhus, Denmark 2006.

17. Prototype CPN converter. https://code.google.com/p/xpdl-to-cpn/, (last visited:

12.06.2010).

18. Sketchpad BPMN. http://sourceforge.net/projects/sketchpadbpmn/, (last visited:

06.06.2010).

19. C. Wolf, P. Harmon. The State of Business Process Management 2010. BPTrends,

2010.

20. L. G. Bañuelos, M. Dumas. Towards an Open and Extensible Business Process

Simulation Engine, Workshop and Tutorial on Practical Use of Coloured Petri Nets

and the CPN, University of Aarhus, Denmark, 2009.

21. V. V. Bulitko, D. C. Wilkins. Using Petri Net to Represent Context in Blackboard

Scheduling. Proceedings of the American Association for Artificial Intelligence (AAAI)

Workshop on Reasoning in Context for AI Applications, 1999.

22. What is CPN Tools? http://wiki.daimi.au.dk/cpntools/what_is_cpn_tools.wiki, (last

visited: 06.06.2010).

23. W.M.P van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.

Workflow Patterns. Distributed and Parallel Databases, 14(3):5-51, July 2003.

http://sourceforge.net/projects/prom/
https://code.google.com/p/xpdl-to-cpn/
http://sourceforge.net/projects/sketchpadbpmn/
http://wiki.daimi.au.dk/cpntools/what_is_cpn_tools.wiki

58

Apendices

A. BPMN

BPMN will provide businesses with the capability of understanding their internal business

procedures in a graphical notation and will give organizations the ability to communicate

these procedures in a standard manner. There are scores of process modelling tools and

methodologies. Given that individuals will move from one company to another and that

companies will merge and diverge, it is likely that business analysts are required to

understand multiple representations of business processes – potentially different

representations of the same process as it moves through its lifecycle of development,

implementation, execution, monitoring, and analysis. Therefore, a standard graphical

notation will facilitate the understanding of the performance collaborations and business

transactions within and between the organizations [4]. BPMN will follow the tradition of

flowcharting notations for readability; yet still provide a mapping to the executable

constructs.

BPMN contains more than 50 modelling constructs, but the core set of constructs is used

most frequently [12]. These constructs are shown on Figure 39.

Figure 39 - Basic BPMN elements.

There are different types of events available. Start and end events specify the overall

process starting (start event) and end point (end event). Intermediate events are used in the

process flow to model the arrival of a message event (intermediate message event),

occurrence of an error (intermediate error event) or a certain time being reached

59

(intermediate timer event). An activity is work that is performed within a business process.

An activity can be atomic or non-atomic (compound). The types of activities that are a part

of a Business Process Diagram are: Process, Sub-Process, and Task. [4] Task is a typical

workflow activity that corresponds to some kind of work that has to be done in the real

world (e.g. check validity of application, collect money, deliver goods). Process is a

collection of these activities and the activities in a process can be grouped into sub-

processes. Gateways are modelling elements that are used to control how Sequence Flow

interacts as they converge and diverge within a Process. If the flow does not need to be

controlled, then a Gateway is not needed. The term “Gateway” implies that there is a

gating mechanism that either allows or disallows passage through the Gateway--that is, as

Tokens arrive at a Gateway, they can be merged together on input and/or split apart on

output as the Gateway mechanisms are invoked. To be more descriptive, a Gateway is

actually a collection of “Gates” [4]. Gateways are represented as a diamond and can have

different markings inside depending on the behaviour of the gateway. Gateways can define

different sequence flow behaviour for flow joining and branching. Different types of

gateways can be seen on Figure 40.

Figure 40 - BPMN gateway types.

60

B. Coloured Petri Nets

A Petri net is a graphical tool for the description and analysis of concurrent processes

which arise in systems with many components (distributed systems). The graphics,

together with the rules for their coarsening and refinement, were invented in August 1939

by the German Carl Adam Petri - at the age of 13 [14].

Petri net is a directed bipartite graph with two node types called places and transitions. The

nodes are connected via directed arcs. Connections between two nodes of the same type

are not allowed [1]. Places are represented by circles and transitions by rectangles. An

example of a simple Petri net can be seen on Figure 41.

Figure 41 - Example of a Petri net.

Each place can have one or more tokens in it. The placing of tokens represents some

certain state in the process. The purpose of transitions is to move tokens from one place to

another place or places. The transition is able to fire if and only if there is a token available

in each place that is connected to the transition via an incoming arc. After the transition

fires, it consumes these tokens and generates a new token to each place connected with an

outgoing arc. In our example only transition T1 can fire and after firing it will consume the

token in place P1 and produce two tokens – one token to place P2 and one to place P3.

While being a powerful and attractive modelling tool, the classical Petri nets lack several

features helpful for modelling complex real-time systems and processes [21]. Some of

these shortfalls when modelling business processes according to [21] are:

 Classical PNs are essentially propositional (i.e. they have no variables or

functions);

61

 There is no uncertainty support in classical PNs;

 Every time a transition fires all the enabling tokens are withdrawn from the

enabling places.

Also when considering business processes, there is no support for timing information in

classical Petri net. To overcome these problems there are various higher level Petri net

versions available. One of them is Coloured Petri Net.

Coloured Petri Net (CP-net or CPN) is a graphical language for constructing models of

concurrent systems and analyzing their properties. CP-net is a discrete-event modelling

language combining Petri nets and the functional programming language CPN ML which

is based on Standard Markup Language (SML). The CPN modelling language is a general

purpose modelling language, i.e., it is not focused on modelling a specific class of systems,

but aimed towards a very broad class of systems that can be characterized as concurrent

systems [7].

A CPN model of a system describes the states of the system and the events (transitions)

that can cause the system to change state. By making simulations of the CPN model, it is

possible to investigate different scenarios and explore the behaviours of the system. Very

often, the goal of simulation is to debug and investigate the system design. CP-nets can be

simulated interactively or automatically [7]. An example of a CPN model can be seen on

Figure 42.

62

Figure 42 - Example of a CPN model.

CPN has also the ability to extend the model with time concept that is essential in business

process simulation. The core building blocks in CPN are the same as in Petri Nets, but

these elements behaviour can be extended by adding CPN ML functions and parameters. It

is even possible to execute complex function when a certain transition is fired. CPN ML as

an extension from SML is also used on place and arc inscriptions to describe initial

markings and guards. It also provides a way to implement internal algorithms that can

calculate the enabling and occurrence of bindings.

()

()@+expTime(100)

jobs jobs^ [̂job]

() ()@+expTime(100)

Init

Arrive
output (job);
action newJob();

Init ()

UNIT

Queue

I/O Jobs

Next

UNIT

I/O

1 1`()@0

1 1`[]

63

C. CPN Tools

CPN Tools is a tool for managing CPN models. It is possible to edit and simulate these

models. The GUI is based on advanced interaction techniques, such as toolglasses,

marking menus, and bi-manual interaction. Feedback facilities provide contextual error

messages and indicate dependency relationships between net elements. The tool features

incremental syntax checking and code generation which take place while a net is being

constructed. A fast simulator efficiently handles both untimed and timed nets. Full and

partial state spaces can be generated and analyzed, and a standard state space report

contains information such as boundedness properties and liveness properties [22]. Example

screenshot of this tool can be seen on Figure 43.

Figure 43 - CPN Tools editor.

CPN Tools also includes a simulation engine that is part of the tool itself but can handle

inputs from operating system console. This gives us the ability to run simulations without

even using the CPN Tools GUI. This will become important, if we want to use some

automated simulation engine and we do not want to interact with the CPN process

modelling tool.

64

D. Simulation schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb" elementFormDefault="qualified" jaxb:version="1.0">

 <xs:import namespace="http://www.w3.org/XML/1998/namespace"/>

 <xs:complexType name="Task">

 <xs:sequence>

 <xs:element name="Id" type="xs:string"/>

 <xs:element name="ProcessingTime" type="xs:string"/>

 <xs:element name="ResourceType" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Task" type="Task"/>

 <xs:complexType name="Tasks">

 <xs:sequence>

 <xs:element name="Task" type="Task" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Tasks" type="Tasks"/>

 <xs:complexType name="Gateway">

 <xs:sequence>

 <xs:element name="Id" type="xs:string"/>

 <xs:element name="GateRefs" type="GateRefs"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Gateway" type="Gateway"/>

 <xs:complexType name="Gateways">

 <xs:sequence>

 <xs:element name="Gateway" type="Gateway" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Gateways" type="Gateways"/>

 <xs:complexType name="GateRefs">

 <xs:sequence>

 <xs:element name="GateRef" type="GateRef" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

65

 <xs:element name="GateRefs" type="GateRefs"/>

 <xs:complexType name="GateRef">

 <xs:sequence>

 <xs:element name="IdRef" type="xs:string"/>

 <xs:element name="Probability" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="GateRef" type="GateRef"/>

 <xs:element name="SimulationData" type="SimulationData"/>

 <xs:complexType name="SimulationData">

 <xs:sequence>

 <xs:element name="SimulationProfile" type="SimulationProfile"

minOccurs="1" maxOccurs="1"/>

 <xs:element name="Tasks" type="Tasks" minOccurs="0"/>

 <xs:element name="Gateways" type="Gateways" minOccurs="0"/>

 <xs:element name="Resources" type="Resources" minOccurs="0"/>

 <xs:element name="MessageEvents" type="MessageEvents"

minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="SimulationProfile"/>

 <xs:complexType name="SimulationProfile">

 <xs:sequence>

 <xs:element name="StartTime" type="xs:string"/>

 <xs:element name="EndTime" type="xs:string"/>

 <xs:element name="TokensInBundle" type="xs:int"/>

 <xs:element name="TotalTokens" type="xs:int"/>

 <xs:element name="CostPerToken" type="xs:int"/>

 <xs:element name="TimeBetweenBundles" type="xs:int"/>

 <xs:element name="Resources" type="Resources"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Resources"/>

 <xs:complexType name="Resources">

 <xs:sequence>

 <xs:element name="Resource" type="Resource"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

66

 <xs:complexType name="Resource">

 <xs:sequence>

 <xs:element name="ResourceType" type="xs:string"/>

 <xs:element name="ResourceAmount" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="MessageEvents"/>

 <xs:complexType name="MessageEvents">

 <xs:sequence>

 <xs:element name="MessageEvent" type="MessageEvent"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="MessageEvent">

 <xs:sequence>

 <xs:element name="Id" type="xs:string"/>

 <xs:element name="Time" type="xs:string"/>

 <xs:element name="Probability" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

67

E. CD Contents

The contents of the accompanied CD-ROM are described in the following list:

1. /Source - Contains the source code for prototype CPN converter;

2. /Binary - Contains compiled version of prototype CPN converter;

3. /Examples - Some example XPDL models for testing the prototype.

