
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

INSTITUTE OF COMPUTER SCIENCE

Rein Raudjärv

Dynamic Schema-Based

Web Forms Generation in Java

Master Thesis (30 EAP)

Supervisor: Marlon Dumas, PhD

Autor: ... “…..” mai 2010

Juhendaja: .. “…..” mai 2010

Lubada kaitsmisele

Professor: ... “…..” ……... 2010

TARTU 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

 3

Contents

Chapter 1 Introduction 4

Chapter 2 Requirements 8

2.1. Form Generator 8

2.2. Supported Subset of the XML Schema Language 9

2.3. DynaData 9

Chapter 3 State of the Art 12

3.1. Form Generators 12

3.2. XForms 14

3.3. XForms Rendering 15

Chapter 4 High-Level Architecture 17

4.1. Overview 17

4.2. Form Components 17

4.3. Form Elements 19

4.4. Layout 21

4.5. DynaData 24

Chapter 5 Walkthrough 28

5.1. Sample Application 28

5.2. Schema and Form 28

5.3. Writing and Reading XML 30

5.4. Customization 33

5.5. Schema Changes 35

Conclusions 39

Summary (in Estonian) 41

Bibliography 43

Appendix 1 Implementation Details 45

1. Overview 45

1. Form 46

2. Writing and Reading XML 55

3. Rendering Form with Aranea 65

4. DynaData 71

Appendix 2 CD with the Source Code 73

 4

Chapter 1

Introduction

The problem area of this thesis is that of automated generation of web forms.

A web form on a web page or a fragment of the web page allows a user to enter

data that is sent to a server for processing. Traditionally each web form is developed

manually by instantiating and combining a set of standard form controls like text fields,

radio buttons, checkboxes etc. This could be achieved by using a visual tool or a code

editor. This manual approach to form development process gives high degrees of

flexibility, since the developer has full control over the structure and look-and-feel of the

form. However, it is also a time-consuming process, especially when the form is expected

to change frequently. In Java [GJ00] this process could mean writing a custom JSP (Java

Server Pages) page [Be03] for displaying the form and a Java Servlet [HC01] for

processing the posted data. In case the service layer is changed and we have to add a new

field to the form we must manually update the JSP and Java Servlet, recompile and

redeploy the application to the server.

Instead of developing a web form manually we could also use a Domain-Specific

Language (DSL) [DK00] to specify the web form. Given a specification of the web form

in this DSL, we could then generate the form. Since the structure of the web form is highly

dependent on the structure of the data to be collected by the form, it makes sense to take as

a basis, a language that can be used to capture the schema (or type) of a document. To

describe a type of web document XML Schema Definition (XSD) [Wa02] is the most

widespread and expressive language. In case the web form is processed by an XML web

service [Ce02] we could actually have the XML schema already. Otherwise it has to be

written manually. Although the XML schema is powerful it is meant for describing the

type of XML [Ra03] data not how to represent it to a human. E.g. it says that first name is

a String and birth date is a date but not whether to display them beside or below each other

or which exact user interface controls to use. To describe the presentation aspects, we

could add annotations to the corresponding schema elements. This requires that the

original XML schema has to be updated.

 5

There are many tools available both for designing a form visually and generating a

web form based on an XML instance or an XML schema. These tools can save us time but

they expect that the form is constant and does not change. In case the original XML

schema changes we have to manually compare it with the annotated schema, find which

parts were changed and update the latter. In worst case we have to go back and run the

visual tools to design the form from scratch. Then we must regenerate the Java code for the

web form and redeploy it. This approach leads to a downtime, during which the web form

is not available – unless we continued to use the old version of the form, but then we

would not be collecting data according to the new schema, leading to data inconsistency.

The motivation of this thesis is to avoid or mitigate this downtime problem.

Whenever the schema changes, we would like to reduce the time and the number of steps

required to update the web form. Instead of running the form generating tools manually we

could generate a web form entirely at runtime, based on the available presentation

annotations and without requiring additional input from the form developer.

This would eliminate the need for form redesign, code compilation and

redeployment. The crux of this approach is that the presentation annotations are

optional. If we were using plain XML schema without annotations we would always get

an up to date web form with zero downtime in case the schema changes. In contrast, if we

mandate that the presentation annotations must be updated every time that the schema

changes, then the form would not be updated until a form developer manually changed the

presentation annotations after a schema change.

To streamline even more the change process, we propose to keep the annotations

in a separate file from the XML schema and not assume they are always up to date

with the schema. This allows us to always display an up to date web form. In case the

schema changed we apply the old annotations as much as possible and use some

conventions for displaying the parts of the form not covered with the annotations. Until

someone has updated the annotations we get a web form that is technically up to date but

may not display the changed parts in the best way. In other words, the approach we take is

based on the concept of “graceful degradation of user interfaces” [FV04]: when the

schema changes, the form immediately becomes available under the new schema, with a

possible degradation of the quality of the presentation, until the presentation metadata is

updated by the form developer.

 6

To further reduce the amount of time and effort needed to maintain the presentation

annotations up-to-date, we adopt a number of default conventions for generating the

presentation annotations for each type of XML schema element. When the schema

changes, we can then automatically update the annotations made inconsistent by the

update. We identify the new schema parts and generate the annotations marked as new.

Also if some parts were removed from the schema we group these annotations together

which could not be applied to the form. By isolating the changes in the annotations the

form developer is relieved from the task of manually comparing the old and the new

schema in order to determine which presentation annotations need to be added, deleted or

modified. Also, if the new annotations are generated automatically, the form developer

only needs to modify them to reflect his/her intentions, instead of writing them from

scratch.

In summary, the aim of this thesis is to design and implement a web form

generator producing forms out of XML schemas and presentation specifications which are

allowed to evolve independently. The presentation specification captures details like for

example a particular form element must be rendered as a list box or the contents of a given

element should be displayed as a list or as a table. The default presentation specification

should be generated automatically out of XML schema. The layout choices captured in the

existing presentation annotations should be preserved as far as possible when the XML

schema changes.

Our web form generator implementation is called DynaForm. It is a reusable web

component based on Aranea Web Framework [MK06] although it is to a large extent

framework-independent and it could be extended later on to support other Web

frameworks, such as Spring MVC [LD06] or Java Server Faces [Be04]. The component

takes an XML schema, an optional presentation specification written in a language called

DynaData and an optional XML instance as input and provides a generated web form, a

generated/updated DynaData file and an XML instance filled with form data as output.

Prerequisites

The thesis assumes that the reader is familiar with the concept of web form and

with XML technology. Basic knowledge of XML schema and some knowledge of Java

programming are assumed. For understanding the web implementation part some

 7

knowledge of Aranea Web Framework is needed. For a quick introduction see the

introductory tutorial [Ka10].

Contributions and Outline

The thesis is divided into five chapters and two appendixes.

This is the first chapter which introduces the problem of the thesis.

 The second chapter describes the functional and non-functional requirements of the

web form generator DynaForm and its DynaData language.

The third chapter covers alternative web form generators available as well as

XForms and its associated rendering tools.

The fourth chapter describes the DynaForm architecture and DynaData language

which allows customizing the generated web forms.

The fifth and final chapter provides the usage scenario of the tool developed in this

work by showing how changes to the XML schema are handled.

The first appendix describes the implementation details of DynaForm.

The second appendix is a CD containing the source code of the tool.

The main contribution of this thesis is the runtime web form generator called

DynaForm. The distribution is available on the accompanying CD and from the website:

http://code.google.com/p/xsd-web-forms/.

http://code.google.com/p/xsd-web-forms/

 8

Chapter 2

Requirements

This chapter describes the functional and non-functional requirements of the web

form generator DynaForm and its DynaData language.

2.1. Form Generator

The inputs and outputs of DynaForm are shown on the figure 2.1.

Figure 2.1. DynaForm input and output.

The inputs of DynaForm are the following:

1. XML schema provides the structure of the form.

2. An optional presentation specification in a language called DynaData, which

provides custom metadata for rendering the form. If omitted default rendering

conventions are used.

3. An optional XML instance provides the initial values of the form. If omitted a

form is generated without any pre-populated values.

The outputs of DynaForm are the following:

1. The main output is the HTML [MK96] web form itself. A certain set of CSS

classes are used so that the layout can be further configured also via a custom CSS.

2. New DynaData is automatically generated. If the input DynaData was not

provided, this just provides the values based on default rendering conventions. So

we can easily customize the form rendering by just altering some of the DynaData

values.

3. An XML instance resulting from the input data provided by the user is produced

when the form is submitted.

We continue by defining the set of XML schema features DynaForm should

support.

DynaForm

XML Schema
(mandatory)

DynaData
(optional)

XML Instance
(optional)

DynaData
(updated)

)
XML Instance

(updated)

Web Form

 9

2.2. Supported Subset of the XML Schema Language

An XML schema can be very complex. To allow an XML instance to be extended

an XML schema may even declare that an element may contain any set of sub-elements.

Covering all XSD features is out of the scope of this thesis. Accordingly, we have chosen

to focus on a representative subset of XML Schema Definition (XSD) elements.

The supported subset of XSD should fulfill the following requirements:

1. The set of XSD elements allowed in the input of DynaForm are:

1. <all>,

2. <attribute>,

3. <choice>,

4. <element>,

5. <sequence>.

2. Reoccurring XSD elements (minOccurs and maxOccurs attributes) are also

allowed.

3. The supported XSD simple data types are:

1. String data types: string.

2. Date data types: date, time, datetime.

3. Numeric data types: integer, long, int, short, byte, decimal.

4. Miscellaneous data types: boolean.

We now proceed by defining the requirements for the DynaData language.

2.3. DynaData

DynaForm enables developers to customize a generated web form using a

presentation specification language called DynaData.

The DynaData presentation specification language should fulfill the following

functional requirements:

1. A DynaData specification should be composed of independent elements. Each

DynaData element should capture an assertion about how a given XML schema

element should be rendered. Thus, each metadata element should refer to the XML

schema element it describes.

 10

2. Each DynaData element that refers to a schema <element> of simple type or a

schema <attribute> should describe the following information:

1. Label – a short text to be displayed aside this field.

2. Control – a user interface component that displays and allows changing the

current value (the minimum set is described below).

3. Read only flag – if enabled user cannot alter the field value.

4. Required flag – if enabled user is required to enter a value.

3. Each DynaData element that refers to a schema <element> of complex type should

describe the following information:

1. Label – a short text to be displayed above the sub content.

4. Additionally DynaData elements should be grouped into sections.

A DynaData element maps an XML schema element to one of the following User

Interface (UI) controls:

1. Input – a free-form data entry or a user interface component appropriate to the

current data type (e.g. text box for a string, check box for a boolean etc).

2. Secret – a password entry (value can be entered but is not displayed).

3. Text Area – a multi row free form data entry.

4. Output – a form control that renders the current value but it provides no means

for entering or changing data.

5. Select One – a form control that allows a user to make a single selection from

multiple choices.

The non-functional requirements of the DynaData language are:

1. The syntax of the DynaData must be concise.

2. The syntax of the DynaData must be easy to learn for developers.

If omitted DynaData must be generated automatically and if the schema changes

new generated values should overwrite the existing values unless they are actually altered

by the developer. To distinguish the customized values from the generated ones we divide

the DynaData file into sections. Thus the developer can edit the generated values but

he/she must move the custom lines into the correct part of the file. Otherwise the custom

values will be overwritten next time the DynaData is synchronized with the schema.

 11

The functional requirements for the DynaData processing are:

1. DynaForm collects DynaData from a Form – the generated Form is used to collect

default values for each form component.

2. DynaForm reads custom DynaData from a file – a DynaData file may customize

any form component.

1. The DynaData file is optional and it may be partial. The generated Form

provides default values for any component missing from the file.

2. The DynaData file may be invalid by including form components which do

not belong to the Form. This may happen if the corresponding element was

removed from the schema.

3. The DynaData file is divided into sections based on the classification

described below. The Custom and Broken DynaData is read, the Generated

DynaData is ignored.

3. DynaForm classifies DynaData that was read into the following sections:

1. Custom – values describing form components included both in the file and

in the form.

2. Broken – values describing form components included in the file but not

found in the form. Probably because the corresponding elements were

removed from the XML schema.

3. Generated – values describing form components included in the form but

not found in the file (Generated section ignored). This includes all values if

the file was omitted.

4. DynaForm applies Custom DynaData to a form – updates the form based on the

values read from a file.

5. DynaForm writes DynaData to a file – writes values read from a file and/or

collected from the form.

1. The file is divided into sections based on the classification described above.

2. If the file is missing it is created based on only the values collected from the

form. Otherwise the existing file is preserved except the Generated section.

The latter is always regenerated and it complements the custom values read

from other sections. The whole DynaData file written always covers all

form components.

 12

Chapter 3

State of the Art

In this chapter we will give a short overview of available web form generators, the

XForms format and tools for rendering it.

3.1. Form Generators

When comparing DynaForm with alternative form generators we consider the

following evaluation criteria:

1. Universality – a form generator must be generic by taking any XML schema as

input.

2. Completeness – a form generator must support as many features of the input as

possible.

3. Customization – the web form presentation must be customizable.

4. Evolution – any customization should survive the changes to the input schema as

much as possible.

The following form generators could be found from the web:

1. XML Form Generator by Lea Smart (created in ca 2000)

This is an ASP script for generating questionnaire HTML forms. It takes an XML

describing the form fields as input and generates an HTML form as output. Each

form is a list of question-answer pairs so basically form fields with labels. Most

HTML input controls are supported. The generated form includes client-side

validation. The tool can be used online at

http://www.totallysmartit.com/examples/xml/questionnaire/.

This is not a generic form generator as its limited to very simple forms.

2. XML Form Generator by Andrew Mooeny (2004)

This is another simple HTML form generator written in ASP.NET. It only allows

using a single list of form controls. There is also another script which produces a

GRID for editing the form fields. An article with online demos is available at:

http://aspalliance.com/488.

This is also not a generic form generator as its limited to very simple forms.

http://www.totallysmartit.com/examples/xml/questionnaire/
http://aspalliance.com/488

 13

3. HTML Form Generator from XML by Ed Lai (started 2004, last update in

2006)

This is a Perl script which takes an XML instance or an XML schema as input and

produces an HTML form as output. An incomplete set of XSD features is

supported. The generated form applies some validation rules to the data but there is

no support for adding/removing elements for dynamic lists. The form can be

submitted to another script which converts the data into an XML document. The

tool can be used online at http://www.datamech.com/XMLForm/.

This is a generic form generator as it takes an XML instance or a schema as input.

Nevertheless comparing to DynaForm it supports less XSD features and has no

support for customization other than applying a custom CSS or transforming the

HTML via XSLT (for example).

4. Xydra – Form Generator for Web Services by Extreme Computing Lab (2003)

This is a Java Servlet which takes an XSD schema or a WSDL as input and

produces an HTML form as output. If the form is submitted to the server an XML

document is constructed and sent to the Web Service. There is no support for

adding/removing elements for dynamic lists. To customize the look and feel the

same HTML that is generated can be edited and then used as the template for the

Servlet. The library is written in Java 1.4 with additional JSR14 generics

enhancements.

The project is hosted at http://www.extreme.indiana.edu/xgws/xydra/.

This is another generic form generator. It supports customization via templates

which could be still used even if the schema changes. Comparing to DynaForm it

supports less XSD features and it is discontinued for 7 years.

5. XML Forms Generator by IBM (started 2005, last update in 2009)

This is an Eclipse plug-in that takes an XML instance or a WSDL as input and

produces XHTML with XForms [Du03] embedded as output. The result could be

customized using visual form builders. To view the form a browser with XForms

support is required. Alternatively additional tools could be used to transform

XForms into regular HTML + JavaScript [Fl06].

The project is hosted at http://www.alphaworks.ibm.com/tech/xfg.

This is a generic form generator as it takes an XML instance or a WSDL as input.

Comparing to DynaForm it does not produce a regular HTML but rather XForms

embedded into XHTML. After generation the form can be customized manually or

by separate tools. In either case there is no support for schema evolution. If the

input happens to change the output must be manually regenerated and any

customization to the output is lost.

http://www.datamech.com/XMLForm/
http://www.extreme.indiana.edu/xgws/xydra/
http://www.alphaworks.ibm.com/tech/xfg

 14

To sum up, none of the DynaForm alternatives fulfill the same aspects. They are

either not generic at all, do not support advanced features such as dynamic lists or the

customization does not survive the schema changes.

DynaForm produces regular HTML + JavaScript directly which makes it

lightweight. However we could also output XForms as the IBM XML Forms Generator

does, and then convert it into HTML using a third party tool. We continue by shortly

describing the XForms format and then provide a list of tools for rendering it.

3.2. XForms

XForms is an XML format for the specification of a data processing model for

XML data and user interface(s) for the XML data, such as web forms. XForms was

designed to be the next generation of HTML / XHTML forms, but is generic enough that it

can also be used in a standalone manner or with presentation languages other than XHTML

to describe a user interface and a set of common data manipulation tasks.

An example of XForms:

<xforms>

 <model>

 <instance>

 <person>

 <fname/>

 <lname/>

 </person>

 </instance>

 <submission id="form1" method="post" action="submit.html"/>

 </model>

 <input ref="fname">

 <label>First Name</label></input>

 <input ref="lname">

 <label>Last Name</label></input>

 <submit submission="form1">

 <label>Submit</label></submit>

</xforms>

Unlike an HTML form with XForms, input data is described in two different parts:

 The XForm model – defines what the form is, what it should do, what data it

contains. XForms is always collecting data for an XML document. The instance

element in the XForms model defines the XML document.

 15

 The XForm user interface – defines the input fields and how they should be

displayed. The user interface elements are called controls (or input controls). In the

example above the two <input> elements define two input fields. The

ref="fname" and ref="lname" attributes point to the <fname> and <lname>

elements in the XForms model. The <submit> element has a submission="form1"

attribute which refers to the <submission> element in the XForms model. A

submit element is usually displayed as a button. Notice the <label> elements in the

example. With XForms every input control element has a required <label>

element.

XForms is not designed to work alone. There is no such thing as an XForms

document. XForms has to run inside another XML document. It could run inside XHTML

1.0, and it will run inside XHTML 2.0.

We proceed by describing some of the tools that enable to render XForms.

3.3. XForms Rendering

The XForms rendering tools can be divided into the following categories:

1. Browser plug-ins that enable to render XForms embedded into HTML pages.

2. JavaScript libraries which translate XForms into regular HTML + JavaSccript.

3. XSLT which could be used both client-side and server-side.

4. Server-side libraries which translate XForms into regular HTML + JavaSccript.

We continue by examining these categories by listing the corresponding tools.

Browser plug-ins that enable to render XForms embedded into HTML pages

are:

1. Mozilla XForms (http://www.mozilla.org/projects/xforms/) – Mozilla Firefox

extension for rendering XForms. Full XForms support is incomplete. Latest release

on October 7
th

 2008.

2. formsPlayer (http://www.formsplayer.com/) – Internet Explorer extension for

rendering XForms. Full XForms standard supported. Latest release on January 11
th

2008.

JavaScript libraries which translate XForms into regular HTML +

JavaSccript are:

3. FormFaces (http://www.formfaces.com/) – a JavaScript processor which translates

XForms into regular HTML. Supports most of the browsers. Latest release in 2007.

http://www.mozilla.org/projects/xforms/
http://www.formsplayer.com/
http://www.formfaces.com/

 16

4. Ubiquity XForms (http://code.google.com/p/ubiquity-xforms/) – a processor that

allows developers to use XForms markup to create interactive web applications.

Ubiquity XForms adds new APIs to a number of popular AJAX [Ho08] libraries,

making XForms processing available in standard browsers, without the need for a

download. It is available as open source. Latest release on January 25
th

 2010.

5. EMC Documentum XForms Engine (codenamed Formula)

(https://community.emc.com/docs/DOC-4345) is an XForms 1.1 engine based on

the Google Web Toolkit [SB08]. It is coded in the Java programming language, and

compiled into JavaScript which can be executed by most modern browsers.

XSLT which could be used both client-side and server-side is:

6. XSLTForms (http://sourceforge.net/projects/xsltforms/) – XForms to XHTML +

JavaScript (AJAX) conversion based on a unique XSL transformation [Ti01].

Suitable server-side (PHP [LT06]) or client-side (Internet Explorer, Mozilla

Firefox, Opera, Safari) browser treatment where an XSLT 1.0 engine is available.

Latest release on October 10
th

 2009.

Server-side libraries which translate XForms into regular HTML +

JavaSccript are:

7. betterFORM (http://www.betterform.de/) (open source license) Latest release on

March 5
th

 2010.

8. Chiba (http://chiba.sourceforge.net/) (open source license) (Latest release is Chiba

Web 3.0.0b2 from June 25th, 2009)

9. Orbeon Forms (http://www.orbeon.com/) (open source license) Includes online

form builder. (Latest release is 3.7.1 from June 2nd, 2009)

This finishes our overview of alternative tools. In the next chapter we will continue

by describing the architecture of DynaForm.

http://code.google.com/p/ubiquity-xforms/
https://community.emc.com/docs/DOC-4345
http://sourceforge.net/projects/xsltforms/
http://www.betterform.de/
http://chiba.sourceforge.net/
http://www.orbeon.com/

 17

Chapter 4

High-Level Architecture

This chapter describes the main contribution of this thesis.

4.1. Overview

Our web form generator implementation is called DynaForm. It is a reusable web

component based on Aranea Web Framework although support for other web

frameworks could be added later. The component takes an XML schema, an optional

DynaData and an optional XML instance as input and provides a generated web form, a

generated/updated DynaData file and an XML instance filled with form data as output (see

chapter 2.1 on page 8).

As an XML schema defines a hierarchical data structure our generated form is also

a hierarchical composition. Each form component stores some data about the schema

element it represents and encodes certain rules about how it should be displayed. Based on

the types of schema elements we have also provided the corresponding types of form

components. We continue by listing and shortly describing each of them.

4.2. Form Components

The Form component types with the corresponding XML schema elements are

listed in table 4.1.

Form

Component

XML Schema

Element

Example Description

Form

Element
<element> of

simple type or
<attribute>

A single form

field with label

and value of a

certain type.

Form

Section
<element> of

complex type

A component

wrapper adding a

label, no value of

its own.

 18

Form

Repeat

Any element with

maxOccurs > 1

Dynamic list of

sub-components

of same type. Can

have minimum

and maximum

limits.

Form

Sequence

<sequence> or

content of

<element> of

complex type

Static list of sub-

components.

Form

Choice

<choice>

Static list of sub-

components, one

of which is

selected.

Form All <all>

Reorderable list of

sub-components,

any of which can

be enabled or

disabled.

Table 4.1. Form component types with the corresponding XML schema elements.

A Form Element represents a schema <element> of simple type or an

<attribute>. It is a labeled single form field displaying a current value and allowing user

to alter it. Form Elements can be thought as the leaves and rest of the components as

branches of the form structure. Comparing the form with schema structure there is no

difference between an <element> of simple type and an <attribute> – this is only

relevant when writing or reading an XML instance.

A Form Section represents a schema <element> of complex type. It contains

another Form as the content plus a label. If the complex <element> consists only of a

single attribute or has no attributes at all the Form Section is constructed with the

corresponding form component as the content. Otherwise a synthetic Form Sequence is

used to group together all attributes and the body.

A Form Repeat represents a repetition of schema element (maxOccurs > 1). It is

also used for optional elements (minOccurs = 0 and maxOccurs = 1). A Form Repeat

contains a dynamic number of instances of same sub-component.

A Form Sequence represents a schema <sequence>. It is also used to group

together XML attributes and an XML element body. It contains a fixed list of sub-

components each of which may be of different type.

 19

A Form Choice represents a schema <choice>. It always contains a fixed list of

sub-components each of which may be of different type. In XML exactly one of the sub-

components must occur. So in the Form user must be able to select this component.

A Form All represents a schema <all>. It always contains a fixed list of sub-

components each of which may be of different type. In XML any of the sub-components

may occur but not more than once. The sub-components may occur in any order. So in the

Form user must be able to enable or disable each component as well as choose their order.

We continue by describing the Form Element in detail.

4.3. Form Elements

To recall a Form Element represents a schema <element> of simple type or an

<attribute>. It is a labeled single form field displaying a current value and allowing user

to alter it.

A Form Element has the following properties:

1. Data type – a set of possible values assigned to the form field.

2. Value – a current value of this field.

3. Label – a short text to be displayed aside this field.

4. Control – a user interface component that displays and allows changing the current

value.

5. Possible restrictions – some rules narrowing the set of possible values assigned to

this form field.

6. Possible read only flag – if enabled user cannot alter the field value.

7. Possible required flag – if enabled user is required to enter a value.

The available UI Controls for Form Elements are listed in table 4.2.

Control Examples Description Attributes

Input

A free-form data entry

or a user interface

component appropriate

to the current data type.

-

 20

Text

A free-form text entry. size – width in

characters

Secret

A password entry. size – width in

characters

TextArea

A multi row free-form

text entry.

cols – width in

characters,

rows – height

characters

Output

A form control that

renders the current value

but it provides no means

for entering or changing

data.

-

SelectBox

A list box that allows

user to select a single

row.

size – height in

lines

ComboBox

 (also SelectOne)

A drop down that allows

user to select a single

row.

-

RadioSelectBox

A list of radio boxes that

allows user to select a

single item.

-

Table 4.2. The list of available UI Controls for Form Elements.

The possible restrictions for a Form Element are:

1. An enumeration of possible values.

2. The exact length of value.

3. The minimum length of value.

4. The maximum length of value.

5. The minimum inclusive value.

6. The minimum exclusive value.

7. The maximum inclusive value.

8. The maximum exclusive value.

This finishes the overview of the Form Element. As of other components we only

focus on a DynaForm-specific aspect such as layout. We continue by describing the layout

options for Form Section as well as Form Repeat components.

 21

4.4. Layout

One aspect of a web form is its layout – do the form fields appear below each other,

side by side, in columns, as a table etc. Our goal was to be able to render a table so that

each Form Repeat element would draw up a row. Anything more than that was considered

to be outside the scope of this thesis.

As the result we composed two new properties for describing the layout – Section

Style for the Form Section and Repeat Style for the Form Repeat. We continue by

describing both of them.

4.4.1. Section Style

We wanted to configure rendering direction of form components – either show

components below each other (vertically) or side by side (horizontally). As it always

involves a set of components the rendering direction is not a property of a single Form

Element but rather a component container like Form Section, Form Repeat, Form

Sequence, Form Choice or Form All. Using so many different components is complicated.

Instead we assigned the rendering direction property only to the Form Section.

As the property can be configured only using DynaData, referring to a Form

Section is easy as each Form Section corresponds to a certain schema <element> which is

always given a name. Other containers listed do not have any names.

Although a Form Section itself always contains a single sub-component we

designed the rendering direction to be inherited by all sub-components. Considering

rendering direction we think of each Form Section as a level of scope. Other containers

(we inspect Form Repeat later) get their direction from the direct parent Form Section. If

no direction is assigned to a Form Section it also inherits the property from its parent Form

Section. A Form Section can be assigned a rendering direction either locally (affecting

only successor components under the same Form Section) or fully (affecting all successor

components).

We name the property of Form Section rendering direction as Section Style. Using

two directions, two levels of impact and unassigned value we get five different values as

shown in table 4.3.

 22

Section Style Direction of direct children Direction of other successors

Inherit (default) (inherited from the parent) (inherited from the parent)

Row horizontal (inherited from the parent)

Column vertical (inherited from the parent)

Horizontal horizontal horizontal

Vertical vertical vertical

Table 4.3. The list of all Section Styles.

So Horizontal and Vertical values will be inherited by all sub-components whereas

Row and Column will affect only the sub-components directly under the given Form

Section. The parent Section Style for the root Form Section is always Vertical.

Combining the Section Style values we get four ways for rendering Form Sections

inside another Form Section as shown in table 4.4.

Vertical

(also Column

inside Vertical)

Column inside

Horizontal

Row inside Vertical

Horizontal (also Row inside Horizontal)

Table 4.4. The examples of Section Style values considering their parent Section Style.

As we can see there are two examples where “person”, “father” and “mother”

are drawn below each other and two versions where they are beside each other. At the

same there are two options for the “name”, “age” and “sex” direction.

Also notice that when Form Elements are drawn vertically the labels are kept on the

left, otherwise the labels are automatically put on the top.

 23

4.4.2. Repeat Style

Suppose we have a Form Repeat (think it as a table) containing a dynamic number

of Form Sequences (table rows) each of which consists of a certain set of Form Elements

(table cells). We want to render this composition as a table – Form Sequences below each

other and Form Elements beside each other. Assuming we also have a parent Form

Section, using Section Style alone allows us to choose one direction for the whole structure

– this is clearly not enough.

For the Form Repeat we need another rendering direction property which would

allow us to choose the directions for Form Sequences as well as their sub-components.

Combining these directions we will get the three (we exclude the last one which is useless)

values for the Repeat Style as shown in table 4.5:

Repeat Style Direction of Form Sequnce Direction of sub-elements

Normal (default) vertical vertical

Rows vertical horizontal

Columns horizontal vertical

(Not used) horizontal horizontal

Table 4.5. The list of Repeat Styles.

Normal

Rows

Columns

Table 4.6. The examples of Repeat Styles.

We excluded the last combination as

it draws everything in a single row which is

very hard to catch for an eye. The rest of the

options are illustrated in table 4.6.

Rows looks almost like a table

except the column headers are repeated for

each row. Based on that we finally added the Table option which extracts the labels from

each Form Sequence sub-component and renders them in a single heading row skipping

them inside the table (see figure 4.1).

This ends our overview of layout options. Next we carry on by describing the

DynaData language in detail.

4.5. DynaData

DynaForm enables developer to customize a generated web form using a

presentation specification language called DynaData (see chapter 2.3 on page 9 for the

requirements).

In this chapter we will describe a sample DynaData file and then examine the

syntax of the DynaData in general.

4.5.1. Sample DynaData

The sample DynaData file follows:

@CUSTOMIZED

//root { label: "Root"; layout: row; }

//name { label: "Name"; readonly: false; required: false; control:

Secret; }

//married { label: "Married"; readonly: true; required: false; control:

Input; }

//age { label: "Age"; readonly: false; required: true; control: Input; }

@BROKEN

@GENERATED

The sample describes four form components – root, name, married and age. The

set of attributes used to describe each one depends on the type of the form component. In

this case root is a Form Section, other components are Form Elements. Each one is given

a custom label (in this case just the name with a first letter in upper case). The root

Figure 4.1. A Table Repeat Style

example

 25

component is assigned a row layout which states a Section Style where all sub-

components are rendered in a row. Other components are attached with a readonly value,

a required value and a Control. If readonly is set as true the value of the form

component cannot be changed. If required is set as true the value of the form component

cannot be leaved blank.

4.5.2. DynaData Syntax

The syntax of the DynaData file is based on the Cascading Style Sheets (CSS)

[Me06] file format which is both concise and already familiar to web developers. Each

line contains a selector and a group of declarations. In addition DynaData lines are

grouped into sections:

file := section

section

...

section := @section_title

line

line

...

line := selector { declaration declaration declaration ... }

declaration := attrbitue: value;

 A selector chooses a form component to describe. A declaration describes it. Each

declaration is a key-value pair assigning a value to a particular attribute of the form

component described. The file is divided into sections to distinguish generated lines from

the ones manually customized. In the next chapters we continue by describing selectors,

attributes and sections each of them in details.

4.5.3. DynaData Selectors

Each line of the DynaData file (except the section marker) starts with a selector. It

chooses one or more form components the corresponding line describes. There are two

kinds of selectors supported:

 General selector – e.g. //city – a name of a form component,

 Full selector – e.g. /shiporder/shipto/city – a full path to a form component.

The general selector chooses all form components with the given name.

The full selector chooses form components by naming a root level component, a

second level component, a third level component etc – the whole path. Out of all

 26

component types only Form Elements and Form Sections have names. Therefore each path

item is a Form Section except the last one which can be either a Form Section or a Form

Element.

To keep the DynaData file short only general selectors should be used as much as

possible. Full Selectors should only be used in case the same component occurs in many

places and each occurrence needs to be configured differently.

4.5.4. DynaData Attributes

Each selector is followed by a set of declarations. Each declaration is a key-value

pair assigning a value to a particular attribute of the form component described. The valid

set of attributes is defined by the type of the form component described.

The supported attributes for each type of form component are shown in table 4.7:

Form

Component

Attribute Type Description

Form

Element

label string A short text to be displayed aside this field.

readonly true/false If enabled user cannot alter the field value.

required true/false If enabled user is required to enter a value.

control Control A user interface component that displays and

allows changing the current value (see chapter

4.3 on page 19 for the list of Controls).

size integer A width (in characters) or a number of lines of

the Control if supported.

cols integer A width (in characters) of the TextArea.

rows integer A height (in characters) of the TextArea.

Form

Section

label string A short text to be displayed above the sub

content.

layout Section

Style

A rendering direction for the sub-components.

The value must be one of the following:

inherit | row | column | horizontal |

vertical. (See chapter 4.4.1 on page 21 for

the descriptions.)

 27

Form

Repeat

repeat-

style

Repeat

Style

A rendering direction for the repeated sub-

components. The value must be one of the

following: normal | rows | columns |

table. (See chapter 4.4.2 on page 23 for the

descriptions.)

Table 4.7. The list of supported DynaData attributes.

4.5.5. DynaData Sections

As we already described in the requirements on page 9 the DynaData file is divided

into three sections (see table 4.8).

Section Description

Custom This is the section containing all correct custom descriptions of the form

components. These are the ones from Custom and Broken sections that were

also found in the schema.

Broken This is the section containing all broken custom descriptions of the form

components. These are the ones from Custom and Broken sections that were

not found in the schema.

Generated This is the section containing all correct non-custom descriptions of the

form components. These are the ones that were not found in Custom or

Broken section but were found in the schema.

Table 4.8. The list of DynaData sections.

The Generated section always complements the Custom and Broken sections.

When a DynaData file is first generated it only contains the Generated section as other

sections are first empty. On the other hand if the Custom and Broken sections cover all

form components the Generated section will be empty.

It is important to keep in mind that the Generated section is overwritten every time

DynaForm processes the DynaData. Therefore when changing a line in that section it must

also be moved to the Custom section.

This completes our discussion about the DynaData language and also our overview

of the high-level architecture of the DynaForm. In the next chapter we will take a sample

schema and see the DynaForm in action.

 28

Chapter 5

Walkthrough

This chapter demonstrates the web form generator using a sample schema.

5.1. Sample Application

To demonstrate the web form generation we have also developed a sample

application which enables a user to try the form generation with a set of XML schemas.

After selecting a schema user can switch between the following modes:

1. XSD – view the schema source.

2. Form – view the generated form and fill it with data.

3. XML – view and edit the generated XML instance.

4. DynaData (also “Metadata”) – view and edit the generated DynaData file.

To view and edit the form data user can use both form mode and XML mode and

switch between them when necessary.

We continue by generating a web form based on a sample schema. We will show

that the data can be edited both in form mode and XML mode. Then we will customize the

form by altering the automatically generated DynaData. Finally we will see what happens

when the original schema changes.

5.2. Schema and Form

We use the following sample XML schema:

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="shiporder">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="orderperson" type="xs:string"/>

 <xs:element name="shipto">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="address" type="xs:string"/>

 <xs:element name="city" type="xs:string"/>

 <xs:element name="country" type="xs:string"/>

 </xs:sequence>

 29

 </xs:complexType>

 </xs:element>

 <xs:element name="item" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="title" type="xs:string"/>

 <xs:element name="note" type="xs:string" minOccurs="0"/>

 <xs:element name="quantity" type="xs:positiveInteger"/>

 <xs:element name="price" type="xs:decimal"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="orderid" type="xs:string" use="required"/>

 </xs:complexType>

</xs:element>

</xs:schema>

The schema defines a root element “sihporder” which has an attribute “orderid”

and the following sub elements: an “orderperson”, a “shipto” and at least one “item”

element. The “shipto” and “item” elements have corresponding sub elements.

An empty generated form is shown on figure 5.1.

Figure 5.1. An empty sample form.

The navigation buttons on top are part of the sample application and do not belong

to the generated form.

 30

As we see the form contains all elements and attributes defined in the schema. Each

simple element or attribute corresponds to a form field (Form Element) and each complex

element corresponds to a titled box in the form – a Form Section. By default names of the

defined elements and attributes are used as labels.

As the “item” element was defined with unbounded maximum occurrence the form

contains an “Add item” button and a “Remove” button beside each “item” if there are at

least two of them. The “note” element was defined with zero minimum occurrences so it

is omitted unless an “Add note” button is pressed.

We continue by filling the form with data and producing an XML instance out of it.

5.3. Writing and Reading XML

Assume we have filled the form as shown on figure 5.2.

Figure 5.2. A filled sample form.

 31

By pressing the “XML” button we can switch to the XML mode and the form data is

used to produce a nice indented XML document (see figure 5.3).

Figure 5.3. An XML instance produced from the data filled in the sample form.

We can change the data in XML mode for example (see figure 5.4).

Figure 5.4. A modified XML instance of the sample form.

 32

By pressing the “Form” button we can switch back to the form mode and the XML

document is read to fill the form with new data (see figure 5.5).

Figure 5.5. A sample form populated with the new XML data.

As we can see the user is able to change same data in two different modes – form

mode and XML mode. This is possible as the generated web form is able to write and read

XML instances. We could also use this functionality to invoke web services for example.

We have demonstrated how to change the data in Form mode as well as in XML

mode. Further we will proceed with customizing the appearance of the Form itself by

editing the DynaData.

 33

5.4. Customization

DynaForm enables a form developer to customize the generated web form using a

presentation specification language called DynaData. If omitted it is automatically

generated based on the default values. In our example the DynaData mode is shown on

figure 5.6.

Figure 5.6. The initial DynaData of the sample form.

In short everything generated is placed after the @GENERATED marker. Unless we

move some lines to the @CUSTOMIZED part they will be ignored and overwritten. The

DynaData syntax was covered in chapter 4.5 on page 24.

 34

Assume we have changed the DynaData as shown on figure 5.7.

Figure 5.7. The customized DynaData of the sample form.

We moved all the lines starting with // to the @CUSTOMIZED part. We changed the

labels to begin with an upper case letter. Instead the general Input control we assigned Text

control with custom size attribute to some of the Form Elements. The “note” was set a

TextArea control. The repeat style of “item” was set to Table.

Returning to the form mode we get the form with same data but a new look (see

figure 5.8).

Figure 5.8. The customized sample form.

 35

As we see the labels have changed and the “item”-s are now rendered as a table.

Also “note” contains a large text box and “quantity” and “price” are a bit smaller.

As we have shown how to customize a form we will now change the XML schema

itself to show how the evolution of the schema is supported in terms of customization.

5.5. Schema Changes

Suppose the schema changed a bit:

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="shiporder">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="orderperson" type="xs:string"/>

 <xs:element name="shipto">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="address" type="xs:string"/>

 <xs:element name="city" type="xs:string"/>

 <xs:element name="country" type="xs:string"/>

 <xs:element name="zip" type="xs:integer"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="item" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="productName" type="xs:string"/>

 <xs:element name="quantity" type="xs:positiveInteger"/>

 <xs:element name="price" type="xs:decimal"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="orderid" type="xs:string" use="required"/>

 </xs:complexType>

</xs:element>

</xs:schema>

The “shipto” now contains additional “zip” element, “note” element was

removed and “title” element was renamed as “productName”.

 36

A new empty form with same DynaData is shown on figure 5.9:

Figure 5.9. The customized sample form.

The form is now generated based on the new schema. The “note” element is

removed. The “zip” and “productName” have no custom labels as they are new. For

everything else same DynaData was still used successfully.

The DynaData itself is automatically updated (see figure 5.10):

Figure 5.10. The new DynaData of the sample form.

 37

The “title” and “note” elements are now marked @BROKEN as they were not

found in the form and new lines were generated in the @GENERATED part as the

corresponding form elements were not included in the @CUSTOMIZED part.

We know that “title” was renamed as “productName” so we update the

corresponding line in the @BROKEN part. We remove the “note” element, put the “zip”

element to the @CUSTOMIZED part and change its label. After applying the changes new

DynaData is shown on figure 5.11.

Figure 5.11. The fixed DynaData of the sample form.

The @BROKEN part is now empty as we removed the “note” element and the

“productName” (former “title”) element was automatically moved to the @CUSTOMIZED

part. The latter now covers the whole form. Therefore the @GENERATED part is also empty.

 38

If we press the “Form” button we see that the labels of the form are now updated

(figure 5.12).

Figure 5.12. The sample form with fixed customization.

So we demonstrated that if the schema changes new and (re)moved elements are

automatically detected and added to corresponding parts of the DynaData. Therefore we

see what data should be reviewed. Handling the schema changes is easy as we have to do

manual work as little as possible – only changing particular labels, matching the old and

new element names etc. We do not have to write the DynaData from scratch for new

elements.

This finishes our walkthrough of DynaForm. We continue by summarizing the

thesis.

 39

Conclusions

The aim of this thesis was to design and implement a web form generator

producing forms out of XML schemas and presentation specifications which are allowed to

evolve independently. As the presentation specification we meant details like labels, user

interface controls etc for any particular XML schema element.

We implemented the web form generator called DynaForm. Although this

implementation takes the form of a reusable component built on top of the Aranea Web

Framework, it is to a large extent framework-independent. The DynaForm component

takes as input an XML Schema, an optional presentation specification written in a

language called DynaData, and an optional XML instance. Based on these inputs, the

component generates a web form, an updated version of the DynaData specification to

reflect any changes observed in the schema, and an XML instance filled with the form's

input data.

A DynaData specification is composed of independent elements each capturing an

assertion on how a given XML schema element should be rendered. Each time the

DynaData file is synchronized with the schema DynaForm identifies which schema

elements are covered by the DynaData assertions, which schema elements are not covered

by any assertion, and also which DynaData assertions refer to a non-existent schema

element. According to this distinguishing the DynaData file is divided into Custom,

Generated and Broken sections. The two latter sections describe the schema elements

which were new or removed respectively.

By means of an end-to-end scenario, we showed how DynaForm generated a web

form for a sample schema. The scenario illustrated how DynaData assertions are

automatically generated (using default values) for each XML schema element not covered

by any existing DynaData assertion. This step illustrated one of the key features of the

proposed solution: If the Web form developer has written an assertion for rendering a

particular type of element in a schema, that assertion is used during the form generation,

but whenever an assertion is missing, a default value is used to render the corresponding

element.

We also showed how to customize the form by altering a DynaData presentation

specification and we illustrated how the solution works when the underlying schema

 40

changes. The scenario allowed us to demonstrate that after a schema change, DynaForm is

still able to continue producing a form under the new schema (in a degraded mode). The

Web form developer can then check the changed parts of the DynaData specification to

determine which additional assertions need to be added in the specification to fully adapt

the form layout in response to the change. All in all, this approach provides an incremental

and zero-downtime approach to maintaining Web forms up to date with respect to their

underlying schema.

Altogether we demonstrated that a web form can be generated using a schema and a

presentation specification which are allowed to evolve both independently. The current

prototype implementation of DynaForm is built on top of the Aranea Web Framework. A

possible direction for further work is to extend the DynaForm tool in order to add support

for other Web frameworks, such as Spring MVC or Java Server Faces. Also, the current

layout of complex XSD types in DynaData is rather simplistic. By implementing more

sophisticated automated layout techniques we could probably improve the look-and-feel of

the forms generated by DynaForm. Finally, the set of supported XSD elements in

DynaForm is limited as discussed in Chapter 2. Lifting these restrictions would be a

requirement to make DynaForm useful in practice.

 41

Summary (in Estonian)

Dünaamiline schema-põhine veebivormide genereerimine Javas

Rein Raudjärv

Magistritöö

Kokkuvõte

Käesoleva töö eesmärk on kavandada ja realiseerida veebivormide generaator,

mille aluseks on XML schema-d ning esituskirjeldused, mis võivad kumbki iseseisvalt

muutuda. Esituskirjelduse all peame silmas XML schema elementide üksikasju nagu sildid,

kasutajaliidese komponendid jne.

Me realiseerime veebivormide generaatori nimega DynaForm. Tegemist on

taaskasutatava veebikomponendiga, ms baseerub küll Aranea veebiraamistikul, kuid

sellest suurem osa ei sõltu antud raamistikust. Antud komponendi sisenditeks on XML

schema, DynaData keeles kirjutatud esituskirjeldus ning XML dokument. Nendest

kohustuslik on ainult esimene. Komponendi väljunditeks on genereeritud veebivorm,

genereeritud/uuendatud DynaData fail ning vormi andmetega täidetud XML dokument.

DynaData esituskirjeldus koosneb kirjetest, mis panevad paika kuidas mingi XML

schema element peaks välja nägema. Iga kord kui DynaData faili XML schema-ga

sünkroniseeritakse tehakse kindlaks, milliseid schema elemente DynaData kirjed käsitlesid,

milliseid mitte ning missuguseid kirjeid ei saanud rakendada kuna vastavaid schema

elemente ei leitud. Vastavalt sellele jagatakse DynaData fail Custom, Generated ning

Broken nimelisteks lõikudest.

Me vaatleme stsenaariumit, kus DynaForm genereerib näidis XML schema jaoks

veebivormi. Näeme kuidas XML schema elementide jaoks, mille kohta DynaData kirjed

puuduvad koostatakse automaatselt vaikimisi esitustavade alusel uued DynaData kirjed.

See samm illustreerib loodava lahenduse ühte põhitunnust: kui vormi arendaja on

kirjeldanud mingi schema elemendi väljanägemist, siis vormi genereerimisel seda ka

kasutatakse, kui aga vastav kirje puudub, siis kasutatakse elemendi kuvamisel

vaikeväärtusi.

Samuti näitame kuidas DynaData esitluskirjest muutes saab vormi kohandada ning

et antud lahendus töötab ka pärast seda, kui schema muutub – DynaForm suudab vormi

genereerida ka uue schema põhjal (kehvemal kujul). Veebivormi arendaja saab sel juhul

 42

DynaData faili muutunud kohad üle käia ja viia need vastavusse schema muutustega.

Seega võimaldab antud lahendus veebivorme uuendada aluseks oleva schema suhtes järk-

järgult ning ilma katkestusteta.

 43

Bibliography

[Be03] H. Bergsten. JavaServer pages (3rd edition). O'Reilly Media, Inc., 2003

[Be04] H. Bergsten. JavaServer faces. O'Reilly Media, Inc., 2004

[Ce02] E. Cerami. Web services essentials. O'Reilly Media, Inc., 2002

[DK00] A. van Deursen, P. Klint, and J. Visser, Domain-specific languages: An

annotated bibliography. SIGPLAN Notices, vol. 35, no. 6, pp. 26–36, 2000.

[Du03] M. Dubinko. XForms essentials. O'Reilly Media, Inc., 2003

[Fl06] D. Flanagan. JavaScript: the definitive guide (5th edition). O'Reilly Media, Inc.,

2006

[FV04] M. Florins, J. Vanderdonckt. Graceful degradation of user interfaces as a

design method for multiplatform systems. Proceedings of the 2004 International

Conference on Intelligent User Interfaces, pages 140-147, ACM Madeira,

Portugal, 2004.

[GH94] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides. Design patterns: elements of

reusable object-oriented software. Addison-Wesley Professional, 1994

[GJ00] J. Gosling, B. Joy, G. Steele, G. Bracha. Java
TM

 language specification (3rd

edition). Prentice Hall PTR, 2005. http://java.sun.com/docs/books/jls/ (May 22

2010)

[HC01] J. Hunter, W. Crawford. Java servlet programming (2nd edition). O'Reilly

Media, Inc., 2001

[HM04] E. R. Harold, W. S. Means. XML in a nutshell (3rd edition). O'Reilly Media,

Inc., 2004

[Ho08] A. T. Holdener. AJAX: the definitive guide. O'Reilly Media, Inc., 2008

[Ka10] J. Kabanov. Aranea Introductory Tutorial. 2010

http://www.araneaframework.org/docs/intro/html/ (May 22 2010)

[Kw10] K. Kawaguchi. XSOM User's Guide. 2010

https://xsom.dev.java.net/userguide.html (May 22 2010)

[LD06] S. Ladd, D. Davison, S. Devijver, C. Yates. Expert Spring MVC and Web Flow.

Apress, 2006

http://java.sun.com/docs/books/jls/
http://www.araneaframework.org/docs/intro/html/
https://xsom.dev.java.net/userguide.html

 44

[LT06] R. Lerdorf, K. Tatroe, P. MacIntyre. Programming PHP (2nd edition). O'Reilly

Media, Inc., 2006

[Me06] E. A. Meyer. CSS: the definitive guide. O'Reilly Media, Inc., 2006

[MK96] C. Musciano, B. Kennedy. HTML: the definitive guide. O'Reilly & Associates,

1996

[MK06] O. Mürk, J. Kabanov. Aranea: web framework construction and integration kit.

In Proceedings of the 4th international symposium on Principles and practice of

programming in Java, 163-172, ACM Press New York, NY, USA, 2006.

[SB08] B. Smeets, U. Boness, R. Bankras. Beginning Google Web Toolkit: From

Novice to Professional. Apress, 2008

[Ra03] E. T. Ray. Learning XML. O'Reilly Media, Inc., 2003

[Ti01] D. Tidwell. XSLT. O'Reilly Media, Inc., 2001

[Wa02] P. Walmsley. Definitive XML schema. Prentice. Hall PTR, 2002

 45

Appendix 1

Implementation Details

In this appendix we give an overview of the DynaForm implementation in Java by

introducing the main interfaces and some of the simpler classes.

1. Overview

In the requirements section we saw the DynaForm as a single machine with certain

inputs and outputs. In the implementation level different tasks such as XML operations,

DynaData operations and rendering are assigned to separate components.

In the actual implementation the Form Builder takes an XML schema as a single

input and produces three outputs: a Form, an XML Reader and an XML Writer (see figure

1). The generated Form stores the form data and provides methods for reading and

updating current values. It also keeps a list of listeners receiving data update events. This

allows other components to read and modify the Form as well as be sync with it. The

generated XML Reader enables to read an XML instance and update the Form. The XML

Writer enables to observe the Form and write an XML instance accordingly.

Figure 1. The inputs and outputs of Form Builder.

XML Schema

XML Writer

XML

Form

XML Reader

Form Builder

 46

By distributing different tasks the Form is released from the following aspects:

1. Independence of XML – the generated Form is unable to read or write XML by itself.

Instead the generated XML Reader and XML Writer are capable for this by observing

or updating the corresponding Form accordingly.

2. Independence of web frameworks – the generated Form cannot represent itself to a

user. To render the data the Form must be converted into component(s) of a particular

web framework. The implementation contains the Aranea Form Builder which takes a

Form as an input and produces a hierarchy of Arenea Widgets as output. The builder

links the generated Widgets with the Form by automatically keeping them in sync.

3. Independence of DynaData – the generated Form stores the data in memory but it is

not capable of reading or writing a DynaData file. Instead a DynaData instance is

created by providing it with a Form. It always first scans the Form to read the default

values. After that the DynaForm instance is able to read or write a DynaData file at any

time.

In the following chapters we observe the Form and each of these aspects in detail.

The final two chapters will show how to embed the generated Form into an Aranea Widget

and how to access the DynaData API.

1. Form

A Form stores the form data and provides methods for reading and updating current

values. It also keeps a list of listeners receiving data update events.

In the architecture section we described the form also as a hierarchical

composition and gave a set of component types – Form Element, Form Section, Form

Repeat, Form Sequence, Form Choice and Form All. This means that any of these

components is a Form and except for Form Element can contain other Forms.

In Java these component types are interfaces which all extend the same parent:

interface Form { ... }

interface FormElement extends Form { ... }

interface FormSection extends Form { ... }

interface FormRepeat extends Form { ... }

interface FormSequence extends Form { ... }

interface FormChoice extends Form { ... }

interface FormAll extends Form { ... }

 47

Although in the architecture we connected each component type with a visual

example the Form components cannot render themselves. The examples represented their

counterparts produced by the Aranea Form Builder.

We continue by describing each of the Form interfaces.

1.1. Form Element

To recall a Form Element represents a schema <element> of simple type or an

<attribute>. It is a labeled single form field displaying a current value and allowing user to

alter it.

The FormElement interface contains the following methods:

interface FormElement<E> extends Form {

 Data<E> getData();

 Restrictions<E> getRestrictions();

 String getLabel();

 void setLabel(String label);

 Control getControl();

 void setControl(Control control);

 boolean isReadOnly();

 void setReadOnly(boolean readOnly);

 boolean isRequired();

 void setRequired(boolean required);

 boolean isDisabled();

 void setDisabled(boolean disabled);

 // Listeners

 void addListener(ElementChangeListener<E> listener);

 void removeListener(ElementChangeListener<E> listener);

 interface ElementChangeListener<E> {

 void onSetValue(FormElement<E> element);

 void onSetLabel(FormElement<E> element);

 void onSetControl(FormElement<E> element);

 void onSetReadOnly(FormElement<E> element);

 void onSetRequired(FormElement<E> element);

 void onSetDisabled(FormElement<E> element);

 }

}

We see a number of getter and setter methods for properties we already listed in the

architecture section. In addition ElementChangeListener instances can be registered that

will receive a corresponding event after each setter is called.

 48

The actual field value is contained in a Data instance and the restrictions in the

Restrictions object. Both of them are parameterized with the field type (parameter E).

We continue by inspecting Data, Restrictions and Control types.

1.1.1. Data

The Form Builder associates each Form Element with a particular XML simple

type. On the other hand we want to use Java types for the form field values. Moreover

same Java type (e.g. java.util.Date) may correspond to many XML types with certain

distinctions.

The Data abstraction enables to see the same value as an XML type as well as a

Java type and provide custom rules for the conversion. The Data interface has the

following methods:

interface Data<E> {

 Class<E> getType();

 E getValue();

 void setValue(E value);

 String getXmlValue();

 void setXmlValue(String value);

}

The parameter E refers to the Java type of the value. The corresponding class is

returned by the getType() method.

As we can see getValue() and setValue() are used to get/set a value of Java

type. At the same getXmlValue() and setXmlValue() enable to get/set a value of XML

type.

The Form Builder assigns each FormElement an appropriate Data instance based

on the XML simple type. If no match is found a base type is being used to find the match.

E.g. positiveInteger has no match but the base type integer does.

The supported XML simple types with matching Java types wrapped by Data

objects are listed in Table 1.

XML simple type Java type Pattern

string String

integer BigInteger

long Long

int Integer

short Short

 49

byte Byte

decimal BigDecimal

date java.util.Date yyyy-MM-dd

time java.util.Date HH:mm:ss

datetime java.util.Date yyyy-MM-dd'T'HH:mm:ss

boolean Boolean

Table 1. Supported XML simple types with corresponding Java types wrapped by Data

objects.

1.1.2. Restrictions

Each FormElement contains Restrictions which correspond to the restrictions

assigned to the XML simple type. DynaForm currently supports enumeration, length and

number range restrictions:

interface Restrictions<E> {

 // Enumeration

 List<Choice<E>> getChoices();

 public interface Choice<E> {

 String getLabel();

 void setLabel(String label);

 E getValue();

 void setValue(E value);

 }

 // Length

 Integer getLength();

 void setLength(Integer length);

 Integer getMinLength();

 void setMinLength(Integer minLength);

 Integer getMaxLength();

 void setMaxLength(Integer maxLength);

 // Number Range

 E getMinInclusive();

 void setMinInclusive(E minInclusive);

 E getMinExclusive();

 void setMinExclusive(E minExclusive);

 E getMaxInclusive();

 void setMaxInclusive(E maxInclusive);

 E getMaxExclusive();

 void setMaxExclusive(E maxExclusive);

}

Enumeration choices and ranges are parameterized with field type (parameter E) as

they contain same values that can be assigned to the field. Length conditions are always

integers as they refer to length not the field value itself.

The same properties were already listed in the architecture section and they

meaning is obvious.

 50

1.1.3. Controls

Each Form Element has a Control – a user interface component that displays and

allows changing the current value. Although it seems we are already dealing with the web

layer it is not that. In this context by a Control we only mean its name plus optional

parameters for the size etc.

The actual web control is created when the web layer is created (e.g. by the Aranea

Form Builder). To be able to extend the set Controls they form a hierarchy – e.g. Secret

extends Text. This enables the actual web layer to render the parent control type if the sub

type is not supported. On the other hand if a more general Control is used the actual web

layer may choose which implementation to choose (e.g. whether a SelectOne should be

displayed as a drop-down or a list of radio buttons).

All Control types inherit the Control interface (see architecture section for the

descriptions):

interface Control {

 /** A general input control */

 interface Input extends Control {}

 /** A single line text input. */

 interface Text extends Input {

 // Specifies the width (in characters)

 Integer getSize();

 void setSize(Integer size);

 // Specifies the maximum length (in characters)

 Integer getMaxLength();

 void setMaxLength(Integer maxLength);

 }

 /** Like "text", but the input characters are hidden. */

 interface Secret extends Text {}

 /** A multi-line text input. */

 interface TextArea extends Control {

 // Specifies the visible width

 Integer getCols();

 void setCols(Integer cols);

 // Specifies the visible number of rows

 Integer getRows();

 void setRows(Integer rows);

 }

 /** Renders a value but provides no means for changing data. */

 interface Output extends Control {}

 /** Allows the user to make a single selection from a set of choices.

*/

 interface SelectOne extends Control {}

 51

 interface SelectBox extends SelectOne {

 // Specifies the visible number of rows

 Integer getSize();

 void setSize(Integer size);

 }

 interface ComboBox extends SelectOne {}

 interface RadioSelectBox extends SelectOne {}

}

As we see Input, TextArea, Output and SelectOne extend the Control interface

directly.

Text extends the Input by adding size and maxLength properties. Secret extends

the latter by hiding the characters entered. TextArea does not extend Text because of the

differences in the set of properties.

SelectOne has three sub-interfaces: SelectBox displays a box with the given size,

ComboBox enables to choose an item from the drop-down menu and RadioSelectBox

displays a radio button for each item.

As we finished with FormElement we continue with the rest of the Form interfaces.

1.2. Form Section

A Form Section represents a schema <element> of complex type. It always contains

another Form as the content plus a label.

The FormSection interface has the following methods:

interface FormSection<F extends Form> extends Form {

 F getContent();

 String getLabel();

 void setLabel(String label);

 enum SectionStyle { HORIZONTAL, VERTICAL, ROW, COLUMN, INHERIT }

 SectionStyle getSectionStyle();

 void setSectionStyle(SectionStyle sectionStyle);

 // Listeners

 void addListener(SectionChangeListener<F> listener);

 void removeListener(SectionChangeListener<F> listener);

 interface SectionChangeListener<F extends Form> {

 void onSetLabel(FormSection<F> section);

 void onSetSectionStyle(FormSection<F> section);

 }

}

 52

The contained sub-component is returned by getContent() method. The

FormSection is also parameterized with the sub-component type (parameter F) which

must extend the Form interface.

There are also getter and setter methods for two properties – label and Section Style.

The latter is one of the enumeration values (see chapter 4.4.1 page 21 for the descriptions).

In addition SectionChangeListener instances can be registered that will receive a

corresponding event after each setter is called.

1.3. Form Repeat

A Form Repeat represents a repetition of schema element (maxOccurs > 1). It is

also used for optional elements (minOccurs = 0 and maxOccurs = 1). A Form Repeat

contains a dynamic number of instances of same sub-component.

The FormRepeat interface has the following methods:

interface FormRepeat<F extends Form> extends Form {

 Integer getMin();

 Integer getMax();

 List<F> getChildren();

 F add();

 void remove(F child);

 void clear();

 enum RepeatStyle { NORMAL, ROWS, COLUMNS, TABLE }

 RepeatStyle getRepeatStyle();

 void setRepeatStyle(RepeatStyle repeatStyle);

 // Listeners

 void addListener(RepeatChangeListener<F> listener);

 void removeListener(RepeatChangeListener<F> listener);

 interface RepeatChangeListener<F extends Form> {

 void onAdd(F child);

 void onRemove(F child);

 void onSetRepeatStyle(FormRepeat<F> sequence);

 }

}

getMin() and getMax() return the corresponding limits to the number of children.

getChildren() returns the current list of sub-components. The FormRepeat is also

parameterized with the sub-component type (parameter F) which must extend Form.

 53

Notice that add() method has no arguments and it somehow returns a new child.

When FormRepeat is created it is provided with a Factory:

interface Factory<E> { E create(); }

This enables FormRepeat to create new children.

The remove() method takes an existing child and removes it from the list. clear()

removes all children.

There are also getter and setter method for Repeat Style. The latter is one of the

enumeration values (see chapter 4.4.2 on page 23 for the descriptions).

In addition RepeatChangeListener instances can be registered that will receive

corresponding events after a setter is called, a new child is added or an existing is removed.

1.4. Form Sequence

A Form Sequence represents a schema <sequence>. It is also used to group together

XML attributes and an XML element body. It contains a fixed list of sub-components each

of which may be of different type.

The FormSequence interface has the following method:

interface FormSequence extends Form {

 List<Form> getChildren();

}

This is the simplest Form component type. getChildren() returns the fixed list of

sub-components. The FormSequence is not parameterized as each of the children may be

of different type. There are also no listeners as nothing can be changed.

1.5. Form Choice

A Form Choice represents a schema <choice>. It always contains a fixed list of

sub-components each of which may be of different type. In XML exactly one of the sub-

components must occur. So in the Form user must be able to select this component.

The FormChoice interface has the following methods:

interface FormChoice extends Form {

 List<Form> getChildren();

 Form getSelectedChild();

 int getSelectedIndex();

 void setSelectedIndex(int index);

 54

 // Listeners

 void addListener(ChoiceChangeListener listener);

 void removeListener(ChoiceChangeListener listener);

 interface ChoiceChangeListener {

 void onSetSelectedIndex(int index);

 }

}

getChildren() returns the fixed list of sub-components.

getSelectedChild() and getSelectedIndex() return the sub-component and its

index currently selected. setSelectedIndex() enables to select a new sub-component.

In addition ChoiceChangeListener instances can be registered that will receive an

event after new child is selected.

1.6. Form All

A Form All represents a schema <all>. It always contains a fixed list of sub-

components each of which may be of different type. In XML any of the sub-components

may occur but not more than once. The sub-components may occur in any order. So in the

Form user must be able to enable or disable each component as well as choose their order.

The FormAll interface has the following methods:

interface FormAll extends Form {

 List<Form> getChildren();

 int[] getIndexes();

 boolean areAllChildrenRequired();

 List<Form> getSelectedChildren();

 int[] getSelectedIndexes();

 void setSelectedIndexes(int[] indexes);

 List<Form> getUnselectedChildren();

 int[] getUnselectedIndexes();

 // Listeners

 void addListener(AllChangeListener listener);

 void removeListener(AllChangeListener listener);

 interface AllChangeListener {

 void onSetSelectedIndexes(int[] indexes);

 }

}

getChildren() returns the fixed list of sub-components and getIndexes() gives

their indexes (0, 1, …, n-1).

 55

areAllChildrenRequired() returns true if all sub-components must occur

exactly once giving only an opportunity to reorder them. Otherwise each child may occur

but not more than once.

getSelectedChildren() and getSelectedIndexes() return the sub-components

and their indexes currently selected. setSelectedIndexes() enables to reselect sub-

components including their order.

getUnselectedChildren() and getUnselectedIndexes() return the sub-

components and their indexes currently not selected.

In addition AllChangeListener instances can be registered that will receive an

event after new children are selected.

2. Writing and Reading XML

As we said in the overview of the implementation the Form Builder takes an XML

schema as a single input and produces three outputs: a Form, an XML Reader and an

XML Writer. The generated Form is unable to read or write XML by itself. Instead the

generated XML Reader and XML Writer are capable for this by observing or updating the

corresponding Form accordingly.

The main function of the Form Builder is the following:

class XmlFormBuilder {

 static XmlForm build(XSSchemaSet set) { ... }

 interface XmlForm {

 Form getForm();

 XmlWriter getWriter();

 XmlReader getReader();

 }

}

The build() method actually takes a schema set – this is a DOM representation of

one or more schemas parsed by the XML Schema Object Model (XSOM) library [Kw10] –

as input and outputs an XmlForm which holds a Form, an XmlWriter, and an XmlReader.

Internally XmlFormBuilder uses a visitor pattern [GH94] and traverses the whole

schema hierarchy by producing an XmlForm per each schema element. E.g. for a schema

<element> of complex type with no attributes, first the child XmlForm is received by

visiting the body, then new XmlForm is created containing a FormSection, an

 56

XmlElementWriter and an XmlElementReader each of which wrap the corresponding

components of the child XmlForm. This means that not only the Form is a hierarchical

composition but also the XmlWriter and XmlReader form a hierarchical structure.

We continue by describing the XmlWriter and XmlReader interfaces in detail but

first we examine the XmlVisitor which is used by both of them.

2.1. XML Event Handler

As we stated XmlWriter and XmlReader are hierarchical compositions. Therefore

they have to produce or consume XML also by traversing the XML structure hierarchically

enabling sub-components to process the sub-structure of XML. We cannot read an XML

using the standard Simple API for XML (SAX) [HM04] handler because it processes the

whole XML as a flat document.

The standard SAX handler in Java has the following methods:

interface ContentHandler {

 void startDocument();

 void endDocument();

 void startElement(String uri, String localName, String qName,

 Attributes atts);

 void endElement(String uri, String localName, String qName);

 void characters(char ch[], int start, int length);

 ...

}

Same handler methods are invoked regardless the position in the XML. In a

hierarchical XML parsing the handler must be able to process the events as well as pass the

processing to another handler. For this we use the following hierarchical XML event

handler:

interface XmlVisitor {

 XmlVisitor text(String s);

 ElementVisitor visitElement(String element);

 ElementVisitor visitEndBody();

 interface ElementVisitor {

 ElementVisitor visitAttribute(String name, String value);

 XmlVisitor visitBody();

 XmlVisitor visitEndElement();

 }

}

 57

Each method handles the event as well as returns the next handler. It may also

throw an InvalidXmlException if the given event is not supported (unsupported element

or the maximum number of this element is already reached etc):

text() handles plain text.

visitElement() handles the start of an XML element and returns the

ElementVisitor for it.

visitAttribute() handles an attribute.

visitBody() handles the start of the body and returns the XmlVisitor for it.

visitEndBody() handles the end of a body and returns the ElementVisitor for

the XML element containing the body.

 visitEndElement() handles the end of an element.

Comparing to SAX handler the XmlVisitor has separate methods for attributes as

well as starting and ending a body. In case of SAX handler it is hard to distinguish an

empty body with no body at all as same methods are still invoked. In case of XmlVisitor

the starting and ending a body is made explicit.

The XmlVisitor is swapped to an ElementVisitor for a temporary state – “we are

inside the element but not inside the body”.

We continue by examining how the XmlVisitor is used for writing and reading

XML.

2.2. XML Writer

The XML Writer is used to observe the generated Form and produce a

corresponding XML instance.

It could directly output a string but in some case the output is required to be

compact, in other case sub elements should be intended or the whole document must be

wrapped to a certain width in characters etc. In short it is wise to make the XmlWriter just

produce XML events and use a suitable handler to actually construct the XML string. For

the event handling we chose to stick to the XmlVisitor although for writing we could also

use the standard SAX handler.

 58

The XmlWriter has two methods:

interface XmlWriter {

 boolean isEmpty();

 void write(XmlVisitor xv);

}

isEmpty() returns true if there is anything to write. This is used by parent writes

so they know whether to start the body at all. It is usually false if the form field is left

blank.

 write() takes the XmlVisitor and produces the XML events necessary. It also

passes the process to sub-writers by giving them the corresponding XmlVisitor and

ElementVisitor instances returned by the event handling methods.

2.3. XML Reader

The XML Reader is used to read an XML and update the generated Form

accordingly.

Here we have to use XmlVisitor as the XML event handler as each XML Reader is

only able to handle certain part of the whole document. For the sub-components it passes

the handling to the sub-readers. Also when the certain part is handled it passes the reading

to the next handler. So as soon as we know the next reader we can construct an

XmlVisitor that will handle the certain part of the document, optionally passing the

processing to its children and finally returning the next reader that was first assigned.

The XmlReader has only one method:

interface XmlReader {

 XmlVisitor create(XmlReader next);

}

The create() method returns the XmlVisitor for handling a particular part of the

XML document. Last method that handles a supported event returns the next handler. The

latter is created by invoking next.reate(null). null is also passed if the root XML

Reader is invoked. If the XML document to be read is correct these null–s are actually

never invoked.

We continue by describing some of the XmlWriter and XmlReader

implementations.

 59

2.4. Form Element Writer

As Form Elements may represent XML elements as well as XML attributes we

introduce another abstraction for providing any text-based value.

The TextWriter has only one method:

interface TextWriter { String getText(); }

The FormElementWriter implements TextWriter instead of XmlWriter:

public class FormElementWriter implements TextWriter {

 private FormElement element;

 FormElementWriter(FormElement element) {

 this.element = element;

 }

 String getText() {

 return element.getXmlValue();

 }

}

The getText() method just invokes the getXmlValue() of the FormElement.

Defining a TextWriter instead of XmlWriter enables to use the same

implementation both for an attribute as well as plain XML content. In the first case we

only allow using a TextWriter as the attribute cannot be written by an XmlWriter which

may e.g. produce another XML element into an attribute value. In case we need to write

the FormElement into a body of an XML element we use the adapter.

TextXmlWriter wraps any TextWriter into an XmlWriter:

class TextXmlWriter implements XmlWriter {

 TextWriter textWriter;

 TextXmlWriter(TextWriter textWriter) {

 this.textWriter = textWriter;

 }

 TextWriter getWriter() { return textWriter; }

 boolean isEmpty() { return textWriter.getText() == null; }

 void write(XmlVisitor xv) { xv.text(textWriter.getText()); }

}

So to get an XmlWriter for a FormElement the adapter must be used followingly:

XmlWriter xw = new TextXmlWriter(new FormElementWriter(formElement));

2.5. Form Element Reader

As Form Elements may represent XML elements as well as XML attributes we also

introduce abstraction for reading any text-based value.

The TextHandler has only one method:

interface TextHandler { void text(String s); }

 60

The FormElementReader implements TextHandler instead of XmlReader:

class FormElementHandler implements TextHandler {

 FormElement element;

 FormElementHandler(FormElement element) {

 this.element = element;

 }

 void text(String s) { element.setXmlValue(s); }

}

In case of reading XML attributes we can use the FormElementReader directly.

Otherwise we wrap it into a TextXmlReader which only accepts text in XML. Otherwise

an InvalidXmlException is thrown.

TextXmlReader wraps any TextHandler into an XmlReader:

class TextXmlReader implements XmlReader {

 TextHandler handler;

 TextXmlReader(TextHandler handler) { this.handler = handler; }

 XmlVisitor create(XmlReader next) { return new TextVisitor(next); }

 class TextVisitor extends BaseXmlVisitor {

 TextVisitor(XmlReader next) { super(next); }

 XmlVisitor text(String s) {

 handler.text(s);

 return nextVisitor();

 }

 }

}

The text() method of XmlVisitor is just passed to corresponding TextHandler.

The BaseXmlVisitor rejects any events by default. It has the following methods:

class BaseXmlVisitor implements XmlVisitor {

 XmlReader nextReader;

 BaseXmlVisitor(XmlReader next) {

 this.nextReader = next;

 }

 XmlReader nextReader() { return nextReader; }

 XmlVisitor nextVisitor() {

 return nextReader == null ? null : nextReader.create(null);

 }

 XmlVisitor text(String s) {

 throw new InvalidXmlException();

 }

 ElementVisitor visitElement(String element) {

 throw new InvalidXmlException();

 }

 ElementVisitor visitEndBody() {

 throw new InvalidXmlException();

 }

}

The nextVisitor() method should be called when the current visitor is finished.

This is exactly what TextXmlReader did after the text() method was handled.

 61

So to get an XmlReader for a FormElement the adapter must be used followingly:

XmlReader xr = new TextXmlReader(new FormElementHandler(formElement));

2.6. XML Element Writer

The XmlElementWriter is used to write an XML element. It is created at the same

time as the FormSection but they do not point to each other.

The XmlElementWriter has the following methods:

class XmlElementWriter implements XmlWriter {

 String name;

 Map<String, TextWriter> attributes;

 XmlWriter body;

 XmlElementWriter(String n, Map<String, TextWriter> as, XmlWriter body)

{

 this.name = n; this.attributes = as; this.body = body;

 }

 boolean isEmpty() { return false; }

 void write(XmlVisitor xa) {

 ElementVisitor elementVisitor = xa.visitElement(name);

 if (attributes != null) {

 for (Entry<String, TextWriter> entry : attributes.entrySet()) {

 String attrName = entry.getKey();

 TextWriter textWriter = entry.getValue();

 String value = textWriter.getText();

 if (value != null)

 elementVisitor.visitAttribute(attrName, value);

 }

 }

 if (body != null && !body.isEmpty()) {

 XmlVisitor bodyVisitor = elementVisitor.visitBody();

 body.write(bodyVisitor);

 bodyVisitor.visitEndBody();

 }

 elementVisitor.visitEndElement();

 }

}

The logic of write() is straightforward. We start the XML element, iterate through

the TextWriter –s of the attributes, let the XmlWriter of the body do its job and finally

finish the XML element.

As you can see TextWriter is used instead of XmlWriter for an attribute.

2.7. XML Element Reader

The XmlElementReader is used to read an XML element. It is created at the same

time as the FormSection but they do not point to each other.

 62

The XmlElementReader has the following methods:

class XmlElementReader implements XmlReader {

 String elemenetName;

 Map<String, TextHandler> attributes;

 XmlReader body;

 XmlElementReader(String n, Map<String, TextHandler> as, XmlReader body)

{

 this.elemenetName = n; this.attributes = as; this.body = body;

 }

 public XmlVisitor create(XmlReader next) {

 return new XmlElementVisitor(next);

 }

 class XmlElementVisitor extends BaseXmlVisitor implements

ElementVisitor {

 XmlVisitor bodyVisitor;

 XmlElementVisitor(XmlReader next) { super(next); }

 ElementVisitor visitElement(String element) {

 if (!elemenetName.equals(element))

 throw new InvalidXmlException();

 if (body != null)

 bodyVisitor = body.create(new EndBodyReader(this));

 return this;

 }

 ElementVisitor visitAttribute(String name, String value) {

 TextHandler handler = attributes == null ? null :

 attributes.get(name);

 if (handler == null)

 throw new InvalidXmlException();

 handler.text(value);

 return this;

 }

 public XmlVisitor visitBody() {

 if (body == null)

 throw new InvalidXmlException();

 return bodyVisitor;

 }

 public XmlVisitor visitEndElement() { return nextVisitor();}

 }

}

The name of the element, the readers of the attributes and body are all provided to

the XmlElementReader not the XmlElementVisitor. The latter is only enhanced with the

next reader.

The XmlElementVisitor also implements the ElementVisitor as it is returned by

the visitElement() and visitAttribute() methods.

 63

visitElement() method checks the element name, prepares the body visitor and

returns itself as an ElementVisitor. The body visitor is created from the body reader by

attaching an EndBodyReader. The latter enables to end the body and return the current

visitor.

visitAttribute() passes the value to the corresponding attribute handler and

returns itself. An exception is thrown in case of unknown attribute.

visitBody() method returns the body visitor created. An exception is thrown in

case no body visitor is assigned.

visitEndElement() returns the next visitor assigned to the XmlElementVisitor.

The EndBodyReader has the following methods:

class EndBodyReader implements XmlReader {

 ElementVisitor visitor;

 EndBodyReader(ElementVisitor elementVisitor) {

 this.visitor = elementVisitor;

 }

 XmlVisitor create(XmlReader next) {

 return new EndBodyVisitor(next);

 }

 class EndBodyVisitor extends BaseXmlVisitor {

 EndBodyVisitor(XmlReader next) { super(next); }

 ElementVisitor visitEndBody() { return visitor; }

 }

}

The visitEndBody() just returns the ElementVisitor provided.

2.8. Multi Writer

The MultiWriter is the plain writer composition. It is created at the same time as

the FormSequence but they do not point to each other.

The MultiWriter has the following methods:

class MultiWriter implements XmlWriter {

 Collection<XmlWriter> children;

 MultiWriter(Collection<XmlWriter> children) { this.children = children;

}

 boolean isEmpty() { return false; }

 void write(XmlVisitor xa) {

 for (XmlWriter child : children) child.write(xa);

 }

}

The write() methods just propagates the invocation to all of its children.

 64

2.9. Multi Reader

The MultiReader is the plain reader composition. It is created at the same time as

the FormSequence but they do not point to each other.

The MultiReader has the following methods:

class MultiReader implements XmlReader {

 static XmlReader newInstance(Collection<XmlReader> children) {

 if (children == null || children.isEmpty())

 return null;

 if (children.size() == 1)

 return children.iterator().next();

 return new MultiReader(items);

 }

 List<XmlReader> children;

 MultiReader(List<XmlReader> children) { this.children = children; }

 XmlVisitor create(XmlReader next) {

 XmlReader head = children.get(0);

 List<XmlReader> tail = children.subList(1, children.size());

 if (next != null) {

 tail = new ArrayList<XmlReader>(tail);

 tail.add(next);

 }

 return head.create(newInstance(tail));

 }

}

The newInstance() just checks the trivial cases when 0 or 1 children are passed.

The create() method delegates the invocation to the first child providing it with

the rest of the children as the next XmlReader. If a next XmlReader was provided to the

MultiReader itself it will be also appended (new ArrayList is created because the

subList() only returns a view).

2.10. Writing and Reading Form Repeat, Choice and All

Writing and reading XML for the rest of the Form components depends on the

state. E.g. Form Repeat contains dynamic number of elements and Form Choice and Form

All have one or more elements selected. Therefore all of these writers and readers register

themselves as listeners. We do not cover these implementations here as they are too

complex. However the implementations can be found from the source code.

 65

3. Rendering Form with Aranea

The generated Form cannot represent itself to a user. To render the data the Form

must be converted into component(s) of a particular web framework. The implementation

contains the Aranea Form Builder which takes a Form as an input and produces a

hierarchy of Arenea Widgets as output. The builder links the generated Widgets with the

Form by automatically keeping them in sync. Fortunately the builder must only convert the

Form forgetting the XML Reader and XML Writer.

3.1. Form Visitors

To traverse the Form hierarchically we use the visitor pattern. The Form accepts

two different visitors. One is a visitor that returns void, and the other is a “functor” that

returns Object. The actual return type is parameterized by the corresponding visitor type.

The two visitors have the following methods:

interface FormVisitor {

 <E> void element(FormElement<E> element);

 <F extends Form> void section(FormSection<F> section);

 <F extends Form> void repeat(FormRepeat<F> sequence);

 void sequence(FormSequence composite);

 void choice(FormChoice choice);

 void all(FormAll all);

}

interface FormFunction<T> {

 <E> T element(FormElement<E> element);

 <F extends Form> T section(FormSection<F> section);

 <F extends Form> T repeat(FormRepeat<F> sequence);

 T sequence(FormSequence composite);

 T choice(FormChoice choice);

 T all(FormAll all);

}

interface Form {

 ...

 void accept(FormVisitor visitor);

 <T> T apply(FormFunction<T> function);

}

Any Form component accepts (applies) both visitors and both visitors can visit all

Form components. In general a visitor first traverses the children and then combines the

result with the current Form component.

The FormVisitor always return void and the FormFunction returns an instance of

type parameter T.

 66

3.2. Aranea Form Builder

The Aranea Form Builder produces an Aranea Widget per each Form component:

class AraneaFormBuilder implements FormFunction<UiForm> { ... }

 interface UiForm extends Widget {
 boolean saveAndValidate();

}

The only method saveAndValidate() validates the data entered by user (returns

true if success and false otherwise) and updates the Form. This command can be easily

propagated trough the Widget hierarchy as all children are required to implement the

UiForm interface.

Although events like “Add” and “Remove” effect the Form immediately we have

left the “Save” action to be explicit. Therefore Form Elements are updated only when the

save action is called. In the future we could also use AJAX to save and validate the data on

the fly.

The entire AraneaFormBuilder is long and complex so we demonstrate it only in

terms of one Form component. We continue by observing how a Form Choice is

transformed into an Aranea Widget.

3.3. Converting Form Choice

To demonstrate the event handling mechanism between the Form and Aranea

Widgets we inspect how a Form Choice is transformed into an Aranea Widget.

The Form Choice visiting method of AraneaFormBuilder is the following:

class AraneaFormBuilder implements FormFunction<UiForm> {

 ...

 UiForm choice(FormChoice choice) {

 ChoiceFormWidget widget = new ChoiceFormWidget();

 // Send events from Widget to Form

 widget.setListener(new ChoiceEventListener() {

 void selectIndex(int index) {

 choice.setSelectedIndex(index);

 }

 });

 // Send events from Form to Widget

 choice.addListener(new ChoiceChangeListener() {

 public void onSetSelectedIndex (int index) {

 widget.selectIndex(index);

 }

 });

 67

 // Add children

 for (Form form : choice. getChildren())
 widget.addForm(form.apply(this));

 // Select initial choice

 widget.selectIndex(choice. getSelectedIndex());

 return widget;

 }

}

First we create an instance of ChoiceFormWidget which will render the Form

Choice and will receive an event in case the user selects a new item. By default this event

is ignored.

We register the Widget with a listener which updates the Form.

Then we register the Form with a listener which updates the Widget.

After that we traverse all children and add the corresponding Widgets produced.

Finally we configure the Widget with the initial choice.

Notice that in case of an event the Widget does not update itself first. Instead it

delegates the event to the Form and then receives another event from it. This ensures that

all listeners (XML Readers, XML Writers etc) registered with the Form get the event.

The ChoiceFormWidget has the following methods:

class ChoiceFormWidget extends BaseUIWidget {

 interface ChoiceEventListener { void selectIndex(int index); }

 List<UiForm> children = new ArrayList<UiForm>();

 int selectedIndex;

 ChoiceEventListener listener;

 void addChild(UiForm form) {

 children.add(form);

 }

 void setListener(ChoiceEventListener listener) {

 this.listener = listener;

 }

 void selectIndex(int index) {

 selectedIndex = index;

 }

 int getSelectedIndex() {

 return selectedIndex;

 }

 UiForm getSelectedChild() {

 return children.get(selectedIndex);

 }

 void init() throws Exception {

 68

 setViewSelector("form/choice");

 // Register child forms

 int i = 0;

 for (UiForm child : children)

 addWidget(String.valueOf(i++), child);

 }

 void handleEventSelect(String param) {

 listener.selectIndex(Integer.parseInt(param));

 }

 boolean saveAndValidate() {

 return getSelectedChild().saveAndValidate();

 }

}

ChoiceFormWidget has three fields which contain its children, the selected index

and the listener. The first three methods enable to set these values.

getSelectedIndex() returns the select index and getSelectedChild() returns

the selected child widget.

The init() and handleEventSelect() are the only Aranea-specific methods

here.

init() selects the JSP and registers the child widgets.

When the user clicks on a button to select a new item handleEventSelect() is

invoked. Instead of setting the selectedIndex value directly the event is delegated to the

listener.

Finally saveAndValidate() is just delegated to the selected child widget.

The ChoiceFormWidget and FormChoice instances are isolated from each other as

there are no explicit references. AraneaFormBuilder is the only one linking them together.

The rest of the Form components are handled similarly – the corresponding

Widgets are not aware of their backend and vice versa. The two layers are tied using the

AraneaFormBuilder methods which implement tiny listeners in either direction.

We continue by discussing the last topic about Arenea which covers how we

convert our Form Elements into Aranea Controls.

 69

3.4. Converting Form Element

Finally we observe how the Form Elements are converted into Aranea Widgets.

Aranea provides org.araneaframework.uilib.form.FormWidget for gathering

user input, converting it to model objects and validating it. For each form field a control, a

data object, possible constraints must be assigned. This is similar to the configuration of

our Form Elements so we just need to match our API with the Arenea Forms API. To

render the controls we can use Aranea JSP Tag <ui:automaticFormElement/> This

enables to choose the actual JSP Tag to be rendered dynamically in the Widget code.

The conversion rules for Controls are listed in Table 2.

XML simple type Form Control Areana Control Aranea JSP Tag

string Input, Text TextControl textInput

Secret passwordInput

TextArea TextareaControl textarea

integer, long,

int, short,

byte,

Input NumberControl numberInput

decimal FloatControl floatInput

date DateControl dateInput

time TimeControl timeInput

datetime DateTimeControl dateTimeInput

boolean CheckboxControl checkbox

(any) SelectOne, SelectBox SelectControl select

RadioSelectBox radioSelect

Table 2. The conversion of Form Elements

Corresponding to the Aranea Forms API the controls are not used standalone.

Instead they must be added to a FormWidget to form Aranea form elements. While

converting the Form we first create a FormWidget per Form Element. To optimize the

result we merge the consecutive ones to produce as few Widgets as possible.

We exclude the actual implementation of UiWidget as it is too complex.

This finishes the discussion about rendering form with Aranea web framework.

 70

3.5. Embedding the Form

As we have stated earlier DynaForm is a reusable web component based on

Aranea Web Framework.

We have described the XmlFormBuilder and AraneaFormBuilder. The first

converts an XSSchemaSet into an XmlForm. The second takes a Form (obtained by invoking

xmlForm.getForm()) and produces the Aranea Widget hierarchy.

So given an XML schema the corresponding Aranea Widget is gained using the

following code snippet:

 File file = new File("sample.xsd");

 XmlForm xmlForm = SchemaUtil.toXmlForm(file);

 Form form = xmlForm.getForm();

 UiForm widget = AraneaFormBuilder.build(form);

First we assume that we have the schema file.

We invoke SchemaUtil.toXmlForm() to produce the XmlForm. The method first

parses the file into an XSSchemaSet and then uses XmlFormBuilder to produce the result.

After that we extract the Form out of the XmlForm.

Finally we use AraneaFormBuilder to produce the widget. This can be registered

as a child of any other Widget. The only restriction is that the latter must be able to call the

widget.saveAndValidate() to validate the entered values and commit them to the Form.

Rendering the Form alone is useless as the program provides no data to the user

and vice versa. Although it is possible to access the Form data using the Form API directly

or by implementing a custom form visitor it is easier to use the data as an XML document.

To provide the Form with (initial) data XmlReader can be used:

 XmlUtil.readXml(xmlString, xmlForm.getReader());

This populates the Form with data read from the given XML string.

To produce an XML string out of the Form XmlWriter can be used:

 String xmlString = XmlUtil.writeXml(xmlForm.getWriter());

The traverses the whole Form and produces an XML based on the current values.

This enables the developer to embed a generated Form into his/her own Widget and

manipulate with the Form data. In the last chapter we see how to use the DynaData API to

customize the presentation of the Form.

 71

4. DynaData

This is the final chapter in which we shortly describe the API of DynaData.

The generated Form stores the data in memory but it is not capable of reading or

writing a DynaData file. Instead a DynaData instance is created by providing it with a

Form. It always first scans the Form to read the default values. After that the DynaForm

instance is able to read or write a DynaData file at any time.

The synchronization of the Form and DynaData file is achieved by the following

code snippet:

 Form form = ...

 File file = ...

 DynaData dynadata = new DynaDataImpl(form);

 if (file.exists())

 dynadata.read(new FileReader(file));

 dynadata.write(new FileWriter(file));

class DynaDataImpl implements DynaData {

 DynaDataImpl(Form form) { ... }

 ...

}

interface DynaData {

 void read(Reader in);

 void write(Writer out);

}

First we assume that we have the Form and DynaData file instances.

Then we create the DynaDataImpl instance by providing it the Form. This allows it

to traverse the Form and read the default values. Besides the Form instance is stored to

later populate it with new data. As Form Repeats repeat the same child component only the

first child is traversed when the data is collected. In case a Form Repeat has no children a

temporary child is automatically created.

As the DynaData file is optional we let DynaDataImpl to read it if it exists. When a

file is read the Form is traversed hierarchically to populate it with new data. As Form

Repeat components may later create additional children, listeners are registered to

automatically update new children as well.

Finally we make DynaDataImpl to store the values to the file. At this moment it

knows which form components were provided custom data, which were not and also which

custom data could not be applied as there were no matching form components. According

 72

to this distinguishing the DynaData file is divided into Custom, Generated and Broken

sections as described earlier.

The implementation of DynaDataImpl is long and complex so we exclude it here.

This finishes the appendix about implementation details of DynaForm.

 73

Appendix 2

CD with the Source Code

The CD contains source code of the DynaForm and its sample application.

