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Chapter 1

Introduction

1.1 Motivation and background

An interesting research problem in dataset analysis is the discovery of pat-

terns. Patterns can show how the dataset was formed and how it repeats

itself; can also be characteristic to some particular subset of the data.

For example, a protein motif in a genomic sequence could predict a dis-

ease. Patterns in medical diagnoses could show relations between diseases.

A repeating pattern in source code could show how the code could be min-

imized. Patterns in event logs could find causes for error events or detect

intrusion attempts.

Research in pattern discovery is mainly driven by biology, which means

that most of the discovery algorithms have been designed with genomic se-

quences in mind. The techniques are usually constrained to the genomic

sequences, but these algorithms could be useful in other fields as well. Such

benefit was already demonstrated by Wespi et al[WDD99], where they used

a biological sequence pattern discovery algorithm for intrusion detection.

Searching new ways of using pattern discovery should, thus, be actively re-

searched.

Today, the field of genomic sequences is facing problems caused by the

increasing amount of data[How+08; GC95]. We need to use more compu-
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tational resources to analyze the continuously growing amount of collected

data. This means that the pattern discovery algorithms should take advan-

tage of multi-core processors, highly parallel processors and clusters.

1.1.1 Pattern Discovery

Patterns can occur in different types of data: images, text, sounds, sequences,

graphs, signals and more. The pattern representation can vary depending on

the data itself and the parts that the pattern captures. Patterns in graphs

can be sub-graphs with some additional info. Patterns present in images can

be a collection of different features.

Pattern discovery aims to find a priori unknown patterns that can be

considered interesting in some specific aspects; for example, we could look

for patterns that occur frequently or have an interesting structure. A pattern

that occurs more frequently than expected by chance, may be considered

interesting. Also, a graph pattern forming a ring graph may be considered

interesting.

When choosing a pattern structure, we should take into account the data,

expected results and its efficiency. For example, theoretically we could choose

an abstract pattern structure that can represent all possible patterns, but

practically this could be inefficient and irrelevant to the problem. Finding

image features from a visualization of sound would probably not produce

anything meaningful.

When choosing a pattern rating method we should take into account that

many patterns can occur by chance. For example, a pattern that matches

anything is very frequent although it isn’t very meaningful. Many methods

have been used for comparing patterns, such as pattern occurrences, ratio of

pattern occurrences between datasets, binomial and hypergeometric proba-

bility estimate and Z-score.
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1.1.2 Algorithm parallelization

Taking an existing algorithm and making it parallel can sometimes be easier

than writing a parallel algorithm from scratch. Existing algorithms may

have already proven themselves in practice and are, thus, based on good

optimization concepts. Algorithm parallelization can be divided into three

subproblems:

1. generalizing the algorithm,

2. decomposing the algorithm into independent tasks and

3. reifying the generalized version with parallelization in mind.

Generalizing the algorithm means loosening the order constraints and

using minimal abstract data types for data storage. Mathematical defini-

tions and effective problem formulation are helpful in this matter. The less

constraints there are, the more freedom we have to change the algorithm

implementation details.

Decomposing the algorithm means dividing it into independent tasks that

could be ran in parallel. This also means trying to minimize the interaction

and the dependencies between "algorithm pieces".

Reifying the algorithm means finding suitable data structures for par-

allelization and mapping the independent tasks to different processes. The

suitable structures and efficient mapping to processes is dependent on the

target hardware architecture. For example, data structures involving vector

operations work better on highly parallel processors.

The generalizing and decomposition steps can also make the algorithm

simpler. Generalization makes the algorithm more applicable to other fields,

since there are less relations to the original pattern discovery problem.
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1.2 Contributions of this work

We have derived a new parallel algorithm called SPEXS2 for discovering

interesting patterns from a set of sequences. We describe SPEXS2 in a generic

way and show some possibilities for extending it further.

The practical and "ideal" versions of an algorithm can often diverge due to

performance and implementation details; therefore, we also explain problems

associated with implementing such an algorithm and possible solutions for

them. We also have provided a concise implementation of the algorithm that

captures the generic description more closely. Then we show some possible

applications for the algorithm and analyze the benefits of parallelization.

1.3 Structure of the thesis

In Chapter 2 we introduce the terminology used throughout the thesis. In

Chapter 3 we give an overview of the already existing algorithms and discuss

the reasons for choosing SPEXS[Vil02] as a basis for parallelization. We

generalize and decompose the SPEXS algorithm in Chapter 4 and reify it

in Chapter 5. We discuss an implementation of the parallelized algorithm

in Chapter 6 and in Chapter 7 we show some possible applications and its

parallelization benefits. The conclusions are presented in Chapter 8.
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Chapter 2

Definitions

Pattern discovery is a research area aiming to discover unknown patterns in

a given set of data structures that are frequent and interesting according to

some measure. In this chapter we formally define necessary terms used in

this thesis.

2.1 Sequence and Dataset

We use Σ to denote the set of tokens in the dataset, an alphabet. The size of

the alphabet is |Σ|. Tokens can be numbers, letters, words or sentences or

any other fixed element.

Any sequence 𝑆 = 𝑎1𝑎2...𝑎𝑛,∀𝑎𝑖 ∈ Σ is called a sequence over the alphabet

Σ. We denote the length of sequence with |𝑆|. If the length |𝑆| of the sequence
𝑆 is 0, it is called an empty sequence or 𝜖.

Example 2.1.1. ACGTGCCATC is a sequence over Σ = { A , C , G , T }.

A dataset is a collection of sequences.

Example 2.1.2. In a document, sentences can be considered as a dataset,
where a single sentence is a sequences and each word is a token in the alpha-
bet. The text This is some example. This is an other example. has
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sequences { [ This is an example ], [ This is an other example ] } and

the alphabet is Σ = { this , is , an , example , other }.

2.2 Pattern

Our aim is to discover repetitive and characteristic structures in data. We

call such structures patterns. One generic way to define a pattern is as a set

of all the sub-structures it represents. This means that we can say whether

some data sub-structure is represented by a pattern.

The pattern structure is usually dependent on the data-structures which

it represents. For example, sequence patterns are usually represented as

sequences, graph patterns are represented as graphs; but in some situations

sequence patterns could also be represented as graphs.

We denote the set of structures that a pattern structure 𝑝 defines as

𝑎𝑙𝑙(𝑝). If 𝛼 ∈ 𝑎𝑙𝑙(𝑝), where 𝛼 is a structure, then we say that the structure

𝛼 matches exactly the pattern 𝑝. We say that 𝛼 matches 𝑝 if any structure

from 𝑎𝑙𝑙(𝑝) is a sub-structure of 𝛼.

In this thesis we only consider sequential pattern structures and use pat-

tern in the meaning sequential pattern structure. One very common way of

describing patterns is by using regular expressions[Kle51; Wik13a]. In this

thesis we use regular expressions to describe the patterns and introduce the

regular expression syntax where needed.

Pattern size is the length of the pattern sequence.

Example 2.2.1. .[AT] is a pattern of size 2 and denotes a set { AA , AT ,
CA , CT , GA , GT , TA , TT }; it matches CCTC and exactly matches AT .

We denote the set of all pattern 𝑝 matching positions in a dataset 𝐷

as 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑝,𝐷). The exact representation of a single position depends

on the pattern structure. For sequences it can be simply a tuple of the

sequence number and the starting and end positions. For graphs this can be

represented as a mapping of the pattern to the graph.
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2.3 Query

We need to somehow understand where a given pattern 𝑝 is located in the

dataset 𝐷. This compound structure 𝑞 = ⟨𝐷, 𝑝, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑝,𝐷)⟩ is called a

query. The words pattern and query are interexchangable. When talking

about pattern parameters, then it makes sense to do so only in a specific

context, so we are actually talking about the query.

Example 2.3.1. Let our dataset be 𝐷 = [ ACGT , TXCGA ] and our pattern
be 𝑝 = C. . The corresponding query is ⟨𝐷, 𝑝, {[1, 3], [2, 4]}⟩, which means
that in the sequence 1, pattern 𝑝 ends at position 3, and in the sequence 2,
the pattern ends at position 4.

2.3.1 Query features

When we talk about how "interesting" a pattern is, we are actually evaluating

the query, since the pattern requires a context where it can be "interesting".

Queries can have different properties: length, number of matches in the

dataset, pattern textual representation etc. Such properties can be repre-

sented by a function that takes a query as an input and returns the property.

Formally a query feature is a function 𝑓 : 𝑄𝑢𝑒𝑟𝑦 ↦→ 𝐴𝑛𝑦.

We also need to see how "interesting" one query is compared to the others.

Query interestingness is a function 𝑓 : 𝑄𝑢𝑒𝑟𝑦 ↦→ 𝑉 𝑎𝑙𝑢𝑒, where the 𝑉 𝑎𝑙𝑢𝑒-s

are well-ordered. This gives a measure to compare two different queries. We

can often represent such interestingness measures as a real number.

We should also be able to somehow specify criteria for a query. Query

filter is a function 𝑓 : 𝑄𝑢𝑒𝑟𝑦 ↦→ 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 and shows whether the query

matches the criteria.

Example 2.3.2. Pattern occurrences in a document can be considered an
interestingness measure. Whether a query pattern is at least 3 tokens long
is a query filter.
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2.4 Pool

Pool is an abstract data type for a storing the queries. The only operations

that pool must provide is "push", for adding a query, and "pop", for getting

a query.

Example 2.4.1. Stacks and queues both satisfy the pool requirement. We
could also define pools that store the queries on the disk; it could internally
pack or reorder the queries for performance reasons.

2.5 Pattern Discovery

In this thesis, pattern discovery is defined as a process for finding, according

to a query interestingness measure, the most interesting subset of sequential

patterns that meet certain criteria in a sequence dataset.

Example 2.5.1. Let our research problem be "Finding the most common
nucleotide patterns, which are at least 3 nucleotides long, from a shotgun
sequencing output." "Most common" defines our interestingness measure.
"At least 3 nucleotides" is the criteria for selecting a subset of patterns.
"Sequencing output" is used as our dataset and "nucleotides" define how the
sequence looks like.
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Chapter 3

Approaches to Pattern Discovery

Pattern discovery algorithms can be organized in different ways[DD07; SD06;

P+00; HN05]. In this chapter we give an overview of the different ideas; for

thorough descriptions we suggest "Motif Discovery on Promotor Sequences"

by M. Häußler and J. Nicolas[HN05] and "A survey of motif discovery meth-

ods in an integrated framework" by Sandve and Drabløs[SD06].

3.1 Algorithmic techniques

The algorithmic techniques can be largely classified into 1. pattern growth,

2. alignment-based and 3. probabilistic pattern discovery.

There are two basic ways to grow the patterns: iteration and combining.

The iteration method uses a pattern and then starts iteratively expanding

the pattern with new tokens. This approach can be very well optimized due

to its simplicity, but it often requires more memory. The iterative approach

can also have problems with larger patterns. The combining method first

generates a set of simple patterns and then starts combining them to generate

new patterns.

Alignment-based approaches work in two phases: 1. building a set of

elementary patterns and 2. produce consensus pattern. The elementary

patterns are usually very simple subsequences. The elementary patterns
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are aligned and merged to a consensus pattern that best describes all the

patterns. The patterns could also be clustered before producing consensus

patterns. This approach is usually done by two separate tools; one to generate

frequent patterns and the other to align the patterns.

Probabilistic algorithms use a statistical model to iteratively improve

the pattern parameters to identify the real patterns until a stop criteria

is met. Common statistical techniques are Expectation Maximization (EM)

and Gibbs sampling.

3.1.1 Algorithms

In this section we describe algorithms that we consider interesting or impor-

tant in their algorithmic structure or approach. The list here is by no means

exhaustive.

SPEXS [Vil02] is an iterative pattern discovery algorithm. It iteratively

grows a pattern trie while maintaining pattern occurrences of each query.

Only patterns frequent enough are expanded. It can capture different regu-

lar expression tokens: groups (a token that matches multiple tokens in the

alphabet) and wildcard positions (a token that matches any subsequence).

It can also order the result based on interestingness criteria.

TEIRESIAS [RF98] is a combining algorithm. It starts with a list of

elementary patterns that occur at least 𝐾 times. Then it starts combining

these elementary patterns into larger patterns. It uses the observation that

a pattern P can be combined from pattern 𝐴, 𝐵 if the suffix of 𝐴 is the same

as the prefix of 𝐵. For example, sequences 𝛼∆ and ∆𝛽 can be combined

into sequence 𝛼∆𝛽 , where 𝛼 , ∆ , 𝛽 are sequences.

MobyDick [BLS00] is a combining algorithm. It starts with a dictionary

of sequences and then looks for concatenated sequences 𝑝, which has a low P-
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value, based on the dictionary words, and then adds such 𝑝 to the dictionary.

SANSPOS [BM11] is a iterative approach that uses a positioning matrix

to expand the pattern multiple tokens at a time. The use of positioning

matrix can significantly increase the performance in the presence of short

tandem repeats.

3.2 Pattern rating

There are many ways of comparing patterns to find the "most interesting"

pattern. Of course, pairwise comparison is often wasteful and it is better

to have an interestingness measure that we can calculate only by using the

query. For practical purposes it is useful to represent that measure with a

floating point value.

One useful property that an interestingness measure can have is mono-

tonicity when patterns are ordered by length. This means that when we

move from a small pattern to a larger pattern, the interestingness always ei-

ther grows or decreases. The more common name for this idea is the Apriori

principle, which states that if a itemset is frequent, then all of its subsets

must also be frequent, or if an itemset is infrequent, then all its supersets

must also be infrequent. For example, if we make a pattern more specific,

the number of matches can only decrease. This can be very helpful for prun-

ing the search space. Mostly monotonic functions could provide probabilistic

pruning, but we didn’t find any information regarding it.

Example 3.2.1. Lets assume we are looking patterns that should have at
least 10 matches. If we encounter a pattern ACT that has 8 matches then we
do not have to examine patterns xACT and ACTx , where x is some token
from the alphabet.

The most trivial measure for queries is the number of pattern matches

in the dataset. When calculating the number of matches we must be aware
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that we can have multiple matches per sequence. For example, a pattern AA

matches in sequence AAAAAA 5 times. It is better to count the number of

sequences that contain the matches to account for such pathological cases.

Many patterns can occur by chance; therefore, it is important to remove

such false positives from output is important. As previously mentioned, a fre-

quent pattern is not necessarily interesting. We can use a reference dataset to

compare the frequencies of patterns. There are different possibilities for a ref-

erence dataset: background sequence, shuffled input sequences, background

Markov-Model, binomial/multinomial models. The background sequence is

usually a similar dataset to the dataset we are analyzing; for example, if we

select a subset from data for analyzing we can use the rest as a background

sequence. If there are no background sequences we can simply shuffle the

input sequences to get a "randomized" sample. To preserve more of the data

characteristics we can build more complex models for randomization, such

as hidden Markov Model[Thi+01] or binomial and multinomial models.

We can specify interestingness measures using a reference dataset as a

measurement for false positives. For example, one can use the ratio between

the input sequence occurrence and background sequence occurrences. One

problem with ratios is that, if the frequencies are small, then the ratios

may be very high. By using binomial[HAC98] or hypergeometric model we

can estimate how probable the number of occurrences is in the input and the

background dataset. There are also measures Z-score[S+00], which estimates

how many standard deviations an observation differs from the mean, and 𝜒2-

Value[HS99], which estimates whether a frequency distribution differs from

theoretical distribution.

If we happen to have several queries with the same "score", then we can

break the "tie" by comparing them with additional measures. One such

useful measure is the complexity of a pattern. For example, if we have

patterns ATG and C and both have the same number of occurrences then

the longer pattern is probably more interesting.
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3.3 SPEXS

SPEXS is a pattern discovery algorithm described in "Pattern Discovery from

Biosequences"[Vil02]. It was designed to find frequently occuring patterns

from sets of sequences. It constructs patterns by incrementally expanding

the prefixes of the frequent patterns. It can generate several pattern classes:

subsequences, subsequences containing group characters (a token where alter-

native characters from a list can be used), and patterns containing wildcard

positions. The thesis describes several versions of the algorithm for finding

specific pattern structures and also provides a general algorithm for pattern

discovery. We only show some algorithms from the thesis.

The main idea of the general algorithm 3.1 is that first we generate a

pattern and a query that matches all possible positions in the sequence. We

then put this query into a queue for extending. Extending a query means

finding all queries whose patterns length is longer by 1. If any of the queries is

fit, by some criteria, it will be put into the main queue, for further extension

and to the output queue for possible output.

The simplest algorithm 3.2 is for finding subsequences from multiple se-

quences. The other algorithm 3.3 is for finding patterns group symbols from

multiple sequences. These algorithms are performant, but they mix the idea

of the algorithm and the optimizations of the algorithm, which means that

we lose intuitiveness of the algorithms. The algorithms are here mainly for

demonstrative purposes and we will not examine these algorithms, because

there is a more intuitive approach explained in Chapter 4.
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Algorithm 3.1 The SPEXS algorithm

Input: String 𝑆, pattern class 𝒫 , output criteria, search order, and fitness
measure ℱ

Output: Patterns 𝜋 ∈ 𝒫 fulfilling all criteria, and output in the order of
fitness ℱ

1: Convert input sequences into a single sequence
2: Initiate data structures
3: Root ← new node
4: Root.label ← 𝜖
5: Root.pos ← (1,2,...,n)
6: enqueue(𝒬, Root, order)
7: while 𝑁 ← dequeue(𝒬) do
8: Create all possible extensions 𝑝 ∈ 𝒫 of 𝑁 using 𝑁 .pos and 𝑆
9: for extension 𝑝 of 𝑁 do

10: if pattern 𝑝 and position list 𝑝.pos fulfill the criteria then
11: 𝑁 .child ← 𝑝
12: calculate ℱ(𝑝, 𝑆)
13: enqueue(𝒬,𝑝,order)
14: if 𝑝 fulfills the output criteria then
15: store 𝑝 in output queue 𝒪
16: Report the list of top-ranking patterns from output queue 𝒪
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Algorithm 3.2 Generation of most "interesting" subsequences of a set of
strings

Input: Input strings 𝑆𝑛 = 𝑆1, ..., 𝑆𝑛, threshold 𝐾, interestingness ℱ
Output: Subsequences that occur in at least K sequences of 𝑆𝑛 in the order

of fitness ℱ
1: 𝑆 ← 𝑆1#...#𝑆2, # ̸∈ Σ
2: Generate a mapping {1, 2, ..., |𝑆|} ↦→ {1, 2, ..., 𝑛} for countseq(𝑆𝑒𝑡)
3: Root ← new query
4: Root.label ← 𝜖
5: Root.pos ← (1, 2, ..., |𝑆|)
6: enqueue(𝒬, Root)
7: while 𝑁 ← dequeue(𝒬) do
8: for 𝑐 ∈ Σ do
9: 𝑆𝑒𝑡(𝑐) ← 0

10: for 𝑝 ∈ 𝑁.𝑝𝑜𝑠 do
11: add 𝑝 + 1 to 𝑆𝑒𝑡(𝑆[𝑝]) unless 𝑝 = |𝑆| or 𝑆[𝑝] = #

12: for 𝑐 ∈ Σ where countseq(𝑆𝑒𝑡(𝑐)) ≥ 𝐾 do
13: P ← new query
14: P.label ← 𝑐
15: P.pos ← 𝑆𝑒𝑡(𝑐)
16: N.child(c) ← 𝑃
17: enqueue(𝒬, P)
18: enqueue(ℬ, P, ℱ(P.pattern, 𝑆𝑛))

19: delete 𝑁.𝑝𝑜𝑠

20: while (𝑁, 𝑓)← 𝑑𝑒𝑞𝑢𝑒𝑢𝑒(ℬ) do
21: output 𝑁.𝑝𝑎𝑡𝑡𝑒𝑟𝑛 and 𝑓
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Algorithm 3.3 Generation of frequent patterns with character group posi-
tions
Input: Input strings 𝑆𝑛 = 𝑆1, ..., 𝑆𝑛, threshold 𝐾, character groups Γ
Output: Patterns from Σ ∪ Γ that occur in at least K sequences of𝑆𝑛

1: 𝑆 ← 𝑆1#...#𝑆2, # ̸∈ Σ
2: Generate a mapping {1, 2, ..., |𝑆|} ↦→ {1, 2, ..., 𝑛} for 𝑐𝑜𝑢𝑛𝑡𝑠𝑒𝑞(𝑆𝑒𝑡)
3: Root ← new query; Root.label ← 𝜖
4: Root.pos ← (1, 2, ..., |𝑆|)
5: enqueue(𝒬, Root)
6: while 𝑁 ← dequeue(𝒬) do
7: Output N.pattern
8: // Construct the position list for pattern defined by node N
9: if N.label ∈ Σ then

10: Pos ← N.pos
11: else
12: Pos ←

⋃︀
𝑐∈N.label N.sibling(𝑐).pos

13: // Group the positions according to characters in string S
14: for 𝑐 ∈ Σ do
15: 𝑆𝑒𝑡(𝑐) ← 0

16: for 𝑝 ∈ Pos do
17: add 𝑝 + 1 to 𝑆𝑒𝑡(𝑆[𝑝]) unless 𝑝 = |𝑆| or 𝑆[𝑝] = #

18: for 𝑐 ∈ Σ where countseq(𝑆𝑒𝑡(𝑐)) ≥ 𝐾 do
19: N.child(𝑐) ← new query with label 𝑐
20: N.child(𝑐).pos ← 𝑆𝑒𝑡(𝑐)
21: enqueue(𝒬, N.child(𝑐))
22: for 𝑔 ∈ Γ do
23: if ∃𝑓(Γ ∪ Σ, 𝑓 ⊂ 𝑔,

∑︀
𝑐∈𝑓 |𝑆𝑒𝑡(𝑐)| =

∑︀
𝑐∈𝑔 |𝑆𝑒𝑡(𝑐)| then

24: continue
25: if countseq(∪𝑐∈𝑔𝑆𝑒𝑡(𝑐)) ≥ 𝐾 then
26: N.child(𝑔) ← new query with label 𝑔
27: for 𝑐 ∈ 𝑔 do
28: N.child(c)← new query with label 𝑐 and positions 𝑆𝑒𝑡(𝑆[𝑐])

29: enqueue(𝒬, N.child(𝑔))
30: if all nodes N.sibling(𝑐), 𝑐 ∈ Σ ∪ Γ have been expanded then
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Chapter 4

SPEXS Generalization

In this chapter we show how to make SPEXS algorithm more abstract by

allowing flexibilty through function composition and finding minimal require-

ments for the data-structures.

4.1 Algorithm

The algorithm in a more conventional view is:

Algorithm 4.1 The spexs2 algorithm

Input: 𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑖𝑛 and 𝑜𝑢𝑡 are pools, 𝑒𝑥𝑡𝑒𝑛𝑑 is an extender function,
𝑒𝑥𝑡𝑒𝑛𝑑?, 𝑜𝑢𝑡𝑝𝑢𝑡? are filters

Output: Patterns satisfying filters and 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑟 are in 𝑜𝑢𝑡 pool

1: function spexs2(dataset, in, out, extend, extend?, output?)
2: prepare(in, dataset)
3: while 𝑞 ← in.pop() do
4: extended ← extend(𝑞, dataset)
5: for 𝑞𝑥 ∈ extended do
6: if extend?(𝑞𝑥) then
7: in.push(𝑞𝑥)
8: if output?(𝑞𝑥) then
9: out.push(𝑞𝑥)
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The algorithm starts by initializing the in pool. The in pool contains

queries which we wish to examine further. In the simplest case this means

that we create an empty pattern query and put it into the in pool. We could

also start the process with an already existing pattern.

As the next step, we pick a query from the in pool for extending. Ex-

tending a query means generating all queries whose pattern size is larger by

one. There can be several such queries.

If any of the queries should be further examined, as defined by the ex-

tendable query filter, it will be put into the in pool.

If the query is suitable for output, as defined by the outputtable filter, it

will be put into the out pool.

If we extend each pattern at each step by one we guarantee that we

examine all the patterns that conform to our criteria as defined by extendable

filter.

4.2 Pools

Since pools act independently from the rest of the algorithm they are free to

reorder, or store the queries on disk, or even discard the queries, if needed.

If we wish to get 100 best results the, then the output pool may immediately

discard the bad ones.

We can also use different types of structures as pools. For example,

using a queue would make the query examining run breadth first, using a

stack would make it run depth first. We can use priority queue to choose

examine the best queries first in order to reach the interesting results faster

as suggested in "Pattern Discovery from Biosequences"[Vil02].
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4.3 Filtering

Filtering allows us to reduce the number of queries we have to examine and

enables selecting a subset of queries by some criteria.

The filters can make the decision, whether the query should be extended,

based on any available information, for example, query pattern, number of

occurrences, metadata in sequences, metadata in dataset or configuration

data.

Example 4.3.1. Whether a sequence belongs to the input or the background
dataset, can be considered metadata. We count the occurences of a pattern
in each origin separately and then, if the ratio between origin dataset counts
is larger than some number defined in the configuration, we can add it to
output pool.

Although only one filter "function" has been specified in the algorithm

the filter can be a composite of multiple filters.

Example 4.3.2. Pattern length greater than three and pattern matches at
least 10 times in the dataset can be seen as a single filter that is composed
of two filters.

4.4 Extending

The extending process is the core of the algorithm and there are several ways

of doing it. The main criteria is that the query extending should guarantee

that all possible queries get eventually enumerated.

The extender is analogous to an inductive step. Our base case is formu-

lated by the prepare step in the SPEXS2 algorithm and the induction steps

are carried out by the extender.

Example 4.4.1. We start with an empty query and we know all its locations.
If our extender generates all the queries where the patterns are larger by 1,
then we are guaranteed to enumarate all the patterns.
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Example 4.4.2. We can start with the empty query and all queries with
patterns of length 1. Now if our extender generates queries where the patterns
are larger by 2 we can also examine all of the queries.

The extender determines which patterns and pattern classes will be gen-

erated. We can modify and compose different extenders to get new patterns.

Often more complex patterns can adversely affect algorithm runtime perfor-

mance.

The general idea for extending is to find all the following patterns from all

the previous query positions and then group the similar patterns into queries.

This process can be visualized with graphs. We make the sequence into a

graph where the links between nodes are the sequence tokens. Each pattern

then can walk the edges and match find the ending position for each pattern.

For example the sequence ACGCCGATCGC would look like:

A C G C C G A T C G C

For simplicity we use nucleotides as our alphabet Σ = { A , C , G , T } in
the following examples.

4.4.1 Sequences

The simplest case how the next function behaves is when we are only looking

for simple sequences. Let’s consider the sequence ACGCCGATCGC and the

pattern CG .
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A C G C C G A T C G C
Sequence

Matches

Querys

CG

CGA

CGC

Initially we only have query CG . Then, by taking the next token from

the sequence we can build up queries CGA and CGC , including the match

location set.

4.4.2 Group tokens

One common addition in a pattern language is matching a group of tokens.

For example, we can use x = [AC] to denote both tokens A , C . By

adding a edge where either one transitions we can capture such groups in the

extension process.

A C G C C G A T C G C

x x x x x x x

Sequence

Matches

Querys

CG

CGx
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There is a universal group . or wildcard that matches any token in the

alphabet.

Example 4.4.3. Pattern T. would match patterns TA , TC , TG , TT .

4.4.3 Star

Another possible extension is capturing a run of wildcards.

Example 4.4.4. A pattern A.*T would match ACT , ATTC , ATTTC and so
on.

On the graph instead of .* we use only * symbol.

A C G C
Sequence

*
*
*

*
*
*

Constructing more complicated patterns increases the amount of queries

that have to be enumerated. There are, of course, optimizations to avoid

intermediary steps and repeated walking on the dataset. For example, we

can skip the extension with only .* and instead extend with .*Y , where

Y is a token from the alphabet. This means that we avoid a large query

and, instead, have multiple smaller queries.

A C G C
Sequence

*C
*G
*C

*G
*C
*C

We can limit the length of the run to speed up the process. Limiting the

run length to 2 or 3 would look like:

25



A C G C C G A T C G C
Sequence

*C
*G
*G
*C
*C
*C
*C
*G
*G
*A
*A
*T
*T
*C
*C
*G
*G
*C
*C

4.4.4 Optimized group tokens

Instead of immediately extending the group tokens, we can take the output

of another extender and combine its results. If we have a group token 𝛾 that

contains 𝑡𝑜𝑘𝑒𝑛𝑠(𝛾) then the match positions for such group is

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑝𝛾,𝐷) =
⋃︁

𝑡∈𝑡𝑜𝑘𝑒𝑛𝑠(𝛾)

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑝𝑡,𝐷)

.

Example 4.4.5. A pattern A[CTG] is located in the document 𝐷 at posi-
tions 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠( AC , 𝐷) + 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠( AT , 𝐷) + 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠( AG , 𝐷).

4.4.5 Other possible extensions

By adding a edge from a node to itself and to the next node we can capture

optional tokens.

Example 4.4.6. An optional token Y? means that the token Y can occur
either zero or one time. For example AT? matches A and AT .

The graph for such token would look like:

A C G C
Sequence

A?
A?

C?
C?

G?
G?

C?
C?

Similarly, we can use the same technique that we used for the group

tokens, to optimize the performance (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑝𝑌,𝐷) = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑝) ∪
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑝𝑌 ), where 𝑌 is a token).
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4.4.6 Alternative extensions

We mentioned that we can also extend by a different number of tokens at

a time, as long as we guarantee that all patterns will be searched. For

optimality we also do not want to iterate over the same pattern multiple

times. As a simple example, the sequence ACGCGA could be iterated with

the following setup:

AC

CG

GC

CG

GAAlternative graph

Starting queries

𝜖 A

C

G

Since at the starting point we have all the patterns of length 0 and 1;

then by adding patterns with length 2, we can be sure to enumerate all of

them. Of course, the previous methods for group and star patterns extension

need to be adjusted.

4.5 Summary

Although the extender was presented with graphs, practically it is much more

reasonable to minimize the graph as simple sequence , as already mentioned

in "Pattern Discovery from Biosequences"[Vil02]. The additional extension

links shown in the graphs can either be precalculated or calculated at runtime.

We can also derive the minimal requirements for the dataset from the

previous results. First, we need to get the initial empty query - which means

we should somehow be able to get all the positions, from where a pattern

could start. The other requirement is finding the next position and the token
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from a given position. Finding the next positions from a given position on

sequence can be interpreted as a forward iterator.

The best way to visualize an extender was with graphs, suggesting that

the spexs2 algorithm could be made to work on trees and then on graphs.

Finding sequential patterns from a tree should be straightforward, since the

generic algorithm is oblivious to the amount of following tokens any position

can have. Graphs are more difficult, since we need to remove duplicates

caused by extending the previous pattern graphs[Wik13b].

To use this generic version of the SPEXS algorithm we need to 1. choose

our pool structures, 2. choose our filters, 3. choose our extender and initial

queries and 4. dataset implementation.
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Chapter 5

Parallelization

In this chapter we discuss different ways of reifying the algorithm to support

parallelism. There are several ways of making a program parallel. Using

parallelization means that there is a need for some communication and syn-

chronization to make the processes reach the final result. So, it is useful to

find as many possible parallelizations as possible, but it is not wise to use all

of them.

5.1 Process

This is the main process of the algorithm as described by data flow dia-

gram.[Kah74; LP95] Circles denote processes and unfinished rectangles de-

note data stores.

In Extender

Extend? Output? Out

Dataset
p

pX

pX

pX

pX
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We can see that the different query extension processes do not share a

dependency, except the dataset. Dataset itself is read-only in a given process,

which means that we can use multiple extender processes. The same applies

for extendable and output filter.

process 1

process 2

In

Extender Extend? Output?

Extender Extend? Output?

Dataset Out

p

pX

pX

pX

pX

p

pX

pX

pX

pX

We can add more processes in a similar fashion without affecting the end

result. However, such concurrency will introduce a source of indeterminism.

5.2 Extending

The extender can be parallelized via map and reduce concepts[DG08; Jr09].

The extender was based on two concepts: finding the next positions from a

previous pattern position, and then grouping those positions together to find

the next queries.

The next positions can easily be found from the previous position via
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mapping, by using the next function of the dataset. Grouping requires some

extra attention - grouping is a reduction into a map by a key with joining.

Creating a pseudo-code representation of such function compositions would

be very difficult and it would require a lot of new syntax. Therefore, we

present this idea in Clojure[Hic08] which should be readable to people who

know lisp. We use the reducers library to show how the extension can be

implemented.

Algorithm 5.1 Parallel extender

1 ( require ’ [ c l o j u r e . core . r educe r s : as r ] )
2

3 ; f o l d− j o in based grouping func t i on

4 ( defn group−map−by [ g f c o l l ]
5 ( r / f o l d
6 ( r /monoid ( p a r t i a l merge−with in to ) ( cons tant ly {}) )
7 ( fn [ r e t x ]
8 ( let [ k ( g x ) ]
9 ( assoc r e t k ( conj (get r e t k [ ] ) ( f x ) ) ) ) )

10 c o l l ) )
11

12 ( defn extend [ datase t query ]
13 ( let [ s t ep s ( r /mapcat #(walk datase t %) ( : positions query ) )
14 grouped (group−map−by : token : position s t ep s ) ]
15 ( r /map #(chi ld−query q %) grouped ) ) ) )

Such an approach may not give much improvement on desktop CPUs,

since we already can process multiple queries at the same time. This paral-

lelization could be beneficial for highly parallel processors such as GPGPUs

or FPGAs.

5.3 Distributed processes

Since the dataset and the process memory consumption can get quite large, it

would also be beneficial to partition the dataset between multiple machines.

This can also help on a single machine, since we can interlace running the

different processes and store the non-running process in non-volatile memory.

The extension results for a given query stay inside the sequence, which
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means that we can partition the dataset by assigning sequences to separate

datasets.

The whole dataset is required only for filtering queries, since simplest op-

erations ("counting matches in dataset") require full knowledge of all matches

over the dataset. We can calculate partial results and let the filters commu-

nicate the results. This could also be done in a separate process instead of

using direct communication.

process 1

process 2

Out

Output?Extend?In

Extender Dataset 1

Output?Extend?In

Extender Dataset 2

p
pX

pX

p pX

pX

Example 5.3.1. For example, to see whether some query is over some count
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limit, we first count matches in the partial datasets. Then the processes
exchange the partial results and add these results together locally. Depending
on the local result and filter configuration, whether to discard or keep the
query.

Such distribution could be used to separate the process into more man-

ageable chunks, but, at the same time, it may add significant communication

overhead.
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Chapter 6

Implementation

In this chapter we will discuss a practical implementation, spexs2, for pattern

discovery in sequences. We only discuss parts that we consider non-trivial or

interesting and could be useful in implementing other algorithms.

Information about the full source code is in the Appendix A.

6.1 Language

The language choice in a project is very subjective. Usually the language

chosen is either the language that the author feels most comfortable with

or widely used language that has many libraries. The decision to use Go

was based on several informal sources[Mac13; Ful13; Hun11; GPT13; Hic08;

Bez+12] and the following discussion should be seen as opinions rather than

facts.

This project should be a reference implementation and should be as read-

able as possible; languages such as C++, Java are probably not the best

choices due to their complexity. We need to implement generic code; this

means that Clojure, Haskell and OCaml would be useful, but they would

require a lot of effort to learn for a newcomer. Languages such as Matlab,

Octave or R would be ideal due to their ease of use, but their speed or

memory performance is significantly worse than C.
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There are newer languages Go, D and Julia that suit the problem bet-

ter. D is an high performance language that was designed as an replacement

for C++, but still has a steep learning curve. Julia is a high-performance

dynamic language designed for technical computing, but at the time of start-

ing the project it had significant language runtime bugs. Go is a systems

language designed to be simple, but it is worse in performance than D and

Julia.

Go seemed to be the best choice due its simplicity, stability and concur-

rency support. The performance characteristics also seemed good enough.

Language simplicity has several benefits. It is easier for new people to con-

tribute to the project. Simplicity means that most of the language semantics

can be directly translated to an other language if there are unsolvable prob-

lems. In summary, Go seemed a nice compromise between Python and C.

6.2 Architecture

The main criteria for designing program have been described in "On the Cri-

teria To Be Used in Decomposing Systems into Modules"[Par72]. It suggests

decomposing programs into isolated units and parts that are likely to change

together.

We chose the following module decomposition for the application:

Configuration structure for holding the configuration data

Setup based on the configuration initializes data-structures and functions for the

algorithm

Reader reads in the data from files

Database a collection of datasets

Algorithm the SPEXS2 algorithm

Printer prints the result queries

The program starts by interpreting flags, then it marshals the configura-

tion file onto an internal data structure, this configuration structure is used

as an input to the setup module. The setup module initializes (as defined

35



by configuration) a reader, a printer and also prepares structures for the al-

gorithm. Then the reader reads the input files into the database. Then the

algorithm is started and, finally, the printer formats the results and sends

them to the output. This structure is universal for algorithm implementa-

tions and it allows adding more configuration options easily, different input

formats and different output formats. By changing the configuration, reader

and printer we could make it into a web service, instead of running it on

command line.

6.3 Configuration

One problem with flexible algorithms is that it can be run in many different

ways. This can lead to us having tens or hundreds of command-line flags

for the application. To avoid this problem we decided to use a json[Cro06]

file for the program configuration. This format is widely known and well

structured. For example, a configuration file for pattern discovery in protein

sequences:
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{
"Dataset": {

"fore" : { "File" : "$inp$" },
"back" : { "File" : "$ref$" }

},
"Reader" : {

"Method" : "Delimited"
},
"Extension": {

"Method": "Group",
"Groups" : {

"." : { "elements" : "ACDEFGHIKLMNPRQSTVWY"}
},
"Extendable": {

"PatGroups()" : {"max" : 3},
"PatLength()" : {"max" : 6},
"Matches(fore)" : {"min" : 20},
"NoStartingGroup()" : {}

},
...

},
"Output": {

"SortBy": ["-Hyper(fore, back)"],
"Count": 100

},
"Printer" : {

"Method" : "Formatted",
"Format": "Pat?()\t...\tHyper(fore,back)\n"

}
}

In hindsight json for configuration may not be the best option due to

its rigidity. Users can often forget to add/remove trailing commas or for-

get to add quotes. This suggests that formats that are less rigid, such as

yaml [BEI01], would be a better choice.

One other problem with configuration files is that they are harder to

modify than command-line flags. By mixing command-line flags and config-

uration files we can get a solution that works better in practice than either

of them independently. One easy way to implement this is to add custom

syntax into the configuration file:
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"Datasets" : {
"fore" : { "File" : "$argument:default$"
...

We can interpret command line flags as replacements into the configura-

tion file. I Using

spexs2 –conf conf.json argument=other

would transform the configuration file into:

"Datasets" : {
"fore" : { "File" : "other"
...

If no parameter was given then the default value "default" would be used

instead.

Configuration files are also problematic when getting familiar with the

tool. As a user you need to find a configuration file that suits your needs,

then modify it and finally run it. To remedy this problem the application

can embed sample configuration files so called "profiles" that can be used

instead. This means you can use the following for simpler cases:

spexs2 -p=protein input=some.data min-p=1.0

6.4 Alphabet and Database

spexs2 was designed also to work with texts and words. To support such large

alphabets we first needed to map each token to an identifier (an integer) and

convert the sequences to a sequence of these identifiers. There are analyses

that require many datasets. For example, instead of comparing two datasets

at a time you may want to compare multiple datasets at the same time.

Supporting multiple datasets in the code is rather trivial, but exposing this

to the user is more problematic.
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To support multiple datasets we added a name for each dataset in the

configuration:

"Datasets" : {
"A" : { "File" : "$A$" },
"B" : { "File" : "$B$" },
"C" : { "File" : "$C$" },
...

We can use the command-line argument syntax to make it easier to use.

When we are defining filters we need to specify how to exactly calculate

them. For example, we can not just say ratio of occurrences since that would

be ambigous if there are more than two datasets. Our solution was to use

syntax similar to function calls in the configuration. This allows us to clearly

see that the occurrences ratio between datasets A and B must be at least 2.

Obviously we can define features that take more arguments.

...
"Extension": {

"Outputtable": {
"OccurencesRatio(A, B)" : {"min" : 2},
...

6.5 Pools

The input pool can direct the flow of extending process, which, in turn,

can affect performance and memory. Performance does not get affected by

chaning the poolt type as much because the algorithm is exhaustive and,

hence, every query gets examined, unless it is terminated early or the filters

are being tuned during runtime.

There are several ways to run the extension process: breadth first, depth

first, most frequent first, least frequent first and others. Breadth first and

depth first can easily be achieved by a queue and a stack respectively. We

can use priority queues to implement other ways of extending.
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One major concern is running on large datasets, which means that the

memory consumption is very important. Although examining the most fre-

quent query first can reach the interesting results faster, it also uses more

memory due to the unextended less frequent queries.

Examining the least frequent approach minimizes the memory use, since

the least frequent query is most likely to be discarded by filters. But this

requires the use of a priority queue. The depth first approach uses less

memory than travsing the most frequent first and it can use a stack. Since

we need concurrent access to the pool it requires fast push/pop operations.

The depth-first ordering is more suitable since push/pop operations are faster

than on priority queues.

For the output pool a limited size priority queue is the obvious choice,

because we need to sort based on some interestingness measure and only the

best results are necessary.

6.6 Query and Location set

The structure of query required some special consideration. The proposed

solution in "Pattern Discovery from Biosequences" was to use a trie for re-

membering each pattern and then use optimized set for storing locations

inside the database. Since the algorithm must work concurrently using a

simple trie was not an option, because adding a child to the parent from

multiple processes can easily cause a race condition.

The first approach we tried was to flip the trie, which means that, in-

stead of parent pointing to the child, the child points to the parent. The

original tree can be extracted by reversing the links after the algorithm has

finished. This started causing problems, because we are working in a garbage

collected environment and each pointer adds overhead to the garbage collec-

tion. Rough estimation also suggested that memory benefit from using trie is

minimal. The second approach was to copy any needed content to the child
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and not have links between them.

The other problem was how to store the position set. Initially it seemed

that a very tightly packed set structure is required to keep the memory

usage of the program minimal. This of course would have impacted the

performance. This actually turned out not to be the case, since all the queries

can be packed with any packing algorithm while they are being stored in a

pool and that did have similar memory benefit.

One interesting memory optimization we found was related to storing

sparsely distributed integers. Because we did not find a memory efficient set

implementation for Go, we needed to implement one ourselves. A trivial way

to implement a large bitset is using a hash map, where the values are bit-

arrays. We use the first bits as the key and the rest store in the bit-array. We

know that the occurrences of a pattern are likely to be sparse, hence it is also

quite likely there are only bit arrays where only a single bit is set. In a sense,

this sort of sparse data is the worst case scenario for this implementation.

The solution is to swap 𝑘 lower bits with some 𝑘 higher bits. This means

that the key bits will be more likely to collide, hence it is more likely that

multiple numbers end up in the same bit-array.

For example, lets assume we have 8bit integers and we can store 3 bit

numbers in the bit-array. We swap bits 2 and 1 with bits 4 and 3. We added

a "." to show the key-value separation. Here we generated numbers that have

a short interval between that is at least larger than 5.
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number binary swapped

index 76543.210 76521.430

7 00001.011 00001.011

12 00011.000 00000.110

19 00100.011 00101.001

26 00110.010 00101.100

32 01000.000 01000.000

37 01001.001 01000.011

43 01010.011 01001.101

50 01100.010 01101.000

56 01110.000 01100.100

61 01111.001 01100.111

In the unswapped case the data structure would have the worst case

scenario, where each number would be stored in a separate bit-array. Af-

ter swapping the bits we have made them "less uniformly distributed" and

reduced the number of bit-arrays from 10 to 7. Of course, "the best" bit-

swapping method and key/value size vary, depending on the numbers being

stored. If we are using large integers we can additionally make an additional

layer to reduce the memory overhead. In our case, after tuning, it used about

2x less memory than the trivial implementation.

6.7 Query features, interestingness and filters

When we first described the query features we showed that filters and inter-

estingness are a special case query features. In spexs2 the features are used

to print information about the results. Since most of the implemented fea-

tures can also be used as a interestingness measure we used a simplification

for the "Feature" function definition.

type Feature func(q *Query) (float64, string)

This means that the function returns two types, a real value and a string.

In the implementation, there are only a few features that return arbitrary
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types so it was easier to convert them into a string than let them return a

variant type. The only place, where such different features is needed, is for

printing. For example, one of such features is the string representation of the

pattern.

To construct an Feature we use a function that takes the datasets as

arguments. To bind the constructor to the configuration we register it and

use the function name as the name that is used in the configuration file.

// the count of matching sequences
func Matches(datasets []int) Feature {

return func(q *Query) (float64, string) {
matches := q.Matches()
return countf(matches, group), ""

}
}

The filters can be very similar to features in their implementation. For

example, a filter for pattern length is similar to the pattern length feature.

Although implementing all combinations is possible we can use function com-

position to avoid such repetition. By limiting a feature with a minimum or

a maximum value we can turn it into a filter. For example:

func MakeFeatureFilter(fn Feature, min, max float64) Filter {
return func(q *Query) bool {

v, _ := feature(q)
return (min <= v) && (v <= max)

}
}

There are some filters that cannot be defined by features so there is still a

possibility to make separate filters. For example, disallowing certain tokens

in pattern is defined as a separate filter. In languages which do not support

such composition we could use object composition and/or function pointers.
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6.8 Synchronized Graph Traversal

spexs2 can be seen as a pattern tree traversal algorithm with some extra

logic. Implementing parallel search over a tree requires synchronization such

that there are only a certain number of workers and that they wouldn’t die

of starvation. For universality we describe the principle for graphs.

Without synchronization the parallel version looks like:

Algorithm 6.1 Graph traversal

Output: All nodes in tree get processed with fn
1: function visit(tree, start, fn, examine?)
2: 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← { start })
3: start workers
4: while 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 not empty do
5: 𝑛𝑜𝑑𝑒 ← 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑.take()
6: fn(𝑛𝑜𝑑𝑒)
7: for 𝑐ℎ𝑖𝑙𝑑 ∈ children(𝑛𝑜𝑑𝑒) do
8: if examine?(𝑐ℎ𝑖𝑙𝑑) then
9: 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑.put(𝑐ℎ𝑖𝑙𝑑)

10:

11: wait for workers

This would not work correctly with multiple workers since there are race

conditions and the workers can die early due to starvation. In the algorithm

6.2 we use 𝑚𝑢𝑡𝑒𝑥 to protect variables and data structures. Semaphore 𝑎𝑑𝑑𝑒𝑑

tracks how many items are in the 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 set. If the process terminates

𝑎𝑑𝑑𝑒𝑑 is turned into a turnstile1 on line 30 and 13. Variable 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 tracks

how many workers are busy.

1Turnstile[Dow05] is a way of using a semaphore for letting through multiple waiters
by first releasing a waiting worker and that worker will release another worker.

44



Algorithm 6.2 Synchronized graph traversal

Output: All nodes in 𝑔𝑟𝑎𝑝ℎ get processed with 𝑓𝑛
1: function Visit(graph, start, fn, examine?)
2: added ← new semaphore(0)
3: 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 ← false
4: mutex ← new mutex()
5: 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 ← 0
6: 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← { start }
7: 𝑎𝑑𝑑𝑒𝑑.signal()
8: start workers
9: while 𝑡𝑟𝑢𝑒 do

10: added.wait() ◁ wait for an unvisited node
11: mutex.lock() ◁ protect shared variables
12: if 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 then
13: added.signal() ◁ let the next worker through
14: mutex.unlock()
15: break
16: 𝑛𝑜𝑑𝑒 ← 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑.take()
17: 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 ← 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 + 1
18: mutex.unlock() ◁ release shared variables
19: fn(𝑛𝑜𝑑𝑒) ◁ do the actual work
20: for 𝑐ℎ𝑖𝑙𝑑 ∈ children(𝑛𝑜𝑑𝑒) do
21: mutex.lock() ◁ protect the unvisited queue
22: if examine?(𝑐ℎ𝑖𝑙𝑑) then
23: 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑.put(𝑐ℎ𝑖𝑙𝑑)
24: added.signal()

25: mutex.unlock()

26: mutex.lock() ◁ protect shared variables
27: 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 ← 𝑤𝑜𝑟𝑘𝑒𝑟𝑠− 1
28: if 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 = 0 and 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = {} then
29: 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 ← true
30: added.signal() ◁ release a waiting worker

31: mutex.unlock()

32:

33: wait for workers
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6.9 Debugging

Seeing how the algorithm runs is very useful for getting an understanding

how the algorithm works. This often can help to either improve the input

configuration or debug the program itself. Such tracing is often implemented

by adding debug statements.

For example:

func Spexs(s *Setup) {
for q, ok := s.In.Pop(); ok {

trace("started extending %v", q)
extended := s.Extend(q)
trace("extension result %v", extended)
for qx := range extended {

if s.Extendable(qx) {
trace(" > extendable %v" qx)
s.In.Push(qx)
if s.Outputtable(qx) {

trace(" > outputtable %v" qx)
s.Out.Push(qx)

}
}

}
}

}

Such statements make it harder to read the actual code, also it’s hard

to modify the statements for debugging or/and provide different ways of

debugging. We can use lexical closures to make this simpler:
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type Extender func(q Query) []Query

func AddDebuggingStatements(s *Setup) {
fn := s.Extend
s.Extend := func(q Query) []Query {

trace("started extending %v", q)
extended := fn(q)
trace("extension result %v", extended)

for qx := range extended {
trace(" > %v", qx)
trace(" > extendable %v", s.Extendable(qx))
trace(" > outputtable %v", s.Outputtable(qx))

}
return extended

}
}

func Spexs(s *Setup) {
for q, ok := s.In.Pop(); ok {

extended := s.Extend(q)
for qx := range extended {

if s.Extendable(qx) {
s.In.Push(qx)
if s.Outputtable(qx) {

s.Out.Push(qx)
}

}
}

}
}

func run(){
S := CreateSpexsSetup()
if debugMode {

AddDebuggingStatements(S)
}
Spexs(S)

}

As we can see the algorithm doesn’t have any debugging statements. We

can also define different "debug statement injectors" that provide different

information. This method, of course, has a slight impact on performance due

to the additional indirection, but only if it is used. This can be extended to

provide user interaction and other features.
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6.10 Comparison with SPEXS

The implementations of spexs2 and spexs vary significantly. spexs2 was de-

signed to be a generic tool. In comparison: spexs has one input format,

allows five ways of extending, allows 4 different ways for pattern traversal

and allows specifying about 4 different filters; spexs2 has two input formats,

supports large alphabets2, has five different ways to extend, has 17 different

features and 19 different filters for queries and has customizable output.

It is probably worth mentioning that most of the query feature imple-

mentations are about 10 lines of code, every query feature that returns a

floating point value can be used as a filter, and each extension method is

about 30 lines of code. In summary spexs2 can be considered a generic tool

for sequence pattern discovery, where new features can be added easily.

2spexs2 alphabet size is limited by the size of an integer.
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Chapter 7

Applications and experimental

results

7.1 Examples

Here we show several proof of concept examples for using the spexs2 tool.

7.1.1 Genomic sequences

The original SPEXS algorithm worked on genomic sequences, so it is ap-

propriate to show that spexs2 also works on such datasets. Here is a prob-

lem that was presented in "Pattern Discovery in From Biosequences"[Vil02].

The search problem was to find overrepresented sequences from a cluster

of co-expressed genes by comparing them to a set of random samples from

upstream sequences in yeast genome.
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Pattern Cluster Background Ratio Binomial Prob.
GATGAG.T 52/70 63/67 8.37 4.649e-37
G.GATGAG.T 39/49 26/29 14.979 6.926e-37
AAAATTTT 63/77 126/134 5.095 1.731e-33
AAAA.TTTT 59/86 107/138 5.617 3.952e-33
GATGAG.TG 34/42 23/23 14.74 7.414e-32
G.GATGAG 45/60 54/58 8.456 1.049e-31
AAA.TTTT 79/145 247/345 3.261 1.281e-31
GATGAG.T.A 35/44 28/29 12.551 2.690e-30
TG.AAA.TTT 53/61 93/99 5.808 8.624e-30

Almost the same results were reported by spexs ; there are some variations

due to the random background sample.

7.1.2 Event sequences

To test, whether it is plausible to analyze event sequences, we generated a

dataset of 5000 sequences of length 20 to 50. The events [ A , B , C , D ,

F , G , H , I , X , Y , Z ] in the dataset are non-uniformly distributed and

additionally there is an error event E , which will happen if there is a "trigger

pattern" X.*Y.*Z . Some examples from the sequences:

# without errors
AIBBFCACCADAHABXCHCG
GBACDBHBDAIBHYDIHAAADAFAHFGGDBFFYFZBFBAGDIDDX
CAGZHGBAXHFIGBAFBIABDYBABBFDBAFGGAAAAHHC
CGDCHHAAAABFBDBCHBBFGICDBGGDGCDFIFADCA
# with errors
ADDDBBCYDFCCHXFDDXBAYDYBHACAZE
DXFDIHBXYDBFGGCBHAYBDHZE
IXBBXHBBACYCFHADHGFDACDHCGYABYBHADZE
AHAFFFGABIXBCAYCBBHBDCDDXZE

It is easy to notice the ZE part, but the X.*Y.* part of the pattern is

very hard to notice - even when you know that it is there.

To prepare the dataset we extracted sequences with errors into a separate

file. Since there can be a lot of patterns by chance we use the whole dataset

as the background. This allows us to compare the count of matches in the
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errors and the whole dataset. If the pattern occurs in both datasets at the

same frequency it probably isn’t an interesting pattern.

pattern errors all ratio p-value
A.*Z 330/343 1706/5000 2.818 4.952e-126
B.*Z 329/343 1676/5000 2.860 1.041e-126
X.*G.*Z 254/343 654/5000 5.659 5.511e-132
Y.*B.*Z 256/343 596/5000 6.258 1.954e-142
X.*Y 343/343 1771/5000 2.822 9.879e-147
X.*F.*Z 274/343 717/5000 5.568 2.409e-147
X.*C.*Z 285/343 758/5000 5.478 7.304e-156
X.*D.*Z 281/343 718/5000 5.701 4.570e-156
A.*A.*Y.*Z 250/343 452/5000 8.055 1.304e-158
G.*Y.*Z 265/343 515/5000 7.494 1.656e-166
F.*Y.*Z 272/343 522/5000 7.588 1.639e-174
X.*A.*Z 305/343 811/5000 5.478 1.798e-176
X.*B.*Z 304/343 785/5000 5.641 1.540e-178
D.*Y.*Z 281/343 557/5000 7.347 1.066e-180
C.*Y.*Z 285/343 584/5000 7.107 1.056e-181
B.*Y.*Z 292/343 610/5000 6.971 2.370e-187
A.*Y.*Z 300/343 616/5000 7.092 3.163e-198
X.*Z 343/343 1054/5000 4.740 1.276e-215
Y.*Z 343/343 805/5000 6.204 1.009e-249
X.*Y,*Z 343/343 343/5000 14.537 0

As we can see, this X.*Y.*Z pattern can be found very easily. We

picked 20 best patterns based on p-value, which was calculated according

to hypergeometric distribution. This example is an ideal situation and the

conclusions should be verified against real world data.

7.1.3 Text patterns

As an example, how text patterns can provide useful feedback, we ran it on

a chapter of this thesis. Potentially it can find overused words and phrases.

To test this claim we ran the algorithm on Chapter 6.

To prepare the text we separated each sentence to a separate sequence.

Then we removed all the non-textual characters and replaced them with

spaces. The text was then converted to lowercase. We additionally tried

stemming the text, but it didn’t provide any useful improvements for this
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case. We use a group ”𝑏𝑖𝑛𝑑” = [𝑎𝑛𝑑, 𝑜𝑟, 𝑖𝑓, 𝑡ℎ𝑒𝑛, 𝑒𝑙𝑠𝑒, 𝑡ℎ𝑒, 𝑎, 𝑎𝑛,𝑚𝑦] to define

words that do not carry much meaning. First we searched patterns that can

have group symbols and are at least 4 tokens long. We limited the output to

10 results:

matches pattern
2 this means that the
2 a practical implementation spexs2 for
2 a practical implementation spexs2
2 discuss a practical implementation spexs2
2 discuss a practical implementation
2 discuss a practical implementation spexs2 for
2 discuss (bind) practical implementation spexs2 for
2 discuss (bind) practical implementation
2 discuss (bind) practical implementation spexs2
2 for pattern discovery in

Repetition of such long word sequences looks peculiar. Further investiga-

tion revealed that there was a sentence that was rewritten and the previous

version hadn’t been removed. After removing the repeating sentence we reran

and also lowered the pattern length limit to 3.

matches pattern
5 the configuration file
4 a lot of
3 this means that
3 in the configuration
3 means that the
3 there are only
3 in (bind) configuration
3 pattern discovery in
3 we can use
3 of (bind) pattern
2 into (bind) configuration file
2 in (bind) configuration file
2 pattern discovery in sequences
2 into the configuration file
2 for pattern discovery in
2 this means that the
2 in the configuration file
2 be the best
2 go is a
2 the algorithm is
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We see repetitions such as "this means that", "in the configuration",

"we can use" and "pattern discover in", which suggests we can improve the

text at those places. Usefulness of the algorithm for such natural language

processing tasks should be further examined.

7.2 Performance measurements

To verify that the parallelization improves the performance we need to see a

speedup when using multiple cores. As a comparison we also compare with

the original spexs. The exact versions we tested were spexs2@6b14edd and

spexs.0.2.a01.

For performance analysis we used 400,000 random protein sequences with

length 12. Limited number of wildcards to 3 and searched all patterns with

at least 5 matches in the dataset. We calculated the average of 5 runs for

spexs and average of 3 runs for spexs2.
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The original spexs works faster than spexs2 which is to be expected due to

the runtime differences. At single core spexs2 performance is about 7 times
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slower than spexs. We can expect 2x performance difference due to the Go

runtime and compiler. The rest of the difference 3.5x are most likely due to

more general algorithm and some simplifications that were made to increase

code readability.

The parallelization has significant benefit up to 20 cores. Amdahl’s Law

[Gus88] states that the the parallel algorithms will be limited by their se-

quential parts; so this falloff is to be expected. The parallelization is effec-

tive, although the runtime has significant impact on the performance. spexs2

performance can be significantly improved with optimizations1 that weren’t

implemented due to time constraints.

1The focus currently has mainly been simplicity, readability and memory usage.
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Chapter 8

Conclusions

In this thesis we analyzed how to develop a parallel pattern discovery al-

gorithm. We showed how we can take an already existing algorithm and

parallelize it by generalizing, decomposing and then reifying. Finding the

general idea of the algorithm can simplify the algorithm and provide more

intuitive ways of interpreting it. Decomposing the algorithm allows us to

talk about separate parts of the algorithm and modify them without affect-

ing the general idea of the algorithm. If we have an abstract algorithm we

can substitute those parts with parallel structures and algorithms.

As a practical part we implemented a parallelized algorithm based on

spexs [Vil02]. We discussed several problems of implementing an algorithm

and interesting approaches to these problems. The program has been de-

signed to be easily extendable for different inputs, filters and interestingness

criteria. We discussed different possible uses for the implementation and

analyzed the performance gained from parallelization.

Approaches suggested in this thesis could be used to generalize and par-

allelize other algorithms. Finding generic algorithms can be an easy way of

discovering new optimizations, new algorithms and new potential applica-

tions for algorithms. If these generalizations can be implemented practically,

we make the implementation easily extendable and also usable for a wider

range of problems.
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Paralleelne Mustriotsing

Egon Elbre

Magistritöö

Selles töös uurisime, kuidas arendada paralleelset mustrituvastus algo-

ritmi. Näitasime, kuidas võtta olemasolev algoritm ning paralleliseerida see

üldistades, liigendades ja reifitseerides. Algoritmi üldistamine võib tuua esile

intuitiivse algoritmi interpretatsiooni. Liigendatud algoritmis on võimalik

iga osa eraldi käsitleda algoritmi tulemust muutmata. Asendades iga osa

paralleelsete struktuuride ja algoritmidega, saamegi paralleelse algoritmi.

Praktilise osana implementeerisime paralleliseeritud algoritmi spexs2 võttes

aluseks algoritmi SPEXS[Vil02]. Seejärel arutlesime erinevate probleemide

üle, mis tekkisid algoritmi implementeerimisel. spexs2 -te on võimalik laien-

dada erinevate sisendandmetega, otsingufiltritega ja huvitavuskriteeriumitega.

Pakkusime välja erinevaid algoritmi kasutusvõimalusi ning analüüsisime par-

alleliseerimise tulemusel saavutatud kiirusevõitu.

Selles töös tutvustatud ideid saab kasutada algoritmide üldistamisel ja

paralleliseerimisel. Algoritmi üldistamisel on võimalik leida uusi viise kuidas

algoritmi optimeerida ning avastada uusi algoritme ja leida uusi kasutusvald-

kondi sellele algoritmile. Üldistuste implementeerimisel saame programmi,

mida on lihtne laiendada ning mida saab kasutada erinevate probleemide

lahendamiseks.
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Appendix A

spexs2

The program can be found at github.com/egonelbre/spexs.

Several configurations can be found in the folder examples. It is best to

start with an already existing configuration and modify it to your needs.

If the running spexs2 –details will print extended help about all the avail-

able features, filters, extenders.

A.1 source

The source code in src has the following structure:
src/

spexs ........................................algorithm definition

extenders/ ...................................query extenders

features/ ........................... query feature calculators

filters/ ...............................filter implementations

pool/ .........................different queue implementations

database.go .......................sequence dataset definition

query.go .....................................query definition

spexs.go ........................... algorithm implementation

spexs2 ......................................command-line utility

conf.go ..................................configuration reader
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dataset.go ....................................dataset reader

features.go ...............parses and creates feature functions

help.go ...........................prints help for the program

printer.go .............................prints the final output

runtime.go .......................profiling and live-view setup

setup.go ....................prepares everything for algorithm

spexs2.go ...................................main-entry point

There are also additional packages:
src/

debugger/ ......................debugger for concurrent processes

stats/ .......................................statistical functions

binom/ ............................binomial p-value calculation

hyper/ .....................hypergeometric p-value calculation

utils/ ................................additional utility functions

bit/ ................................functions for bitmanipulation

set/ .........................................set implementations

hash/ ..........................hash table with entry per value

bin/ ................................hash table with bitvectors

trie/ .........................2-level hashtable with bitvectors

For compilation there are two scripts make.bat and make.sh that build

the program into bin directory.
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Appendix B

Concise Implementation

This is a concise implementation of the generic parallel spexs2 algorithm. It

is presented in Clojure[Hic08].

Algorithm B.1 Definitions

1 ( require ’ [ c l o j u r e . core . r educe r s : as r ] )
2

3 ; a p a r a l l e l grouping func t i on

4 ( defn group−map−by [ g f c o l l ]
5 ( r / f o l d
6 ( r /monoid ( p a r t i a l merge−with in to ) ( cons tant ly {}) )
7 ( fn [ r e t x ]
8 ( let [ k ( g x ) ]
9 ( assoc r e t k ( conj (get r e t k [ ] ) ( f x ) ) ) ) )

10 c o l l ) )
11

12 ; t h e s e are the minimal requirements f o r a da ta s e t

13 ( d e f p r o t o c o l Dataset
14 ( a l l [ t h i s ] " return ␣ a l l ␣ p o s s i b l e ␣ po s i t i o n s ␣on␣ the ␣ da ta s e t " )
15 ( walk [ t h i s pos ] " return ␣ c o l l ␣ o f ␣Step␣from␣pos" ) )
16

17 ( de f r e co rd Query [ pattern positions ] )
18 ( de f r e co rd Step [ token position ] )
19

20 ; c r ea t e an empty query f o r a da ta s e t

21 ( defn− empty−query [ datase t ]
22 (Query . [ ] ( a l l datase t ) ) )
23

24 ; c r ea t e a c h i l d query f o r parent g iven a token and po s i t i o n s

25 ( defn− chi ld−query [ parent [ token positions ] ]
26 (Query . ( conj ( : pattern parent ) token ) positions ) )
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Algorithm B.2 Extenders

1 ; s imple ex t ens ion func t i on

2 ( defn walk−extend [ datase t positions ]
3 ( let [ s t ep s (mapcat #(walk datase t %) positions ) ]
4 (group−map−by : token : position s t ep s ) ) )
5

6 ; group extender

7 ( defn− select−merged [m ks ]
8 (mapcat second ( s e l e c t−keys m ks ) ) )
9

10 ( defn extend−grouper [ extend groups ]
11 ( fn [ datase t positions ]
12 ( let [ extended ( extend datase t )
13 groupings ( f o r [ [ token items ] groups ]
14 [ token ( select−merged extended items ) ] ) ]
15 (apply merge extended groupings ) ) ) )
16

17 ; f unc t i on to combine mu l t i p l e ex t ens ion func t i ons

18 ( defn combine−extenders [ extender s ]
19 ( fn [ datase t positions ]
20 (apply merge−with concat (map #(% datase t positions ) extender s ) ) ) )

Algorithm B.3 The main algorithm

1 ; f i n a l l y the a lgor i thm i t s e l f :

2 ( defn− spexs−step [ ds q extend ]
3 (map #(chi ld−query q %) ( extend ds ( : positions q ) ) ) )
4

5 ( defn spexs [ {
6 ds : datase t ; da t a s e t

7 in : in ; input c o l l

8 out : out ; output c o l l

9 extend : extend ; p o s i t i on ex tender func t i on

10 extend ? : extend ? ; query f i l t e r f o r f u r t h e r ex tens ion

11 output ? : output ? ; query f i l t e r f o r output

12 } ]
13 ( let [ e ( empty−query ds ) ]
14 ( loop [ in ( conj in e )
15 out out ]
16 ( i f−not ( empty? in )
17 ( let [ [ q & qs ] in
18 querys ( spexs−step ds q extend )
19 new−in ( concat qs ( f i l t e r extend ? querys ) )
20 new−out ( concat out ( f i l t e r output ? new−in ) ) ]
21 ( r ecur new−in new−out ) )
22 out ) ) ) )
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Algorithm B.4 Sequence Dataset

1 ; here i s an example how to implement a da ta s e t

2 ( defn− po s i f y [ row−index row−item ]
3 (map ( fn [ pos ] [ row−index pos ] ) ( range (count row−item ) ) ) )
4

5 ( de f r e co rd SequenceDataset [ i tems ]
6 ( token [ t h i s [ row pos ] ]
7 (nth (nth ( : i tems t h i s ) row ) pos ) )
8

9 Dataset ; s a t i s f y da ta s e t i n t e r f a c e

10 ( a l l [ t h i s ]
11 (mapcat po s i f y ( range ) ( : i tems t h i s ) ) )
12 ( walk [ t h i s [ row i ] ]
13 ( let [ row−item (nth ( : i tems t h i s ) row ) ]
14 ( i f (> (count row−item ) i )
15 [ ( Step . ( token t h i s [ row i ] ) [ row ( inc i ) ] ) ]
16 [ ] ) ) ) )

Algorithm B.5 Example how to use

1 ( de f s imple−dataset ( SequenceDataset . [ "ACGT" "CGATA" "AGCTTCGA" "GCGTAA" ] ) )
2

3 ( spexs { : datase t s imple−dataset : input [ ] : output [ ]
4 : extend walk−extend
5 : extend ? #(> (count ( : positions %)) 3)
6 : output ? #(> (count ( : pattern %)) 2)})
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