
U N I V E R S I T Y OF T A R T U

Faculty of Mathematics and Computer Science

Institute of Computer Science

Reimo Rebane

A Feasibility Analysis of Secure
Multiparty Computation

Deployments
Master’s Thesis (30 ECTS)

Supervisors: Sven Laur, PhD
Tuomas Aura, PhD

Instructor: Dan Bogdanov, MSc

Author: ... “.......” 2012
Supervisor: ... “.......” 2012
Supervisor: ... “.......” 2012
Instructor: ... “.......” 2012

Approved for defence
Professor: ... “.......” 2012

TARTU 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents
1 Introduction 4

1.1 Problem statement . 4
1.2 Outline . 5
1.3 Author’s contribution . 5

2 Preliminaries 7
2.1 Secure multiparty computation . 7
2.2 Sharemind . 8
2.3 Secure computation protocols . 10
2.4 Related Work . 11

3 Experimental methodology 12
3.1 Experimental setting . 12

3.1.1 Hardware and software . 12
3.1.2 Network tuning . 12

3.2 Experimental procedure . 13
3.3 Measurements . 14

3.3.1 A breakdown of execution time 14
3.3.2 Measuring network traffic throughput 15
3.3.3 Measuring network latency . 15

4 Structural analysis of Sharemind protocols 18
4.1 Theoretical complexity of Sharemind protocols 18
4.2 Multiplication . 18
4.3 Share conversion . 19
4.4 Practical communication complexity 21

5 Modeling the performance of secure computation protocols 23
5.1 Goal . 23
5.2 Experimental plan . 23
5.3 Constructing the model . 24
5.4 Analysis . 25

5.4.1 Model evaluation methods . 25
5.4.2 Models of individual protocols 26
5.4.3 Joint modeling of secure protocol running time 29

6 Validating the model in a cloud environment 32
6.1 Motivation . 32
6.2 Security concerns in cloud deployments 32

2

6.3 Choosing a cloud service provider . 33
6.3.1 Pricing . 33
6.3.2 Location . 33
6.3.3 Chosen providers . 34

6.4 Setting up a Sharemind installation on the cloud 34
6.5 Measuring the parameters for the model 35
6.6 Estimating the running time of algorithms 35
6.7 Estimating protocol performance on a new deployment 36
6.8 Discussion . 38

7 Estimating the economic feasibility of secure computation in the cloud 39
7.1 Performance of Sharemind deployments 39
7.2 Cost of Sharemind deployments . 39

8 Conclusion 42

Turvalise ühisarvutuse rakenduste otstarbekuse analüüs 43

References 45

Appendix A Model coefficient estimation results 47

Appendix B Measured network parameters for the model experiments 51

3

1 Introduction

1.1 Problem statement
Imagine a scenario where multiple companies hold valuable information and they want
to combine their data for analysis that would benefit them all. In an honest world,
the companies could do just that—combine their data. However, in the real world,
none of them can afford to make their data public because it could compromise their
competitive advantage. One can easily find many similar real-world scenarios where
there are privacy issues concerned with the data. Data privacy is also a very prominent
issue when outsourcing the computing resources, for example, to cloud services. A
cryptographic solution to this problem would be to use secure multiparty computation
(SMC). SMC is a useful tool for computing the result of an operation with the inputs of
multiple parties, without revealing what the inputs were. As a result, we can perform
computations on the data without disclosing it.

There exist two main approaches how to perform SMC. First, circuit evaluation,
which is based on computations on arithmetic or logic circuits and is CPU intensive
(CPU-bound). Second, general multiparty computation, which relies more on the com-
munication between the parties (network-bound). Currently, the more efficient sys-
tems in this field use the latter approach. The theoretical complexity of these sys-
tems is well known. However, for real-life deployments the theoretical results alone
are not enough. In this work, we would like to study the practical performance of the
network-bound general multiparty computation. Based on the published results, the
SHAREMIND [BLW08] SMC framework has shown the best performance and widest
functionality among similar systems. Our results will be based on the SHAREMIND

framework.
Modern cloud service providers allow for quick deployment of services on the web

through resource virtualization. Virtualization supports the easy allocation of hardware
resources. For the service provider, it grants better utilization of the resources, for the
customers, it enables payment only for used resources and quick scaling. For many po-
tential services on the cloud, the data privacy issues could be solved with SMC. How-
ever, little research has been done about the feasibility of such deployments in the cloud
environment.

One goal of this work is to create a mathematical model for predicting computational
performance of SMC depending on the network parameters. The main parameters we
are interested in are the bandwidth and latency of the network we operate on. The model
is based on a set of experiments that are performed on the SHAREMIND framework. This
model will be used to predict the resource usage of an SMC implementation in the cloud
environment and therefore get an estimation of the cost of such deployment.

Furthermore, a feasibility analysis is conducted using a sample scenario, where a
securely survey is conducted with reasonable volumes of data and amount of computa-

4

tion. Based on the sample scenario we can estimate the feasibility of a wide range of
other scenarios.

1.2 Outline
In Section 2, we take a brief look at the background information required for reading
the rest of the work. An overview of secure multiparty computation is given, after
which we descibe a concrete SMC framework, namely SHAREMIND, and discuss how
its protocols are structured. We cover the related work at the end of this section.

Section 3 describes our experimental setting. We cover the hardware and software
we used, what was process of running our experiments and, finally, what kinds of data
was gathered and how we gathered it.

In Section 4, we discuss the protocols in the SHAREMIND framework more tho-
roughly by dissecting some of the protocols, granting a better understanding on what
has to be taken into account when constructing the performance models.

Section 5 presents the constructed protocol performance model. In this section we
explain the reasoning behind the model, the experiments that were run to gather the data
for analyzing this model and validate how well the model fits the experimental data.

In Section 6, we motivate the benefits of performing SMC in the cloud environment,
set up a SHAREMIND installation in the cloud and see how well our model predicts the
protocol performance in this setting.

Finally, Section 7 analyzes the economic feasibility of performing SMC in the cloud
environment. We estimate the costs of a sample secure survey scenario.

1.3 Author’s contribution
In this section we list the author’s contributions to this work. In performing the experi-
ments with the SHAREMIND framework, the author was responsible for setting up the
nodes in the cluster environment. The author did the scripting work related to gathering
and aggregating the results. Even though we partially automated our experiments, it
can still be noted that we run an approximate rough total amount of 1000 hours of
experiments on our cluster. Some of the existing data gathering tools in SHAREMIND

were extended by the author to allow for more precise statistics about the network.
In the model analysis, the author performed various tasks such as fitting the model

to the gathered data and calculating the communication coefficients depending on the
assumed network connection. Estimating the accuracy of the fit and the significance
of the model coefficients, was also carried out by the author in the model validation
process.

As with the cluster machines, the author was responsible for setting up the
SHAREMIND configuration in the cloud environment. This required some research on

5

the existing cloud service providers and their pricing models, available server configu-
rations, data center locations and other aspects affecting the choice of the provider. The
author also managed the experiments in the cloud and executed the validation of our
model on the data gathered in these experiments.

Finally, in the feasibility analysis the author estimated the cost of performing certain
operations in the cloud environment. An evaluation of the feasibility of SHAREMIND

deployments in the cloud was made based on the estimates.

6

2 Preliminaries

2.1 Secure multiparty computation
Secure multiparty computation is a method that allows multiple parties to compute the
output of a function in a secure manner. Secure, in this context, means that the inputs and
outputs remain private and that the correctness of the output is guaranteed. The security
properties must hold even if some parties cheat. Additional security requirements might
apply to certain applications of SMC.

More formally, parties P1, . . . , Pn can compute any function f such that
f(x1, . . . , xn) = (y1, . . . , yn), where xi corresponds to the input and yi to the output
of party Pi. Each party only learns its input and output and nothing more (except
what is implied by the computed function). The outputs y1, . . . , yn can be different
for some functions and equivalent for others. The concept of SMC was first introduced
by Yao [Yao82] in 1982 as a solution to the Millionaires’ problem, where two parties
want to know who is richer without revealing the exact amount of their wealth.

Many secure multiparty computation schemes make extensive use of secret sharing.
Secret sharing is a scheme for splitting a secret value between a number of parties, also
called agents. The scheme works by having a party called the dealer, knowing the secret
value, construct shares of the secret and privately distribute them to the agents. The se-
cret can only be recovered if a qualified subset of agents combine their shares, otherwise
no information is revealed about the secret. Secret sharing was independently proposed
by Shamir [Sha79] and Blakley [Bla79] in 1979. Both solutions use a threshold scheme
where a secret s, shared between any number of n parties P1, . . . , Pn, can be recon-
structed by any subset of t parties, where t ≤ n. We denote the shares of the secret s
as JsK = [s1, · · · , sn], where party Pi knows the share si. Homomorphic encryption can
be used as an alternative to secret sharing when constructing SMC protocols. However,
the secret sharing based protocols are currently shown to be more efficient [KBdH09].

To argue about the security of a SMC protocol, we have to model the capabilities
of an adversary. It is common to consider an adversary who can corrupt a number of
parties [CDN09]. The corruption process can be static, where the adversary corrupts a
fixed set of parties chosen before the protocol starts, or adaptive, where the adversary
can corrupt additional parties during the protocol based on the information received.
The behavior of the corrupt parties during the protocol can be modeled in the semi-
honest or in the malicious security model. In the semi-honest model, also known as
honest-but-curious model, the adversary sees the entire view of the corrupted parties,
but the corruption is passive and the corrupted parties must still follow the protocol.
The system has to be secure against the combined knowledge of the corrupted parties.
In the malicious model, the adversary, as before, sees the view of the corrupted parties.
However, there are no restrictions to the behavior of the corrupted parties (they can send
arbitrary messages or stop communication altogether).

7

We can also classify protocols based on the communication model used [CDN09].
In the cryptographic model, the adversary can see all the messages sent over a channel,
however, messages exchanged between honest parties cannot be modified. The security
is based on a hardness assumption, that some operations are difficult to perform (for
example the discrete logarithm assumption in a cyclic group). Alternatively, in the
information-theoretic model, we assume pairwise secure channels, where the adversary
can only see that some message was sent on the channel, without learning anything
about the contents. Communication can be done in both synchronous and asynchronous
way, although more restrictions apply for the latter case.

Similarly to the SMC protocols, we can look at secret sharing in the presence of
a semi-honest or malicious adversary, where the adversary can corrupt a number of
parties and tries to obtain the secret [Cra99]. In the semi-honest model, a threshold
secret sharing scheme is secure with at most t − 1 corrupted parties, where t is the
threshold. In the malicious model, a stronger scheme is needed, because we have no
control over the actions of the corrupted parties. Verifiable secret sharing was introduced
by Chor, Goldwasser, Micali and Awerbuch [CGMA85]. It ensures that if a corrupt
party provides an invalid share while reconstructing the secret, it is detected and the
secret can still be reconstructed with simulating the corrupt party by the honest parties.
VSS is secure against an adversary that has corrupted at most t parties, where t − 1 <
n/2.

The classical results by Ben-Or, Goldwasser and Wigderson [BOGW88] and
Chaum, Crépeau and Damgård [CCD88] state that every function can be securely com-
puted in the presence of an adaptive adversary if and only if the adversary has corrupted
less than n/2 parties in the semi-honest model and less than n/3 parties in the mali-
cious model. Better threshold can be obtained with additional assumptions (for example
broadcast channels) [CDN09].

2.2 Sharemind
SHAREMIND is a framework for performing computations on private data using SMC.
It works in a client-server model, where the controller applications act as clients and
SHAREMIND is the distributed application server. The controller applications can be
implemented in multiple ways, for example as web applications or as dedicated desktop
applications. The controller applications perform two tasks. First, they insert data to
the distributed server by splitting the data into individual shares, using secret sharing,
and transmitting the shares to the server nodes. Second, they request permitted compu-
tations on the inserted data and retrieve the results. The distributed server, in a typical
deployment setting, runs on three separate machines, called (data) miners or computing
nodes. These three machines perform the multiparty computation protocols, using the
data shares. A high-level structure of the system in a deployment setting is illustrated in
Figure 1.

8

Figure 1: Deployment model of the SHAREMIND framework

The current version of SHAREMIND uses an n-out-of-n additive secret sharing
scheme with 32-bit unsigned integer values, or more concretely, values in Z232 .
The shares s1, . . . , sn are constructed from the secret s by uniformly generating
s1, . . . , sn−1 ∈ Z232 and computing sn = s − s1 − · · · − sn−1. The secret is recon-
structed by adding the shares together in Z232 . In SHAREMIND, the data is divided into
three shares. This scheme has been shown to be information-theoretically secure.

The SMC protocols for the secure operations, that are implemented currently imple-
mented in SHAREMIND, are listed in Table 1—values referred to as private are in prac-
tice secret shared. These basic operations can be combined to compute more complex
functions. The implementation of algorithms is made possible for non-cryptographers
through the use of a C-like language called SECREC [Jag10].

SHAREMIND is secure in the semi-honest model with an adaptive adversary and at
most one corrupted party. For the security guarantees to hold for real-life implementa-
tions, it is assumed that each miner node is controlled by a different organization and
that there is sufficient motivation for the organizations to keep their data secret and thus
not to cooperate in a malicious way. This can be achieved with legal contracts between
the organizations.

Each of the computing nodes of the distributed server has a private and authenti-
cated channel for communication with the other two nodes. The same applies for the
communication between the controller applications and the miners.

SHAREMIND is programmed in C++ and runs on all of the major platforms of Win-
dows, Mac OS X and Linux. The RakNet1 network engine is used as the network layer
of SHAREMIND. It uses UDP Data Transfer protocol for data communications. In this

1RakNet, http://www.jenkinssoftware.com. Last accessed: March 23rd 2012

9

work, we are using the major version 2 of the framework.

Label Operation Description
Add Addition Add two private values

BitAdd Bitwise addition Bitwise add two private values

BitExtr
Bit share Extract all Z2 private bits from a Z232

extraction private value
Div Division Divide a private value with another one

Equal
Equal

Compare if two private values are equal
comparison

Mult Multiplication Multiply two private values

PubMult
Multiplication Multiply a private value with a public

by public scalar one

PubDiv
Division by

Divide a private value with a public one
public scalar

ShareConv Share conversion
Convert a Z2 private value to a Z232

private value

ShiftR2 Greater-than Compare if a private value is greater
comparison than another

Table 1: Existing SHAREMIND protocols for basic operations

2.3 Secure computation protocols
The protocols in SHAREMIND perform basic arithmetic operations on the secret shared
values such that at the end of the execution, the result of the operation will be secret
shared among the miner nodes. The shared inputs and the outputs of the operation
will not be revealed in the process. The execution of the protocols is done in a synch-
ronous manner, such that receiving messages for the computing nodes is blocking. The
order of the messages in the communication channel between the nodes is preserved.
This synchronized communication and also the protocol structure itself enforces the
protocols to proceed in rounds. A node might need some input from the other nodes and
cannot continue in executing a protocol before that information has been received.

For better performance, the protocols are vectorized, meaning that we perform the
operations on the elements of large vectors in parallel, resulting in a faster per-element
execution speed. The maximum size of the vectors processed at once is configurable
by the batch size parameter. If the input vectors are too large, they will be processed in

2The ShiftR is a bit shift right protocol, which is used to implement the greater-than comparison.

10

smaller chunks, defined by the parameter. The batch size has to be chosen depending
on the network characteristics. If the batch size is chosen too large, excessive idle time
is introduced because the nodes are waiting behind the network. However, if it is too
small, the overhead in the network increases and sending the data takes more time.

The performance of the vectorized protocols grows with the input vector sizes. How-
ever, from a certain input size onwards, at a saturation point, the per-element compu-
tation time will stay near constant. At this point the network becomes saturated and
increasing the input size will grow the running time of the protocol linearly. Since the
communication complexity between protocols differs, the saturation point can also be
found at different vector sizes. Note that, in theory, SHAREMIND would benefit from
dynamically calibrating its network related parameters, based on the network parame-
ters and the scheduled computations, to find the optimal settings for the protocols.

Resharing is performed on some of the inputs and outputs of the SHAREMIND pro-
tocols to guarantee the independence of the output from its inputs. The shares JuK are
reshared as JvK, such that the following conditions hold: u = v, all shares vi are uni-
formly distributed and ui and vj are independent for all pairs of i, j.

Detailed examples of some of the protocols used in SHAREMIND can be found in
Section 4. For additional information about the protocols, refer to [BLW08, BNTW12,
SHA].

2.4 Related Work
According to our knowledge, there are only a few research publications that assess the
practical feasibility of SMC. A paper by Bogetoft et al. [BDJ+06] discusses a prototype
implementation of SMC in a secure auction setting. In this setting the auctioneer is
a trusted third party consisting of n distributed machines processing the private input
of the clients. In the measurements the machines were connected in a LAN setting,
except for one, which was connected through an ADSL Internet connection over a VPN
connection. The performance of this system is evaluated for a differing number of
trusted third party machines. The paper concludes that the comparison protocols and
the implementation are feasible for real-world double auction applications.

Another paper by Kerchbaum et al. [KBdH09] compares the performance of two
implementations of the greater-than-or-equal comparison protocol. One implementation
is based on homomorphic encryption, while the other one uses secret sharing. They run
performance benchmarks for both of the protocols with differing number of parties and
conclude that the secret shares based protocol outperforms the homomorphic one. The
experiments are run locally, simulating the parties on a single machine. The impact of
the network communication on the performance of the protocols is not studied in the
paper.

11

3 Experimental methodology

3.1 Experimental setting
3.1.1 Hardware and software

The experiments are run on a computing cluster system consisting of three machines,
each with the configuration described in Table 2. All of the machines are interconnected
with separate links between each pair of machines. The Debian GNU/Linux 6.0.4 op-
erating system and the SHAREMIND 2 development version is installed on each of the
servers.

Component Manufacturer and model
CPU 2 × Intel Xeon X5670 2,93GHz/6.4GT/12M

RAM
12 x Kingston KVR1333D3D4R9S/4G

4GB/1333MHz/ECC/REG
Motherboard TYAN S7012, i5520
Hard drives 4 x Seagate ST3146356SS HDD 146GB/15K/SAS

RAID controller
3Ware 9690SA-4I

4-port/SASI/HW-RAID-0/1/10/5/6/50
Network 4 x 1Gb LAN on motherboard

Table 2: Cluster hardware configuration

3.1.2 Network tuning

The performance of a network link is mainly dependent on two properties: bandwidth
and latency. To model how the performance of the protocols behaves depending on
these properties, we needed to perform the experiments on network links with different
settings. However, since configuring our computing cluster with different network in-
terfaces would have been impractical, we instead simulated the different properties on
the same physical link. The tools we used for this purpose, since we are running a Linux
based operating system, were the tc traffic control tool of the iproute23 framework in
combination with the netem network emulation module.

These tools allow us to specify a hierarchical structure of network packet queuing
disciplines that shape the outgoing traffic on a link. Additionally, it is possible to filter
the traffic so that traffic shaping is only applied to certain packets. In our configuration,
we use the tbf (token bucket filter) queuing discipline to limit the bandwidth and netem

3Linux Advanced Routing & Traffic Control, http://lartc.org. Last accessed: March 21st 2012

12

to add additional latency to the traffic. The structure of the configuration is illustrated
in Figure 2. In the figure, the queuing discipline directly attached to the interface is
a simple priority queue that assigns packets to different sub-queues depending on the
filters and priorities. The traffic matching the filter is shaped, whereas the rest of the
traffic is passed through normally. This is the simplest configuration that matched our
need of having a strict control over the maximum possible bandwidth, or capacity, and
the latency of the connections.

Figure 2: Structure hierarchy of traffic queuing

3.2 Experimental procedure
The basic procedure for running our experiments is similar across the experiments. In
the next paragraphs, we make the assumption that SHAREMIND is correctly configured
and running.

We use the OperationBenchmark tool, supplied by the SHAREMIND framework to
run our experiments. The tool requires a number of parameters to be specified such as
the SMC protocol executed, sizes of the input vectors, number of iterations to run, order
of the test cases and so forth. Depending on the parameters, the tools then schedules a
number of experiments. The procedure for each experiment is the following:

1. Request two random input vectors to be generated.
2. Request the secure operation to be run.
3. Wait for the operation to finish running.
4. Get the SHAREMIND server response that the computation is complete.
5. Measure the duration of the execution.

Each of the SHAREMIND computing nodes also logs the execution times of the ope-
rations to a profile. In our later analysis, we always use the profiling results from the
computing nodes since it is more accurate for showing the real performance than the
results shown by OperationBenchmark. This is because the latter also measures the

13

round-trip time spent on communicating with the distributed server, which includes the
computation requests and receiving the result back. The profiling results are closer to a
real-life implementation where we only communicate with the client for input queries
or data and output results.

The profiling results can be further processed by the ProfileLogAnalyst tool. For
each experiment run by the OperationBenchmark tool, it aggregates the results by col-
lapsing all the lower level operations performed during that experiment into one set of
measured attributes. As a result, we get the time and communication cost for a protocol
with a given input vector size.

3.3 Measurements
3.3.1 A breakdown of execution time

We get the running times of the protocols from the miner profiling results. This time
includes all the sub-operations executed during the protocol. An extract of the timing
results can be seen in Table 3. Each row in the table represents a benchmark result for a
given vector size (element-wise operations on input vectors of the given size). The total
running time is given and also time spent on different subtasks such as processing the
incoming and outgoing queue or waiting for messages from the other nodes. Note that
the total running time may be less than the summed time spent on the subtasks because
the protocol can be executed in multiple threads.

Nr. Protocol
Input In Out Wait for

Total
size queue queue receive

1 Mult 10000 4 ms 2 ms 25 ms 26 ms
2 Mult 100000 29 ms 23 ms 139 ms 150 ms
3 Mult 1000000 301 ms 228 ms 1420 ms 1536 ms
...

...
...

...
...

...
...

Table 3: Multiplication running time profile results

We can plot these results as shown in Figure 3, where the horizontal axis shows
the size of the input vector and the vertical axis shows the running time in milliseconds.
The running time stays constant for smaller vector sizes because the network can handle
these sizes with ease. After a certain size (saturation point), the running time starts
increasing linearly. This happens for two reasons. First, because the communication
channels become saturated (we reach the maximum throughput for the protocol) and
second, because the messages need to be broken down into smaller pieces (when vector
sizes are greater-than the batch size), adding extra time cost. For each protocol, the
saturation point is reached at different input vector sizes.

14

Number of parallel operations

R
un

ni
ng

−
tim

e
in

 m
ill

is
ec

on
ds

101

102

103

●
●

● ●

● ●
●

● ●
●

●
●●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

100 101 102 103 104 105 106

Figure 3: Multiplication running time based on input vector size

3.3.2 Measuring network traffic throughput

The network engine used in SHAREMIND, RakNet, measures the amount incoming and
outgoing traffic for the entire duration of a connection and also for a shifted time window
measured over one second. The latter value is continuously logged during the lifetime
of a miner. These measurements are made at small fixed time intervals. This traffic
information is illustrated in Figure 4, where we show the incoming traffic rate during the
execution of a multiplication protocol benchmark. The traffic is shown for a connection
between two miners, measured at one end of the connection. The average traffic rate
for the duration of that connection is measured at 33.3 Mbit/s, with the median at 41.8
Mbit/s. A similar plot can be drawn for the outgoing traffic.

We also measure the total amount of bytes sent during the execution of a protocol.
We do not use this information directly. However, it can be useful for validating the
communication complexity of a protocol.

3.3.3 Measuring network latency

The round-trip time (ping) on the network connections to the other nodes is also con-
tinuously measured, similarly to the network traffic rate. The measurements are again
made at fixed intervals and reported by the network layer. Figure 5 shows the round-trip
time on a connection between two miners during the execution of a multiplication pro-
tocol benchmark (in ideal network settings). The average ping for the duration shown
in the figure is 7.9 ms, with a median of 1 ms.

To look at the distribution of the latency we have a custom protocol that sends a

15

Time elapsed in milliseconds

In
co

m
in

g
tr

af
fic

 r
at

e
in

 M
bi

t/s

0

10

20

30

40

50

60

70

0 20000 40000 60000 80000 100000 120000 140000

Figure 4: Incoming traffic rate during the multiplication benchmark

Time elapsed in milliseconds

P
in

g
in

 m
ill

is
ec

on
ds

0

10

20

30

40

50

60

70

0 20000 40000 60000 80000 100000 120000 140000

Figure 5: Round-trip time during the multiplication benchmark

16

vector of fixed size over the network to another node. The receiving node immediately
returns it to the sender, which logs the round-trip time. This process is repeated over
many iterations. Note that when measuring the round-trip time this way, it also includes
the time that the SHAREMIND network layer takes to process the incoming and outgoing
messages.

17

4 Structural analysis of Sharemind protocols

4.1 Theoretical complexity of Sharemind protocols
The theoretical complexities of the SHAREMIND protocols has been analyzed by Bog-
danov et al. in [BNTW12] and are shown in Table 4. Both the round and communication
complexity depends on the size of the values the protocol operates on. In our case, since
we are working on 32-bit values, n = 32 and ` = log2 n = 5. For the division protocol
the additional parameters are n′ = 37 and m = 254. For detailed discussion what the
parameters are and how they were derived, refer to the cited paper.

Protocol Rounds Communication
Mult 1 15n

ShareConv 2 5n+ 4
Equal `+ 2 22n+ 6
ShiftR `+ 3 12(`+ 4)n+ 16
BitExtr `+ 3 5n2 + 12(`+ 1)n
PubDiv `+ 4 (108 + 30`)n+ 18

Div 4`+ 9 2mn+ 6m`+ 39`n+ 35`n′ + 126n+ 32n′ + 24

Table 4: Theoretical complexity of the protocols

In the following sections we study the structure of two SHAREMIND protocols. We
later utilize some of the observations in building the performance model for the proto-
cols.

4.2 Multiplication
The structure of the multiplication protocol is illustrated in Figure 6. It is a symmetrical
protocol, consisting of one round where each miner transmits 5n message bits for each
pair of input elements the operation is executed on. The total amount of traffic sent
during the protocol by the three miners is 3 × 5n = 15n, which is the theoretical
communication complexity seen in Table 4.

A more detailed structure of the protocol is shown in Table 5. The multiplication
protocol computes the shared value JwK = JuvK, given the shared input values JuK and
JvK. The randomly generated values ri, ti, si are used to ensure the independence of the
inputs JuK, JvK and output JwK by resharing those values. We denote the reshared inputs
u′, v′ as u′ = u, v′ = v and the reshared output w as w = w′. In the table, the reshared
output w is computed directly, without the intermediate output w′. The correctness of
the protocol follows from

18

Figure 6: Multiplication protocol rounds

w = w1 + w2 + w3

= w′1 + w′2 + w′3
= u′1v

′
1 + u′1v

′
3 + u′3v

′
1 + u′2v

′
2 + u′2v

′
1 + u′1v

′
2 + u′3v

′
3 + u′3v

′
2 + u′2v

′
3

= (u′1 + u′2 + u′3)(v
′
1 + v′2 + v′3)

= (u1 + u2 + u3)(v1 + v2 + v3)
= uv.

Note that there is only one round of communication in the multiplication protocol
since no messages are sent in the second round, shown in the table. From the table we
can see that each node sends a total of 5 messages per input pair to the other nodes,
resulting in the 5n message bits per node and a total of 15n bits, where n is the bit
length of one element.

4.3 Share conversion
The share conversion protocol structure is shown in Figure 7. The protocol consists of
two rounds and is asymmetrical, meaning that the nodes perform different tasks. The
traffic transfered by the three miners amounts to 5n + 4 bits per input, also seen in
Table 4.

The share conversion protocol converts a shared value JuK in Z2 to a shared value
JwK in Z2n . This conversion is useful for algorithms working over Z2n that perform bit-
level operations. From Jw′K, we obtain reshared output JwK, using the random values
tij . To show the correctness of the protocol we note that

u = u1 ⊕ u2 ⊕ u3
= b⊕m⊕ b2 ⊕ s2 ⊕ b3 ⊕ s3
= m⊕ s.

19

Node 1 Node 2 Node 3

Input u1, v1 u2, v2 u3, v3

Round 1

r1, t1, s1 ← Z2n r2, t2, s2 ← Z2n r3, t3, s3 ← Z2n

u′1 := u1 − r1 u′2 := u2 − r2 u′3 := u3 − r3
v′1 := v1 − t1 v′2 := v2 − t2 v′3 := v3 − t3
Send r1 to Node 3 Send r2 to Node 1 Send r3 to Node 2
Send t1 to Node 3 Send t2 to Node 1 Send t3 to Node 2
Send u′1 to Node 2 Send u′2 to Node 3 Send u′3 to Node 1
Send v′1 to Node 2 Send v′2 to Node 3 Send v′3 to Node 1
Send s1 to Node 2 Send s2 to Node 3 Send s3 to Node 1

Round 2

u′1 := u′1 + r2 u′2 := u′2 + r3 u′3 := u′3 + r1
v′1 := v′1 + t2 v′2 := v′2 + t3 v′3 := v′3 + t1
u′3 := u′3 + r1 u′1 := u′1 + r2 u′2 := u′2 + r3
v′3 := v′3 + t1 v′1 := v′1 + t2 v′2 := v′2 + t3
s1 := s1 − s3 s2 := s2 − s1 s3 := s3 − s2
w1 := u′1v

′
1 + u′1v

′
3 w2 := u′2v

′
2 + u′2v

′
1 w3 := u′3v

′
3 + u′3v

′
2

+u′3v
′
1 + s1 +u′1v

′
2 + s2 +u′2v

′
3 + s3

Output w1 w2 w3

Table 5: Multiplication protocol structure

(a) Round 1 (b) Round 2

Figure 7: Share conversion protocol rounds

20

If s = 1, then the output is w = w1 +w2 +w3 = w′1 +w′2 +w′3 = 1−m2−m3 = 1−m.
The latter operation is equal to the binary operation m ⊕ 1 when computed in Z2n .
Alternatively, if s = 0, then the result is w = w1 + w2 + w3 = w′1 + w′2 + w′3 =
m2 +m3 = m, equal to m⊕ 0 in Z2n .

Node 1 Node 2 Node 3

Input u1 u2 u3

Round 1

b, b2 ← Z2 t21 ← Z2n t31 ← Z2n

m2 ← Z2n Send t21 to Node 1 Send t31 to Node 1
m := Z2n(b⊕ u1)
m3 := m−m2

b3 := b⊕ b2
Send b2 to Node 2
Send m2 to Node 2
Send b3 to Node 3
Send m3 to Node 3

Round 2

s3 := b2 ⊕ u2 s2 := b3 ⊕ u3
t23 ← Z2n Send s2 to Node 2
Send s3 to Node 3
Send t23 to Node 3

Round 3

w1 := t21 + t31 s := s2 ⊕ s3 s := s2 ⊕ s3
if s = 1 then if s = 1 then

w2 := 1−m2 w3 := −m3

else else
w2 := m2 w3 := m3

w2 := w2 − t21 − t23 w3 := w3 − t31 + t23
Output w1 w2 w3

Table 6: Share conversion protocol structure

4.4 Practical communication complexity
Based on the structure of each protocol, we can compute the critical path of the protocol
communication. The critical path is the minimum amount of communication that has to
be finished to complete the protocol. We have to take into account that some data can be
transferred in parallel—two nodes can send data to a third node at the same time. The
round barriers play an important role in calculating the path, as new messages can only
be sent after finishing the previous round.

Based on how we model the connections in the network, we get different results for

21

the critical path. We consider two types of connections: full-duplex and half-duplex.
With the full-duplex network connections, data can be transferred in both directions bet-
ween two nodes independently, meaning that both directions have their own bandwidth
limit. The half-duplex connections have a shared bandwidth limit for both directions of
the connection.

The computed critical path coefficients are shown in Table 7. As an example, we
show how the coefficient for the multiplication protocol is computed. It is easy to see the
amount of traffic to be transferred to complete the protocol in Figure 6, as multiplication
is a symmetrical and single round protocol. For every connection between the nodes, in
the full-duplex case we take the maximum of the data sent either way and in the half-
duplex case, the sum of the data sent both ways. The coefficients for full-duplex and
half-duplex are 3.0 and 5.0 accordingly. For multi-round protocols we also have to take
into account the round barriers.

Protocol Full-duplex Half-duplex
Mult 3.0000 5.0000

ShareConv 1.0625 2.0937
Equal 5.9375 6.9687

BitAdd 15.9993 15.9993
ShiftR 32.0625 34.1250
BitExtr 69.0000 88.0000
PubDiv 92.0937 93.1875

Div 435.0937 548.2187

Table 7: Protocol communication coefficients

The more complex protocols are analyzed by first constructing a communication
graph. The round barriers for each miner are represented as the vertices in the graph.
The vertices are connected with directed edges denoting the communication from one
miner to another with weights according to the volume of data transferred. The resulting
graph is directed and acyclic. On this graph we find the longest path from any source
node to any sink node, giving us the critical path of the communication.

22

5 Modeling the performance of secure computation
protocols

5.1 Goal
The theoretical complexity of SMC protocols is well studied. However, it is not enough
to accurately estimate the performance of a real-life SMC deployment. Our goal is to
find a model for each of the SHAREMIND protocols that would estimate the computation
time depending on the bandwidth and the latency of the network links between the
computing nodes.

We first construct a base model that estimates the running time of a protocol, de-
pending on a given input size. In our base model, the network parameters are known
and controlled with our network simulation tools, although some deviation from these
parameters exist. The controlled parameters are bandwidth and latency of the connec-
tions. Other network parameters (such as packet loss) are not taken into account as be
believe that a model based on bandwidth and latency sufficiently accurate. For each
protocol we get the coefficient estimates for all of the different parameter sets, which
we can then use to predict the performance of that protocol. The data can also be used
to construct more general model over multiple protocols, at the cost of some loss in
accuracy.

The results are only shown for 5 of the SHAREMIND protocols because of the time
constraints set on this work. However, we believe that useful observations can be made
based on the data, leading to generalizations that extend to the other protocols.

5.2 Experimental plan
Since we want to predict the computation time depending on bandwidth and latency,
we had to perform experiments with different combinations of the two parameters. We
simulated the network parameters as described in Section 3.1.2. The set of parameters
we used for the bandwidth were: 1 Gbit/s (physical link limit), 100 Mbit/s, 10 Mbit/s
and 1 Mbit/s. Note that we removed the 1 Gbit/s bandwidth results because they were
identical to the 100 Mbit/s setting, since the average throughput recorded was always
below 100 Mbit/s. This result hints that the performance of the protocols could be im-
proved by increasing the throughput of the protocol layers in SHAREMIND. With lower
bandwidth limits we had to decrease the batch size parameter in the miner configura-
tions. Lowering the batch size decreases the bandwidth used by the nodes and is needed
for the network layer of SHAREMIND to function properly. The additional latency added
to the traffic was: 0 ms, 25 ms, 50 ms and for some protocols 100 ms, 250 ms and 500
ms. It is important to note that the actual latency of the packets is the added latency plus
the latency generated by the physical network. For each protocol the experiments are

23

run with every combination of the two parameters.
In each experiment, we use the OperationBenchmark tool to run a set of bench-

marks. The input vector sizes that are used range from 1 element to 1 million elements,
with increasing step sizes. For the vector sizes in range 1 to 1000 the vector size Vi in
experiment i is computed with the following equation Vi+1 = 10× Vi. For greater sizes
than 1000 the vector size is computed as Vi+1 = Vi + 10blog10 Vic. For some of the longer
benchmarks (with low bandwidth and high latency values) we run the experiments up
to 100000 elements. Before each benchmark, we also run a warmup phase of three sets
of multiplication with a vector size of 1 million elements. This warmup phase ensures
that the network channels are saturated and we get more consistent results. Without
the warmup, the first computations in the benchmark would otherwise benefit from the
absence of traffic and give biased performance results.

The size ranges of the protocol operations in the benchmarks also determines the
range of the constructed models.

5.3 Constructing the model
Our base model is a regression model in the following form

T = f(p) +
S

g(b)
+ ε

where T is the running time of the protocol, S is the number of bits sent in the protocol
(communication complexity), f is a function dependent on the ping p, g is a function
dependent on the bandwidth b and ε is the random error. The model estimates the
dependent variable T based on the independent variable S. The coefficients we try to
find are f(p) (the intercept) and 1/g(b) (the slope). This model is based on a hypothesis
that bandwidth is the determinative attribute for predicting the execution time of the
protocols. This hypothesis is supported by the observation that the running-time of a
protocol starts increasing after we raise the size of the input vectors past the saturation
point for that protocol. If the network is saturated, the bandwidth is maximally used and
computing with larger vectors takes linearly more time.

The variable S is dependent on the size of the input vector, each input element
increases the amount of communication linearly. However, the slope of this increment
step differs from one protocol to another. The slope in the model we are constructing is
dependent on the critical path of the protocol communication, discussed in Section 4.4.
For any protocol the values of S are computed as S = V × C × n, where V is the size
of the input vector, C is the critical path coefficient and n is the size of the elements in
the protocol.

We used the linear least squares approach to fit the model to the data and estimate
the slope and the intercept for the model. The coefficients give us f(p) and g(b) for

24

each experiment, where ping p and bandwidth b are fixed by us. Weighted least squares
was used to fit the model over multiple protocols, with the weights found by manual
inspection.

The main tool used in our analysis to manipulate the data is the R statistical com-
puting environment4.

5.4 Analysis
5.4.1 Model evaluation methods

To measure how well our model fits the data, we use the coefficient of determination R2.
The coefficient shows how much variation in the data has been explained by the model
and is computed as

R2 = 1−
∑

i(yi − fi)2∑
i(yi − ȳ)2

,

where yi is an observed value of the dependent variable, fi is a predicted value of the
dependent variable and ȳ is the arithmetic mean of the dependent variables. If the coef-
ficient is estimated to be above 0.8, then we say that the model fits the data with good
accuracy.

To examine the statistical significance of the estimated coefficients, we form a pair
of hypotheses. We check a null hypothesis against an alternative hypothesis, where the
null hypothesis states that the slope of the model is 0, meaning that there is no linear
relationship between the dependent and the independent variables. If we express our
model in the form Y = α + βX + ε, where β = 1

g(b)
, the hypothesis pairs will be

H0: β = 0
H1: β 6= 0.

With the t-test we obtain the p-values (the probability that the null hypothesis is true) for
the coefficients. We reject the null hypothesis when p < 0.05, showing that a significant
relation exists between X and Y .

In the residual analysis of the model, the following properties have to be checked:
independence of the residuals, homoscedasticity of the residuals and if the distribution
of the residuals is normal. We note that although one or more of the properties hold in
some cases, for most of the cases, the residuals cannot be shown to have these properties.
However, we believe that estimations can still be made with the constructed models.

In the following analysis we assume full-duplex connections, as a better fit for the
model was achieved in the case. However, note that the difference in assuming half-
duplex or full-duplex connection is only apparent when comparing the protocols to one
another or making generalizations across multiple protocols.

4The R Project for Statistical Computing, http://www.r-project.org. Last accessed: March 23rd 2012

25

5.4.2 Models of individual protocols

The results of fitting our base model with the least squares method for different network
parameters for the multiplication protocol is shown in Table 8. For nearly all of our data
sets listed in the table, the R2 coefficient shows that the model fits the data well and
we can estimate the dependent variable with high accuracy. We also see a significant
relationship between the predicted variable and the coefficient g(b). The significance of
f(p) can not be shown in some cases. The residuals analysis shows that while some of
the results indicate residuals with normal distribution, it is not true in all cases. Also, in
many cases the residuals have non-constant variance, for example in the case when the
residuals are increasing as the fitted values grow. Similar tables for the other protocols
can be found in Appendix A.

Added Bw. f(p) g(b)
R2

ping lim. Coef. Std. Err. p-val. Coef. Std. Err. p-val.
0 100 5.88 0.85 0 63492.06 120.94 0 0.999
50 100 21.56 2.59 0 51493.31 212.12 0 0.995
100 100 40.78 1.56 0 40816.33 83.30 0 0.999
200 100 10.58 23.66 0.655 17540.78 215.38 0 0.956
500 100 129.16 13.68 0 8447.37 28.54 0 0.996
1000 100 35.59 30.98 0.252 33.60 0.01 0 1.000

0 10 −43.44 2.24 0 9443.76 6.24 0 1.000
50 10 −15.68 1.80 0 9453.58 4.47 0 1.000
100 10 9.77 1.78 0 9455.37 4.47 0 1.000
200 10 35.88 2.84 0 6982.75 3.90 0 1.000
500 10 87.64 5.99 0 3348.96 2.02 0 1.000
1000 10 210.28 40.26 0 34.01 0.09 0 0.999

0 1 −60.31 1.61 0 903.89 0.04 0 1.000
50 1 −33.10 1.59 0 903.91 0.04 0 1.000
100 1 −6.99 13.46 0.604 733.51 0.22 0 1.000
200 1 −10.01 8.82 0.257 416.03 0.05 0 1.000
500 1 28.76 13.36 0.032 180.77 0.01 0 1.000
1000 1 −168.88 33.51 0 31.57 0.00 0 1.000

Table 8: Model fitting results for the multiplication protocol

The measured coefficients for the multiplication protocol are visualized in Figure 8.
The figure shows two diagrams of how the coefficients behave as the latency changes.
The f(p) coefficient is shown in the upper plot and the g(b) coefficient in the lower one.
Note that latency is shown in the logarithmic scale. The f(p) coefficient (intercept)

26

of the model shows growing tendencies as the latency increases. The tendency is not
strictly monotone in some cases, however, this might be attributed to the less reliable
estimates for the coefficient, observed with high latency. The increasing coefficient can
be explained by the fact that as the latency grows, more time has to be spent on a single
operation, leading to an upwards shift of the intercept in the linear regression model.

Latency in milliseconds

C
oe

ffi
ci

en
t −200

−100

0

100

200

10000

20000

30000

40000

50000

60000

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

●

●

●

●

●

●

1 25 50 100 250 500

f(p)
g(b)

Bandwidth
● 100 Mbit/s

● 10 Mbit/s

● 1 Mbit/s

Figure 8: Estimated model coefficients for the multiplication protocol

The g(b) coefficient (inverse of the slope) of the model shows a monotonically de-
creasing tendency, as the latency grows. We assume that with increasing latency, the
cap of the maximum bandwidth achieved is lowered, leading to increased time spent
on a single operation and a steeper slope in the model. The results for the slope of the

27

model suggests that the relationship between g(b) and the bandwidth holds.
Similar plots for the other protocols can be seen in Figure 9. The observations made

about the coefficients of the model in the case of the multiplication protocol also apply
to the other protocols.

Latency in milliseconds

C
oe

ffi
ci

en
t

−800

−600

−400

−200

0

10000

20000

30000

40000

● ●
● ●

●

●

●

● ● ●
●

●

●
●

●
●

●

●

●
● ● ● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

1 25 50 100 250 500

f(p)
g(b)

Bandwidth
● 100 Mbit/s

● 10 Mbit/s

● 1 Mbit/s

(a) Share conversion

Latency in milliseconds

C
oe

ffi
ci

en
t

−1000

−500

0

500

1000

10000

20000

30000

40000

50000

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
● ● ● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

1 25 50 100 250 500

f(p)
g(b)

Bandwidth
● 100 Mbit/s

● 10 Mbit/s

● 1 Mbit/s

(b) Equality comparison

Latency in milliseconds

C
oe

ffi
ci

en
t −3000

−2000

−1000

0

1000

2000

20000

40000

60000

80000

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●
●

● ●

●

●

●

●

●
●

●

●

1 25 50 100 250 500

f(p)
g(b)

Bandwidth
● 100 Mbit/s

● 10 Mbit/s

● 1 Mbit/s

(c) Greater-than comparison

Latency in milliseconds

C
oe

ffi
ci

en
t −12000

−10000

−8000

−6000

−4000

−2000

0

2000

10000

20000

30000

●
●

●
●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

● ● ● ● ● ●

●
● ●

●

●

●

●

●

●

●

●

●

1 25 50 100 250 500

f(p)
g(b)

Bandwidth
● 100 Mbit/s

● 10 Mbit/s

● 1 Mbit/s

(d) Bit extraction

Figure 9: Estimated model coefficients for individual protocols

28

5.4.3 Joint modeling of secure protocol running time

Figure 10 shows how well the coefficient estimates align across the protocols. Both
of the coefficients are plotted for all of the bandwidth levels in our experiments. The
figure shows that some of the protocols behave similarly. The share conversion and the
equality protocols give coefficient estimates with minimal difference. The difference in
the values of the coefficients is greater between the other three protocols, however, a
similar tendency can also be seen with these protocols.

Latency in milliseconds

C
oe

ffi
ci

en
t f

(p
)

−12000

−10000

−8000

−6000

−4000

−2000

0 ● ● ● ● ● ●● ● ● ● ●

●

● ● ●
●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

1 25 50 100 250 500

Operation
● Mult

● ShareConv

● Equal

● ShiftR

● BitExtr

(a) f(p), 100 Mbit/s bandwidth

Latency in milliseconds

C
oe

ffi
ci

en
t g

(b
)

20000

40000

60000

80000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

1 25 50 100 250 500

Operation
● Mult

● ShareConv

● Equal

● ShiftR

● BitExtr

(b) g(b), 100 Mbit/s bandwidth

Latency in milliseconds

C
oe

ffi
ci

en
t f

(p
)

−1000

−500

0

500

1000

1500

2000

2500

● ● ● ●
●

●

● ● ● ● ●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

1 25 50 100 250 500

Operation
● Mult

● ShareConv

● Equal

● ShiftR

● BitExtr

(c) f(p), 10 Mbit/s bandwidth

Latency in milliseconds

C
oe

ffi
ci

en
t g

(b
)

2000

4000

6000

8000

10000
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 25 50 100 250 500

Operation
● Mult

● ShareConv

● Equal

● ShiftR

● BitExtr

(d) g(b), 10 Mbit/s bandwidth

Latency in milliseconds

C
oe

ffi
ci

en
t f

(p
)

−1000

−500

0

500

1000

1500

2000

● ● ● ● ●

●

● ● ● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

1 25 50 100 250 500

Operation
● Mult

● ShareConv

● Equal

● ShiftR

● BitExtr

(e) f(p), 1 Mbit/s bandwidth

Latency in milliseconds

C
oe

ffi
ci

en
t g

(b
)

200

400

600

800

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

1 25 50 100 250 500

Operation
● Mult

● ShareConv

● Equal

● ShiftR

● BitExtr

(f) g(b), 1 Mbit/s bandwidth

Figure 10: Estimated model coefficients over all protocols

We construct two general models, one over the share conversion and the equality
comparison protocol, as the two protocols show similar behavior, and the other over the

29

multiplication, greater-than comparison and bit extraction protocol. The results for the
first general model are shown in Table 9. The R2 coefficients in the table show that the
two protocols in the first model behave very similarly and a single model can be used to
predict the performance for both of the protocols.

Added Bw.
f(p) g(b)

R2

ping lim. all ShareConv Equal
0 100 11.71 49627.79 0.997 0.996 0.997
50 100 15.40 35498.76 0.982 0.982 0.974
100 100 30.42 25947.07 0.982 0.979 0.977
200 100 81.29 14575.13 0.972 0.951 0.982
500 100 552.68 6268.41 0.913 0.829 0.967
1000 100 −2788.81 33.98 1.000 1.000 1.000

0 10 2.38 9938.38 0.997 0.999 0.995
50 10 78.58 6182.00 0.987 0.991 0.981
100 10 130.91 3853.56 0.985 0.990 0.979
200 10 285.42 2171.03 0.994 0.991 0.995
500 10 720.58 954.58 0.993 0.989 0.994
1000 10 853.28 33.54 0.999 1.000 0.999

0 1 −9.60 907.13 0.999 1.000 0.995
50 1 −204.05 317.79 0.990 0.994 0.971
100 1 −341.85 191.35 0.990 0.995 0.971
200 1 −1850.37 109.31 0.987 0.988 0.986
500 1 −4187.32 46.92 0.988 0.989 0.987
1000 1 −8125.15 24.03 0.988 0.989 0.987

Table 9: Model fitting results over the ShareConv and Equal protocols

The estimates for the second general model is shown in Table 10. The results for
this model show that even though the model is accurate for some network parameters, it
does not give good predictions in all cases. The accuracy is the lowest for the bit share
extraction protocol, which may be due the higher complexity of the protocol, compared
to the others.

30

Added Bw.
f(p) g(b)

R2

ping lim. all Mult ShiftR BitExtr
0 100 22.57 68634.18 0.905 0.993 0.926 0.731
50 100 −62.56 41511.00 0.765 0.938 0.953 0.258
100 100 −117.50 29913.25 0.683 0.866 0.807 0.180
200 100 124.39 16694.49 0.848 0.943 0.800 0.684
500 100 827.69 9912.77 0.743 0.962 0.868 0.196
1000 100 −3895.14 31.39 0.988 0.995 0.995 0.956

0 10 2.87 9578.54 0.873 1.000 0.958 0.296
50 10 282.43 9654.37 0.970 0.992 0.998 0.686
100 10 −63.67 8233.16 0.972 0.973 0.994 0.934
200 10 723.42 7131.65 0.933 0.975 0.807 0.910
500 10 1730.94 3421.96 0.920 0.967 0.779 0.900
1000 10 −861.02 31.25 0.983 0.991 0.978 0.931

0 1 323.25 867.90 0.981 0.997 0.925 0.975
50 1 322.95 830.60 0.941 0.987 0.993 0.717
100 1 1939.90 708.48 0.977 0.993 0.917 0.988
200 1 2505.30 459.15 0.917 0.991 0.776 0.849
500 1 5273.41 208.15 0.888 0.980 0.712 0.798
1000 1 12804.00 33.55 0.978 0.996 0.960 0.954

Table 10: Model fitting results over the Mult, ShiftR and BitExtr protocols

31

6 Validating the model in a cloud environment

6.1 Motivation
The cloud environment enables quick deployment of web services by offering com-
puting as a service. The cloud service providers run data centers with a large number
of redundant machines. On top of these machines, they operate a virtualization layer,
which in turn emulates the virtualized hardware provided to the customers. This addi-
tional virtualization layer brings benefits to the service providers and also the customers
of the service. For the service provider, it allows for better utilization of the underlying
hardware. For the customer it lowers the barrier of entry by exchanging capital expendi-
ture for operational expenditure. It also offers pay-as-you-go payment schemes, better
reliability and quick scalability, because the underlying machines emulating the virtual
server can easily be modified by replacing some or adding new ones.

However, for many types of applications, a major issue with outsourcing computa-
tion and storage resources is that the cloud service providers have to be trusted to keep
the information secure from outside attackers and also to not misuse the data them-
selves. For a lot of potential services on the cloud, the risk is not acceptable. When
asked about the concerns with cloud computing, a survey [NE09] conducted by the
European Network and Information Security Agency found that 67% of the small and
medium-sized enterprises considered confidentiality of corporate data a ”show-stopper”
problem. However, many of those companies still show high interest in engaging with
cloud computing to avoid in-house capital expenditure by outsourcing infrastructure,
platforms or services.

A cryptographic solution to this privacy problem would be to use secure multiparty
computations. With SMC we can still outsource the computation and storage, but we
no longer have to trust the cloud provider since the data is secret shared or encrypted
and the computations on the data are secure. In this work we would like to find out how
feasible it is to deploy SMC on the cloud in terms of performance and cost. There are
also a few additional security concerns that have to be taken into account in the cloud
environment when compared to the non-cloud setting.

To assess the feasibility of secure multiparty computation on the cloud, we deployed
the SHAREMIND distributed server nodes with different cloud service providers.

6.2 Security concerns in cloud deployments
For multiparty computation to be secure, we make the assumption that we have a cer-
tain number of honest computing parties that do not collaborate with each other. In the
case of SHAREMIND, we have three parties and we assume that none of them collabo-
rate. It is difficult to make this assumption when all the three miner node machines are
run by the same provider. Therefore we need to deploy the three miners with differ-

32

ent cloud service providers. Each of the miners should be administrated by a different
organization, such that each organization gains access to only one of the nodes. Ad-
ditionally the cryptographic keys for each miner has to be generated and distributed
securely. Also, the executed SECREC algorithms have to be distributed securely and
checked for any undesired information leaks. An alternative approach to this distributed
cloud setting would be co-located secure hosting, where the servers are located at the
same geographic location but the access to the servers is restricted with some physical
means.

With the security assumptions made in SMC and SHAREMIND in particular, most of
the data privacy related issues are dealt with.

6.3 Choosing a cloud service provider
6.3.1 Pricing

In this work, we only consider cloud providers offering infrastructure as a service (IaaS)
type of services, as we need a highly customizable server where we can compile and run
our own software. Two types of payment schemes are used by the major cloud service
providers today to charge for the running cost of the servers. First, the pay-as-you-go,
also known as on-demand, scheme where the customers of the service pay for usage
measured by a small time unit, usually an hour. Second, payments for longer time
periods, usually a month, often equal to 730 or 750 hours. For some providers, the
periodic payment schemes result in a lower per-hour cost and are preferred for longer
periods of deployments with known usage estimates for the service. The running cost
for both schemes is dependent on the resources allocated to the running virtual machine.

Another main source of cost, for some types of applications, is the bandwidth usage
charges for connections over the Internet. Bandwidth is usually charged per GB of traffic
and is often only charged for outgoing traffic. No charges apply to the local traffic inside
the data center for most cloud providers.

Finally, other minor, however noticeable sources of cost are caused by additional
services, for example load balancers, or for allocation of some additional resources,
such as fixed public IP addresses.

6.3.2 Location

One of the criteria for choosing the service provider is location. To minimize the delays
for the clients of a service in the cloud, it is usually deployed in a data center not too far
from the users. However, for our deployments, since we tested different configurations,
we mostly valued the flexibility of the data center choices that we can run our nodes
on. A large number of providers only offer their services in North America and Europe
regions.

33

6.3.3 Chosen providers

In this work we chose to use Amazon EC2, Rackspace and Linode as our cloud service
providers. Amazon EC2 was chosen mainly its market leader position. In choosing
the other two, Rackspace and Linode, we took into account the pricing and the data
center locations. The providers we considered, but did not select were AT&T, GoGrid,
JoyentCloud, LayeredTech, OpSource, Softlayer, Terremark and VPS.NET.

6.4 Setting up a Sharemind installation on the cloud
We tested SHAREMIND in two different settings. First, a global setting where each node
is located at a great distance to the other nodes. The locations chosen for the nodes were
Tokyo (Japan), Fremont (United States of America) and London (United Kingdom).
We also considered Ashburn, Virginia as a location instead of Fremont, California in
the United States. However, we achieved more balanced connections using the Fremont
data center, because of slightly better connectivity with Asia.

In the second, local setting, we chose three nodes in fairly close geographic loca-
tions. The locations for this setting were chosen in Europe, more specifically, two nodes
in London, United Kingdom and one node in Dublin, Ireland.

A summary of all the different configurations is shown in Table 11.

Global cloud Sharemind deployment
Node Provider Location

Node 1 Linode Fremont, CA, US
Node 2 Rackspace London, GB
Node 3 Amazon EC2 Tokyo, JP
European cloud Sharemind deployment
Node Provider Location

Node 1 Amazon EC2 Dublin, Ireland
Node 2 Rackspace London, GB
Node 3 Linode London, GB

Table 11: Cloud service providers and data center locations

The cloud servers of out choice had to meet a rough minimum criteria of at least 2
CPUs and at least 2 GB of RAM. The chosen server configurations are listed in Table 12.
The same configuration was used for the global cloud and the European cloud.

Since all of the three machines on the cloud are running a Linux distribution, the
process of setting up SHAREMIND was similar for the servers. After installing the re-
quired packages either manually or through the given package management system,

34

Provider CPU RAM HDD OS
Amazon EC2 2 vCPU 7.5 GB 850 GB Ubuntu 11.10

Rackspace 4 vCPU 2 GB 80 GB Debian 6
Linode 4 vCPU 2 GB 80 GB Debian 6

Table 12: Server configurations

SHAREMIND was compiled from the source code. Once the software for each node was
ready, we set up the keys required for the communication and configured the network
addresses.

6.5 Measuring the parameters for the model
We measured the average round-trip time over 100 ping requests. This was done using
the common ping tool.

To measure the bandwidth of a connection we saturated the channel, by transmitting
as much data as the channel allowed over a duration of 10 seconds. As a UDP based
data transfer protocol is used by the network layer of SHAREMIND, we measure the
maximum throughput of UDP. For these measurements we used the iperf 5 network
throughput testing tool. A channel with UDP bandwidth capacity over 100 Mbit/s is
reported up to 100 Mbit/s.

We also measured the bandwidth in a similar way over TCP, as we noticed that the
UDP measurements alone do not give a good estimation of the actual bandwidth usage
by SHAREMIND.

The round-trip time and the bandwidth of the connections for the cloud settings are
shown in Table 13. The bandwidth values for both, the TCP and UDP traffic, is shown
in Mbit/s and the round-trip time in milliseconds. The row denotes the sender and the
column the receiver in the tests. In some cases, the connections are not symmetrical.
The measured values vary over time, with the TCP values showing most variation.

6.6 Estimating the running time of algorithms
Usually, to compute something useful, we need to run the protocols inside of larger
algorithms. Based on the known computations of an algorithm, we can estimate the
running time of its operations. For more information on frequent itemset mining in
SHAREMIND refer to [BJL12]. Table 14 shows the operations processed during the
computation of the Apriori algorithm, calculating frequent item sets in data. We com-
pare the estimated running time to the actual running time. The algorithm is executed on

5Iperf, http://iperf.sourceforge.net/. Last accessed: April 12th 2012

35

Global cloud
Node 1 Node 2 Node 3

TCP UDP Ping TCP UDP Ping TCP UDP Ping
Node 1 30.8 48.6 149.2 40.7 48.6 109.8
Node 2 12.5 59.7 149.1 4.6 59.7 264.7
Node 3 18.9 100 112.6 30.2 100 264.7

European cloud
Node 1 Node 2 Node 3

TCP UDP Ping TCP UDP Ping TCP UDP Ping
Node 1 32.0 48.5 2.3 45.0 48.5 21.8
Node 2 56.1 59.6 2.5 52.9 59.6 20.3
Node 3 167 99.6 23.4 189 99.8 18.6

Table 13: Measured bandwidth and round-trip time parameters

our experimental cluster. The total prediction time and the actual time for the multipli-
cation operation differ by 8.18%, which is fairly accurate. However, the difference for
the greater-than comparison operation is 56.22%, which is likely due to the very small
vector sizes used in the operations. Note that the total running time of the algorithm
is 137415 ms, which also includes other operations, such as database queries. For this
prediction it was unnecessary to measure the network, as the cluster network parameters
were already known.

Operation
Operation Vector Predicted Actual

count size running time running time
Mult 88 812400 108613 ms 118256 ms
Mult 1 203100 313 ms 373 ms
Mult 1 8124 18 ms 26 ms

ShiftR 91 100 4674 ms 10684 ms
ShiftR 1 25 50 ms 116 ms
ShiftR 1 1 50 ms 108 ms

Table 14: Apriori algorithm running time prediction in the cluster

6.7 Estimating protocol performance on a new deployment
We also attempted to predict the performance of secure computations in any network
setting, based on the models constructed in Section 5. To make a prediction based

36

on the model, knowing the measured network parameters, we first have to compute the
model coefficients f(p) and g(b). This is done by constructing a 2-dimensional grid for a
given model, where one dimension holds the bandwidth values and the other dimension
the latency values. The coefficient values are known at certain points, namely at the
parameter values, which we used in our experiments.

Given the measured latency and bandwidth as p′ and b′, we can set a point in the
grid and find the cell the point maps to. For each of the four corners of the cell we
have the known values fi and gi for the coefficients to which we assign a weight wi.
To calculate the weights we compute the Euclidean distance from the measured point
to each of the corners. For this, we first have to scale the the axes of the cell, such that
it forms a square. A corner closer to the measured point is given a higher weight. The
weights are additionally normalized, such that

∑4
i=1wi = 1. Finally, we calculate the

coefficients as f(p′) =
∑4

i=1 fi×wi and g(b′) =
∑4

i=1 gi×wi. We can only estimate the
coefficients this way, when the measured bandwidth and latency falls within the limits
of the network parameters we used in our experiments.

We performed similar protocol benchmarks in the cloud, as in our experiment clus-
ter. The prediction results we got with the measured network parameters in the cloud
were inaccurate and inconsistent. The exact results are omitted from this work, as no
useful observations besides the invalidity of the predictions was drawn from the results.

In the cloud environment we were unable to accurately predict the running time of
the protocols. However, we were still able to perform some analysis on the model it-
self. In each of the benchmarks we used to estimate the coefficients for our models,
we also gathered some network statistics. For each protocol we measured the aver-
age ping and the average bandwidth used during the protocol execution, also known as
average throughput. For the exact measured ping and bandwidth values refer to Ap-
pendix B. This gives us a set of n known reference pairs mean(P1), . . . ,mean(Pn) and
mean(B1), . . . ,mean(Bn) for each protocol, where we also know the values for the
model coefficients f(pi) and g(bi) for the model i. After measuring the average ping
and throughput for a benchmark in the cloud, we assign a weight wi to each of the
known points based on the distance from the measured pair mean(P ′) and mean(B′).
The model with values closer to the measured value in the cloud is given a higher
weight. We normalize the weights, such that

∑n
i wi = 1, and compute the coefficients

as f(p) = wi × f(p)i and g(b) = wi × g(b)i.
The results for estimating the coefficients this way and the accuracy of the predic-

tions is given in Table 15. The table shows the measured ping and bandwidth values
on the cloud and also the estimated model coefficient values based on the network pa-
rameters. The R2 coefficient indicates that we can predict the results this way with
some accuracy, although for most cases the model provided a lower accuracy than was
observed in the experimental setting. This may indicate that the method we used to esti-
mate the model coefficients is not very accurate, however, the underlying model works

37

in the right way.

Global cloud

Operation
Average Average Estimated Estimated

R2

ping throughput f(p) g(b)

Mult 235.90 ms 0.57 Mbit/s −4.01 1933.82 0.726
ShareConv 207.01 ms 0.73 Mbit/s −28.33 2572.97 0.877

Equal 189.99 ms 0.42 Mbit/s 263.10 1695.60 0.671
ShiftR 219.45 ms 0.84 Mbit/s 567.16 4086.95 0.732
BitExtr 281.70 ms 0.78 Mbit/s 137.00 2413.72 0.631

European cloud

Operation
Average Average Estimated Estimated

R2

ping throughput f(p) g(b)

Mult 29.14 ms 1.02 Mbit/s −26.38 4263.76 0.895
ShareConv 27.83 ms 1.17 Mbit/s −12.64 5739.77 0.604

Equal 30.38 ms 1.54 Mbit/s 182.85 6129.75 0.708
ShiftR 37.68 ms 2.03 Mbit/s 198.84 7071.33 0.625
BitExtr 66.46 ms 1.28 Mbit/s −473.54 3411.62 0.669

Table 15: Estimated models based on average utilized bandwidth

6.8 Discussion
The model analysis shows that we can use the models to predict the computation time of
the protocols in the cluster SHAREMIND deployment. This is mainly useful to estimate
the computation time of larger algorithms utilizing the protocols.

We were unable to reliably predict the running time of the protocols in the cloud,
based on the models. However, we were able to give some estimations by comparing
the average used bandwidth of the known models and the measured benchmark in the
cloud. Based on this result we can say that the model is not invalid, but since we are
unable to correctly evaluate the input parameters for the model, primarily the effective
bandwidth, we are unable to make predictions with the model.

38

7 Estimating the economic feasibility of secure compu-
tation in the cloud

7.1 Performance of Sharemind deployments
To performance of the SHAREMIND protocols determines the applications that the
framework can be used for. The applications range from secure surveys with few com-
putations to data mining algorithms with complex computations. Table 16 shows the
performance of SHAREMIND protocols, depending on the deployment environment.
The cloud deployments are roughly 10− 30 times slower than the ideal cluster setting.
This indicates that if we can perform computations for an application in the cluster envi-
ronment withing a reasonable time constraint, we can also perform these computations
in the cloud environment with a predictable factor of increased running time.

Operation
Deployment setting

Cluster Global cloud European cloud
Mult 690000 ops/s 27850 ops/s 48300 ops/s

ShareConv 1360000 ops/s 58500 ops/s 120000 ops/s
Equal 254000 ops/s 12750 ops/s 21350 ops/s
ShiftR 95000 ops/s 2630 ops/s 3072 ops/s
BitExtr 28000 ops/s 633 ops/s 977 ops/s

Table 16: Protocol performance in different configurations

7.2 Cost of Sharemind deployments
In an example scenario we have three organizations that want to conduct a survey. How-
ever, the nature of the data gathered in the survey is too sensitive to be handed over to a
single party. To solve this problem, the parties decide to use SMC to privately gather the
data and securely generate the survey results. They decide to set up a SMC platform,
in this case SHAREMIND, such that each of the three organizations controls one of the
nodes, performing the data gathering and result generation. Each of the parties chooses
cloud service provider and rents a server, where they set up their node for the duration
of the survey.

After some planning, the organizations agree on a time schedule. They decide to
set up the system in a time frame of one week, after which they will start collecting the
survey data. The data gathering period ends after one month, when finally, the summary
results of the survey are computed and released to the involved parties.

39

The chosen survey form contains 20 multiple choice questions, each with 5 choices
for the answer. After the data gathering period we find out that the survey has been
answered 5000 times. For each of the questions in the survey, the parties wish to gen-
erate a histogram. Based on this data, we estimate the computation time and cost for
generating the survey results. To generate the histograms, we need to utilize the com-
parison protocols in the SHAREMIND framework. In the case of fixed set on answers,
one could use the equality comparison protocol to count the answers. In the case of a
non-fixed numeric answer, one could use the greater-than comparison protocol to count
the answers within a certain range. We also estimate the cost for the setup phase and the
data gathering phase based on the duration.

The estimations can be seen in Table 17. The amount of data transferred during the
setup phase is negligible. In the data gathering phase, the data amount can be visualized
as a table of values, with 5000 rows and 20 columns. Each of the columns contains
the answer to a question. The values of the table are shared between all of the parties.
Based on this information we can estimate the transferred data amount as 5000× 20×
3 × 32 = 1.2 MB. In the computation phase, if we have k possible answer choices,
which in our case equals to 5, then we have to execute the run the equality protocol on
the each of the questions k − 1 times. Knowing the communication complexity of the
protocol, discussed in Section 4.1, we can estimate the transferred data amounting to
5000× 20× 4× 710 = 35.5 MB. With the greater-than protocol (labeled ShiftR), when
counting the answers in a certain range, we have to execute the protocol k − 1 times
on each question, where k is the number of ranges we divide the histogram into. If we
assume that k = 5, then the data amounts to 5000 × 20 × 4 × 3472 = 173.6 MB. In
calculating the upkeep cost we assumed 750 hours charge for a month with a minimum
of 0.12 and a maximum of 0.36 USD per hour. As for the data cost, we assumed the
bandwidth charges for only the outgoing traffic with a minimum charge of 0.1 and a
maximum charge of 0.2 USD per GB of data.

Based on the constructed protocol performance models and the measurements made
on the cloud we can also estimate a rough duration for the computations made for gene-
rating the results of the survey.

The cost estimations indicate that the computation costs are negligible compared to
the cost of running a cloud server for the duration of the data gratherid phase. The cost
of the computations will only start to be significant in scenarios where we perform very
computation heavy tasks, where the data communication cost between the nodes starts
to overweight the server upkeep cost. However, this scenario will only be reached with
data transfers more than 600 GB to 1 TB a month, depending on the transfer cost. It is
highly unlikely for any survey to generate this much traffic unless we are performing
some complex analysis on the data. Alas, with heavy data traffic, one might adapt to a
more suitable cloud service pricing model. For example, some providers do not charge
for a certain amount of data transfer each month, others apply a smaller per GB charge

40

Phase Duration
Upkeep cost Data

Data cost
per node transferred

Setting up 1 week negligible negligible negligible
Data gathering 1 month 90 – 270 USD 1.2 MB < 0.001 USD
Computations:

< 60 s negligible 35.5 MB 0.0036 – 0.0071 USD
Equal prot.

Computations:
< 240 s negligible 173.6 MB 0.0174 – 0.0347 USD

ShiftR prot.

Table 17: Estimated costs of the secure survey

for larger data transfers.

41

8 Conclusion
The theoretical complexity of secure multiparty computation protocols is well studied.
However, the theoretical results are not enough to accurately predict the performance
of an SMC protocol in a real-world deployment setting. In this work we carried out
the task of constructing a performance model for SMC protocols for the SHAREMIND

framework.
In the process of constructing the general performance model, we first proposed a

base model, in the form of a linear regression, predicting the protocol running time
based on its input size. Experiments were run on our testing cluster to gather data for
the model analysis. The analysis indicated an accurate fit of the model on the data.
A generalization of the model was made based on the similar behavior of some of the
protocols.

To validate our general model, we set up a set of servers in the cloud environment.
In this setting we measured the parameters of the network connections between the
machines. The predictions were compared to the actual computation results. We were
unable to accurately predict the running time of the protocols in the cloud. However,
we concluded that this result was probably due to the inability to accurately estimate the
effective network parameters to compute the model coefficients.

The model validation in the experiment cluster environment showed that the models
can be used to accurately predict the running time of the secure operations inside more
complex algorithms.

In the last part of the work, we utilized the general model to assess the feasibility
of SMC in the cloud environment. With the model, we computed time estimations for
executing certain operations in a sample scenario. The cost estimation showed that for a
secure survey scenario, the cost of the secure computations is low compared to the cost
of keeping the server running during the data gathering phase for the survey. The cost of
the performed operations only starts to play a role with large data sets and computation
heavy algorithms.

The results of this work indicate that it is indeed feasible to do secure multiparty
computation in the cloud environment for a whole range of real-world scenarios. This
mainly benefits the potential cloud service scenarios where privacy of the stored data is
one of the primary concerns.

In this work we also found some indications of possible improvements to the
SHAREMIND framework. We noticed that even though the protocols have a lot of avai-
lable bandwidth, they are not using it. For high throughput connections, the performance
of the protocols may be significantly increased if the bandwidth utilization rate can be
improved.

As a future work, we could try other approaches to construct the models or, alterna-
tively, build a specialized tool to measure the bandwidth parameter for the models.

42

Turvalise ühisarvutuse rakenduste otstarbekuse analüüs

Magistritöö (30 EAP)

Reimo Rebane

Resümee
Vaatleme stsenaariumi, kus mitu organisatsiooni sooviks oma individuaalsetest andme-
baasidest ehitada ühe suure andmebaasi. Andmebaasi ehitamise eesmärgiks on ühiselt
teostada arvutusi, mis oleksid kasulikud kõikidele osapooltele. Ühest küljest võivad kõik
osapooled oma andmed avalikustada ning selle põhjal vajalikke arvutusi teha. Teisest
küljest, ei ole kõiki andmeid võimalik avalikustada ning suur osa kasulikke arvutusi
tehakse tõenäoliselt just privaatsete andmete pealt. Andmete avalikustamist võivad ta-
kistada nii organisatsiooni sisesed reeglid, kui ka seadused. Antud probleemile on ole-
mas krüptograafiline lahendus—turvaline ühisarvutus. Turvalise ühisarvutuse abil saa-
vad osapooled teha arvutusi nii, et iga osapool saab teada ainult arvutuse tulemuse ja ei
saa teada midagi uut lähteandmete kohta.

Käesolevas töös uurime ühe konkreetse turvalise ühisarvutuste raamistiku,
SHAREMINDi, rakenduste jõudlust. Praegune SHAREMINDi rakendusserver töötab kol-
me masina peal, mis omavahel suheldes teostavad arvutusi. Antud raamistikus kasutata-
va turvalise ühisarvutuse jõudlus sõltub peamiselt edastatud andmete mahust ning seega
võrgu jõudlusest, mille peal arvutusi läbi viiakse. Me ehitasime lineaarse regressiooni-
mudeli, mille eesmärgiks on ennustada protokollide tööaega sõltuvalt võrgu parameet-
ritest. Baasmudeli loomisel fikseerisime võrgu parameetrid olemasolevate tööriistadega
ning hindasime mudeli parameetrite väärtused. Eksperimendid mudeli loomiseks vii-
sime läbi eriotstarbelisel SHAREMINDi arvutusklastril. Teades mudeli parameetrite
väärtuseid üritasime võrgu parameetrite põhjal ennustada mudeli tööaega.

Klasti süsteemi peal valideerisime mudelit, ennustades algoritmide tööaega. Uurisi-
me Apriori andmekaeve algoritmi, mis kasub SHAREMINDi turvalise ühisarvutuse pro-
tokolle. Ennustuse tulemused olid lähedased tegelikule protokollidele kulutatud ajale.

Mudeli valideerimiseks paigaldasime SHAREMINDi raamistiku mitmelt pilvetee-
nuse pakkujalt renditud taristule. Pilveteenused kiirendavad mitmesuguste rakenduste,
eelkõige veebiteenuste arendusprotsessi, minimaliseerides esmast investeeringut, sest
alustavad firmad ei pea oma riistvara hankima. Riistvara soetamise ja haldamise kulud
vahetatakse pilveteenuse vastu. Pilve keskkonnas ei õnnestunud meil täpseid ennustusi
protokollide tööaja kohta teha. Küll aga õnnestus teha umbkaudseid hinnanguid mudeli
parameetrite kohta ning nende põhjal prtokollide tööaega hinnata. Kuigi hinnangud ei
olnud väga täpsed, saime järeldada, et meie mudel ei ole vale, aga me ei suuda mude-
li sisendparameetreid, võrgu latentsust ja ribalaiust, täpselt mõõta ning seetõttu on ka
meie ennustused ebatäpsed.

43

Selles töös uurisime ka turvalisel ühissalastusel põhinevate pilverakenduste majan-
duslikku otstarbekust. Jälgisime kahte aspekti: kas turvaline ühisarvutus pilves on pii-
savalt kiire ning kas kulud on mõistlikud. Leidsime, et arvutuste jõudlus on piisav mit-
mete potentsiaalsete rakenduste jaoks. Turvalise küsimustiku näitestsenaariumi põhjal
järeldasime, et turvalise ühisarvutuse kulud pilverakendustes on samuti mõistlikud. Pil-
vekeskonnas on kaks peamist kuluallikat: serveri ülalhoidmiskulud ning võrguliiluse
kulud. Leidsime, et suure hulga rakenduste jaoks on serveri ülalhoidmine kulukam kui
andmeedastus.

Selle töö tulemusena leidsime, et turvaline ühissalastus on mõistlik lahendus sel-
liste rakenduste puhul, kus andmete privaatsuse tagamine on kriitilise tähtsusega. Tu-
lemused näitavad, et SHAREMINDil põhinevad rakendused on praktilised ka siis, kui
nad on juurutatud üle maailma laiali asuvates serverites. Lisaks näitasid meie katsed, et
SHAREMINDi protkollide jõudlust saaks tõsta parandades vaba oleva võrgu ribalaiuse
kasutamist raamistiku protokollide poolt.

44

References
[BDJ+06] Peter Bogetoft, Ivan Damgård, Thomas Jakobsen, Kurt Nielsen, Jakob

Pagter, and Tomas Toft. A Practical Implementation of Secure Auctions
based on Multiparty Integer Computation. In Giovanni Di Crescenzo and
Avi Rubin, editors, Financial Cryptography and Data Security, volume
4107 of Lecture Notes in Computer Science, pages 142–147. Springer
Berlin / Heidelberg, 2006. 10.1007/11889663 10.

[BJL12] Dan Bogdanov, Roman Jagomägis, and Sven Laur. A universal toolkit
for cryptographically secure privacy-preserving data mining. In Proceed-
ings of the Pacific Asia Workshop on Intelligence and Security Informatics,
pages 112–126. Heidelberg: Springer, 2012. To appear.

[Bla79] George R. Blakley. Safeguarding cryptographic keys. International Work-
shop on Managing Requirements Knowledge, 0:313, 1979.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A Frame-
work for Fast Privacy-Preserving Computations. In Computer Security -
ESORICS 2008, 13th European Symposium on Research in Computer Se-
curity, Málaga, Spain, October 6-8, 2008. Proceedings, volume 5283 of
LNCS, pages 192–206. Springer, 2008.

[BNTW12] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-
performance secure multi-party computation for data mining applications,
2012. To appear.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation. In
Proceedings of the twentieth annual ACM symposium on Theory of com-
puting, STOC ’88, pages 1–10, New York, NY, USA, 1988. ACM.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty uncondi-
tionally secure protocols. In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, STOC ’88, pages 11–19, New York,
NY, USA, 1988. ACM.

[CDN09] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty Com-
putation, an Introduction, 2009.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Veri-
fiable secret sharing and achieving simultaneity in the presence of faults. In
Proceedings of the 26th Annual Symposium on Foundations of Computer

45

Science, pages 383–395, Washington, DC, USA, 1985. IEEE Computer
Society.

[Cra99] Ronald Cramer. Introduction to Secure Computation. In Ivan Damgård,
editor, Lectures on Data Security, volume 1561 of Lecture Notes in Com-
puter Science, pages 16–62. Springer Berlin / Heidelberg, 1999.

[Jag10] Roman Jagomägis. SecreC: a Privacy-Aware Programming Language with
Applications in Data Mining. Master’s thesis, Institute of Computer Sci-
ence, University of Tartu, 2010.

[KBdH09] F. Kerschbaum, D. Biswas, and S. de Hoogh. Performance Compari-
son of Secure Comparison Protocols. In 20th International Workshop on
Database and Expert Systems Application, 2009. DEXA ’09., pages 133–
136, 31 2009-sept. 4 2009.

[NE09] European Network and Information Security Agency (ENISA). An SME
perspective on Cloud Computing, November 2009. Survey.

[SHA] The Sharemind secure computation framework. http://sharemind.cyber.ee.
[Online; accessed 06-May-2012].

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22:612–
613, November 1979.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings of the
23rd Annual Symposium on Foundations of Computer Science, SFCS ’82,
pages 160–164, Washington, DC, USA, 1982. IEEE Computer Society.

46

Appendix A Model coefficient estimation results
In the following tables, the model coefficients are obtained assuming full-duplex net-
work connections. For individual protocols, the accuracy while assuming half-duplex
connections is the same and the coefficients differ by a protocol dependent constant
factor.

Added Bw. f(p) g(b)
R2

ping lim. Coef. Std. Err. p-val. Coef. Std. Err. p-val.
0 100 8.73 0.85 0 48947.63 167.71 0 0.996
50 100 25.83 1.73 0 38684.72 209.51 0 0.991
100 100 41.14 2.92 0 28026.91 188.52 0 0.986
200 100 55.32 10.86 0 14142.27 180.00 0 0.952
500 100 73.99 46.23 0.111 4265.48 69.87 0 0.924
1000 100 −820.53 63.19 0 34.50 0.01 0 1.000

0 10 −25.62 2.01 0 9900.99 16.67 0 0.999
50 10 5.06 1.79 0.005 5622.72 4.74 0 1.000
100 10 9.26 2.19 0 3476.21 2.18 0 1.000
200 10 15.81 3.54 0 1968.78 1.12 0 1.000
500 10 36.51 7.68 0 856.15 0.47 0 1.000
1000 10 −245.72 30.39 0 33.99 0.00 0 1.000

0 1 −26.05 2.03 0 894.20 0.14 0 1.000
50 1 −18.61 12.51 0.138 298.88 0.09 0 1.000
100 1 4.25 12.82 0.741 180.18 0.03 0 1.000
200 1 5.38 9.97 0.590 100.31 0.01 0 1.000
500 1 −107.06 34.06 0.002 43.21 0.01 0 1.000
1000 1 −56.06 31.63 0.077 22.13 0.00 0 1.000

Table A.1: Share conversion protocol model coefficients

47

Added Bw. f(p) g(b)
R2

ping lim. Coef. Std. Err. p-val. Coef. Std. Err. p-val.
0 100 64.98 2.35 0 51072.52 78.25 0 0.999
50 100 167.54 11.73 0 34129.69 198.02 0 0.989
100 100 311.36 9.44 0 25588.54 91.67 0 0.996
200 100 545.36 19.30 0 15598.19 70.56 0 0.994
500 100 1241.22 39.66 0 7296.07 31.41 0 0.994
1000 100 1272.12 80.80 0 33.54 0.00 0 1.000

0 10 15.67 3.79 0.000 9940.36 46.44 0 0.995
50 10 148.61 6.85 0 6852.60 40.38 0 0.993
100 10 248.00 11.09 0 4301.08 25.71 0 0.992
200 10 275.68 17.84 0 2299.01 1.43 0 1.000
500 10 634.45 40.72 0 1015.47 0.63 0 1.000
1000 10 −572.11 217.18 0.009 32.80 0.03 0 1.000

0 1 25.90 5.78 0 945.78 5.00 0 0.996
50 1 144.42 11.18 0 370.08 1.48 0 0.998
100 1 231.45 18.62 0 222.51 0.89 0 0.998
200 1 165.30 21.58 0 121.14 0.04 0 1.000
500 1 395.42 49.08 0 51.84 0.02 0 1.000
1000 1 779.49 95.68 0 26.54 0.01 0 1.000

Table A.2: Equality comparison protocol model coefficients

48

Added Bw. f(p) g(b)
R2

ping lim. Coef. Std. Err. p-val. Coef. Std. Err. p-val.
0 100 50.15 4.99 0 84459.46 71.33 0 1.000
50 100 −178.63 113.39 0.116 39416.63 481.64 0 0.955
100 100 −686.07 223.35 0.002 19516.00 236.14 0 0.957
200 100 596.76 56.04 0 20903.01 568.02 0 0.861
500 100 1723.97 34.14 0 13123.36 136.06 0 0.977
1000 100 −1177.33 1019.50 0.250 33.15 0.05 0 1.000

0 10 35.98 7.06 0 10750.38 160.64 0 0.974
50 10 116.82 8.92 0 9504.80 18.97 0 0.999
100 10 245.18 13.17 0 8340.98 21.57 0 0.999
200 10 765.16 30.22 0 7788.77 328.20 0 0.815
500 10 1799.34 71.15 0 3657.78 170.45 0 0.782
1000 10 2141.79 212.11 0 34.58 0.05 0 1.000

0 1 −272.24 164.06 0.100 760.33 16.98 0 0.940
50 1 146.53 13.12 0 854.11 1.71 0 0.999
100 1 250.11 20.56 0 514.78 0.98 0 1.000
200 1 450.31 35.26 0 288.44 0.52 0 1.000
500 1 1039.24 82.75 0 123.98 0.23 0 1.000
1000 1 1397.16 335.47 0.000 28.01 0.05 0 1.000

Table A.3: Greater-than comparison protocol model coefficients

49

Added Bw. f(p) g(b)
R2

ping lim. Coef. Std. Err. p-val. Coef. Std. Err. p-val.
0 100 −772.63 215.90 0.000 38940.81 424.59 0 0.966
50 100 −4805.26 943.27 0 10459.16 132.37 0 0.953
100 100 −8654.31 1846.24 0 6339.14 94.84 0 0.935
200 100 −211.16 185.19 0.255 9843.49 193.79 0 0.922
500 100 −3449.87 1213.22 0.005 2624.95 90.19 0 0.795
1000 100 1158.66 206.37 0 26.96 0.01 0 1.000

0 10 19.75 169.88 0.908 6909.42 883.67 0 0.368
50 10 192.10 39.07 0 6346.79 427.79 0 0.786
100 10 202.98 13.82 0 6724.50 6.78 0 1.000
200 10 699.78 36.08 0 6051.07 109.85 0 0.959
500 10 1662.92 83.37 0 2878.86 57.52 0 0.951
1000 10 1796.62 309.89 0 26.25 0.02 0 1.000

0 1 52.60 36.72 0.159 752.82 9.41 0 0.993
50 1 −331.17 529.80 0.533 563.24 13.99 0 0.927
100 1 221.43 20.14 0 676.79 0.77 0 1.000
200 1 429.79 35.85 0 534.72 0.85 0 1.000
500 1 1032.15 82.48 0 251.20 0.43 0 1.000
1000 1 1554.63 364.06 0 37.07 0.04 0 1.000

Table A.4: Bit extraction protocol model coefficients

50

Appendix B Measured network parameters for the
model experiments

Added Bw. Round-trip time in milliseconds
ping lim. Mult ShareConv Equal ShiftR BitExtr

0 100 9.23 1.93 3.22 15.51 9.32
50 100 68.71 55.39 55.17 68.60 76.08
100 100 125.88 104.87 104.22 127.29 140.59
200 100 248.12 204.68 205.11 220.67 241.39
500 100 619.09 541.17 514.10 544.21 622.82
1000 100 1070.69 1065.26 1072.25 1084.94 1074.60

0 10 30.32 11.86 0.84 5.53 1.58
50 10 66.75 52.21 52.87 61.14 51.59
100 10 107.47 101.28 101.21 103.44 119.69
200 10 202.85 200.96 200.84 201.23 202.94
500 10 501.71 500.76 500.75 500.72 501.27
1000 10 1067.06 1112.36 1054.85 1066.73 1057.48

0 1 11.67 2.60 5.79 5.44 11.98
50 1 54.89 50.84 52.58 50.89 65.22
100 1 100.79 100.65 100.69 100.77 115.78
200 1 200.72 200.63 200.55 200.75 204.12
500 1 500.70 500.62 500.55 500.70 501.68
1000 1 1084.21 1000.61 1000.57 1034.49 1030.34

Table B.1: Measured average round-trip times for model benchmarks

51

Added Bw. Bandwidth in Mbit/s
ping lim. Mult ShareConv Equal ShiftR BitExtr

0 100 27.79 13.65 18.84 39.96 24.85
50 100 21.35 9.93 12.70 20.83 7.19
100 100 16.89 7.58 9.37 11.09 4.43
200 100 8.98 4.56 5.90 5.83 5.57
500 100 4.53 1.90 2.82 3.02 1.81
1000 100 0.06 0.06 0.04 0.04 0.04

0 10 7.43 6.15 3.65 5.28 4.99
50 10 7.07 3.83 2.58 4.47 3.30
100 10 6.77 2.57 1.84 3.77 3.77
200 10 4.88 1.51 1.28 1.47 1.74
500 10 2.40 0.69 0.57 0.74 0.85
1000 10 0.06 0.06 0.03 0.04 0.03

0 1 0.82 0.78 0.62 0.54 0.64
50 1 0.82 0.29 0.45 0.47 0.37
100 1 0.66 0.18 0.32 0.29 0.38
200 1 0.38 0.10 0.07 0.17 0.27
500 1 0.17 0.04 0.03 0.07 0.12
1000 1 0.05 0.03 0.03 0.04 0.05

Table B.2: Measured average utilized bandwidth for model benchmarks

52

	Introduction
	Problem statement
	Outline
	Author's contribution

	Preliminaries
	Secure multiparty computation
	Sharemind
	Secure computation protocols
	Related Work

	Experimental methodology
	Experimental setting
	Hardware and software
	Network tuning

	Experimental procedure
	Measurements
	A breakdown of execution time
	Measuring network traffic throughput
	Measuring network latency

	Structural analysis of Sharemind protocols
	Theoretical complexity of Sharemind protocols
	Multiplication
	Share conversion
	Practical communication complexity

	Modeling the performance of secure computation protocols
	Goal
	Experimental plan
	Constructing the model
	Analysis
	Model evaluation methods
	Models of individual protocols
	Joint modeling of secure protocol running time

	Validating the model in a cloud environment
	Motivation
	Security concerns in cloud deployments
	Choosing a cloud service provider
	Pricing
	Location
	Chosen providers

	Setting up a Sharemind installation on the cloud
	Measuring the parameters for the model
	Estimating the running time of algorithms
	Estimating protocol performance on a new deployment
	Discussion

	Estimating the economic feasibility of secure computation in the cloud
	Performance of Sharemind deployments
	Cost of Sharemind deployments

	Conclusion
	Turvalise ühisarvutuse rakenduste otstarbekuse analüüs
	References
	Appendix Model coefficient estimation results
	Appendix Measured network parameters for the model experiments

