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Introduction 

The field of computer intelligence in common games has been studied since the beginning 

of computer science. One of the notable achievement examples is computer program Deeper 

Blue designed by IBM that was able to defeat world chess champion in 1997 [1]. Such com-

puter programs are mostly based on designing algorithms that use human expertise as their 

knowledge base – the important game patterns, situations, threats and defenses are all prede-

fined and provided by humans. In 1995 it was demonstrated by D. Fogel that it is possible to 

train computer intelligence also without any human expertise. This was done with the help of 

neural networks and evolutionary learning on a simple Tic-tac-toe game [2]. This method was 

further explored in 1997 where the AI program Blondie24 was trained to play checkers and 

achieved expert level results against human players online [3]. The Blondie24 project was also 

inspiration for this given work, but Random Forests are used instead of neural networks. 

The main objective of the thesis is to explore the viability of combination multiple ma-

chine learning techniques in order to train Artificial Intelligence for k-in-a-row type games. 

The techniques under observation are following: 

 Decision Trees [4] 

 Random Forest (consisting of Decision Trees) [5] 

 Minimax Algorithm [6] 

 Genetic Algorithm [7] 

The main engine for training AI is Genetic Algorithm where a set of individuals are evolved 

towards better playing computer intelligence. In the evaluation step, series of games are done 

where individuals compete in series of games against each other – the results are recorded and 

the evaluation score of the individuals are based on their performance in the games. During a 

game, heuristic game tree search algorithm Minimax is used as player move advisor. Each of 

the competing individuals has a Random Forest attached that is used as the heuristic function 

in Minimax. The key idea of the training is to evolve as good Random Forests as possible.  

During the first chapter of the thesis, an overview of games used is given, along with their 

rules and theoretical complexity. A more detailed explanation of algorithms and their proce-

dures is given in Chapter 2. How the algorithms are implemented and combined is explained 

in Chapter 3. To speed up the training process multiple optimizations were done as described 

in Chapter 4. Achieved results are given in Chapter 5.  
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1 K-in-a-row games 

The family of connecting games has a long history and has been studied in computer sci-

ence comprehensively [8], [9], [10]. The connection games are played on grid-like boards 

between two players who are altering moves. The general idea is to place stones on the game 

board and achieve a consecutive line of k stones either vertically, horizontally or diagonally. 

The most famous and simple connection game known is Tic-tac-toe. Such games have gener-

alized definition of (m,n,k)-games where m and n represent the size of the board and k repre-

sents number of consecutive stones needed in a line to win a game. Tic-tac-toe represents a 

(3,3,3)-game by the definition. Recently, around 2004, a further extension was introduced to 

(m,n,k)-games – as addition, each player places p stones each turn with exception of first turn 

where player places q stones. Such games are defined as (m,n,k,p,q)-games. This extension 

was required to define now quite popular worldwide game Connect6 with the definition of 

(m,n,6,2,1)-game. 

1.1 Gomoku 

Gomoku is a another classic example of k-in-a-row type games that was played typically 

with Go [11] board and game pieces. The aim of the game is to achieve five consecutive 

stones in a row on a standard Gomoku board size of 15x15 grid. The name originated from 

Japanese language where the game is called gomokunarabe - go means five, moku is a counter 

word for pieces and narabe means line-up. 

State space complexity of the game is 3
225

 and game tree 

complexity is approximately 10
70

, assuming an average game 

length of 30 moves [9]. One of the earlier successful implemen-

tations for the game is “Vertex” which achieved gold medal 

during ICGA Tournaments in 1992. It used Alpha-Beta game 

tree search with depth of 16 plies where in each ply only the 

best 14 moves were searched deeper. Further study by 

L.V.Allis in 1994 has shown Gomoku to be solved game where first player wins with perfect 

game [9]. A combination of threat-space search, proof-number search and database construc-

tion was used in order to show this. 

During this project, a Gomoku with board size of 10x10 will be used in order to explore 

the viability and performance of proposed thesis subject. This reduces the state space com-

 

Figure 1-1: Example Gomoku board 
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plexity to 3
100

 and game tree complexity to approximately 10
59

 while still giving good over-

view of the method effectiveness. 

1.2 Connect Four 

Connect Four is yet another connection game where 4 stones have to be placed in a row. It 

has additional move restriction rule, where gravity applies to each move – once a stone has 

been placed, it will be sent to the lowest possible position currently on board. Connect Four is 

considered as a solved game on a classical 6x7 board [12]: 

- If player starts in the middle, he can force a win 

- If player starts in one of the edge positions, opponent can force a win 

- If player starts in any other position, opponent can force a draw 

The game has quite low game tree complexity compared with Gomoku as there are always at 

maximum of 7 different positions to move. A comparison between game tree complexities 

used during this work is illustrated in [Figure 1-2]. 

 

Figure 1-2: Game tree complexity 
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2 Algorithms used 

2.1 Minimax 

Minimax algorithm is a recursive search algorithm that traverses on a game tree and tries 

to minimize maximum possible loss. It is widely used in turn-taking, two-player, zero-sum 

games with perfect information [13]. This means that the there is no hidden information and 

the game states are always opposite – if one player wins, then the other player automatically 

loses. Common examples of such games are checkers, chess and k-in-a-row games (e.g. Tic-

tac-toe). The algorithm uses depth-first approach to recursively scan all possible game states 

until all terminal nodes are found or a certain depth has achieved. Such depth is often defined 

as look-ahead number of turns where is each depth level is referred to as ply. In game tree 

such nodes are considered to be tree leaves and when a leaf-node is found it will be evaluated 

according to a heuristic function. When a game state is found where the player wins, it is 

evaluated automatically with positive infinity and with negative infinity if it is a loss for the 

player. All other non-terminal states are evaluated based on heuristic function giving estima-

tion of how good the game state is in perspective of the player. During this work, Random 

Forests are used as the heuristic function. 

The input of the algorithm is a game state from where all possible next game states are ex-

panded and the output is the move with maximum evaluation score that player is guaranteed to 

achieve from the input state. Each ply of the tree alternates between MAX levels, where the 

goal is to benefit the player maximizing the evaluated score of a game state, and MIN levels, 

where the goal is to benefit the opponent by minimizing the evaluated score of a game state 

[14]. The algorithm relies on accuracy of heuristic function and on assumption that opponent 

does not make any mistakes. The pseudocode of the algorithm is described in [Pseudocode 

2-1]. 

Minimax pseudocode 

function minimax( node, depth ) 
    if node is a terminal node or depth <= 0: 
        return the heuristic value of node 
 
    α = -∞ 

    foreach child in node:   
        α = max( a, -minimax( child, depth-1 ) ) 
 
    return α 

Pseudocode 2-1: Minimax 
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The provided pseudocode is also enhanced by Negamax code optimization [14]. Normal 

Minimax pseudocode would require two separate code blocks, first for minimizing and second 

for maximizing. Negamax takes into account that                        and seeks 

always from perspective of currently acting player by maximizing the negative values of sub 

game state evaluations. The outcome of Negamax does not differ in any way compared with 

Minimax and the only aim is to reduce the implementation code footprint. 

An example fictional game tree is illustrated 

in [Figure 2-1] where all nodes have been 

already fully analyzed. The nodes that lead to 

player victory are evaluated with positive 

infinity and nodes that lead to opponent victory 

are evaluated with negative infinity. Maximiz-

ing player is represented by circles (who 

chooses best evaluated move from sub-node 

values) and minimizing player is represented by squares (who chooses worst evaluated sub-

node values). Starting from bottom-to-top it is possible to see that the smallest guaranteed 

evaluation score from left sub-tree is -10 and from right sub-tree it is -7. So in order to achieve 

guaranteed game board state of -7, player should choose the move represented by right sub-

tree. 

The naive Minimax algorithm can be further improved with Alpha-Beta pruning [13]. Not 

all states of the game tree have to be examined during the game tree search – if a game state is 

found that is worse than previously found state, then it can be completely discarded as it has 

no way of improving maximum possible result. On average, discarding such states reduces the 

game tree branching factor by 25%, thus also improving the algorithm speed. Additional 

speed-up can be achieved if more likely better child-nodes are explored first. This can be done 

by simply sorting child nodes before next level recursion. 

To implement Alpha-Beta pruning, the algorithm is extended with two additional variables 

(α and β) that pass information recursively to next levels. Alpha keeps track of minimum 

value that the player can achieve (initiated with negative infinity) and beta keeps track of 

maximum value that player can achieve (initiated with maximum infinity). During the search 

 

Figure 2-1: Example Minimax game tree [15] 
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process, these values are modified based on the heuristic function evaluation for game states. 

The pseudocode for the Alpha-Beta pruning is described in [Pseudocode 2-2]. 

 

Alpha-Beta pruning pseudocode 

function negamax( node, depth, α, β, color ) 
 
     if node is a terminal node or depth = 0 
          return color * the heuristic value of node 
 
     foreach child of node 
          value = -negamax( child, depth-1, -β, -α, -color ) 
 
          if value ≥ β 
               return value /** Alpha-Beta cut-off */ 
 
          if value ≥ α 
               α = value 
           
     return α 

Pseudocode 2-2: Alpha-Beta pruning 

 

The provided pseudocode is enhanced again with Negamax code optimization, to reduce the 

code footprint and the result does not differ from regular Alpha-Beta pruning. 

2.2 Decision Tree 

In machine learning Decision Trees are used as models to predict an item target value 

based on observed attributes from given dataset. More commonly such trees are called classi-

fication and regression trees (CART) and they map observations about an item to conclusions. 

The structure of Decision Tree consists of tree nodes and 

tree leaves. Tree nodes represent a single attribute on a data 

item and tree leaves represent the prediction value. An 

example Decision Tree is illustrated in [Figure 2-2] which 

describes survival of passengers on the Titanic. For exam-

ple, if a person on the ship was male under 9.5 years old, 

had more than 2.5 siblings or spouses on board (represented 

by sibsp parameter), then this person had 89% of survival 

rate. Total of 2% observations are represented by this tree leaf. 

 

Figure 2-2: Survival rate of  Titanic[16] 
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The main idea of Decision Tree is to split observed information into subsets based on sin-

gle attributes. A common simple tree learning algorithm is ID3 that splits data into subsets 

starting from attributes with best information gain based on entropy that is used in information 

theory. Such recursive partitioning is done until subset under a tree node has the same predic-

tion value or if the splitting gives no more statistical value to the predictions. 

There are many advantages for Decision Trees such as: 

 Simple to understand and interpret – white box models 

 Requires little data preparation 

 Able to handle both numerical and categorical data 

 Robust and it is possible to validate their effectiveness using statistical tests 

 Can model large data sets without performance issues. 

But there are also disadvantages such as: 

 Constructing optimal Decision Trees is known to be NP-hard problem 

 Decision Trees can fail to generalize data correctly (overfit) – this problem can be 

overcome with pruning techniques 

2.3 Random Forest 

Random Forest is an ensemble classifier that uses multiple Decision Trees as described in 

the previous chapter. The idea is to collect target value prediction information from many 

Decision Trees and the mean of all trees would be the output from Random Forest. Each of 

the trees in such forest has different subset of decision attributes on which the tree makes the 

prediction. The overall procedure for training a Random Forest is as follows: 

1. Let N be the number of trees to be learned and M total number of variables; the process 

is repeated until required number of trees have been learned 

2. A bootstrap sample from the training set is chosen randomly 

3. A Decision Tree is learned on the chosen bootstrap 

4. At each node of the tree, a random subset of m input variables are chosen that are used 

to determine decision at a node of the tree (m should be much smaller than M) and the 

tree is split based on the best variable 

5. The resulted tree is added to random forest next to other already trained trees 

6. Examples not chosen into bootstrap set are used to estimate the error of the trained tree 

and evaluating the prediction value 
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7. The resulted tree is not pruned and kept as is. 

 

There are many advantages for Random Forest compared to a single Decision Tree such as: 

 It is one of the most accurate classifier algorithms currently known [17] 

 Robust to outliers and noise 

 Has high performance on large dataset size and large number of variables 

With two main disadvantages: 

 Random Forests have been observed to overfit when learning on some  

noisy datasets [18]  

 Compared to Decision Trees, they are harder for human to interpret 

 

Random Forests were chosen for Minimax algorithm heuristic function as an alternative 

option to Artificial Neural Networks (as used in Blondie24 for example [3]). Also, it is 

possible to convert already trained networks into form of Decision Trees [19], which are the 

core of Random Forests. 

2.4 Genetic Algorithm 

The Minimax algorithm relies heavily on the heuristic function which is used to evaluate 

game states. Such heuristic functions are in most cases developed with help of human expert 

knowledge. With inaccurate evaluation, the game tree search becomes inefficient and does not 

provide good move suggestions. During this thesis, the process of finding and training accu-

rate Random Forests for Minimax heuristic function is obtained with help of Genetic Algo-

rithm. This allows creating a heuristic function from scratch without any human expert 

knowledge, which is also one of the aims to achieve during this thesis. 

Genetic Algorithm is a search heuristic that mimics natural evolution process. The aim of 

the algorithm is to evolve towards a solution by going through same steps as observed in 

nature. The algorithm is initiated with a completely random population where each individual 

is a possible solution candidate. Once such population is generated, the algorithm starts with 

evaluation where each individual is assigned a fitness score – how good they are in solving the 

problem. After this, natural selection occurs similar to the ‘survival of the fittest’ in nature 

where only strongest individuals are transferred to next step: reproduction. Each individual 

has genetic information that encodes solution information, for example binary arrays 
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(‘0101100100’) or strings (‘UAGACGGAG’). During the reproduction step, two individuals 

are selected from the survived population and go through crossover process – again, mimick-

ing nature, new child individual is formed from combination of genetic information in both 

parents. There is also a small probability that newly formed individual will go through muta-

tion, where the genetic information is slightly altered. The objective of the mutation in terms 

of search heuristic is to overcome local optima and help find a better solution. After new 

population is generated from crossover step, the evaluation and new iteration of the algorithm 

begins. Overview of the Genetic Algorithm procedure is following: 

1. Initial population 

2. Evaluation 

3. Fitness assignment 

4. Natural selection 

5. Reproduction 

6. Crossover 

7. Mutation 

8. Repeat from step 2. 

After each iteration the individuals evolve into better solution and the algorithm stops once a 

satisfactory result solution is achieved or predefined number of iterations has passed. There 

can be also other end criteria such as manual observation or filling allocated timeslot. 
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3 Implementation overview 

The implemented version of the software consists around 9000 lines of code. This includes 

implementation of Genetic Algorithm, Random Forest, Decision Trees and Minimax algo-

rithms. There are many threats when writing software program in short timespan with volume 

such size – software errors are inevitable, which is backed up by the fact that during the 

testing and training period numerous defects were found (and hopefully correctly fixed). Yet 

there could be always more still undetected issues that could potentially bias the training 

results [20]. 

 

Figure 3-1: Overall training workflow 

The overall training procedure is illustrated in [Figure 3-1] and it is separated mainly into 

two main procedures: training step and genetic step. These steps and other different parts of 

the whole process are described during this chapter.  

3.1 Training step 

The training process starts always with Genetic Algorithm step – new population for train-

ing is created there and the individuals from this population are then added to competition 

consisting of games where they compete against each other. In each game Minimax algorithm 

is used based on Random Forest attached to each individual. There are two strategies that can 

be used to compete individuals against each other: full and limited. With full training, each 

individual is competed against every other individual. With this strategy the number of games 

that have to be played has quadratic growth based on the population size. Full training strategy 

gives the best evaluation information for the individuals.  

With the second, limited strategy, it is possible to define number of games that will be 

done for each individual. This allows reducing number of games to a smaller (linear) growth. 
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The idea is to compete survived population from previous iteration against new population 

generated from mating process in Genetic Algorithm. This method does not give as precise 

estimation as full training, but still gives good estimation for an individual if it had better 

performance than one of its predecessors – better performing individuals will survive by 

replacing their predecessors, thus making population stronger. 

Once all games are finished, the results are analyzed based on each game outcome and 

each individual is then given predefined performance score, with default values as follows:
1
 

 2 points for each victory 

 1 points for each draw 

 -3 points for each loss 

The point values are configurable, but seem to suit for population size of 5 to 10. It was 

possible to observe more efficient evolving of individuals if points reduced by a loss was 

greater than points given for a victory. Otherwise some individuals would “sacrifice” some 

games in order to get more victory points. 

3.2 Genetic Algorithm step 

Genetic Algorithm has two separate parts implemented called Brain and Knowledge. The 

Brain conducts the process of Genetic Algorithm - that is natural selection, population retrain-

ing and mating. The Knowledge on the other hand has implementation of algorithms that 

process the data or delegates tasks to other parts of the project. For example the retraining 

process is done separately in order it would be possible to use multithreading.  

As a first step in Genetic Algorithm, natural selection takes place. The process takes input 

as already evaluated population from previous training step and returns only best performed 

individuals during the competitions. All other individuals are completely discarded. 

Once the best individuals are selected the retraining process starts. During this step all De-

cision Trees are extracted from all Random Forests attached to each survived individual. Then 

each extracted tree is retrained based on the Decision Tree algorithm, but using the same 

decision attributes as previously. The retraining process is important, since after each competi-

tion step, there is new available information stored from results of each game. Retraining 

process takes this new information into account and retrained Decision Trees will have 

potentially better knowledge. 

                                                 
1 No claim of optimal settings is done here – the chosen values were solely chosen as a result from series of mini tests and trainings. 
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After best individuals are retrained, the mating and crossover process starts. There are two 

possible strategies for mating process: full and partial. In full mating, each individual goes 

through crossover against each other individual. With this strategy the number of maximum 

individuals has quadratic growth based on input population size. The second strategy is to use 

partial mating where crossover is done against two individuals selected randomly from the full 

population until configured maximum population size is reached. This allows limit the quad-

ratic population size growth to a linear 

size growth and reduces overall training 

time significantly. An example compari-

son between full and limited training is 

shown in [Table 3-1]. 

During the crossover process, genes are considered to be the trees in the Random Forest 

for each individual. New individual is created by using randomly chosen trees from both 

parents. The resulted new forest has the same amount of trees as their parents and they are 

attached to the new child individual. 

During the crossover process there is also a predefined probability of mutation. During the 

mutation process the genes are again considered to be the trees in the Random Forest. If a 

child individual is mutated, then for each tree in the forest there is the same predefined proba-

bility that the tree is discarded and a new tree is trained instead based on the Decision Tree 

algorithm. This ensures that new potentially better decision attributes (game board patterns) 

are introduced into the population while some potentially less efficient are removed. 

3.3 Minimax usage 

The implementation of Minimax follows the general definition of the algorithm, with addi-

tion of Alpha-Beta pruning and Negamax code optimization as described in Chapter 2.1. 

There are also few modifications to the algorithm pseudo code – all possible next game board 

states are pre-calculated and sorted based on board evaluation heuristic before the game tree 

search begins. This ensures that more likely better subtrees are searched first and giving 

higher chance of earlier Alpa-Beta cutting. 

 Full training 
and crossover 

Limited training 
and crossover 

Initial population 10 10 

Maximum population 100 20 

Number of total games 9,900 200 

Table 3-1: Full and limited training comparison 
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The heuristic that evaluates board states for sorting is quite simple: a game board is 

scanned for multiple predefined patterns and each of the patterns has also assigned score 

value. When a pattern is found in the game board state, the overall board score is either added 

or subtracted based on for which player the pattern was found. The patterns that are scanned 

can be seen on [Figure 3-2], where each pattern is visualized from left 

to right, one pattern per line: cross symbolizes player stone and dash 

an empty field. These patterns are also mirrored vertically and diago-

nally. The scanning process is using Boyer-Moore-Horspool [21] 

pattern search algorithm and board is scanned one pattern at a time. A 

possible improvement would be to implement multi-pattern search 

algorithm here so all patterns could be scanned at the same time, thus 

also improving the performance. This heuristic is used only for sorting 

the boards for Alpha-Beta cutting process and does not affect Minimax algorithm output. The 

actual board evaluation for Minimax algorithm comes from Random Forest output. 

3.4 Random Forest usage 

By definition the Random Forest algorithm classification output is mean of all Decision 

Trees attached to the forest. This output would then be used as heuristic function of a board 

state during Minimax algorithm and using such method would have only three possible 

categorization: player A wins, player B wins, players tie. This gives very little information as 

in most cases, mean classification from trees would be “player does not win”. This is caused 

by the procedure how boards are evaluated – each tree scans all possible locations on the 

game board (also rotated and mirrored) and it actually makes sense that it finds most scanned 

locations as non-winning. 

Due to nature of this project, the output is collected and interpreted differently - instead of 

mean classification from trees, all information from all trees categorization is collected and 

used to evaluate a single game board state. The key idea is to find out how many locations of 

the board were found as: 

 Winning location 

 Losing location 

 Draw location 

 

Figure 3-2: Alpha-Beta 

sorting heuristic patterns 
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Once such information is found, the values can be normalized and then used to calculate board 

evaluation. Normalization is required for Minimax algorithm so all boards would have similar 

score. The difference comes from number of total classifications – when a tree scans board 

locations and all the decision fields are empty, the classification is ignored. Final board score 

would then be calculated based on proportions of the classifications multiplied by the predic-

tion weight as follows: 

               
                    

                 
            

                
                     

                 
             

                
                     

                 
             

                                                                      

 

Default weights that were used during this project are 

listed in [Table 3-2]. Using all information provided from 

the Decision Trees with combination of provided formu-

las, the heuristic algorithm becomes more informative 

and offers more than just three possible target values.
2
 

3.5 Random Forest training 

The implementation of Random Forest training follows general definition of the algo-

rithm, with one notable difference: an extra level of Decision Tree abstraction is added, called 

‘Random Woods’ as seen in [Figure 3-3]. This abstraction replaces Decision Trees by defini-

tion and consists itself of many Decision Trees. The key difference between Decision Tree 

and Random Woods is that woods consist of the same Decision Tree that is replicated and 

transformed over whole game board. The aim of Random Woods is to cover all possible 

locations on the board with the same single pattern from the Decision Tree when they are used 

during Minimax board evaluation process. This is a key feature when the size of defined game 

board grows. Such feature is not needed on smaller boards, for example Tic-tac-toe or even 

for game boards where width is smaller than 5~7 fields – a single Decision Tree could already 

cover all possible locations in this case. 

                                                 
2
 No claim of optimal settings is done here – the chosen values were solely chosen as a result from series of mini tests and trainings. 

Prediction type Weight 

Win prediction weight 2.0 

Draw prediction weight 1.0 

Loss prediction weight -0.5 

Table 3-2: Default weights for predictions 
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Figure 3-3: Random Forest with Random Woods abstraction 

When the first Decision Tree is trained with random decision attributes it is attached to the 

Random Woods. After this, the trained Decision Tree is replicated over all possible game 

board locations. In addition, following operations are performed to the tree decision attributes 

pattern: 

 Mirroring vertically 

 Mirroring horizontally 

 Mirroring vertically and horizontally 

 Transposed 

 Transposed with all mirroring operations again 

Once such transformations are completed, they are propagated into Decision Tree structure 

and then are attached to corresponding Random Woods. Essentially these Decision Trees are 

deciding on same features, but on different locations of the board. Detailed example how trees 

are transformed is shown in [Table 3-3] as a minimum example with pattern radius of 4 and 

target board size 5x5 fields. For each such pattern a separate Decision Tree is formed. This 

ensures that Random Forest will be able to analyze all features in all possible locations on the 

board and report the result accordingly. 

One of the main advantages of pattern separation to cover whole game board on Decision 

Tree level is possibility to add caching to the evaluation process. This is discussed in more 

details during Chapter 4.3. 
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Source Replication - Original 

- - X X 
- - - - 
- X - X 
X - - - 

- - X X - 
- - - - - 
- X - X - 
X - - - - 
- - - - - 

- - - - - 
- - X X - 
- - - - - 
- X - X - 
X - - - - 

- - - X X 
- - - - - 
- - X - X 
- X - - - 
- - - - - 

- - - - - 
- - - X X 
- - - - - 
- - X - X 
- X - - - 

 Replication – Mirrored horizontally 

X - - - 
- X - X 
- - - - 
- - X X 

X - - - - 
- X - X - 
- - - - - 
- - X X - 
- - - - - 

- - - - - 
X - - - - 
- X - X - 
- - - - - 
- - X X - 

- X - - - 
- - X - X 
- - - - - 
- - - X X 
- - - - - 

- - - - - 
- X - - - 
- - X - X 
- - - - - 
- - - X X 

 Replication – Mirrored vertically 

X X - - 
- - - - 
X - X - 
- - - X 

X X - - - 
- - - - - 
X - X - - 
- - - X - 
- - - - - 

- - - - - 
X X - - - 
- - - - - 
X - X - - 
- - - X - 

- X X - - 
- - - - - 
- X - X - 
- - - - X 
- - - - - 

- - - - - 
- X X - - 
- - - - - 
- X - X - 
- - - - X 

 Replication – Mirrored horizontally and vertically 

- - - X 
X - X - 
- - - - 
X X - - 

- - - X - 
X - X - - 
- - - - - 
X X - - - 
- - - - - 

- - - - - 
- - - X - 
X - X - - 
- - - - - 
X X - - - 

- - - - X 
- X - X - 
- - - - - 
- X X - - 
- - - - - 

- - - - - 
- - - - X 
- X - X - 
- - - - - 
- X X - - 

 Replication - Transposed 

- - - X 
- - X - 
X - - - 
X - X - 

- - - X - 
X - X - - 
- - - - - 
X X - - - 
- - - - - 

- - - - - 
- - - X - 
X - X - - 
- - - - - 
X X - - - 

- - - - X 
- X - X - 
- - - - - 
- X X - - 
- - - - - 

- - - - - 
- - - - X 
- X - X - 
- - - - - 
- X X - - 

 Replication – Transposed and mirrored horizontally 

X - X - 
X - - - 
- - X - 
- - - X 

X - X - - 
X - - - - 
- - X - - 
- - - X - 
- - - - - 

- - - - - 
X - X - - 
X - - - - 
- - X - - 
- - - X - 

- X - X - 
- X - - - 
- - - X - 
- - - - X 
- - - - - 

- - - - - 
- X - X - 
- X - - - 
- - - X - 
- - - - X 

 Replication – Transposed and mirrored vertically 

X - - - 
- X - - 
- - - X 
- X - X 

X - - - - 
- X - - - 
- - - X - 
- X - X - 
- - - - - 

- - - - - 
X - - - - 
- X - - - 
- - - X - 
- X - X - 

- X - - - 
- - X - - 
- - - - X 
- - X - X 
- - - - - 

- - - - - 
- X - - - 
- - X - - 
- - - - X 
- - X - X 

 Replication – Transposed, mirrored horizontally and vertically 

- X - X 
- - - X 
- X - - 
X - - - 

- X - X - 
- - - X - 
- X - - - 
X - - - - 
- - - - - 

- - - - - 
- X - X - 
- - - X - 
- X - - - 
X - - - - 

- - X - X 
- - - - X 
- - X - - 
- X - - - 
- - - - - 

- - - - - 
- - X - X 
- - - - X 
- - X - - 
- X - - - 

Table 3-3: Pattern transformation and replication 

3.6 Decision Tree learning 

In training step when a game between individuals ends, the result state is stored in the da-

tabase. This includes following key information: 

 Winning player 

 Game board field values around last move performed by player 

The winning player information is used as the Decision Tree prediction task based on the 

game field states. The game fields do not include full game board information, instead during 
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Decision Tree learning process, only near game end fields are explored and analyzed. This 

ensures that Decision Tree learns more relevant information what helped to end the game. 

Also such method reduces possible number of Decision Tree attribute combinations and 

fastens the Genetic Algorithm in process of finding better patterns. This process is illustrated 

in [Figure 3-4] and goes through following steps: 

1) Winning move is done by a player – last move location is memorized 

2) The surrounding fields of last move location are extracted 

3) Fields are transformed to linear array form 

4) Winning player information is added 

5) Field values are converted to byte data type 

6) Array is stored in database  

 

Figure 3-4: Game board state extraction 

After each training step iteration, there is more information stored in database than previ-

ously for Decision Tree learning. This information is used during Genetic Algorithm retrain-

ing step (all trees are retrained with same decision attributes) and during mutation step (mutat-

ed trees are trained with new random decision attributes). 

Initial information for Decision Tree learning is generated with help of games between 

random moving players and simple heuristic players. This ensures that Decision Trees have 

some sort of starting point to quick start the whole training process. The simple heuristic 

player uses same heuristic function as Alpha-Beta pruning method to sort board states. Such 

player has no chance to win against Minimax based player, but is good enough to beat ran-

domly moving players. 
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4 Performance optimization 

Multiple steps of the project are multithread oriented. Currently, following steps have been 

implemented to work in parallel in multiple threads: 

 Training step process 

 Minimax algorithm 

 Retraining process during  Genetic Algorithm 

To achieve multithreading, Java native API was used. A thread pool with fixed number of 

threads is created with help of Executor class – one thread per single task. If there are more 

tasks than the thread pool size, then they are added to queue and will be executed one-by-one 

once a thread is released back into the pool after previous task has finished. This queue is 

managed by ExecutorService class. 

4.1 Threaded training step process 

During the training step, one of the main sub processes is the competition between indi-

viduals where games are taken place between them. This process is most time consuming in 

the whole project and takes easily up to 95% of the whole training time. Implementing multi-

threaded competition is very straight forward – one game between two individuals is consid-

ered as one task and has full thread to use from the thread pool. Once the game is finished, the 

game state/result is stored and the used thread is released so a next game in queue can start. 

The situation where there are fewer games on going than number of usable threads is covered 

by threaded Minimax, discussed in next chapter. 

4.2 Threaded Minimax 

One of the problems with threaded training step process is the situation where there are 

fewer games ongoing than the number of usable threads. This kind of situation can increase 

training step time in some cases twice, for example when the last game in queue will take long 

time due to even opponents who are unable to win quickly. In order to still exploit free usable 

threads this project implemented basic threaded Minimax [22]. This is achieved by splitting 

top level game tree search into sub processes. 

Threaded Minimax is slower since alpha-beta cutting is not as efficient as non-threaded 

version. This is caused by multiple threads searching in game tree at the same time – if some 

thread finds a good alpha-beta value to perform cutting, then this value will not be propagated 
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into other on-going searches. These threads will still perform game tree search based on the 

initial alpha-beta when the search started. Although, once a sub game tree search has finished, 

then a better alpha-beta value is stored and any new starting threads will request and continue 

their search based on these values. 

Since using threaded Minimax is slower, it is not useful to use it at all times. A Minimax-

Manager class was implemented that follows two key patterns: 

 Singleton pattern 

 Observer pattern 

The main objective of the manager is to decide when to use regular and when to use threaded 

Minimax. For this, MinimaxManager is added as an observer to training process step. The 

training process task is to update the manager with currently running number of games. When 

manager detects, that there are less running games than number of available threads, it returns 

instance of threaded Minimax, otherwise just regular Minimax. Once a threaded Minimax 

instance is created, the search process starts. The possible number of concurrently ongoing 

searches is also taken from MinimaxManager as it has knowledge of currently running games 

and free available threads to use. This means that number of searches at the same time can 

increase during the Minimax algorithm 

when another game has finished and a 

new thread is released for usage. There is 

also a constraint that only one threaded 

Minimax can be running at the same 

time. This is done with help of synchro-

nous Threaded Minimax activation 

between threads and ensures that there is 

only one task per thread. 

4.3 Cached Decision Tree 

One of the best performance gains was achieved by creating cached Decision Trees. Nor-

mal Decision Tree takes a game state as an input and returns result based on the decision 

attributes. Cached tree on the other hand takes also game state as an input, but instead of 

traversing tree structure, a hash lookup table is used to store and retrieve cached results. 

 

Figure 4-1: Threaded Minimax usage 
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Building such hash lookup table is quite simple – after training a Decision Tree, we can 

pre-calculate all possible combinations, feed them as an input to the tree and store the results. 

There are three possible single field states (empty, player, opponent) so memory consumption 

of such method grows in n
3
, where n is number of decision attributes. Structural difference 

between regular and cached usage of Decision Trees is illustrated in [Figure 4-2].  

 

Figure 4-2: Normal and cached Random Woods 

Using cached Decision Trees improved the performance of evaluation speed about 5 times on 

average, thus also improving performance of Minimax algorithm and overall training time.  

4.4 Game tree branching limitation 

In order to fasten the training process, another optimization was achieved by limiting 

number of possible moves where a player using Minimax algorithm can move. This essential-

ly reduces game tree branching factor and lowers the game tree exponential growth. One of 

the options for limiting moves is allowing moves only within certain radius of already done 

moves. An example move limitation with radius 2 is illustrated in [Figure 4-3] where green 

marks legal moves positions and red marks moves that are not explored during the Minimax 

algorithm. Such limitation lowers the number of legal moves while still keeping most (if not 

all) of the strategical aspects. 

Turn 1 Turn 2 Turn 3 Turn 10 

 

Figure 4-3: Limiting legal moves 
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5 Results 

The main outcome of the thesis is the implemented software to train and evolve Random 

Forests as described in Chapter 2.4. Also multiple forests were trained in order to get over-

view how effective this process is. The most amount of time was spent to train Gomoku-

playing Random Forest on a 10x10 game board. The resulted forests were competed against 

each other and three chosen instances went through series of games against human players. 

To improve player gaming experience a minimal graphical user interface was created 

alongside with command line interface in order to conduct human tests on server side. Exam-

ple screenshots of both interfaces can be seen in [Figure 5-1]. The CLI was colorized with 

help of ANSI color codes to indicate human player (always blue) and opponent (always red) 

colors. Also last move done by computer AI is indicated by green color. 

Command line user interface 

 

Graphical UI 

 
Figure 5-1: User interfaces 

5.1 Training environments 

All of the trainings were conducted in four different locations as follows: 

1. Author’s personal computer 

 CPU: AMD Phenom II X4 955 @ 3.20 GHz 

 4 cores/4 threads 

 8GB of RAM 

 Usage: Development and series of mini-tests, also training Tic-tac-toe 

2. High Performance Computing Center of University of Tartu 

 2x Intel Xeon Quad-core L5420 @ 2.5 GHz 

 8 cores / 8 threads each, total of 16 cores / 16 threads 

 32GB of RAM 
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 Usage: Tuning software and series of mini-tests 

3. High Performance Computing Center of University of Tartu (BIIT/EXCS servers) 

 8x Intel Xeon E7 2860 @ 2.27 GHz 

 10 cores / 20 threads each, total of 80 cores / 160 threads 

 1024 GB of RAM 

 Usage: Connect Four training and series of human tests against AI 

Training of Tic-tac-toe 

4. Additional 8 separate servers with virtual machines were used 

 Intel Xeon E7 2830 @ 2.13 GHz 

 8 cores / 16 threads, VM was given 7 cores / 14 threads 

 Speed 2.13 GHz 

 10 GB of RAM 

 Usage: Training of Gomoku on 10x10 boards 

5.2 Tic-tac-toe 

As a proof of concept a Random Forest was trained for Tic-tac-toe on 3x3 game boards. 

Training process was conducted in training environment #3. The resulted forest was able to 

play draws when not using Minimax algorithm for move decisions (achieved by setting 

maximum depth equal to zero). This shows that Random Forest was able to recognize im-

portant patterns solely on its knowledge base and did not need to rely on Minimax algorithm. 

When increasing Minimax depth level to 3, the resulted Random Forest was also able to 

win the game in most cases when the opponent made a mistake. With depth level 6, the 

number of winnings increases even further on opponent mistake and gameplay by Random 

Forest was near perfect based on conducted human tests. This tendency can be also observed 

when competing resulted forest against completely randomly moving player – these test 

results are given in [Table 5-1]. 

  As first As second 

Iteration 102 Total games Wins Draws Loss Wins Draws Loss 
Depth 0 200 97 0 3 72 0 28 

Depth 1 200 95 5 0 81 17 2 

Depth 2 200 100 0 0 78 15 7 

Depth 3 200 99 0 1 76 13 11 

Depth 4 200 99 1 0 90 10 0 

Depth 5 200 100 0 0 95 5 0 
Table 5-1: Random Forest against randomly moving player 
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The Random Forest was trained with Genetic Algorithm population size of 20 where for-

ests attached to each individual had 25 trees and using 4 random attributes of the game board 

(patterns). Total of 102 iterations were trained within 6 hours and 30 minutes using 100 

threads.
3
 The average individual evaluation score during each iteration is shown in [Figure 

5-2] – a rapid growth can be seen already within first 10 iterations, which stabilizes later due 

to most games ending with draw result. 

 

Figure 5-2: Average population score 

 

5.3 Connect Four 

A single Random Forest was trained for playing Connect Four on 7x7 boards. Training 

process was conducted in environment #3. The resulted forest was trained only using Mini-

max depth level 6 and it was able to play a victory in many cases by building dual or triple 

forks, while human player was able to win only by end game forcing moves. This was caused 

due to computer unable to detect and block some open moves that were created by the human 

player in the start of the game. One of such situations is illustrated in [Table 5-2].  

                                                 
3
 Due to speed of the games all threads and CPU cores were possibly not fully utilized. 
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Forcing dual end move 

Turn 9 Turn 35 Turn 44 

   

 
Table 5-2: Forcing dual end move 

All test games ended by either player win and no draws were achieved. Detailed results can be 

found in Appendix [10.3] and summary of test results are given in [Table 5-3]. 

Connect Four Total games AI Wins Draws AI Loss 

Depth 6 20 12 0 8 
Table 5-3: Connect four game results 

The Random Forest was trained with only with 50 trees, where each tree used 5 random 

attributes of the game board (patterns). Total of 107 iterations were completed within 4 days 

of training time using 40 threads. 

5.4 Gomoku  

As higher proof of concept, the main effort in training was done with Gomoku on 10x10 

boards. Training process was conducted in training environment #4. On each server out of 

eight, one Random Forest was trained. The forests went through a series of competitions from 

where 3 better performing were taken further for human tests. Latest competition results are 

described in [Table 5-4], where each candidate played against each other candidate twice (as 

first player and as second player). 

  SCORE 

 Iteration Depth 0 Depth 1 Depth 2 Depth 3 Depth 4 TOTAL WEIGHTED 

Test #87 172 8 4 4 4 12 32 16.8 

Test #90 58 -8 4 0 0 -8 -12 -8 

Test #92 55 -4 0 12 4 4 16 9.2 

Test #93 47 -8 8 -4 4 8 8 9.6 

Test #94 36 12 4 -4 8 0 20 4.8 

Test #96 24 0 -20 -8 -8 4 -32 -6.4 

Table 5-4: Final competition results 
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Human tests were conducted with help of mainly 5 persons (including author of the work), 

each of who played series of games on different Minimax depth settings when starting as first 

and second player. For each Random Forest 3 tests were done in each setting. Overview of 

players’ feedback on the game results is following:
4
 

Depth 1 

Computer was not able to resists against human players at all and movements seemed to be 

quite random. Not blocking player straight rows and it was possible to win by placing 5 stones 

in a row right away. 

Users average rating: completely useless 

Depth 2 

Still not able to resist against human players, but random movement reduced to more sensible 

and blocking some of the player straight wins. 

Users average rating: useless, sometimes can block 

Depth 3 

Number of randomly seeming moves decreased drastically and computer was able to block 

player straight open moves thanks to Minimax algorithm – this resulted in longer games on 

average. Some players had trouble winning and lost many games due to human error (not 

seeing computer winning possibility). Still it is quite easy to defeat computer by building a 

simple double fork. Computer was not able to avoid mostly useless moves near edges of the 

board. Some of the human tests were done on this level also with a 10 year old 2
nd

 grade child 

and he was not able to win. 

Users average rating: average 

Depth 4 

Most players had trouble winning computer on this level. While it is still possible using 

double fork, computer was able to detect many of them without Minimax help. Also computer 

started building actively forks with help of Minimax algorithm. Minimal amount of randomly 

seeming moves were done by computer. Average game length increased significantly. 

Users average rating: good 

 

                                                 
4 Detailed results were lost during the human tests due to scripting error. This was partially caused by unpredictable internet connectivi-

ty problems right before the testing process started. Players’ feedback was collected in written free form and with author’s own observations 
during the games. 
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Depth 5  

Not possible to defeat computer with simple double work thanks to Minimax algorithm and 

each move by human players had to done very carefully. In order to win, player must con-

struct a complex fork system. Most games won by computer as it was constructing actively 

forks and blocking player good moves. Games take quite many moves to finish and in the end 

computer wins in most cases. 

Users average rating: very good 

 

The results overall are above expectations and received positive feedback from players 

with one exception – each game takes long time starting from depth level 4 and is quite 

unreasonably slow already for level 5 (one move for computer took on average 15 minutes 

when using 4 threads in training environment #3). A production level application would 

require either server-side solution or heavy optimization, with one possibility being cache 

where all moves are already pre-calculated. 

In order to measure training time performance, a test group of 4 trainings (Test #92, Test 

#93, Test #94 and Test #96) was conducted with identical training parameters except for 

number of trees in a single forest. The main object of the test group was to observe the impact 

on training times with different number of trees in each forest. All the trainings were done in 

same amount of time (13 days) and it’s clear that higher number of trees makes training 

process longer (as expected). To illustrate the difference, refer to [Figure 5-3] where each 

iteration training time is shown. Training configuration details are described in [Table 5-5].  

 

Figure 5-3: Iteration training time 

00:00:00

02:24:00

04:48:00

07:12:00

09:36:00

12:00:00

14:24:00

16:48:00

19:12:00

1 3 5 7 9 11131517192123252729313335373941434547495153

T
im

e 
ta

k
en

 (
h

h
:m

m
:s

s)
 

Iteration 

Iteration training time 

100 Trees

75 Trees

50 Trees

25 Trees



 
29 

 

Configuration property Value 

Genetic population 5 

Maximum population size 10 

Genetic mutation rate 0.15 (15%) 

Games per one individual 5+5 

Total number of games 50 

Win evaluation score 2.0 

Draw evaluation score 1.0 

Loss evaluation score -3.0 

Decision Tree number of attributes 8 

Decision Tree attributes pattern radius 7 

Decision Tree win prediction weight 2.0 

Decision Tree draw prediction weight 1.5 

Decision Tree loss prediction weight -0.5 

Decision Trees in each forest Test #92 – 25 trees 

Test #93 – 50 trees 

Test #94 – 75 trees 

Test #96 – 100 trees 

Number of iterations trained Test #92 – 55 iterations 

Test #93 – 47 iterations 

Test #94 – 36 iterations 

Test #96 – 24 iterations 

Total training time per test 13 days 
Table 5-5: Performance test training configuration 
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6 Future work 

There were several observations done during the implementation of the algorithms that 

could potentially improve the training speed and efficiency, but due to time limitations were 

not explored in detail. 

The naive Threaded Minimax implementation separates game tree search only at the top 

level of the tree. This means that concurrent game tree search will not be able to fully use 

Alpha-Beta pruning information. A possible research topic would be to implement fully 

concurrent Minimax where Alpha-Beta values are synchronized between running threads and 

full information is used. 

Another possible improvement would be to add weights for each Decision Tree pattern – 

currently all patterns are with equal weight and give same proportion to the evaluation score. 

There could be several ways how to implement this – for example by adding tracking to 

Minimax algorithm in order to check which patterns helped to decide towards good move. 

Completely different approach would be to use Genetic Algorithm to find good pattern 

weights to already predefined patterns, i.e. instead of evolving patterns, the algorithm would 

evolve the weights. 

During the evaluation process, each individual is competed against other individuals. This 

takes most of the whole training process time due to speed of Minimax algorithm. The evalua-

tion process could be instead to complete many various tasks in predefined scenarios, for 

example: 

 Defend a losing position 

 Attack a good position 

 Form a forcing move for opponent 

 Find a winning move on a board in 3 moves 

 Games against randomly moving player 

 Games against external implemented A.I. players 

This would fundamentally differ from proposed thesis topic as this requires a lot of human 

expertise for creating such scenarios – current idea is that Random Forests are trained from 

scratch with as little human expertise as possible. 
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7 Summary 

The aim of this thesis was to explore the viability of combining multiple machine learning 

techniques in order to train k-in-a-row type games-playing Artificial Intelligence. These 

algorithms are following: Genetic Algorithm, Random Forests and Minimax.  

The main idea for Genetic Algorithm was to find as efficient game board patterns as pos-

sible for Decision Trees used in Random Forests. The objective for Random Forests was to act 

as a heuristic function in Minimax algorithm. Minimax itself was used during Genetic Algo-

rithm evaluation step where each individual competed against each other individual. Better 

performing individuals were transferred to next iteration and new individuals were produced 

from them as per Genetic Algorithm. Such training process was repeated until pre-defined 

time limit or satisfactory result was reached. 

The algorithms were implemented and with the developed software multiple Random For-

ests were trained to evaluate the effectiveness of such method. The trained forests were then 

taken into series of games against human players in various settings with results above expec-

tations. Important to note that Random Forests for different games were trained with same 

method by just adjusting slightly either board size or game rules, indicating that this method is 

quite universal. Although it is slow in normal environments, the speed of training process can 

be increased by just using more CPU power – considering that there are many high perfor-

mance computing centers nowadays, it should not be ruled out. Also multiple algorithm 

performance optimizations were suggested as possible future work. 
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8 Summary in Estonian – Masinõpe k-ritta mängude õppimiseks 

Antud töö põhieesmärgiks oli uurida kui efektiivne ja mõistlik on kombineerida mitu 

erinevat masinõppe meetodit, et treenida tehisintellekti k-in-a-row tüüpi mängudele. Need 

meetodid on järgnevad: geneetiline algoritm, juhumetsad (koos otsustuspuudega) ning 

Minimax algoritm. Eriliseks teeb sellise meetodi asjaolu, et kogu intelligents treenitakse ilma 

inimese ekspert teadmisteta ning kõik vajaliku informatsiooni peab arvuti ise endale 

omandama. 

Geneetiline algoritm imiteerib looduses toimuvat evolutsiooni ning otsib optimaalseid 

lahendusi probleemidele, mis kombineeritakse olemasolevatest lahendustest (nagu loodeses 

kahe vanema abil sünnib uus laps) ja kus tugevamad jäävad ellu. Iga indiviidi tugevuse 

määrab nende omavaheline võistlus mängudes, kus võitjad pääsevad edasi ning kaotajad 

langevad treeningust välja. 

Minimax algoritm on otsing mängupuul, mida kasutatakse tihti kahe mängija mängudes ja 

kus on olemas täielik informatsioon mängu seisude kohta (puudub peidetud info). Tegemist on 

otsinguga, mis leiab sisend mängu seisust järgmise käigu, millel on garanteeritud maksimaalse 

väärtus. Ehk siis algoritmi põhiidee on hoida kaotuse võimalust võimalikult madalal. Minimax 

kasutab heuristilist funktsiooni, et hinnata mänguseise ning see hinnangu funktsioon tulebki 

kolmandast kasutatust meetodist – juhumetsadest. 

Juhumetsad on komplekt-klassifikaator (või ennustaja), mis kasutab mitmeid otsustus puid 

korraga. Igal otsustus puul on kindlaks määratud tunnused, mida sisend andmetes 

vaadeldakse. Antud töös on juhumetsade sisendiks mängude laua seis, millest iga üksik puu 

vaatab erinevaid omadusi (niiöelda positsioonide mustreid) ning erinevate puude tulemused 

summeeritakse. Juhumetsa väljundit kasutatakse Minimax algoritmis ning selle peamine 

eesmärk on ennustada kui hea mingi laua seis on. Geneetilise algoritmi eesmärk on leida 

võimalikult effektiivsed omaduste valikud (mustrid) otsustuspuudele. 

Kõik nimetatud algoritmid said implementeeritud ja valmis tarkvaraga treeniti mitmeid 

erinevaid juhumetsasid. Valminud metsad pandi omavahel võistlema ning parimad omakorda 

suunati edasi mängima inimeste vastu. Tulemused olid loodetust paremad – inimestel tekkis 

raskusi arvuti vastu juba kasutades Minimax otsingupuu sügavust 3. 

Kuigi selline algoritm on üsna aeglane, siis arvestades erinevaid optimiseerimise või 

tänapäeva tehnika võimalusi, saab seda protsessi alati kiirendada.  
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10 Appendices 

10.1 Forest XML files DTD 

This appendix describes document type definition how Random Forests are stored in XML 

file format. For each forest one separate file would be created. 

<!DOCTYPE RandomForest [ 
 <!ELEMENT RandomForest ( RandomWoods )+ > 
 <!ELEMENT RandomWoods ( TrainingAttributesList, ForestTree ) > 
 <!ELEMENT TrainingAttributesList ( TrainingAttributes )+ > 
 <!ELEMENT TrainingAttributes EMPTY> 
 <!ELEMENT ForestTree ( TreeRoot ) > 
 <!ELEMENT TreeRoot ( TreeNode | TreeLeaf )+ > 
 <!ELEMENT TreeNode ( TreeNode | TreeLeaf )+ > 
 <!ELEMENT TreeLeaf EMPTY > 
 <!ATTLIST TrainingAttributes attributeIndxs CDATA "" > 
 <!ATTLIST ForestTree decisionAttr CDATA "" > 
 <!ATTLIST TreeRoot headerIndx CDATA "" > 
 <!ATTLIST TreeNode branchValue CDATA "" > 
 <!ATTLIST TreeNode headerIndx CDATA "" > 
 <!ATTLIST TreeLeaf branchValue CDATA "" > 
 <!ATTLIST TreeLeaf categoryValue CDATA "" > 
]> 

10.2 Deployment guide 

The source code of the work can be found in Appendix [10.3]. Ant tools and build script is 

used to create the binary Java application archives. Already prebuilt JAR files are also availa-

ble as listed in [Table 10-1]. The applications can be started using standard Java command: 

java -jar applicationname [parameters] 

The source code has been developed using JavaSE 7u4 and requires at least Java runtime 

environment of level 7. 

Application Comment 

competition.jar Used to compete different Random Forests against each other 

dbimport.jar Used to import game results from one DB to other 

humantests.jar Used to test single Random Forest human or random player using CLI 

startgui.jar Starts GUI application for testing Random Forests 

connect-four.jar Starts training Connect Four based on connect-four.properties file 

connect-six.jar Starts training Connect6 based on connect-six.properties file 

gomoku.jar Starts training Gomoku based on gomoku.properties file 

tic-tac-toe.jar Starts training Tic-tac-toe based on tictactoe.properties file 
Table 10-1: Applications prebuilt 
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The full binary distribution folder content is as follows: 

+ dist    binary distribution folder 

| - tic-tac-toe.jar   application file 

| - connect-four.jar  application file 

| - gomoku.jar   application file 

| - connect-six.jar  application file 

| - dbimport.jar   application file 

| - humantest.jar   application file 

| - competition.jar  application file 

| - startgui.jar   application file 

+ - etc    configuration files for training and logging, misc files 

 | - RandomForest.dtd     

 | - connect-four.properties     

 | - connect-o-bot.properties     

 | - connect-six.jardesc     

 | - connect-six.properties     

 | - footballtree.txt     

 | - gomoku.properties     

 | - ideas      

 | - log4j-aitest.properties     

 | - log4j-gui.properties     

 | - log4j-minimax.properties     

 | - log4j.properties     

 | - tictactoe.properties     

+ - data   database location during training 

+ - gui    graphical user interface configurations and forests 

 | - connect-four.properties   game configuration file for GUI 

 | - gomoku10.properties   game configuration file for GUI 

 | - gomoku7.properties   game configuration file for GUI 

          

 + - connectfour   connect four forest files 

  | - forest01.xml     

          

 + - gomoku    gomoku forest files 

  | - forest01.xml     

          

+ - lib    external libraries used 

 | - antlr-3.4-complete-no-

antlrv2.jar 

  used by byteseek 

 | - byteseek-1.2.jar   pattern search algorithms on byte level 

 | - hsqldb.jar    HSQLDB for storing game states 
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 | - jansi-1.8.jar    used to colorize command line interface 

 | - junit-4.10.jar   some basic tests with JUnit 

 | - log4j-1.2.16.jar   logging management 

          

+ - log    logging target directory 

 | - forests    random forest XML files are placed here during the training 

 | - minimax    separate logging folder used by GUI and other debugging 

classes parts 

          

+ - test    random forests location for human and other tests 

 | - negamaxevaltest.xml   Negamax evaluation test 

 | - visualise.xml   forest visualization test 

 | - humanaitest.xml   forest XML that is used by humatest.jar application 

 |         

 + - competition   forest contained in this folder are used by competition.jar 

application 
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10.3 Source code and log files 

Attached physical storage device in the form of DVD. Including source code, binary dis-

tribution files, logs of conducted experiments and trainings. 
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