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Introduction

Throughout the history of mankind, the facts and knowledge have been trans-
ferred from generations to generations in various forms. In the beginning, it
was mostly done orally and with time various different written forms of text
appeared. Nowadays, we have reached the era where much of the information
and knowledge is spread around digitally and held in internet. Popular sites
such as Wikipedia are full of facts and knowledge easily accessible by every-
one. Different news portals allow information to spread around the globe in
minutes. Much of the data is stored either as entity-relationship databases,
XML documents or other structured formats.

The need for automatically assessing this information has become a major
goal in fields like artificial intelligence (AI) and information retrieval (IE). Being
able to extract various relations from the texts help different applications to
be more practical for the users. For example, a news recommender can make
more precise suggestions, if it has additional information about the article
that simpler methods cannot provide. Relations in medical information such
as anamnesis can help doctors to better analyze and diagnose the patients.
Using natural language processing (NLP) techniques, which involve deep lin-
guistic analysis, we can make computers understand text to a certain degree.
However, natural language processing is one of the most difficult problems
since words and language constructions have often ambiguous meaning that
cannot be resolved without extensive cultural background. Still, some facts
are easier to deduce than the others.

Semantic web, sometimes also referred as Web 3.0 is a future goal lead
by World Wide Web Consortium, with aim that the future web content should
be mostly in structured form that could be directly processed by computers.
Resource Description Framework (RDF ) and Web Ontology Language (OWL)
are steps in the direction. However, semantic web is complex and it has some
rough corners. For example, there is no easy way to represent n-ary relations
[HW06]. Currently, it is also not very widely adopted and possibly this is the
situation in the future as few may choose to follow the standards. Free-form
text is most popular resource of knowledge today and tomorrow.
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In this work, we consider unary, binary and ternary relations between the
words that can be deduced form a single sentence. For instance, sentence

President Obama meets President Ilves in Kadriorg.

and its Estonian translation

President Obama kohtub president Ilvesega Kadriorus.

expresses a ternary relation between words “Obama”, “Ilves” and “Kadriorg”.
Intuitively, such relations can be captured with patterns. A pattern in this
context is a sequence of tokens that can be matched against sentences. As we
want to extract relations between words, some of these tokens must be labeled
as entities to be extracted. For example, we might use the following pattern

X meets president Y in Z

for capturing the relation described above where X, Y and Z are placeholders
for the words. We call these tokens as extraction tokens.

Description of relations in terms of patterns is not unique, as one can come
up with many ways to describe patterns and good patterns might occasionally
match words that are not related. Let C be a set of sentences (corpus) and
r a relation we are interested in. For each pattern p we can talk about false
positives and false negatives. A false positive is a match that creates relation
between the words that is not supported by the sentence and false negative is
a match that should have been made to extract the relation supported by the
sentence. The corresponding rates of false positives fp(p) and false negatives
fn(p) show how specific or sensitive the pattern is. For example, the pattern

X meets president Y in Z

is an instance of a rather specific pattern. It yields only matches from sentences
with a very specific structure, thus it is less likely to give false positive matches.
Another pattern

X ___ president Y ___ Z

is more sensitive and puts less constraints on the sentence structure (the blanks
accept any word), thus lowering the false negative rate. But due to high diver-
sity of Estonian language, it is highly unlikely that a single pattern can cover
the entire relation. Hence, our main task is to find a list of patterns P such that
we could extract most relations form the text with as few spurious relations as
possible.

Although the methods and approaches we study in this work focus on pro-
cessing the Estonian language, we write this work in English. There are several
reasons: it is more natural to express IT-related technical terms in English; the
reader may not understand Estonian; the methods could be used with modifi-
cations on other languages as well.
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Extract candidate
examples

Assign certainity
to examples

Output the
examples

Get free-form
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Patterns Classifier

Figure 1: The process of fact extraction from input texts. Patterns match cer-
tain locations in the text and yield candidate examples, where classifier assigns
a certain probability that the candidate pattern is true positive. The certainty
can be used to configure to output a few, but very likely true positive examples
or many examples, with greater likelihood of having false positives.

Problem statement. The goal of this work is to define and test a set of pat-
tern abstraction methods, which working in tandem with a classifier can ex-
tract candidate examples from Estonian free-form texts as depicted in Figure
1. Most crucial part is how to find the best set of patterns, which describe the
relation fairly well.

The reason for doing pattern based fact extraction in Estonian is that most
of the work done in language technology related fields have emphasis on En-
glish. Estonian is a modern language applied in every-day use in communi-
cations, internet and government levels. The need for language technology
support is crucial in nowadays Estonian information society to make the lan-
guage sustainable and more easily usable in large-scale information systems.

We could also try to translate existing ontologies and knowledge bases con-
structed for English such as YAGO-NAGA [KRSW09] or DBpedia [ABK+07],
but still we cannot directly use the approaches used for fact extraction from
free-texts due to various differences in the languages. Also, we might not be
able to take advantage of current language technology tools for Estonian.

Achievable sensitivity and specificity is determined by the amount of uti-
lized contextual information. Depending on the exact syntax and the number
of pre-processing steps, patterns can encode various levels of syntactical, mor-
phological and semantic information about words in the sentence. Hence, our
ability to extract relations from sentences is greatly determined by the tokens
which form patterns. As perfect description of relations is usually infeasible,
we can consider two basic optimization tasks in our setting.

First, we can try to find a set of patterns P such that the rate of true posi-
tives (recall) tp(P) is maximal while the rate of false negatives fn(P) is small
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enough:
tp(P)→ max
i.e. fn(P) ≤ τ

. (1)

Alternatively, we can reduce specificity to guarantee a fixed recall rate:

fp(P)→ min
i.e. tp(P) ≥ τ

. (2)

In principle, the best solution to optimization tasks is solely determined
by the set of used tokens and text corpora we are interested in. In reality,
the optimal solution to (1) and (2) might contain so many patterns that we
cannot efficiently match them against sentences or learn them from reason-
able amount of examples. Hence, one usually considers only a specific sets
of patterns that have compact description while solving the tasks (1) and (2).
For instance, we can consider only pattern sets that are described by regular
expressions. As the latter reduces search space, the resulting solution might
be significantly worse than the optimal. Finally, search space of all patterns is
usually to large for exhaustive search and we can rely on heuristic algorithms.
Hence, the quality of fact extraction methods additionally depends on how we
specify pattern sets and what are the complementary search strategies.

The main aim of this work is to find reasonably fine-grained tokens together
with a grammar for describing pattern sets such that there exist relatively ef-
ficient algorithm for finding approximate solutions to the tasks (1) and (2).
We evaluate the results in terms of absolute performance, i.e, how well the
resulting extraction algorithm works. For that we use real-world examples of
binary relations and text corpora rising from practical applications. Whether
the solution is optimal from theoretical perspective is secondary though we try
to achieve optimality in that respect, as well.

Main contributions. This work is based on and contains parts of an earlier
work named “Mallipõhine faktituletus tekstikorpustest” [PL11], written by Sven
Laur and Timo Petmanson with equal contributions to theoretical work. The
implementation of the prototype application and case studies were supervised
by Sven Laur, but carried out by Timo Petmanson.

My main contributions include the theoretical work, that describes the re-
lations as sets of patterns; how to use patterns with basic machine learning
methods to train and deploy models for fact extraction; description of the
process of active learning, which helps to speed up annotating relations in
large corpora. Other contributions include a prototype implementation with
plain-text preprocessor, corpus annotator, pattern miner and fact extractor.
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Additionally, there are empirical studies about the efficiency of the prototype
implementation with several relations and corpora.s

Related work. Most work in field of information extraction has be done and
evaluated on English language corpora. For instance, LEILA is designed to
pursue binary relations in English text. It uses link grammar to parse the
text to and uses semantic structure as features for machine learning methods
to represent and generalize the patterns[SIW06, ST95]. Compared to meth-
ods like SNOWBALL, which do not use deeper language specific knowledge,
the precision and recall of LEILA were respectively around 90% and 38% or
more, while the former had precision 34%-48% and recall less than 30% on
the benchmark corpora [AG00]. The work was later combined with logic rea-
soning in systems SOFIE and PROSPERA, which improved the precision and
recall further [SSW09, NTW11]. There are systems such as KnowItAll, which
extracts facts, concepts and relationships from the web, starting with a seed
ontology and a few generic rule templates [ECD+04].

Pattern-based approaches like [CV05, Bri99, BM07] start with seed facts
such as “Barack Obama” and “August 4, 1961”. For instance, for birthday re-
lation, patterns like “X was born Y” can be discovered. Using the patterns,
new candidate facts are discovered and assessed. These methods are usually
able to guarantee good recall, but may not be very precise as the methods may
discover patterns like “X died Y”, which will not any more encode a birthday
relation. In contrast, our approach learns from specific annotations in texts,
thus reducing the possibility to mine ill patterns already in early stages. Simi-
larly, LEILA uses counter-examples as pre-emptive measure to avoid ill patterns
[SIW06].

Some methods like [BOS04, Vö05] are designed to work explicitly with
instanceOf relations, while our tool can be used to extract any n-ary relation.
Systems like YAGO-NAGA [KRSW09] and DBpedia [ABK+07] are geared to-
wards extracting information from Wikipedia. These methods take advantage
of the structured information from the pages, contrary to our approach, that
does not have this advantage.

Method [CBHM10] uses high-precision patterns to increase the candidate
examples and new potential patterns iteratively. Active learning is used in
[Sod99, TCM99] and uses frequent human interaction as part of the process
of building the model for fact extraction. Similarly, our method is capable of
bootstrapping: either extracting high precision or high recall patterns, which
can be used to extract new examples or contrary, reduce the selection of sen-
tences, where examples probably do not occur. Combined with human input,
this makes annotating larger corpora more efficient as human can evaluate the
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correctness of the model and also report back misclassified examples.
Related work in Estonian are the named entity recognition tool [Tka10],

which can extract person names, locations, organizations and facilities from
free-texts. Other notable works contain the language processing tool EST-
MORF [Kaa97], constraint-grammar for Estonian [MPM+03] which can be
used with VISLCG3 parser. Both tools can be used in combination to extract
morphological and syntactical language features.

Roadmap. We define the basics of patterns matching that we will use through-
out the work in Chapter 1. We introduce covers and describe, how are patterns
related to fact extraction. We talk about the generalization of patterns. Next,
we discuss Estonian language specific features and how to use these to ab-
stract single tokens of patterns in Chapter 2. We describe the corpora used in
several case studies later in the work. Chapters 3 and 4 introduce pattern min-
ing. We use monotonicity to adapt Apriori algorithm for our tasks. In Chapter
5, we introduce ways to combine patterns with machine learning methods to
determine the certainty of matches by patterns. We also carry out case stud-
ies using the approach for named entity recognition and extraction birth dates
from free-texts. Finally, in Chapter 6, we discuss possibilities to use active
learning and human interaction in the process of annotating large corpora.
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Chapter 1

Pattern matching

In this chapter, we define patterns and discuss how they are related to each
other. We describe a basic set of operations, that allow us to increase or de-
crease the abstraction level to fit our needs, although we discuss language
specific information and related abstraction methods in Chapter 2. Depending
on the level of the abstraction and structure of the patterns, we can specify
more easily, what types of fragments or sentences the patterns should match.
Pattern matching forms the core of this work and is combined with data mining
and machine learning in later chapters.

1.1 Patterns and covers

In this work, we consider patterns as sequences of tokens where each token
can match a single word. We write such patterns using the sequence notation,
e.g. p = p1, p2, . . . , p`, where ` is the length of the pattern. The length of a
pattern p can be also denoted by |p|. We refer to a particular token as pi and to
sub-sequence of tokens pi, . . . , pj as pi:j when i ≤ j ≤ `. By convention pi:j is
empty when i > j. We might also mix the notation, such that p = p1:3, p4, p5:`
is same as p = p1, p2, . . . , p`.

Patterns can match sentences in texts. For example, a pattern can match a
sentence s = s1, s2, s3, . . . , s10 starting from positions 1 and 3. The cover of a
pattern p contains all positions about all sentences of the text it matches and
support of a pattern is count of all matches. We define cover(p) as a set of tuples
(s, i, j), where s is the sentence and i is the starting and j the ending position
of the match. For example, if pattern p with length of 7 matches sentence
s1, s2, s3, . . . , s10 from positions 1 and 3 then cover(p) = {(s, 1, 7), (s, 3, 9)}.

Let A and B be sets consisting of such tuples. Then we can define a con-
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catenation and join operators

A ◦ B = {(s, i, k) : (s, i, j) ∈ A ∧ (s, j + 1, k) ∈ B} ,

A on B = {(s, i, j, j + 1, k) : (s, i, j) ∈ A ∧ (s, j + 1, k) ∈ B} .

Since the concatenation operator takes the matches of two different pat-
terns and imbue them into a single match when matches are consequent, the
cover of concatenated patterns p ◦ q can be expressed in term of original cov-
ers:

cover(q ◦ r) = cover(q) ◦ cover(r) . (1.1)

The join operator on also describes all occurrences of concatenated pattern.
However, it additionally describes where one pattern ends and the other con-
tinues. The resulting tuple sets can be further joined. The general definition
is

A on B = {(s, i1:k, ik + 1, j2:`) : (s, i1:k) ∈ A ∧ (s, ik + 1, j2:`) ∈ B} .

Also, note that
A ◦ B = {(s, i1, i`) : (s, i1:`) ∈ A on B} .

As a single pattern is not enough to describe many relations, we also op-
erate with sets of patterns further referred as pattern sets. We define covers
for pattern sets as union of all individual covers. For a set of patterns P, the
formal definition is following:

cover(P) =
⋃
p∈P

cover(p) , (1.2)

Hence, it is easy to prove that

cover(P ∪Q) = cover(P) ∪ cover(Q)

cover(P ∩Q) ⊆ cover(P) ∩ cover(Q)

where the containment can be strict in the second equation. For instance, if
two different tokens α and β match the same word then cover(α)∩ cover(β) 6=
∅, whereas cover(∅) = ∅. Let P ◦ Q denote the pairwise concatenation of two
pattern sets, i.e.,

P ◦ Q = {p ◦ q : p ∈ P , q ∈ Q} .

Then the equation (1.1) assures that

cover(P ◦ Q) = cover(P) ◦ cover(Q) . (1.3)

12



extraction patternleft context pattern right context pattern

extraction pattern Xleft context pattern right context patternextraction pattern Y
middle context 

pattern

Figure 1.1: Fact extraction with unary (top) and binary (bottom) patterns.
Cover elements of extraction patterns are used to denote X and Y examples,
where other patterns are used to detect the context.

1.2 Fact extraction

Using the covers of the patterns, we can directly extract the matched sentence
fragments as candidate examples for facts. In case of some unary relations,
this is exactly what we need to do. For instance, if we want to detect dates,
we might have a pattern

numeric jaanuar numeric

that can easily detect sentence fragments such as “21. jaanuar 1956” etc. But
in case we want to restrict our patterns to birth dates, we need to consider the
context of the date. The sentence

Jüriöö ülestõus algas 23. aprillil 1343.
St. George’s Night Uprising began on April 23 in 1343.

does not express the relation, while sentence

Toomas Hendrik Ilves sündis 26. detsembril 1953 aastal Stockholmis.
Toomas Hendrik Ilves was born on December 26 in 1953 in Stockholm.

does. If pattern p extracts the dates and pattern α is relevant prefix and β suf-
fix, we must extract only the fragments, that belong to cover(α) on cover(p) on
cover(β) to detect only the birth dates. Figure 1.1 depicts how context and
extraction patterns can be used to detect relevant matches.

We do not use separate patterns for context areas, but just specify which
tokens correspond to entities we intend to extract. Let p1, . . . , p` be the pattern
and let pj : k be the extraction area corresponding to the entity X. Then the
corresponding extraction mask

coverX(p) = {(s, (i2j−1, i2k)) : (s, i1:2`) ∈ cover(p1) on · · · on cover(p`)}

lists all sentences together with start and end positions for X. For binary and
ternary patterns, extraction masks are defined analogously. For instance, if p3
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and p6 are the extraction tokens corresponding to X and Y and the pattern
matches a sentence s from positions 1 and 3, then

coverXY (p) = {(s, (3, 3), (6, 6)), (s, (5, 5), (8, 8))} .

We use parenthesis to group the extraction areas for X and Y as they can
match more than one token. Analogously, we can define extraction mas for
pattern sets, where for binary relations the formula is

coverXY (P) =
⋃
p∈P

coverXY (p) .

1.3 Comparing patterns

Patterns can be compared on the syntactic and semantic level, i.e., how they
are written down and what relations do they extract. On the syntactic level,
we define p � q as a transitive closure of the following two rules. First, any
consequent subsequence q is less specific than the entire pattern p:

p = α ◦ q ◦ β ⇒ p � q . (1.4)

The extraction areas of p and q must be of same width and by removing α and
β, this must not change. We require this to ensure that more generic patterns
can always extract everything the more specific pattern does. Second, a pat-
tern becomes less specific if we substitute its sub-pattern with more generic
alternative of same length:

α � β ∧ |α| = |β| ⇒ α ◦ p � β ◦ p . (1.5)

To apply this rule, we must specify how to compare individual tokes. For
example, a generalized token can allow any word type, where specific token
might require exact type. The latter is language and application specific and is
discussed in Chapter 2.

On the semantic level, we use a shorthand p v q to denote that all relations
between entities revealed by the pattern p are also revealed by the pattern q.
If patterns p and q are meant to extract a single entity X, the latter means:

p v q ⇔ coverX(p) ⊆ coverX(q) . (1.6)

The relation is defined analogously for binary and ternary patterns. It is easy
to see that syntactic relations between patterns are carried over to extraction
masks:

p � q ⇒ p v q . (1.7)

However, whether the converse holds depends on the text corpus.
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Proposition 1.3.1. Let p and q be valid patterns. Then p � q implies that p v q
provided that p � q implies cover(p) ⊆ cover(q) for individual tokens.

Proof. For the formal proof, we must do structural induction over the way the
relation p � q is defined. Let us now observe the first rule. If p = α ◦ q ◦ β then
each match of p contains also a match of q. Since the prefix α and the suffix
β contain no extraction tokens the corresponding extraction masks for p and q
are the same. For the second rule, note that if α � β and |α| = |β| then α � β
only due to the application of the second rule. Thus, we can do the induction
over the number of times the second rule is applied. If the rule is applied the
first time then α and β are tokens. By the assumption cover(α) ⊆ cover(β) and
consequently cover(α ◦ p) ⊆ cover(β ◦ p). For the longer patterns α and β, we
can similarly show cover(α ◦ p) ⊆ cover(β ◦ p). To complete the proof, note
that for the same match, locations of extracted tokens must coincide, since
extraction areas are in the same locations in both patterns and each token
matches only a single word.

The main reason why the converse implication does not generally hold are
implicit restrictions on the sentences. For instance, syntactically incomparable
patterns α ◦ p and p ◦ β might have the same cover in text corpus if the pattern
p occurs as α ◦ p ◦ β in all sentences. As a result, syntactic information alone is
not enough to decide when extraction masks are subsets of each other.

Similarly, we can define ordering between patterns sets in terms of extrac-
tion masks. For unary pattern sets, the corresponding definition is following:

P v Q ⇔ coverX(P) ⊆ coverX(Q) . (1.8)

On the syntactic level, we say that pattern set Q is more generic than P, if for
each pattern p ∈ P there exists a more generic pattern q ∈ Q. In formal terms,

P � Q ⇔ ∀p ∈ P ∃q ∈ Q : p � q . (1.9)

From the relations (1.8), (1.9) and (1.7) we can directly conclude that syntac-
tic relations between pattern sets are carried over to extraction masks:

P � Q ⇒ P v Q .

As before, the converse implication does not hold in general.

1.4 Overlapping matches of extraction areas

Note that Definition (1.6) requires exact matches in terms of extracted entities.
For instance, if a pattern p extracts

15



a) b) c)

p

q

p

q

p

q

Figure 1.2: Overlapping matches of extraction areas of pattern p and q.
Matches are exact (left), one is submatch of another (b), matches have com-
mon overlap (right).

President Barack Obama meets president Ilves in Kadriorig.

and a pattern q extracts

President Barack Obama meets president Ilves in Kadriorig.

from the same sentence, then one match is a submatch of another. To be more
exact, the overlapping can occur in three different ways: a) the extracted
areas match; b) one match is subarea of another match; c) two matches have
common overlaps, but neither is a submatch of another. See Figure 1.2.

We explicitly require exact matches as our formulation of pattern mining
discussed in Chapter 3 will not work with partially overlapping extraction ar-
eas. However, we still deal with these by using pattern sets. If we need to
represent both the matches of ‘Barack Obama’ and ‘Obama’, we create sepa-
rate patterns with extraction areas of required width and make syntactic and
semantic comparisons at pattern set level using Equations 1.8 and 1.9.

The question, which of the two sentence fragments is more correct and
should be actually used, is an independent question and involves classifier
methods discussed in Chapter 5. For a patterns P with a classifier C and a
corpus, we get n = |P| covers by matching the patterns in the corpus. The
union of the covers

coverX(P) =
⋃
p∈P

coverX(p)

can contain overlapping cover elements. Analogously, this can happen for
binary and ternary patterns. However, in natural language, it is typically not
possible to encode several examples of a single relation, that are overlapping
in a sentence. Therefore, we need a way to deal with the overlaps and decide,
which examples should we keep.

Let Pr[e] be the probability that cover element e ∈ C really encodes a par-
ticular relation. The probability can be proportional to the number of patterns,
that yield the element or it can be a probability assigned by a machine learn-
ing model, that we discuss in Chapter 5. For each set of overlapping cover

16



Pr=80%

Pr=5%
Pr=75%

Pr=10%

Figure 1.3: Greedy overlap resolution. From a set of of overlapping extraction
mask elements, we accept the one with highest certainty, remove the conflict-
ing elements continue similarly. Dashed lines represent the removed elements
and striped boxes represent mask elements accepted in the process.

elements, we can just greedily accept the ones starting with highest probabil-
ities and each step remove the overlapping elements until no overlaps occur.
See Figure 1.3 for an example.

1.5 Statistical measures for evaluation

So far we have mentioned several statistical measures like fp-rate, fp-rate,
sensitivity etc. These statistical measures can be described as equations of
the number of true positives, false positives, true negatives and false nega-
tives produced by the patterns. The positive examples are the extraction mask
elements, that express the relation. Consider a sentence

President Barack Obama meets president Ilves in Kadriorig.

If the pattern extracts “Barack Obama,” then we can count it as as true posi-
tive match. If the pattern extracts “President Barack Obama”, we also should
count it as a true positive match as the correct example is a subphrase of the
extracted text fragment. If the pattern only extracts “Obama”, we count it as
a false positive, because it does not cover the whole example and information
is lost. Note that this is completely valid choice as it does not break how the
syntactic and semantic relationships between patterns are defined. In case of
n-ary patterns, we require this for all extraction tokens.

The false negative examples are those, which encode a relation, but are not
detected by the pattern. We can detect false negatives only in testing phase
with annotated data. True negatives are examples, which do not encode the
relation and are not detected. The problem is that depending on the arity of
the patterns, the widths of the extraction areas and length of the sentence,
there can be many true negative examples. In our case, we ignore that fact
and assume that the number of true equals to the number of sentences, where
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no single match or example occurs. It is not reasonable to try to identify all
possible true negative match combinations.

Let TP, FP, TN and FN represent the respective counts of true positives,
false positives, true negatives and false negatives. One important measure is
recall, which is the proportion of true positive examples a pattern was able to
detect in the corpus:

tp(p) = sensitivity(p) = recall(p) =
TP

TP + FN
. (1.10)

High sensitivity (recall) is very important, if we want to discover all true posi-
tive examples. However, with high sensitivity, we might have many false posi-
tives. The amount of false positives among matches is determined by precision,
which is the number of true positives among all the matches of a pattern:

precision(p) =
TP

TP + FP
. (1.11)

Closely related to precision is false discovery rate (FDR)

fdr(p) = 1− precision =
FP

TP + FP
.

False positive rate is the proportion of incorrect matches among all possible
invalid matches:

fp(p) = 1− specificity(p) =
FP

FP + TN
. (1.12)

Calculating this metric requires that we know the amount of true negatives,
which we agreed, was the number of true negative sentences. However, if
a pattern yields several false positive matches in a single sentence, we count
these as two distinct matches, thus increasing the false positive rate. This way,
we always over-estimate the metric, thus real fp-rate rate is possibly lower.

False negative rate tells the proportion of examples, that were not discov-
ered:

fn(p) = 1− sensitivity(p) =
FN

TP + FN
. (1.13)

This metric can only be evaluated, if we have fully annotated corpus or we
could use human interaction.
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1.6 Estimations on unannotated data

If we are applying the patterns and model on unannotated data, we can use
human interaction as a part of process to evaluate the metrics. To estimate
precision, we can draw a sample with replacement of n matches and let the
user determine the amount of true positives. The number of true positives
follows a Binomial distribution, where p is the precision and estimate p̂ is the
proportion of true positives in user sample. Given that n is large enough (about
more than 30 samples) and the probability is not too extreme (near to zero or
one), then Binomial distribution approximates to Normal distribution, such
that p̂ ∼ N(np̂, np̂(1− p̂)) and we can provide standard confidence interval

p̂± λ1−α/2

√
p̂(1− p̂)

n
,

where 1 − α is the confidence level and λ1−α/2 is the 1 − α/2 percentile of
standard normal distribution. However, the performance of standard interval
can be chaotic and poor as shown in [BCD01] and it is better to use another
interval such as Wilson interval

p̂+ 1
2n
λ21−α/2 ± λ1−α/2

√
p̂(1−p̂)
n

+
λ2
1−α/2
4n2

1 + 1
n
λ21−α/2

.

To estimate false positive rate, we need to draw a sample with replacement
from all positive and negative matches and determine the total number of false
positives and true negatives n, where m is the amount of false positives. The
estimate is f̂p = m

n
and confidence intervals can be calculated analogously as

described above. Similarly, we can estimate other metrics.
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Chapter 2

Tokens and language specific
information

In Chapter 1, we introduced syntactic and semantic relationships between pat-
terns. In this chapter, we describe how we can use language specific informa-
tion as a mechanism of abstracting individual tokens i.e words and named
entities of the Estonian language.

2.1 Word attributes and values

To be able to compare the patterns at syntactic level, we must specify, how to
compare the individual tokens. Tokens represent single words or named enti-
ties, which can be simply written down as character strings. However, this is
not the only possible representation. Using language processing tools, we can
extract the canonical form of the word and augment it with language specific
information such as the case, plurality and mode of the word. The information
is stored as a set of morphological and grammatical attribute values. We use
dot notation p.attr to mark the value of attribute attr of a token p.

The exact number of attributes can vary depending on our needs and abil-
ities to perform sentence-level analysis. Current availability of NLP tools al-
lows us to lemmatize and extract morphological and syntactic attributes of
words with feasible accuracy [Kaa97]. Additional syntactic analysis can be
performed using a constraint grammar parser VISLCG3 using Estonian gram-
mar [MPM+03].

We decided to use 12 attributes extracted from the analysis: lemma, word
type, verb type, case, plurality, mode, genus, presens, time, comparisons, capi-
talization, syntactic role in the sentence. Attribute information is structured as
a set of trees and is derived from common attribute value categorization in Es-
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translative
terminative
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Figure 2.1: The word case hierarchy. Specific cases are the leaves of the tree
and are written in lowercase. Parent nodes represent the generalizations of
the cases.

tonian language theory [EKM+93, EKM+95]. For example, there are 14 cases
in Estonian: nominative, genitive, partitive are abstract cases. Illative, inessive
and elative are so called interior local cases. Allative, adessive and ablative are
exterior local cases. And the rest are uncategorized. See Figure 2.1.

For defining comparison relation between tokens, we need to define how to
compare attribute values. For any attribute, let a ≺ b denote that an attribute
value b is an ancestor of a in the respective attribute value tree. From Figure
2.1, we see that partitive ≺ abstract and genitive 6⊀ place.

Different types of words have different attributes. In such cases we denote
the missing attribute values as > instead, which represents the root values
of these particular attributes. By this we postulate that any attribute value is
suitable, since a � > for any valid attribute value a. The generalization to
the token level is natural. A relation p � q holds if the corresponding values
p.attr � q.attr for all attributes attr. We acknowledge that there could be
other more fine-grained ways to define ordering between tokens. However,
the latter requires more deeper understanding of Estonian language.

A token q matches a token p if and only if p � q. For example, a token t
with t.case = abstract, t.plurality = >matches any word in any abstract case
(nominative, genitive, partitive) and allows both singular and plural forms.
Note that the assumption of Proposition 1.3.1:

cover(p) ⊆ cover(q) for all tokens p � q
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is trivially satisfied as � is transitive relation.
The attribute value trees are not very deep for some of the attributes. For

example, plurality tree has depth of 2 and has only three nodes: root > and
its direct children singular and plural. The canonical form has as many nodes
as there are words in a language plus the root node >, which is a direct parent
of all other nodes.

The tokens can be defined for other languages beside Estonian as well. The
only requirement is the availability of suitable NLP tools that can extract the
attributes and there exists meaningful ways to generalize them.

2.2 Text corpora

In practice, we cannot apply our patterns on plain texts without processing
them first. The reason is that we need to extract language specific features,
which can be used as the attributes of the tokens. As a result, the sentences be-
come lists of tokens, where each token is a set of attribute/value pairs, where
a particular value is a leaf node of a respective attribute value tree.

We decided to store the processed text corpora as entity-relationship data-
bases. Although it is not as convenient for string processing as simple lists, it
makes it simpler to build full indexes for fast cover retrieval of patterns and in-
dividual tokens. Additionally, we can include the definitions of attribute value
trees, so that calculating covers of tokens with abstracted attribute values can
be formulated as SQL queries. It is also convenient to store additional infor-
mation such as annotations for different relations. Finally, using an external
database handles memory management, storage and caching of large corpora
and indexes.

2.2.1 Data preprocessing pipeline

As discussed in Section 2, we use tools ETMORF and VISLCG3 to do morpho-
logical and syntactical analysis. Optionally, we can do named entity recog-
nition on the input text and use its annotations as an extra attribute for the
tokens. Another possibility is to use the information to concatenate tokens
representing names like Rauno Thomas Moss or locations like Rio de Janeiro
into single tokens instead. The full processing stack is given in Figure 2.2.1.
First step is data conversion to plain text in case of HTML content and nor-
malization: unify quotation marks, force UTF-8 encoding, put each sentence
on a separate line. Next, we do morphological and syntactical analysis in par-
allel with named entity recognition due the dependencies of these tools. Last,
we merge their output and convert it to a entity-relationship database usable
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Figure 2.2: Data preprocessing pipeline. NER step is optional.

by our data mining scripts. See Appendix A for the details of the prototype
implementation for more information.

2.3 Corpora used in this work

In this section, we introduce three different text corpora, which are later used
in different case studies for evaluation of our methods. In general, the meth-
ods are applicable to any kind of textual data, but their performance depends
on data and language to be applied. Simple sentences that express facts
and meanings in a straightforward manner are best to work with, whereas
long sentences with complex grammar are harder to analyze. Hence, we use
three different free-texts: short and informative Twitter feeds, Wikipedia arti-
cles, ordinary news articles from Postimees. These corpora contain sentences
of slightly different linguistic complexity and are thus suitable for practical
benchmarks of our methods.

2.3.1 Twitter corpus

One of our initial goals was to build a tool for extracting binary relation that
connects events to their locations. As such, it would allow us to scan the
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news-feed and cluster articles based on event types and physical locations or
seek texts that are related to a particular place. We will refer to this relation
as event location relation onwards. In principle, we could use all three data
sources for training. However, the occurrence rate of event location is very low
in Wikipedia entries and newspaper articles and in many cases the relation is
spread over several sentences. The occurrence rate is much higher in Twitter
tweets, since they are short and independent units of communication with no
room for irrelevant information.

To make our life easier, we chose sources that broadcast a lot of information
about events and are likely to use newspaper language. More precisely, we
gathered news headings from following Twitter accounts:

minut_ee postimees TlnPostimees TrtPostimees

Del�EE Oleht ParnuPostimees estonia_ee

teaduspark TallinnaYlikool viljandi Kutser

Tarbija24 errsport err_ee StenbockiMaja

JarvaTeataja MinuEesti reporteronline Finantsportaal

LoovEesti kumuartmuseum Soomaa_Parnu valiskomisjon

Linnateater eestekspress valismin Riigikogu

The date of the download was 4th of November 2011 and it contained about
2000 most recent headlines. In general, the sentences of the corpus were quite
straightforward, although not necessarily very simple in structure.

The Twitter corpus contained 173 examples (in about 8% of all sentences)
of event location relation. All the positive examples (event and location) were
annotated manually. In many cases, the extraction tokens were not single
words, but named entities such as “Viljandi Kultuurikeskus”. However, our
linguistic preprocessing tools are not perfect and yielded some errors in the
resulting corpus. For example, some locations were not recognized as entities.
In such cases, we explicitly annotated the less ambiguous token as the extrac-
tion token. For example, if phrase ‘Tallinnas Kuku Klubis’ was not recognized
as location, we chose ‘Tallinn’ as the extraction token. Similarly, for events
like ‘Viljandi meistrivõistlused võrkpallis’, we chose ‘meistrivõistlused’ as the
extraction token.

Additionally, we made a 50/50 version of the corpus, where we kept all
the sentences having the event location relation plus chose a random sample of
the same amount of sentences not having the relation. This version had 340
sentences where 50% of true positive sentences. As such the corpus is strongly
enriched in event location relation. We used it to test pattern mining and ma-
chine learning algorithms, as it is easier to train machine learning algorithms
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on balanced data. We used the original (not enriched) corpus to test active
learning strategies.

2.3.2 Wikipedia corpus

As the second goal, we tested a binary birthday relation, which connects per-
son names to their birth dates. This relation is a common test target in several
information retrieval applications for English [SIW06]. Also, it is rather com-
mon to use Wikipedia articles as a test benchmark. The birthday relation is less
ambiguous compared to event location and thus much simpler to detect. Also,
we can compare our results with the results for the English language.

We compiled the corpus by downloading 100 bibliographies from the Es-
tonian Wikipedia about famous people. Again, the annotation of extraction
tokens (name and birthday) was done manually. We used year of the birth
date and surname of the person as extraction tokens, in case full timestamps
or names were not recognized by the NER toolchain. The language of the
articles was in general simpler than the language of Twitter corpus.

About 14% of the sentences of the corpus contained the birthday relation,
where we had total of 116 annotations in 813 sentences. Again, we made a
50/50 version of the corpus, where we kept all the true positive sentences
with a random sample of sentences not having the relation with size equal
to true positive sentences. The 50/50 version of the corpus had total of 228
sentences.

As with twitter corpus, we used the 50/50 version of the corpus in machine
learning experiments and the original version in active learning experiments.
Differently from event location it is rather easy to achieve enrichment ratios
close to 20% by just picking sentences containing dates from the bibliographic
Wikipedia entries. Hence, we did not build the corpus where the ratio of
positive sentences is close actual occurrence rate.

2.3.3 Postimees Online corpus

We also studied how well our methods can be applied for Named Entity Recog-
nition (NER). The goal in NER is to extract all sequences of tokens that are
either persons, organizations or location. As such, it is can be viewed as ex-
traction of various unary relations: person, organization and location. This prob-
lem is well studied for Estonian language and there exists a good extraction
tool [Tka10] together with manually annotated data used to train and evalu-
ate this tool. We use thus data as a benchmark to test the performance of our
methods for unary relations.
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Note that our aim is not to come up with an alternative for NER, as the
current solution is already quite elaborate. Instead, we study mainly two as-
pects. First, how well do extraction patterns work and what is the coverage of
individual patterns. Second, does the performance of the NER tool increases
significantly if we include patterns as features. In particular, can we find pat-
terns that resolve ambiguities, e.g. discriminate between organizations and
locations.

The benchmark corpus consists of news articles published by Postimees
Online, which is a very popular Estonian news portal. Sentences from these
articles have more difficult structure than the ones in Twitter and Wikipedia
corpus. As before, all sentences are manually annotated. We used these anno-
tations as golden truth to create a balanced corpus with 50/50 split for each
entity type. However, we did not include the entire corpus. Instead, we used
only a random sample of 20% of these sentences to make it small enough for
our prototype implementation.

Also, not all sentences were considered for sampling. We could not use the
morphological information of the original corpus as its format was too differ-
ent from our requirements. Instead, we reconstructed original sentences and
reanalyzed them with our own data preprocessing stack. As a result, about 5%
of the sentences had to be excluded as our pipeline treated some punctuation
differently from the original corpus and made annotations of these particular
sentences invalid.
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Chapter 3

Pattern mining tasks

In this chapter, we are going to discuss, how to extract meaningful set of pat-
terns from corpora, which would cover specific relations, we are interested in.
One possibility to do that would be to define the patterns manually, but this
requires good understanding of the language and generally it is impossible to
take into account the language of different corpora. While news corpora might
use one type of language, medical texts contain different type of language. The
usage of words, expressions and vocabulary can differ from corpus to corpus.
Thus, an alternative approach is required.

The reason we need to do pattern mining is that we cannot cover all possi-
ble examples simply by manual annotation. Therefore, we annotate a number
of examples and use these examples to extract patterns with desired abstrac-
tion level. Higher abstraction allows to detect new unseen examples with
certain probability, where details may differ from examples we have already
seen.

We are going to discuss semi-automated means to extract the patterns from
a fully or partially annotated training corpus. The annotation process is man-
ual, but it will define the extraction tokens of examples, that the patterns
should be able to extract. This information can be processed with the com-
puter algorithms. We can use the annotations to define initial patterns and use
data mining methods to generalize the information, in hope that the resulting
model will cover most examples with acceptable precision.

The formal definitions of our pattern mining tasks are to find a meaningful
set of patterns, which have either good sensitivity or good specificity and help
us to find approximate solutions to global optimization tasks (1) and (2). Each
pattern represents a subset from all possible cover elements and we want to
find a minimal number of patterns covering the true positive cover elements,
while still satisfying the false positive rate or false negative rate criteria. These
two optimization tasks are closely related to the set cover and knapsack pack-
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Figure 3.1: Venn diagrams for covers of patterns p, q, r, s, t, where p, q � s
and q, r � t, if s � t and s � t.

ing problems and are thus generally infeasible to solve. Hence, we first con-
sider all patterns with a low rate of false positives (further referenced as fp-safe
patterns)

Pfp(τ) = {p : fp(p) ≤ τ} (3.1)

and patterns with high rate of true positives (fn-safe patterns)

Pfn(τ) = {p : tp(p) ≥ τ} . (3.2)

These patternsets have a property that fp(Pfp(τ)) ≤ nτ and tp(Pfn(τ)) ≥ τ ,
where n is the number of patterns. We can give guarantees about false posi-
tive or false negative rates for the whole pattern set. In case of Pfp patterns, we
get matches that are likely true positives and we can get new examples. Using
Pfn patterns, we can guarantee with certain probability, that the non-matched
sentences do not encode the relation, thus making it possible discard many
negative sentences. This is important, when we have annotated a small sub-
set of the corpus and want to avoid looking through many possibly negative
examples in the rest of the sentences.

3.1 Search strategies based on monotonicity

Due to Proposition 1.3.1, the rates of false and true positives are monotonously
increasing:

p � q ⇒ fp(p) ≤ fp(q) , (3.3)
p � q ⇒ tp(p) ≤ tp(q) . (3.4)

To be precise, the rate of false positives and true positives is defined only
if we fix a text corpus, where all occurrences of a relation to be sought are
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marked. The latter is often infeasible or too costly in practice and we have to
be satisfied with incomplete labeling where some occurrences are unmarked.
As a result, we can only approximate true values of fn(p) and tp(p) by using
available information. However, the implications hold for approximations, as
well.

Note that in the process of estimating false positive or true positive rates for
the patterns, we need to match the patterns in a corpus and determine, which
extraction mask elements correspond true positive and false positive matches.
Additionally, we need to consider non-matched examples and determine the
true negatives and false negatives. How it is done in detail, is discussed in
Section 1.5.

As the implications (3.3) and (3.4) are analogous to the condition used in
frequent pattern mining [Goe03, HCXY07], we can take over many methods
form this subfield. In particular, limit the search space. To find fp-safe patterns
Pfp(τ), we can start from complex patterns and generalize them until the rate
of false positives is still below τ . To find fn-safe patterns Pfn(τ), we start form
generic patterns and specialize them until the rate of true positives is still
above τ .

Also, note that not all patterns are equally informative in the sense that
generic patterns cover all the matches of more specific patterns. In particular,
it is enough to store only maximal patterns

Mfp(τ) = {p ∈ Pfp(τ) : ∀q � p : fp(q) > τ} , (3.5)
Mfn(τ) = {p ∈ Pfn(τ) : ∀q ≺ p : tp(q) < τ} , (3.6)

as the remaining patterns in Pfp(τ) are just all specializations of maximal pat-
ternsMfp(τ) and the remaining patterns in Pfn(τ) are just all generalizations
of maximal patternsMfn(τ). Figure 3.1 depicts covers of five patterns p, q, r, s
and t, where s and t cover everything patterns p, q and r do. Thus in process
of mining fp-safe patterns, fp(s) ≥ fp(p), fp(q) and fp(t) ≥ fp(q), fp(r). Sim-
ilarly, in process of mining fn-safe patterns tp(s) ≥ tp(p), tp(q) and tp(t) ≥
tp(q), tp(r).

A more fine-grained characterization of Pfp(τ) and Pfn(τ) is given by con-
sidering closed patterns. A pattern p is closed under fp(·) measure if fp(p) <
fp(q) for all generalizations q � q. A pattern p is closed under tp(·) measure if
tp(p) > tp(q) for all specializations q � q. Non-closed patterns are redundant
in the sense that there is either more general or more special pattern that has
the same measure. In particular, it is easy to verify that solutions to the orig-
inal optimization tasks (1) and (2) consist of closed patterns. Hence, we can
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Figure 3.2: The generalization steps when mining fp-safe patterns with Algo-
rithm 1. Blue dots represent maximal patterns, gray dots are infrequent (too
generic) patterns, white dots are frequent, but not maximal patterns. Arrows
depict the generalization DAG of the seed patterns, where solid ones show the
actual search tree and dashed ones the edges that will not be traversed.

consider only closed patterns:

Cfp(τ) = Pfp(τ) \ {p : ∃q � p : fp(q) = fp(p)} , (3.7)
Cfn(τ) = Pfn(τ) \ {p : ∃q ≺ p : tp(q) = tp(p)} . (3.8)

Of course, the claim is true only if we indeed have completely labeled corpus.
Otherwise, we can only approximate fp(p) and tp(p) and thus closed patterns
under incomplete labeling do not correspond to closed patterns under com-
plete labeling.

3.2 Algorithm for finding fp-safe patterns

To traverse all fp-safe patterns we have to start from a list of seed patterns
and then traverse the lattice of all patterns by generalizing patterns until the
rate of false positives goes over the threshold τ . To evaluate fp measure, we
have to fix a corpus consisting of negative examples—set of sentences that
do not encode the relation we seek. As a first approximation, we can take a
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random sample N from the text corpus C, we are interested in. In most cases,
sentences that indeed encode relations are rare and we overestimate the true
rate of false positives. Indeed, let fnN (p) and fn◦N (p) be the reported and true
rate of false negatives over the sample N . Then

fnN (p) = fn◦N (p) + tp◦N (p)− tpN (p) . (3.9)

where tpN (p) and tp◦N (p) are the reported and true rate of true positives. By
the law of large numbers sample means converge to true means over the entire
corpus C and consequently

fnN (p) ≈ fnC(p) + tpC(p)− tpN (p) (3.10)

where tpC(p) is bounded by the actual occurrence rate σ of the relation we
are interested in. In other words, if σ ≤ τ there is no need for correction.
Otherwise, we should either estimate offset term fpC(p) by estimating σ or
label enough positive examples so that σ − tpN (p) ≤ τ .

Consequently, we still have to find all patterns satisfying fpN (p) ≤ τ where
τ might be different from the initial threshold if we apply correction. Algo-
rithm 1 depicts the resulting depth-first search algorithm for mining maximal
fp-safe patterns. Depth-first search is preferable to breath-first search in terms
of memory usage, as a maximal fp-safe pattern might have huge number of
specializations, which we can side-step during the depth-first search. Second,
we can use heuristic generalization methods ∇i for finding candidate patterns
several levels above current pattern. These methods can utilize any informa-
tion that is available when they are invoked, like the list of known maximal
patternsM so far or rates of false positives. In particular, let the set of direct
descendants be denoted as

∇◦(p) = {q : p ≺ q ∧ @r : p ≺ r ≺ q} .

Then it is straightforward to prove the following claim.

Proposition 3.2.1. If at any step the candidate list Q contains all direct de-
scendants ∇◦(p) then Algorithm 1 recovers all patterns from Mfp(τ) that are
generalizations of seed patterns Q0.

Proof. Clearly, any descendant of a pattern p ∈ Q0 can be reached by going
through a list of direct descendants p = p0 ≺ p1 . . . ≺ p` = q. Now if fpN (q) ≤ τ
then monotonicity of false positive rate (3.3) assures that fpN (pi) ≤ τ for
i ∈ {0, . . . , `}. By the assumption pi+1 is always in the descendant set Q for pi
and thus algorithm reaches q. If q is a maximal pattern then fpN (r) > τ for any
of its descendants and thus q is included into the setM asM1 = ∅ for q.
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Input: Initial set of patterns Q0.
Output: The set of all maximal patternsMfp(Q0, τ) that are descendants

of Q0.
Auxiliary functions: List of pattern generalization operators ∇1, . . . ,∇k.

MaxFPSafePatterns(Q0, τ)
begin
M = ∅
for p ∈ Q0 do

if fpN (p) ≤ τ then
Generate an ordered list of descendants
Q = ∇1(p) ∪ · · · ∪ ∇k(p)
M1 = MaxFPSafePatterns(Q, τ)
ifM1 = ∅ thenM =M∪ {p} elseM =M∪M1

end
end
returnM

end

Algorithm 1: Basic algorithm for finding fp-safe patterns.

This condition stated above is rather strong, as it forces us to traverse the
same pattern several times. The simplest way to avoid repeated visits is to store
all generated patterns and test whether we have already visited that pattern.
However, there are more efficient alternatives.

Let us consider a graph of Q-connected patterns where there is an arc from
q to p if the pattern q is in its candidate list Q(p). Let F be the filtering op-
eration that keeps only a subset of candidates Q in each step. Then we can
define F -connected graph where there is an arc form p to q if the pattern q
is in the reduced candidate lists F (Q(p)). Now if all patterns reachable in
Q-connected graph are reachable in F -connected graph, then applying F to
reduce the candidate list in Algorithm 1 does not change the outcome. In-
deed, if fp-safe pattern q is reachable form p then it is also reachable through
F -reduced candidate lists. Hence, we need to define filters that preserve con-
nectivity while reduce as many alternative paths in the Q-connected graph.
As the same argument holds if we start from F -connected patterns and then
apply another filter, we can build filter by specifying several sub-filters that
eliminate different types of alternative paths.

Basic pattern generalization operators. Now it is relatively easy to see that
the following generalization steps assure that all direct descendants of a pat-
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tern are generated.

Operator ∇1: For pattern p, we generalize all of its tokens by mini-
mal amount. More formally, we iterate over all possible tokens
pi and all of its attributes attr and generate a new pattern q =
p1, . . . , pi−1, t, pi+1, . . . , pn where the token t is a copy of pi with a sin-
gle attribute t.attr replaced with its parent. The output consists of all
generated patterns.

Operator ∇2: For a pattern p, we generate two patterns q1 = p2, . . . , pn
and q2 = p1, . . . , pn−1. We delete q1 or q2 if some extraction tokens are
missing form the pattern. The output consists of remaining patterns.

Basic filters for candidate patterns. Note that there are only two ways to
generalize a pattern: either we omit some tokens form the ends or generalize
tokens. Moreover, the generalization can be always carried out so that we
first do omission and after that generalization of tokens. Hence, we can filter
candidate patterns based on the four simple rules. Let a current generalization
path be the sequence of generalization steps from a seed pattern to a candidate
pattern q made by Algorithm 1. Then the current generalization path must
satisfy the following conditions:

F1: No omission steps are allowed after we have applied a token generaliza-
tion step.

F2: No omission steps form the beginning are allowed after we have deleted
a token form the end.

F3: Individual symbols in the pattern must be generalized from beginning to
the end.

F4: Generalization steps on the individual tokens are applied in canonical
order.

Proposition 3.2.2. The filtering steps F1–F5 preserve connectivity. For a single
seed pattern s the filtering steps assure that a candidate pattern can be visited
only once.

Proof. The rule F1 does not break connectivity, as if a pattern q is reachable
from seed s then it is also reachable if we do omission steps first. The rule

35



F2 does not break the connectivity as we can start deleting tokens from the
beginning. Similarly, we can generalize tokens in the pattern from left to
right. The rule F4 does not prevent us from generalizing, it just assures that
we do generalization steps in unique order. Note that rules F1–F4 together fix
a canonical generalization path for each pattern and thus no candidate pattern
can be visited more than once.

When the set of seed patterns consists of several patterns then a pattern
might be reachable from several patterns and thus visited more than once,
although we obey rules F1–F4. Such double visits can be caught with the
following additional rule:

F5: Remove q from candidate patterns if q is a generalization of two seed
patterns si and sj and the current generalization path does not start
from the pattern smin{i,j}.

Proposition 3.2.3. The filtering steps F1–F5 preserve connectivity. For any seed
set Q0 the filtering steps assure that a candidate pattern can be visited only once.

Proof. Let us prove that the rule F5 alone does not break connectivity. Assume
that a pattern q is reachable from many seed patterns and let si be the pattern
with the minimal index among them. Then the rule F5 has no effect if the
current generalization path starts from si. Since rules F1–F4 do not break con-
nectivity for individual seed patterns, rules F1–F5 together also do not break
connectivity. The claim follows, as q can be a valid generalization of a single
seed.

Finding optimal threshold τ ∈ [0, 1] for our pattern mining tasks depends
on the characteristics of the training corpus. One assumption, we have to
make, is that the relations are distributed similarly in the testing corpora,
where we plan to apply the patterns and particular machine learning mod-
els. Also, the language itself should be similar in both training and testing
corpora.

Good seed patterns. To apply Algorithm 1 in practice for mining fp-safe
patterns, we need a set of seed patterns. The easiest way to create them from
examples is to treat each labeled example sentence as a pattern. We can also
fine tune such patterns by manually excluding words that are irrelevant. To get
the corresponding pattern, we trim all irrelevant tokens from both ends. If an
irrelevant token occurs is in the middle of the remaining pattern then we delete
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all of its attributes. In more advanced cases, the user can even specify varying
number of wild-card patterns in the middle. As such fine tuning is rather
tedious, we can also do semi-automatic trimming of patterns by specifying
context radius, i.e, the maximal number of tokens before and after a the first
or last extraction token. These can be specified separately for the beginning
and end.

Complexity. It is difficult to provide exact estimates for running time of Al-
gorithm 1. For each pattern of length n, there are O(n2) different consequent
subpatterns i.e possible generalizations by omitting tokens from beginning or
end. For each token, there are constant number of generalizations, if we fix
the number of attributes and therefore O(n) generalizations for a single sub-
pattern. Given total of N patterns, the worst case complexity of the algorithm
is thus O(n3N). The estimate could be more exact, but we see that it mostly
depends on the length and number of seed patterns.

Average complexity depends on how many common generalizations the
patterns have, the patters mining threshold and the corpus itself the process is
carried out.

In practice, we might expect up to 500 different seed patterns for a rela-
tion, although we can always take a sample, if we have more of them. The
length of the patterns depends on the arity of the pattern and the the size of
context radius. For unary patterns of context radius of two, average pattern
length is about five or six tokens. For binary patterns, this may be up to 10 or
more. The constant number of generalizations, as we have twelve attributes
and longest path from root to leaf in any of our attribute value trees is four, is
412 = 16777216. In practice, most tokens use only about four or five attributes,
thus the total number of generalizations stays usually less than 100 for a sin-
gle token. But we still might need to evaluate up to 500 · 103 · 100 patterns
for a binary relation in worst case scenario and maybe 5-10% of patterns in
an average case, if we consider the threshold and common ancestors of the
patterns. This is still infeasible in practice without using additional heuristic
steps discussed in Chapter 4.

3.3 Basic algorithm for finding fn-safe patterns

To find maximal fn-safe patterns, we have to specialize a list of seed pattern
until the rate of true positives falls below a fixed threshold. As such, the task is
completely dual to finding maximal fp-safe patterns. However, there are few
aspects to note.
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First of all, it is much more difficult to estimate the rate of true positives.
Ideally, we would have fully annotated corpus and could easily construct unbi-
ased sample of positive examples P needed to compute tp. In reality, complete
inspection is impractical, as relations do not occur frequently enough in most
corpora. Hence, the sample is commonly constructed by manual selection of
representative examples or using some a sort of semi-automatic method for
condensing the original corpus before doing complete inspection. As a result,
the sample does not cover all types of occurrences and the estimate on true
positives is likely to be overestimate of tpC(p).

Secondly, the search algorithm is very close to frequent sequence mining
with few modifications. Frequent sequence mining starts from a single symbol
and grows it by adding letters, whereas we can add restrictions to attributes
one by one. Hence, the potential depth of a search tree can be much larger.

In our case, we still need to consider the extraction areas of the patterns,
which can be of varying width. We cannot start from single symbols, but in-
stead from a group of symbols, where the lengths of the extraction areas are
taken from a list of initial seed patterns. Also, when setting thresholds, we
must take into consideration that a single binary and any other n-ary (n ≥ 2)
pattern cannot always yield very high recall as examples may contain extrac-
tion areas for X and Y in different order, thus making it impossible for some
patterns to even match certain sentences.

The algorithm and proof of correctness is analogous to the algorithm for
mining fp-safe patterns. The main difference is that instead of generalization
methods we use specification steps.

Basic pattern specification operations. The specification steps are oppo-
site of operators ∆1 and ∆2. For finding fp-safe patterns, we generalized the
attributes by a minimal step, here we specify them by a minimal step.

Operator ∆1: For pattern p, we specify all of its tokens by minimal amount.
More formally, we iterate over all possible tokens pi and all of its at-
tributes attr and for each token and direct child of the attribute gener-
ate a new pattern q = p1, . . . , pi−1, t, pi+1, . . . , pn where the token t is a
copy of pi, such that parent(t.attr) = pi.attr. The output consists of all
generated patterns.

Operator ∆2: For a pattern p, we generate two sets of patterns Q1 =
{t, p1:n : cover(t, p1:n) 6= ∅} and Q2 = {p1:n, t : cover(p1:n, t) 6= ∅},
where the attribute values of t are leaves in their respective attribute
value trees. The set Q = Q1 ∪Q2 consist of all generated patterns.
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Basic filters for candidate patterns. As with generalization, we can also
specify here the order of specifications, such that for a single seed pattern p,
we do not generate duplicate specifications.

F1: No extension steps are allowed after we have applied a token specifica-
tion step.

F2: No extension steps form the beginning are allowed after we have ex-
tended a token form the end.

F3: Individual symbols in the pattern must be specified from beginning to
the end.

F4: Specification steps on the individual tokens are applied in canonical or-
der.

F5: Remove q from candidate patterns if q is a specification of two seed pat-
terns si and sj and the current specification path does not start from
the pattern smin{i,j}.
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Chapter 4

Heuristic search

In this chapter, we discuss an alternative approach to depth first pattern mining
technique discussed in Chapter 3. This approach uses similar patterns and
their common ancestors to build up a hierarchal tree. The process usually
requires less steps than depth first search, but it is not enough to yield maximal
patterns. Instead, this approach can be used to generalize seed patterns to
their common generalizations and input those to depth search first algorithm
for further refinement.

4.1 Pattern alignment

Consider a set of seed patterns P, which are initiated from a number of an-
notated examples. Patterns encoding the relation of the same word order or
similar structure are more likely to have common generalizations with not
many generalization steps. These common generalizations cover the examples
of the original patterns and additionally cover many other smaller variations as
well. Algorithm 1 generates all such common generalizations, if their fp-rate
is small enough. But we can also generate such generalizations directly.

Let us denote the lowest common ancestor generalization of pattern p and
q as

r = LCA(p, q) ,

where p, q � r and there does not exist pattern m, such that p, q � m and
m ≺ r. If the extraction tokens of the patterns p and q cannot be aligned, we
define LCA(p, q) = ⊥, meaning that it does not exist.

How the tokens of the resulting ancestor pattern are formed, can be easily
specified. Let p be the pattern, whose extraction token positions appear earlier
in the pattern. Let δ ≥ 0 be the offset of the extraction tokens of q related to p.
To align the pattern, we need to crop δ tokens from the beginning of pattern q.
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k=min(|p|,|q|-δ)

δ=3

p:
q:

p:
q:
r:

not aligned

aligned
  1        2       3        4       5        6        7        8

  1        2       3        4       5        6        7        8

Figure 4.1: Example pattern p and q, where boxes denote tokens and filled
boxes the extraction tokens. The offset of extraction token positions of q re-
lated to p is denoted as δ.

Let value k = min(|p|, |q| − δ) denote the size of the lowest common ancestor
pattern r. Therefore, we need to also crop |p|− k tokens from the end of p and
|q| − δ patterns from the end of q. Thus, the lowest common ancestor pattern
will be

r = LCA(p, q) = LCA(p1, qδ), LCA(p2, qδ+1), . . . , LCA(pk, qδ+k) ,

if operator LCA with tokens arguments returns the token, where attribute val-
ues are lowest common ancestors of respective attribute value trees. See Fig-
ure 4.1 for an example. If we used patterns p and q as seed patterns directly for
Algorithm 1 and if LCA(p, q) is frequent, we can omit evaluating all patterns in
set

{r : p ≺ r ≺ LCA(p, q) ∨ q ≺ r ≺ LCA(p, q)} . (4.1)

4.1.1 Pattern similarity measures

In general, we can take least common ancestor patterns of any two patterns
that align and use Equation (4.1) to reduce the search space, if the pattern is
frequent. However, if the generalizations are not frequent, we do unnecessary
work. Therefore, we should consider common ancestors of patterns, which are
more similar to each other, i.e, the number of required generalization steps to
gain the LCA are small. For that purpose, we need a way to measure the
similarity between the patterns.

Sentences encoding a particular relation usually have similar language con-
structs, specific words or other means that makes it possible to recognize the
examples. For example, consider sentence

President Obama kohtub president Ilvesega Kadriorus.
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Word “kohtuma” (“to meet”) allows to recognize that the subject and the object
of the sentences will meet each other. In Estonian, word order is not consistent,
although subject-verb-object (SVO) is considered the main order. The above
sentence can be also written in VSO order

Kadriorus kohtub president Obama president Ilvesega.

Or we can write the sentence using two subjects as

Kadriorus kohtuvad president Obama ja president Ilves.

These different word orderings cannot be captured by a single pattern and
most of the time a single word ordering requires more patterns due to varia-
tions in the language as well. But examples having the same word order or
sentence structure are more similar to each other than examples with different
word ordering.

There are several possible ways we could measure the similarity. For in-
stance, we could use Levenshtein distance, but in terms of our patterns, we
cannot insert or delete tokens in the middle, thus this measure would not cap-
ture the behavior of the patterns perfectly. Another option is to use Hamming
distance. Although the patterns can be of different length, comparing them
can be done, if we align them and chop the non-aligning tokens. We define
the Hamming distance for pattern p and q as dist(p, q) = ∞, if they cannot be
aligned and

dist(p, q) = N +
k∑
i=1

dist(pi, qi+δ) (4.2)

otherwise, where N = δ + |p| + |q| − 2k is total number of tokens that are
chopped off, k = min(|p|, |q| − δ) and δ is the alignment offset. The distance
measure of single tokens t and u is defined as

dist(t, u) =

{
0 t � u ∨ t � v

1 otherwise
.

The distance measure reflects the number of generalization/specification
steps we need to do to convert one patterns to another. This assumes that
the patterns can be aligned. Each chop/extend step will contribute value 1
to the distance as do the aligning tokens that are not equal nor cannot be
generalized/specified to each other directly. The measure (4.2) also satisfies
the triangle inequality, i.e, dist(p, q) + dist(q, r) ≥ dist(p, r). Also, it is easy to
see that for patterns p, q, r
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p � q � r ⇒ dist(p, q) ≤ dist(p, r) (4.3)

and

dist(p, LCA(p, q)) ≤ dist(p, q)
dist(q, LCA(p, q)) ≤ dist(p, q)

. (4.4)

4.2 Using the similarity measure as heuristic

The distance measure (4.2) can be used as heuristic to decide, what general-
ization steps should we do to get . If we have two seed patterns p and q that
are similar, their lowest common ancestor LCA(p, q) will cover the examples
covered by both p and q.

To use the heuristic, we first need to calculate the pair-wise distances be-
tween all seed patterns. We can traverse the pattern pairs by starting with
the most similar, take their lowest common ancestors and add it to result, if
it satisfies pattern mining criteria, i.e, it is frequent. We can use the result-
ing patterns as seed patterns to a new iteration and continue, while we gain
new patterns. Each next iteration tries to discover frequent common ancestors
from the patterns of previous iterations. This process is analogous to depth
first search discussed in (3), but uses larger generalization steps.

The resulting patterns are more close to the pattern mining threshold than
the initial seed patterns and due to Equation (4.1) help to avoid potentially
large number of generalization steps. Using these patterns as seeds to Algo-
rithm 1, we can refine the output further.
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Chapter 5

Patterns as features for machine
learning

Given the set of fp-safe patterns for a specific relation, we can apply them
individually and treat all matches as occurrences of the relation. However,
this might lead to suboptimal performance, as the number of false positives
starts to cumulate. Moreover, a simultaneous match of some patterns might
be much stronger indicator that the extraction is correct than a match of a
single pattern. Therefore, we can significantly improve the results by using
machine learning for aggregating results. The resulting procedure consists of
two phases.

In the first phase, individual patterns are used to match sentences. For
clarity, consider unary patterns that extract a single word. Then the pattern
matches a word or not and we can encode this as a zero-one feature. In the
second phase, these zero-one features are used to decide whether each word
is in the relation or not. The latter is a standard classification task. To solve
it, we need positive and negative examples. Positive examples can be gener-
ated from known occurrence of the relation by computing the corresponding
feature vector. Negative examples can be analogously generated from known
non-occurrences.

5.1 Feature Extraction

We use the outputs of patterns of the model as features to the classification
methods. In particular, we encode the example set as a n×m matrix M, where
n is the number of examples and m the number of patterns. Each example
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denotes an element e ∈ C, where

C =
⋃
p∈P

cover(p)

is the union of all cover elements of the patterns and particular element Mi,j =
ei ∈ cover(pj). In case we are building the features for training, we encode the
labels as a vector v of length n, where vi is True, if element covers an anno-
tated example and False otherwise. The matrix M together with label vector
v can be used as an input to any supervised learning classification method to
build a model. Note that in case no pattern matches an annotation, we ex-
clude it from the training set as we need a match to discover it in the first
place. However, this is not the problem, if the seed patterns originate from the
annotations.

5.2 Classification Methods

In this work, we are experimenting with several classification methods and
compare their performance: Count classifier, SVM classifier, Random Forests
classifier and Naïve Bayes classifier.

Count classifier. We use count classifier as a baseline method in our exper-
iments. It works simply by counting the number of patterns m that match a
given example and yield 1, if m ≥ τ and 0 otherwise, where τ ∈ N is the
threshold. In our experiments, we use τ = 1, as the resulting classifier re-
acts whenever at least one of the patterns matches the example, making it the
most sensitive classifier. The number of matches m can be directly used as an
evidence score. We refer to count classifier, where τ = 1 also as OR-classifier.

SVM classifier. Support vector machine (SVM) is type of classifier, that has
high generalization ability [CV95]. In this work, we use linear SVM, although
the classifier could also use non-linear transformations to transform the data
into higher dimensions for possible better separability. However, in our case
we already have many zero-one features, thus using non-linear transforma-
tions might not give any advantages. For computations in our tool (see Ap-
pendix A), we use R e1071 package [DHL+05] for linear SVM functionality,
which is a interface to libSVM library [CL01]. The package allows to use regu-
lar two-class classification and can also output probability values for different
examples.
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Random Forests classifier. Random forests classifier is an ensemble clas-
sifier, that uses a combination of tree predictors to vote for the best class.
Each individual tree is built by randomly sampling a vector of values from the
dataset [Bre01]. We use R package randomForest [LW02], which is an inter-
face to original program written by Breiman. Similarly to e1071 package, it
can output both resulting class vectors and probabilities for the examples.

Naïve Bayes classifier. Naïve Bayes classifier is a probabilistic classifier that
assumes that all the features are independent. Given an example e, the prob-
ability that e encodes a relation is given by

Pr[e|f1, . . . , fn] =
Pr(e) Pr(f1|e) · . . . · Pr(fn|e)

Pr(f1, . . . , fn)
,

where n is the number of features and feature fi is true, if pattern i cov-
ers the example. An example is classified as positive, if Pr[f1, . . . , fn|1] ≥
Pr[f1, . . . , fn|0] and false otherwise. The R e1071 package also implements
a Naive Bayes classifier, which we are using in our experiments.

5.3 Case study: named entity recognition

We start our discussion of empirical results from named entity recognition, as
unary relations are less ambiguous and the state of the art results are known
for the news article benchmark [Tka10]. We first discuss performance for indi-
vidual relations (person, organization and location) separately and then compare
the results. For each experiment, there are many parameters to tune. We can
choose the classification method, set a bound on the false positive rate and
finally tune the classifiers threshold. In order to test, which of these combina-
tions leads to optimal result, we conducted the following experiment.

The setup. As we could not tell the best choice of parameters beforehand,
most specifically the pattern mining FP-rate threshold, we chose to experiment
with different values. For each particular threshold τ ∈ [0, 1], we ran a 5-fold
random cross-validation.

First, we randomly split the corpus into a 80% training and 20% testing
sample. Second, using the threshold τ , we mined the FP-safe patterns from the
training set. Then, we initialized the models for Count, SVM, Naïve Bayes and
Random Forests classifiers using the feature table built from the pattern covers.
Each row of the feature table represented a match by any of the patterns. Each
element of the row denoted whether a particular pattern matched the element
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Figure 5.1: Pattern mining FP-rate threshold versus recall and precision for
person relation with random 5-fold cross-validation. The shaded regions depict
the standard deviation.

or not. We made the feature table balanced, so that there would be equal
amount of true positive and true negative matches. Of course, in addition
to the feature table, we needed to provide a label vector denoting the true
positive and true negative matches.

Next, we matched the patterns on the testing set and measured precision,
recall, FP-rate, FN-rate of all the classification models trained previously. Addi-
tionally, we also stored the number of patterns mined and calculated the area
under curve (AUROC) value for each respective classifier. In this step, we used
the default parameters of the classifiers.

Later, we drew receiver operating characteristics (ROC) curves for reason-
able FP-rate thresholds by inspecting the area under curve (AUROC) values
from the previous steps. Particularly, we chose minimal FP-rate thresholds
where AUC values were equal to or near to local maximums.

Important note. The results described in this section were carried out with
the version A of the prototype. Please refer to Appendix A for the details.

Annotating persons. As expected, the overall performance largely depends
on the fp-threshold used in the pattern mining phase. A low threshold leads
to patterns with high precision and low recall. Hence, the precision is initially
quite high for all classifiers and then starts to decline. Figure 5.1 clearly shows
that machine-learning methods significantly reduce the rate of false-positives.
In fact, these methods have roughly the same precision over the entire range.
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curves are plotted in right.
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Figure 5.4: Recall and error (1-precision) depending on coverage of patterns
of person relation with count and random forests classifier.

The only exception is in the beginning, where the performance of Support
Vector Machines is significantly higher attaining 90%. On the other hand,
there is a big difference in recall and random forest is clearly the best option.
Also, note that the recall of naive Bayes is initially comparable but there is a
sharp drop. This is an expected result, as naive Bayes is designed to aggregate
independent features. For low thresholds, this assumption is satisfied, while
high thresholds introduce correlated patterns.

Recall graph allows us to estimate how many occurrences of person not
easily discoverable by patterns. Indeed, note that the recall of the OR-classifier
converges to 95% indicating that 5% of true positives do not follow any pattern
with reasonable specificity. Figure 5.1 also reveals that it is relatively easy to
drop irrelevant sentences so that almost all occurrences of person relation are
preserved while occurrence rate is above 50%.

The dependencies depicted in Figure 5.1 are approximate, since they were
obtained with default cutoff thresholds. Results can be further optimized by
changing the cutoff point. However, the latter leads to two-dimensional op-
timization task with many objectives. To simplify matters, we first choose
pattern-mining threshold based on the AUC scores and then use the corre-
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Figure 5.5: Recall and error (1-precision) depending on coverage of patterns
of person relation with count and random forests classifier.

sponding ROC curves to characterize performance of individual classification
methods. Figure 5.2 depicts the behavior of various classifiers. As one can
see random forest and SVM have almost equal performance, though random
forest has constantly slightly above.

Classifier 5% 10% 25% 50%
Random Forest 1.5% 62.3% 84.27% 94.7%
Linear SVM 3.1% 48.6% 80.1% 90.5%
Naive Bayes NA NA 53.9% 94.2%
Count 5.2% 7.3% 33.5% 89.5%

Table 5.1: Recall percentage for various FDR levels of person relation. NA
means that a specific method could not provide output with FDR rate that low
with patterns mined with FP-rate threshold of 0.5%.

51



Although the ROC curves are great for comparing different classifiers they
do not reveal how useful they are in practice. Hence, we also consider recall
under fixed False Discovery Rate (FDR). That is, we consider how many oc-
currences we can reveal if we allow at most α% of false positives in the final
annotation. The standard thresholds to consider are 5, 10, 25 and 50% where
the first means one mistake up to nine correct guesses and last one mistake up
to correct guess. Table 5.1 depicts the corresponding results. The result clearly
shows that patterns contain useful information about person relation but the
current results are insufficient for automatic labeling.

Classifiers with default parameters are capable of yielding precision of 70%
with recall of 90%, if we mine the patterns with FP-rate threshold 0.01. As a
comparison, the NER application used in birthday and event location relations
had both precision and recall of 90%, if best features were used [Tka10].

As the patterns are mined from the training set with a fixed FP-rate thresh-
old, theoretically the maximal FP-rate depends also on number of patterns. If
each pattern is allowed to output 5% of false positives, then with n patterns,
the union bound for the metric is 5n%. In Figure 5.3, we have plotted the
theoretical FP-rate union against the real FP-rate of all the patterns with per-
son relation. We see that the actual FP-rate and the theoretical union bound
are in linear relationship. With OR-classifier, the actual FP-rate is about 8%
of the theoretical union bound. This means that the covers of the patterns
are not disjoint and many examples are covered by more than one pattern.
For machine learning methods, the FP-rate is only about 1.5% of the theoret-
ical union bound, meaning that in fact they yield less false positives than the
OR-classifier.

In Figures 5.4 and 5.5, we have plotted minimal coverage of patterns and
compared the recall and precision error with pessimistic, normal and opti-
mistic thresholds for person relation. By coverage of a single pattern, we mean
the percentage of false positives and true positives the pattern covers. We
see that the optimistic threshold really yields more generic patterns that cover
more examples. With OR-classifier and few high coverage patterns, we can
achieve quite high recall and adding more specific patterns to the set, we cover
almost all of the examples. As OR-classifier classifies all examples covered by
all patterns as positives, we also increases the error. We see that RF behaves
similarly, although it has better precision and slightly lower recall. If we have
only few very generic patterns, the error of RF classifier is as high as the er-
ror of OR-classifier. But as soon as we add more specific patterns, the RF
can produce models with higher precision. From Figure 5.5, we see that with
pessimistic threshold and more specific patterns, the machine learning cannot
improve the precision much, because the patterns make less errors themselves.
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Figure 5.6: Pattern mining FP-rate threshold versus recall and precision for
organization relation with random 5-fold cross-validation. The shaded regions
depict the standard deviation.

More generic patterns however cover overlapping examples, thus random for-
est classifier can improve on it.

Annotating organizations. Figure 5.6 shows that pattern-based annotation
of organizations is a significantly more challenging task. Again, linear SVM is
best for small thresholds, while random forests are best for larger thresholds.

Organizations follow more generic patterns than persons as the recall con-
verges to 98% with OR-classifier and near 85% with RF and SVM with FP-rate
threshold about 6%, which is about ten times larger than the threshold for
person relation. Filtering of unrelated sentences can reveal us only up to 70%
of occurrences while keeping the false positive rate about 50%.

Classifier 5% 10% 25% 50%
Random Forest 0.8% 0.8% 8.4% 61.8%
Linear SVM 3.3% 3.3% 6.7% 33%
Naive Bayes NA NA NA NA
Count 0.8% 0.8% 0.8% 0.8%

Table 5.2: Recall percentage for various FDR levels of organization relation.
NA means that a specific method could not provide FDR rate that low with
patterns mined with FP-rate threshold of 6%

The FDR values for organization relation are given in Table 5.2, where the
fp-rate threshold of the patterns is 6%. We see that we with FDR rate of 50%
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Figure 5.7: Theoretical union bound vs actual union bound of patterns for or-
ganization relation. Plotted lines depict the linear regression for each classifier.

we can achieve only recall of 61.8%. With FP-rate threshold of 6%, random
forest can achieve precision of 42% with recall of 80%. As a rough comparison,
the baseline NER tool has precision of 82% with recall of 76% on the original
corpus.

As a result, our approach can achieve feasible recall, but not good enough
precision. On the other hand, we did not use lists of know organizations be-
forehand and made predictions only based on sentence structure.

In Figure 5.3, we see that actual FP-rate is is more close to the theoreti-
cal union bound that it was with person relation. For OR-classifier, the actual
FP-rate is near to 20% of the theoretical upper bound. With machine learn-
ing classifiers other than Naive Bayes, we reach about 5% to 6% of the upper
bound. Naive Bayes classifier can decrease the actual FP-rate while the theo-
retical bound increases. This means that the patterns in organization relation
are more independent as it was the case with person relation.

In Figures 5.8 and 5.9, we have plotted the minimal coverage of patterns
and their recall with OR and Random Forest classifiers. Compared to person
relation, we notice that with normal and optimistic thresholds, there are more
generic and independent high-coverage patterns as RF classifier cannot im-
prove the precision due to lack of overlapping in the covers of the patterns. As
we add more specific patterns with smaller coverages to the set, the RF clas-
sifier will have more information to improve the precision of the model. With
pessimistic thresholds, the situation is similar to person relation, although the
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Figure 5.8: Recall and false discovery rate (1-precision) depending on cover-
age of patterns of organization relation with OR and random forests classifier.

absolute error levels are higher due to more generic patterns in the organization
relation in general.

Annotating locations. In Figure 5.10, we see that the performance of anno-
tating locations with pattern-based methods is similar to annotating organiza-
tions. Best classifier is again random forest. If we require equal amount of true
positives and false positives, we can achieve recall of 62.8% (see Table 5.3) for
random forest classifier.

The recall of OR-classifier converges to 98%, which means that the patterns
cover most examples in the corpus, but remain too generic. With default set-
tings, the random forest achieves precision of 35% and recall of 87% with FP-
rate threshold of 6%. To compare, the baseline NER implementation achieved
here precision and recall both of 90% on the original corpus.

The relationship between actual FP-rate and theoretical union bound are
similar to organization relation. Similar situation is with the effect on recall
and precision depending on the coverage of patterns. Therefore we omit the
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Figure 5.9: Recall and error (1-precision) depending on coverage of patterns
of organization relation with OR and random forests classifier.

Classifier 5% 10% 25% 50%
Random Forest NA NA 33% 62.8%
Linear SVM 2.4% 2.4% 13.2% 53.7%
Naive Bayes NA NA NA 17.2%
Count 0.8% 0.8% 0.8% 5.7%

Table 5.3: Recall percentage for various FDR levels of location relation. NA
means that a specific method could not provide FDR rate that low with patterns
mined with FP-rate threshold of 6%

plots for location relation.
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Figure 5.10: Pattern mining FP-rate threshold versus recall and precision for lo-
cation relation with random 5-fold cross-validation. The shaded regions depict
the standard deviation.

Comparison of results. In Table 5.4, we have given comparisons of best
recall rates of best classifiers for each tested relation and FDR level. We see that
our methods worked best with annotating person names. We could achieve
recall of almost 95% with false discovery rate of 50%. With organization and
location relations, the recall was only slightly over 61%.

Relation 5% 10% 25% 50%
Persons 5.2% 62.3% 84.27% 94.7%
Organizations 3.3% 3.3% 8.4% 61.8%
Locations 2.4% 2.4% 33% 62.8%

Table 5.4: Best recall percentage for various FDR levels for person , organization
and location relations of best classifiers.

Our methods are currently not yet feasible for directly annotating named
entities. We can achieve acceptable recall, but not good enough precision. This
indicates that the examples follow specific patterns, but which are in some
cases too generic to achieve high precision. In case of organization and location
relations, it might have been the case we had too few negative examples in the
corpus, thus under-estimating the FP-rate of the patterns in training phase.

The relationship between the actual FP-rate levels and theoretical upper
bounds depend largely on the type of relation. If the relation is simper and we
have enough examples, the covers of the patterns have much more overlaps.
This means that we agree on the general structure of the sentences, but use
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Figure 5.11: Area under ROC curve (AUROC) for binary birthday relation
in Wikipedia corpus for different fp-rate threshold for pattern mining (left)
for 10-fold random crossvalidation. Dashed lines with shaded areas denote
smoothed condition mean. In the right, there are ROC curves for different
classifiers, where pattern mining threshold is 30% (local maxima).

minor modifications to capture other nuances as seems to be the case with
person relation. With organization and location relations, the actual FP-rate was
higher and thus closer to theoretical upper bound. The relations are more
diverse in the corpus and cannot be captured with the patterns very easily. One
thing common to all relations was that machine learning methods definitely
improve the precision of the model.

If we look only at high-coverage patterns, we see that we could achieve
quite high recall using only a small fraction of optimistic patterns, keeping the
error proportionally smaller. This means that the relations can be captured by
a small number of very generic high-coverage patterns and further be specified
by adding more patterns to the relationship. This, in general, was the case with
all three relations.

5.4 Case study: binary birthday relation

In this section, we try the machine learning methods briefly discussed earlier
with birthday relation on Wikipedia corpus. We carried out a 10-fold random
crossvalidation test, where we mined fp-safe patterns with varying thresh-
olds from zero to one hundred percent. We applied the trained patterns and
models on the testing sets and compared various statistical measures. As seed
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Figure 5.12: Maximal recall for fixed false discovery rate (FDR) of 5%.

patterns, we used annotations in training sets and applied a context radius of
two tokens. We used heuristic patterns mining algorithm .

Important note. The results described in this section were carried out with
the version B of the prototype. Please refer to Appendix A for the details.

Discussion. Figure 5.11 depicts the area under ROC curve and ROC curves
for fp-rate threshold of 30%. We see that random forest (RF) classifier per-
formed best throughout the test, obtaining almost AUROC of 0.8 with some
thresholds. The average performance of the classifier tends to increase slightly,
when the threshold increases, although it is pretty stable. Similarly, support
vector machine (SVM) classifier is stable, but its performance is not as good
as of RF classifier. Naïve Bayes and Count classifier perform better with either
low or high fp-rate threshold values, but both performed worse than RF and
SVM classifiers.

In Figure 5.12, we have depicted the maximal recall for a fixed false discov-
ery rate (FDR) of 5%. This means the recall such that for 19 true positives we
have 1 false positive. RF and SVM classifiers can provide recall around 50%
with pattern mining threshold of more than 40%. As it is lower with smaller
thresholds, this indicates that the covers of abstracted patterns have significant
overlaps, such that it is possible to precisely determine true positive matches.
The only downside is relatively small recall. Maximal recall for Count classifier
is practically always zero, except for very low pattern mining fp-rate thresh-
olds. Similarly, this is true for Naïve Bayes classifier. Both these results are
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expected, as both introduce a lot of false positives. Count classifier classifies
an examples as positive, if it has at least one match. Naïve Bayes assumes the
patterns are independent (no overlaps in covers), which is not true in most
cases.
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Chapter 6

Active learning techniques

The main problem of creating a good training set that cover many good pos-
itive instances containing the relation is the time-consuming manual process
of finding and annotating positive examples. Typical corpora contain many
sentences, where only a small percentage may have the relation we are inter-
ested in. Therefore, in this section, we are going to describe techniques that
lower the amount of necessary manual work, while increasing the quality of
the training set. First goal is to reduce the size of the corpus by eliminating
true negative sentences. Second goal is to build an corpus of examples cover-
ing most relevant examples of the relation we are interested in.

The overall active learning loop is given in Figure 6.1. The initial step is to
annotate a small subset of the corpus, where we can deduce initial patterns to
begin with. Alternatively, we could also define initial patterns ourselves, but
this requires expert knowledge in Estonian language and may not adequate
for the specifics of the corpus. For example, medical texts or forum posts
frequently contain language that is not typical nor grammatically correct Esto-
nian. Thus, it is safer to get the seed patterns from the annotations. However,
the relative scarcity of good examples often forces us to use heuristic patterns
to filter out a set of putative examples that must be manually checked after-
wards. For instance, in order to discover examples of ‘is synonym’ relations,
we can first filter out sentences that contain synonym pairs and then verify
which of them indeed encode the relation. Also, note that the initial annota-
tions should be heterogeneous and cover the most basic examples for different
constructs. This is crucial for binary and ternary relations, where extraction
tokens can be in different order.

As the second step, we fix a false positive rate limit and mine patterns,
which maximize recall. By matching these patterns in the corpus, we can get
a new set of predicted examples. Although this set is likely to contain many
false positives, the percentage of true occurrences is much higher than in the
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original corpus. Moreover, we can seek for informative examples by omitting
examples we have already learned, i.e., examples that are matched with high
precision patterns. As a result, the amount of required manual effort can drop
significantly, although it can be still infeasible to look through the entire set of
predicted examples. In the latter case, we just review part of it and repeat the
cycle until the resulting gains in precision and recall are insignificant.

annotate small
subset of the corpus

mine patterns with
low fn-rate

(high coverage) [not enough examples]

[else]

match sentences in the
rest of the corpus

Active learning loop

annotate subset of
positively matched sentences

and add them to training
set

Figure 6.1: Active learning loop. Shaded activities represent the steps that
have to be done manually.

6.1 Strategies For Finding New Examples

Given a data set, we can either try to find patterns that maximize precision or
recall. The first type extraction mechanism is good as a final fact extraction
tool, whereas the other is good for throwing away irrelevant sentences. Hence,
in each active learning cycle we train two classifiers: HP-classifier and HR-
classifier. Now given a new set of unlabeled sentences, we get three types
of matches as depicted in Figure 6.1. The sentences form the intersection
HR∩HP are not very informative new examples, since both classifiers agree
on them. Sentences fromN∗ = HP\HR are candidates for negative examples,
since they do not fit the general pattern of sentences capturing the relation.
Sentences from P∗ = HR \ HP are good candidates for positive examples as
they contain plausible matches not captured by the HP-classifier.

Since the manual verification of new examples is costly, the exact priori-
tization of new example sentences is an important sub-task. There are three
basic strategies:
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HRHP

Figure 6.2: Venn diagrams of covers of high recall (HR) and high precision
(HP) patterns.

Prioritization based on current behavior of classifiers. The first strategy
splits the sets P∗ and N∗ further based on the internal behavior of classifiers.
In must cases, HP- and HR-classifier consolidate the results of many patterns
by assigning a likelihood score for each potential match. Hence, it is easy
to detect candidate sentences of P∗ that are matched by some patterns but
rejected due low consensus and totally unmatched patterns. Including the
former as an example is likely to improve existing rules, whereas the latter
might reveal new patterns. On the other hand, the second type of sentence is
also more likely to be false positive. Hence, one needs to balance correctness
and informality.

Prioritization based on potential future improvements. The second strat-
egy tries to cluster putative examples based on the patterns they induce. In
brief, we mine patterns which cover small but still significant part of P∗ and
still have a small false negative rate on the entire text corpus. Now if we
partition P∗ according to these new rules, then we can do more intelligent pri-
oritization of examples. Namely, if a putative example is correct then others
form the same partition are also more likely to be correct. Similarly, if sev-
eral sentences from the same cluster are incorrect, then the cluster is likely to
contain false positives only.

Prioritization based on extracted items. The third option is to use back-
ground knowledge for prioritizing examples. Some words are more likely to
be in the relations than the others. As a simplest solution, we can include all
sentences that correspond to known relation, i.e., relations that are already
revealed by previous examples or given through auxiliary data. Next, we can
count the occurrences of a specific relation in the set of putative examples and
prioritize sentences based on their over-representation. For that we must fix a
null model that adequately describes background noise.

Of course, utility of each method depends on exact implementation de-
tails. We need to consider two baseline methods for creating set of positive
examples: random sampling from sentences P∗ = HR \HP and HR.
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6.2 Stopping Criterion

It is important to know when we have enough examples in the training set.
Two basic characteristics to consider are increase in recall and increase in pre-
cision. Namely, let Ei and Ei+1 be the positive examples used in the i-th and
(i + 1)-st iteration of active learning loop. Let Pi and Pi+1 be the correspond-
ing high-precision patterns. Then we can consider changes in the recall and
precision of the corresponding HP-classifier:

∆ri+1 = recall(Pi+1)− recall(Pi) ,

∆pi+1 = precision(Pi+1)− precision(Pi) .

A change ∆ri ≈ 0 indicates that either we have captured all patterns with
reasonable support in the corpus or all example generation procedure does
not provides redundant examples. The first situation is most likely to occur if
additionally ∆pi ≤ 0. It is natural to assume that ∆ri → 0 in the process of
adding new learning examples to the set. Thus, if ∆r ≤ τ , where τ is some
reasonable threshold, we can stop adding new examples. If we never meet this
condition, i.e, the ∆ri > τ and we have run out of positive sentences, then the
corpus is most likely too small.

The second set of important indicators is the recall and precision of indi-
vidual patterns. First of all, if the recall of newly discovered patterns is low,
then we have harvested all general patterns and the reminder consists of very
specific cases that cannot be distinguished from badly worded sentences. As
the relative frequency of patterns depends on the type of text, the latter might
indicate that we should switch training corpus for finding more examples.

Finally, note that direct estimation of recall cannot be done without manual
examination of all sentences. Since the gradual extension of positive examples
during active learning is incomplete and we do not know the count of true
positive, we can only estimate the relative change in the recall. However, the
latter is sufficient for keeping track of ∆ri.

6.3 Utilization of Negative Examples

Each active learning cycle reveals examples that are known to be true nega-
tives. The distribution of these examples is skewed, as the main aim during the
active learning cycle is to get heterogeneous set of positive examples and not
uniform sampling over true negatives. Thus, we cannot include them directly
to the set of negative examples nor can we use them to estimate ratio of false
positives as skewed sampling can bias the estimate.
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As baseline strategies sample sentences uniformly form the sets HR and
P∗, we can estimate the relevance of false positive scores computed over the
sample. Let α be the fraction of matches of a pattern p that are covered by
HR:

α =
|cover(p) ∩HR|
|cover(p)|

.

and let fpS(p) be the rate of false positives computed over the sample S. Then
the true rate of false positives fp(p) must lie in the interval

α · fpS(p) . fp(p) . 1− α + α · fpS(p)

where the precision of the approximation is determined by size of the sample
S. The upper estimate is uninformative for high precision patterns with fp(p) <
1. Thus, we can order patterns based on the lower estimate and replace non-
specific with less general ones.

Another way to increase the precision is based on fixed set of negatives. As
usual, we might start form the random sample from the entire corpus. Given
predictions from the classifier, we can detect and mark true positives. Now
each pattern we can ask whether the false positive rate decreases significantly
or not if we omit the pattern and retrain the classifier. By ordering the pat-
terns based on the significance score, we can find patterns that must be made
more specific. Also, we can lower the tolerated rate of false positives and see
whether the resulting classifier has significantly higher precision. Again, one
should stop tweaking if change ∆p is insignificant.

6.4 Case study: active learning

We decided to test the practical benefits of the active learning loop described
previously. We executed the process given in Figure 6.1. The main difference
was that the manual steps were done automatically to provide better overview
of the results. Also, we did only one iteration of the active learning loop.

We used birthday and event location relations for the benchmark. We carried
out the processing on specially constructed corpus samples, where 20% of the
sentences contained the relation. The iteration divided the corpus into three
parts: the initial learning corpus I, the additional corpus A and the testing
corpus T , such that I

⋂
A
⋂
T = ∅.

We mined patterns P0 with high recall from the initial corpus I. Then,
we matched these patterns in corpus A yielding a cover of extraction tokens
from a subset corpus A. We added the true positive matches with particular
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sentences C ⊆ A to initial corpus, yielding an improved initial corpus I
⋃
C,

where C are the sentences from additional corpus. This step simulated the
manual process of reviewing the matches in additional corpus.

To measure the improvement, we mined high precision patterns P1 from
corpus I and patterns P2 from I

⋃
C and tested them on corpus T . As a

result, we calculated improvement rates α = precision(P2)/precision(P1) and
β = recall(P2)/recall(P1).

We repeated the test with various proportions of initial and additional cor-
pus. The size of the testing corpus was 10% of the original corpus. The pro-
portions for initial, additional and testing sentences were from 10%-80%-10%
to 80%-10%-10%.
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Figure 6.3: The improvement of precision and recall for location relation on
Twitter corpus. The proportions define the number of examples in the training
and additional corpus.

In Figures 6.3 and 6.4 we see respectively the improvement of precision
and recall with location relation on example and sentence level. With exam-
ple level, we see that active learning loop improves both precision and recall
marginally, if the additional corpus is about five times larger than the initial
training corpus. This is expected. With few FN-safe patterns we find many new
examples, that after annotation give much better overview of the relation, thus
improving recall. However, in small initial corpus, it is easier to under-estimate
the FP-rate of the patterns due to possible lack of negative examples. Increas-
ing the size of the corpus five times gives more realistic estimates, thus on the
testing corpus we achieve better precision.

As the initial training corpus increases, the improvement of recall starts to
decline. Also, when the initial corpus reaches the size of half the additional
corpus, the precision stays the same or is even little bit worse. Decline in
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Figure 6.4: The improvement of precision and recall for location relation on
Twitter corpus. The proportions define the number of sentences in the training
and additional corpus.
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Figure 6.5: Number of true positive examples discovered in Twitter corpus
for location relation by FN-safe patterns vs average number of true positive
examples discovered from a random sample of size equal to total cover of the
patterns.

recall is expected as with larger initial corpus we already cover larger part of
the relation.

If the improvement in recall is positive, but improvement of precision is
negative, then the patterns we train from newly discovered examples, have
less overlapping cover with the existing patterns, but still the same FP-rate
threshold, thus increasing the actual FP-rate of the OR-classifier towards theo-
retical union bound. Resulting in increased recall and decreased precision.

In cases, where the recall does not improve, but precision declines, we
have also added many useless examples from the additional corpus that does
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Figure 6.6: Number of true positive sentences discovered in Twitter corpus
for location relation by FN-safe patterns vs average number of true positive
sentences discovered from a random sample of size equal to total cover of the
patterns.
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Figure 6.7: Number of true positive examples discovered in Wikipedia corpus
for birthday relation by FN-safe patterns vs average number of true positive
examples discovered from a random sample of size equal to total cover of the
patterns.

not teach us anything new. The problem is that several copies of a similar
examples can misleadingly balance the FP-rate of certain patterns during pat-
tern mining by allowing larger number of incorrectly matched examples in the
cover, making the pattern more generic. Thus, possibly resulting in inferior
performance on the testing set. As can be seen from the Figures, with larger
initial corpus the chance to bias the FP-rate of patterns is smaller.

With sentence level, the location relation behaves similarly, but is in fact
more stable. Also, there is no sharp increase in precision if the initial corpus is
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Figure 6.8: Number of true positive sentences discovered in Wikipedia corpus
for birthday relation by FN-safe patterns vs average number of true positive
sentences discovered from a random sample of size equal to total cover of the
patterns.

marginally smaller than the additional corpus. In fact, there is a slight decrease
in precision in general. With few FN-safe patterns we can discover many new
examples and sentences, thus increasing the recall. Also, a small mismatch
at the example level is a correct match at the sentence level. For the reasons
similar to example level, by adding more diverse sentences to training process,
we end up increasing recall and slightly decreasing precision.

In Figure 6.5, we see that the active learning loop indeed discovered more
true positive examples that would have been possible compared to a random
sample of examples of the same size. This means, that on example level, active
learning can effectively help to find true positive sentences in unannotated
texts. However, in sentence level this is not the case as seen in Figure 6.6. The
random sampling of sentences would be in fact more efficient way to discover
the examples. That being said, the precision of potential new examples can
be vastly improved by machine learning methods as in this experiment we use
only OR-classifier as the base-line method.

For birthday relation, the results were in general the same, although less
stable in terms of improvement of precision and recall. In terms of new cov-
ered examples, the active learning methods are again effective on the example
level. On the sentences level, the active learning does not increase the num-
ber of discovered true positives, except in cases the initial corpus is about five
times smaller as seen in Figures 6.7 and 6.8.
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Summary

In this work, we formulated fact extraction task for Estonian language using
pattern matching based techniques. We developed an Apriori based algorithm
for mining the patterns that recognize fragments of sentences and use machine
learning algorithms to classify the examples as positives or negatives.

The theoretical part of the work mostly concentrated on pattern match-
ing and pattern mining using the monotonicity property of the patterns, their
generalizations and specifications. Although we briefly discussed ideas for ac-
tive learning and combining the methods with machine learning, the current
theoretical results are just starting points for future challenges.

Information retrieval is not an easy task and in case for Estonian language,
we had to start the trial and error process from very beginning to get the idea,
what kind of approaches work well. The pattern based approach has been
very successful for English language, which was the main motivation to start
working with patterns. The ideas published by numerous authors working on
same problems for other languages have been a great pool of valuable infor-
mation and inspiration. In the same time, we wished to incorporate as much
current language processing machinery available for Estonian as possible such
as named entity recognition and syntactical analysis of sentences.

There is a lot of more work to do in the theoretical part: formalize and
test different bootstrapping strategies; how to better utilize the information
of negative examples in the active learning process; what are the best ways
to eliminate statistically insignificant patterns; how to use the approach to
improve the output of other language processing tools like NER itself; how to
incorporate information from different knowledge bases and ontologies to the
process etc. Currently, we tried to cover at least some of the most prominent
and hot topics in the pattern based fact extraction literature such as active
learning itself.

While the theoretical aspects of any work are important, they need to also
be tested in practice. In this work, we ended up implementing two different
prototypes capable of carrying out the testing, but with different character-
istics and implementation details. We did this to learn, which features are
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important and should be developed further and what are the main flaws of the
prototypes. The implementation strategy was similar to strategy of theoretical
work: try to explore as much as it is possible using the time and resources
available.

The case studies we carried out included simple model building and its per-
formance evaluation on testing corpora. We saw that our approaches work, but
are not very good for thorough “fact extraction”. As the case studies showed,
the methods can be precise, but with not very good recall or vice versa. Sim-
ilarly, the case study of active learning showed several benefits, but definitely
there is a lot of room for improvement.

To conclude the work, we now have a very basic overview how our pattern
based methods work for fact extraction in Estonian language. The accumu-
lated experience and knowledge is definitely a helpful asset to carry on the
research in right direction in the future.
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Resümee (eesti keeles)

Käesoleva töö eesmärgiks on mustripõhise faktituletuse prototüüprakenduse
loomine eestikeelsete tekstide jaoks. Töö teoreetilises osas kirjeldame must-
reid kui üldistatud sõnajärjendeid, mis suudavad tekstidest üles leida lõike
ning lauseosi potensiaalselt olulise informatsiooniga. Praktiline lähenemine
eeldab treeningkorpuse olemasolu, kus käsitsi on märgendatud mingi konkreet-
se relatsiooni jaoks need lauseosad, mis on informatiivselt olulised. Taolisel
korpusel on võimalik teha mustrikaevet ning teoreetilises osas kohandame
andmekaeves tuntud Apriori algoritmi nõnda, et seda on võimalik kasutada
meie ülesande lahendamiseks vajalike mustrite leidmiseks. Samuti räägime li-
htsast heuristilisest metoodikast, mis võimaldab mustrikaeve protsessi kiiren-
dada.

Töös kirjeldame samuti masinõppe meetodeid, mida kasutame üksikute
mustrite väljundi koondamiseks ning nende põhjal täpsemate ennustuste tege-
miseks. Katsetame mustrikaevet koos masinõppe meetoditega mitmel reaalsel
tekstikorpusel ning analüüsime tulemusi.

Lisaks kirjeldame aktiivõppe metoodikat, mis on abiks suurte tekstikor-
puste märgendamiseks. Selgitame võimalusi, mis aitavad fookusest välja jätta
hulga lauseid, kus otsitavat relatsiooni suure tõenäosusega ei esine või sar-
naselt otsida üles näited, mis tõenäoliselt kirjeldavad meie relatsiooni. Analüü-
sime praktilise testi tulemusi, kus rakendame aktiivõpet mitmel näidiskor-
pusel.

Väljatöötud metoodika testimiseks implementeerisime prototüüplahendused,
mis on kirjeldatud põhjalikumalt Lisas A ja millega viisime läbi praktilises osas
tehtud testid.
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Appendix A

The prototype implementation

We implemented prototype solutions for carrying out the case studies in the
experiment. In fact, we ended up implementing two versions of the core com-
ponent, having subtle differences. We call them version A and version B of the
prototype. The main differences are described in the table below:

Version A Version B
Uses complex patterns discussed

in work [PL11].
Uses simple patterns.

Extraction areas are limited to
single tokens.

Extraction areas can be one or
more consequent tokens.

Fixed for binary patterns. Unary
patterns can be emulated.

Implemented for n-ary patterns.

Statistical estimations calculate
the amount of all possible

negative matches in a corpus.

Statistical estimations assume
one true negative match per

sentence.

The reason for implementing two different systems is that we wanted to
test different implementation strategies and learn the benefits and problems
of both. Main problem of both prototypes was the slow execution. In version
A, the main reason was usage of complex patterns. In version B, the usage of
SQLite database as a querying mechanism for the covers (version A stored the
deserialized corpus in computer memory).

The preprocessing stack was also quite slow. The main reason is the usage
of VISLCG3 component for syntactic analysis in the process. ESTMORF pro-
gram itself was sufficiently fast. Also, additional steps were required to parse
partly erroneous output from the preprecessing scripts and handling a bug in
syntactic analysis grammar, that caused the VISLCG3 component to crash the
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system, although T.Puolokainen (the grammar author) was able to fix that
particular error later using a sample of our failed text. Additionally, extra
routines were required to merge NER annotations with the syntactic output, if
NER was used. What we did not do in the preprocessing stack, was fixing some
bugs in the preprocessing scripts of other authors. In several cases, the scripts
worsened the output of the ESTMORF program by adding wrong attributes to
the labeling. The syntactic labeling itself seemed reasonable, therefore we de-
cided to keep the attribute. In case of ambiguity, the preprocessing scripts left
all available options to be used. In these cases, we just chose the first option
as our methods were not designed to work with ambiguous labeling.

Features.

• GUI tool for annotating positive and negative matches in the corpora, see
Figure A.1 for a screenshot.

• Command line scripts for free-text preprocessing, model training and
annotation, see Figure A.2 for a screenshot.

• Web front end for model exploration and online text annotation using
either JavaScript GUI for web browser access or HTTP requests for XML
output, see Figure A.3 for a screenshot.

• Preprocessing can optionally use ETMORF online web service, in case
the user does not have the Filosoft license.

• Developed algorithms and methods can be used as an 3rd party library
in other Python programs.

Used technologies. The prototype was mostly implemented in Python3 lan-
guage, with support of various libraries. In particular, we used RPy2 to inter-
face R language libraries for machine learning; we used PyQT4 for annotator
GUI and CherryPy for setting up the web service. The preprocessing stack re-
quires additionally Java platform, Perl, awk and bash to operate. Our code
was written in cross-platform usage in mind, but we have only tested the im-
plementation on three different Linux machines.

Packaging. The prototypes and all used corpora are included on a compact
disk on the back cover of the work.
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Figure A.1: Screenshot of the prototype annotator GUI application. The pro-
gram allows to define relations in a corpus and mark positive and negative
examples.

Figure A.2: Screenshot of model training program command line interface.
The prototype contains command line tools for plaintext linguistic analysis,
model training and annotation.
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Figure A.3: Screenshot of prototype’s web interface. The interface can be used
to annotate text, retrieve them in XML or view the HTML format and explore
the patterns of the model.
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