
U N I V E R S I T Y   O F   T A R T U 

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE 

Institute of Computer Science 

 

 

 

Nikita Shipilov 

Detecting influential transcription factors 

using linear models 

Master’s thesis (30 EAP) 

 

 

Supervisor: Konstantin Tretyakov, M.Sc. 

 

 

 

Autor: …………………………………… “…..“  mai 2010 

Juhendaja: ………………………………. “…..“  mai 2010 

 

 

 

TARTU 2010 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

  



3 
 

Contents 

 

Introduction                                                                                                                             5 

2  Background                                                                                                                          7 

2.1   Biological Background .................................................................................................. 7 

2.1.1   The DNA ................................................................................................................. 8 

2.1.2   Gene Expression ..................................................................................................... 9 

2.1.3   Microarray Technology ........................................................................................ 10 

2.2   Linear Model ............................................................................................................... 12 

2.2.1   Terminology .......................................................................................................... 12 

2.2.3   Least Squares Estimation ...................................................................................... 15 

2.2.4   Regularization ....................................................................................................... 17 

2.3   Rationale ...................................................................................................................... 23 

3  Variable Selection Methods                                                                                              25 

3.1   Algorithms ................................................................................................................... 25 

3.1.1   Forward Stepwise Selection .................................................................................. 25 

3.1.2   Least Angle Regression ........................................................................................ 27 

3.1.3   Shooting Algorithm for computing the LASSO ................................................... 30 

3.1.4   LARS-EN .............................................................................................................. 31 

3.1.5   Group LASSO ....................................................................................................... 34 

3.1.6   Multiresponse Sparse Regression Algorithm ....................................................... 36 

3.1.7   Blockwise Coordinate Descent Procedure for the Multi-task LASSO ................. 38 

3.2   The Explanation of Choice .......................................................................................... 41 

  



4 
 

4  Performance Analysis                                                                                                        42 

4.1   Experimental Setup ..................................................................................................... 42 

4.1.1   The Artificial Dataset ............................................................................................ 42 

4.1.2   Performance Metrics ............................................................................................. 43 

4.2   Methods Preparation .................................................................................................... 45 

4.2.1   The Computational Issues of the Group LASSO .................................................. 46 

4.2.2   Setting up Tuning Parameters ............................................................................... 48 

4.3   Performance ................................................................................................................. 49 

4.3.1   Prediction and Variable Selection ......................................................................... 49 

4.3.2   Comparison of Estimates ...................................................................................... 52 

4.4   Varying the Noise Level .............................................................................................. 53 

5  Application on Real Data                                                                                                  55 

5.1   The Spellman Dataset .................................................................................................. 55 

5.2   The Gasch Dataset ....................................................................................................... 59 

Summary                                                                                                                                61 

Abstract (in estonian)                                                                                                            63 

References                                                                                                                               64 

  



5 
 

Introduction 

Biological cell is the fundamental unit of life. The cell was first discovered in 1665 by 

Hooke, who examined cork material through a microscope. The cell theory arose in 1839 

with the statement by Schleiden and Schwann that all organisms are composed of one or 

more cells, which perform the vital functions of an organism, and that all cells contain the 

hereditary information, which is necessary for regulation of these functions. Further 

scientific research of the cell nature has led to the generalization that it is a complex and a 

highly tuned mechanism able to carry out a lot of reactions. Understanding of the processes 

taking place in the cell underlies a set of biological sciences, such as physiology, genetics, 

molecular biology etc.  

According to the current biological knowledge, a cell life cycle is regulated mainly by 

protein molecules. The structure of a certain protein determines the function it performs. 

Proteins are encoded by the particular coding regions (genes) of the DNA molecules stored 

in the cell. Interestingly, every cell in an organism has the same DNA, but different cell types 

of an organism produce different sets of proteins. This happens because of the fact that 

different genes are active among the differently specialized groups of cells. In particular, 

there are proteins the function of which consists in influencing the production of other 

proteins. Such proteins are known as transcription factors. They are part of the cell regulation 

machinery which makes decisions concerning when and what amount of proteins to produce. 

With the recent development of the high throughput DNA microarray technology, it became 

possible to measure the levels of gene activity on a large scale. In a single experiment 

microarray technology allows one to make snapshots of all genes in a cell. It helps to identify 

which genes are active in the particular conditions, and this way to discover the cellular 

processes they are involved in. The data collected from a microarray usually requires 

sophisticated analysis involving biological knowledge and the application of statistical 

techniques. 

In this work we address the problem of inferring „influential‟ transcription factors from 

microarray data using linear models. Linear models are easy to understand and are able to 

produce interpretable solutions. However, microarray data is typically high-dimensional and 

contains noise and measurement errors. This makes the application of straightforward linear 
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modeling techniques tricky and often unsatisfactory. We observe the state-of-the-art methods 

for solving linear regression problems and their application to our biological problem. 

Besides the classical Least Squares linear regression, we consider such state-of-the-art 

approaches as ridge regression, the LASSO and the ElasticNet. 

The work is organized as follows: 

 we introduce the basic biological and statistical concepts needed to understand this 

work, and formulate the goal of this work in Chapter 2; 

 we give an overview of the techniques we use in our research in Chapter 3; 

 in Chapter 4 we analyze performance of the presented techniques on artificial data; 

 in Chapter 5 we describe the test results obtained by applying the considered methods 

on real microarray data. 
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Chapter 2 

Background 

In this chapter we introduce the general biological and statistical notions that are used further 

in the text. We present the basics of the cell theory and describe the microarray technology in 

Section 2.1. We introduce the basic concepts of linear modeling in Section 2.2 and formulate 

the problem of our current research in Section 2.3. 

2.1   Biological Background  

The biological cell is classified to be the basic unit of life. It is the building block for all 

living organisms. The smallest organisms, such as bacteria, consist of a single cell, while 

larger organisms, such as plants and animals, are multicellular with the number of cells up to 

several hundred of trillions. Cells in a multicellular organism are differently specialized. It 

means they carry out different biological functions, in cooperation providing the complete 

lifecycle of an organism.  

A group of cells specialized for a particular function is a tissue. There are three basic types of 

plant tissues: epidermis, vascular and ground; and animal tissue types are: connective, 

muscle, nervous and epithelial. Each type is represented by a variety of tissues, which differs 

depending on the classification of the organism. Besides the functional specialization, cells 

also differ by their physical characteristics. For example, the single nerve cell that is known 

as a pseudounipolar nerve may reach from the toe to the spinal cord in the human body, 

while a drop of blood has more than       cells in it. 

Imaging how many various organisms there are in the world, it is clear that the variety of cell 

types is tremendous. However, almost all of them have the same structure and they are 

similar in their activities. Formally, a cell is enclosed in a membrane, filled with a cytoplasm, 

and contains a material and mechanisms for translating genetic messages into protein 

molecules. The cell components are called organelles. 
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Proteins make a work of organelles possible. Being primary components in life cycle of a 

cell, they play many different roles. For example, proteins promote chemical reactions 

performed in a cell; they provide the structural and infrastructural supports holding an 

organism together; they produce, transform and translate energy into physical work in 

muscles; they act like sensors, detectors and protectors from malicious elements, creating an 

immune response; and have many more other functions.  

All proteins are constructed from linear sequences of amino acids. The number of amino 

acids in a chain may vary from     to     . The structure of the chain determines the 

biochemical activity and the function of the protein. One of the major goals in molecular 

biology is trying to predict the properties of the protein according to its amino acid sequence. 

Unfortunately, this remains an unsolved problem yet. 

2.1.1   The DNA 

The exact order of amino acids in a protein is encoded by the deoxyribonucleic acid 

molecule (the DNA). With the ribonucleic acid (RNA) DNA form the genetic material of a 

cell. These are polymers of four nucleic acids, called nucleotides. Each nucleotide consists of 

a base molecule (a purine or a pyrimidine), sugar (deoxyribose in DNA and ribose in RNA) 

and phosphate groups. The purine nucleotides are adenine ( ) and guanine ( ); the 

pyrimidines are cytosine ( ) and thymine ( ). DNA molecule usually contains sequences of 

thousands of nucleotides, and is generally presented by the first letters of their bases, for 

example,        . 

DNA consists of two complementary strands of nucleotides which are bound together with 

phosphodiester bonds. Each nucleotide from a strand is linked to the nucleotide from the 

opposite strand directionally. This means there is the one-to-one mapping between the 

nucleotides that are at the same places in the sequences. Adenines are bound exclusively with 

thymines (   ) and guanines are bound exclusively with cytosines (   ). So, knowing 

the order of nucleotides in a strand, its complementary strand is totally determined. In 

eukaryotic cells (cells multicellular organisms are usually built of) bounded DNA strands 

form a spiral shape; in bacteria (prokaryotic cells) this shape is generally circular. 

The primary role of nucleotides is to carry the encoding of proteins. A triplet of nucleotides, 

called a codon, corresponds to a certain amino acid. A series of subsequent codons encodes a 
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particular protein. For example, alanine
i
 is presented in DNA by the codons    ,    ,     

and    . There are also start and stop codons, which define regions in the DNA for coding 

the exact proteins. These coding regions are referred to as genes. 

Interestingly, that every cell in the organism contains exactly the same DNA and exactly the 

same set of genes, respectively. However, the different specialization of cells implies they 

produce different proteins. Besides, under various environmental conditions the cell may 

change the set of proteins it synthesizes. Thus, the difference lies in the regulation of the 

genetic machinery. This stays the major research direction in the molecular biology to be 

able to predict which genes and under what circumstances are active in a cell. 

2.1.2   Gene Expression 

The process of producing proteins according to genes takes three basic steps: transcription, 

splicing and translation. The transcription begins with a molecular complex called RNA-

polymerase binding to the segment of the DNA. The polymerase copies the portion of the 

DNA into the complementary RNA molecule. RNA is single-stranded and contains the 

uracil nucleotide instead of thymine, hence, the copying is performed according to the rules 

(   ) and (   ). 

The polymerase determines where to bind on the DNA according to signals, which detect a 

part of the DNA near the beginning of the coding region of a protein. This region before a 

gene is referred to as promoter. The polymerase copies the DNA from the promoter until a 

certain stop codon is achieved. It then releases the RNA, containing exactly the same 

encoding as that on the corresponding segment of the DNA. 

While splicing a molecular complex called spliceosome removes parts of the RNA, 

producing the „prepared‟ RNA to be translated to the protein. This RNA is known as 

messenger-RNA (shortly mRNA). In the end of the splicing process the mRNA is transported 

from the nucleus (the cell kernel) to the cytoplasm, where it binds to a ribosome. 

The ribosome (the complex combination of RNA and proteins) uses the mRNA as the 

blueprint for the production of the corresponding protein. This process is known as 

translation. 

                                                           
i
   Alanine is the α-amino acid which is refered to the group of proteinogenic amino acids – the building blocks 

of proteins. 

http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Proteinogenic_amino_acid
http://en.wikipedia.org/wiki/Protein
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The production of proteins from genes is referred to as gene expression. It was mentioned 

above that not all genes in a cell are expressed at once. This process is directed by a finely 

tuned molecular machinery, which is complex and is not well studied yet by the biology. 

However, what is known is that gene expression is influenced by the certain collection of 

proteins in the cell nucleus that define which genes will be expressed and which will not. 

These proteins are referred to as transcription factors.  

Transcription factors attach themselves to the specific DNA segments (motifs) which border 

genes. This provokes or prevents the polymerase to bind at these segments, in turn 

encouraging or inhibiting the transcription of the corresponding genes. Transcription factors 

perform this function alone or in complex with other proteins. Promoting the polymerase 

activity transcription factors are known as activators and blocking – as repressors. 

2.1.3   Microarray Technology 

The microarray is a high throughput technology, which provides the possibility to make 

snapshots of expression of many genes in a cell simultaneously. Microarrays help to figure 

out the active genes within the cell types, to learn how their expression changes under 

various environmental conditions and to identify the cellular processes they are involved in. 

A microarray is a glass or a polymer slide onto which DNA fragments are attached at fixed 

locations called spots. There are usually thousands of spots on the array, each containing 

millions of the identical fragments of DNA. The fragments of a spot should correspond to a 

certain gene only, however, in practice, it is not always possible to collect them so clearly 

due to the presence of similar genes in the DNA. 

Microarray can be used to measure gene expression in different ways. The most typical 

application is comparing two different samples of the same cell or cell type. The approach is 

based on labeling the mRNA molecules extracted from each sample with fluorescent dyes. 

The mRNA molecules from the first sample are labeled with a green dye, and a red dye is 

used for the mRNA from the second sample. 

All the extracted mRNA molecules are reverse-transcribed to create strands of 

complementary DNA (cDNA) . These cDNA molecules are then put on the microarray, 

where they form the hydrogen bonds with the matching DNA fragments. This action is 

referred to as hybridization. 
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After exciting the hybridized microarray with a laser, the amount of fluorescence emitted 

from each spot indicates the amount of the attached cDNA molecules on it. The color of the 

spot is green if cDNA molecules referred to the sample labeled with a green dye are in 

abundance, and this color is red if in abundance are cDNA molecules corresponding to the 

sample labeled with a red dye, respectively. The spot is of yellow color if the amounts of 

cDNA from different samples are equal, and if neither are present the spot do not fluoresce, 

hence, is black. 

The color of a spot and its intensity demonstrate the expression level of the corresponding 

gene. The amount of cDNA molecules bound to a spot corresponds to the amount of mRNA 

produced in a cell for a certain gene, what in turn is the indicator of the expression of this 

gene. 

 

Figure 2.1. A picture of hybridized microarray (left) and the schematic representation of a 

microarray experiment (right). 
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2.2   Linear Model 

By definition, linear model is a mathematical model in which linear equations connect 

random variables and parameters. Linear models underlie most of the statistical analyses that 

are used in the social, scientific or other types of research. They help to explain an impact of 

the input data on the output. 

Linear models are preferred because of their simplicity. It is easier to understand and to 

interpret them than some other competing models. They can sometimes even outperform 

more powerful nonlinear models, especially in case of the small number of training cases. Or 

suppose there is a nonlinear function that is smooth in some region and this region is just of 

interest. Even then a linear model can give an adequate approximate solution to the stated 

problem. Moreover, some of nonlinear models can be reduced to the linear form by applying 

a set of appropriate transformations. 

So it is obvious that linear models are the first step in many types of analyses. At least they 

are able to provide meaningful results that could be a good basis for constructing wider and 

more complex models.  

2.2.1   Terminology 

Let            and   be some quantities. The linear model has the form: 

                          , (2.2.1) 

where term    is known as the intercept,            are the model parameters (or 

coefficients) and   denotes the noise (or error). It is typically assumed that the error   is 

random and has normal distribution with zero mean and variance   : 

          . 

Variables            are referred to as explanatory variables and   is the response variable 

or simply response (sometimes it is called the dependent variable). In case there is a set of   

(   ) observations of the response and explanatory variables the linear model has the 

form: 

       ∑      
 
       ,             . (2.2.2) 
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The intercept    is usually included into the set of model parameters, causing an addition of 

a constant variable   to the explanatory variables. This makes possible to represent the set of 

  equations from (2.2.2) in more compact way using matrix and vector notations
ii
: 

        , (2.2.3) 

where   is a     vector containing   observations of the response,   is a         

matrix containing observations of   explanatory variables and a column vector of 1 values,   

is a         vector of model parameters (also containing the intercept) and   is a     

vector of errors. 

Vector   elements are assumed to be pairwise independent (uncorrelated) and also 

independent of all the explanatory variables from  . Besides, it was written before that errors 

are expected to have zero mean and the common variance   . These assumptions can be 

formulated by using      and        notations:  

       ,                , 

where   is an     identity matrix. Here      stands for the “expected value” that is the 

same as the “mean value” in the context of modeling (for detailed explanation see appendices 

A.2.1 and A.2.2 in [     ]). The mean function is defined by the notation    |  , which 

can be interpreted as “the expected value of the response   when the explanatory variables 

are fixed at the values of  ”. The value of the function but depends on the problem. The 

same also holds for the variance function      |  , with the only difference that its value is 

a fixed quantity representing the expected variance. 

The typical problem as it was mentioned before is to figure out how the set of explanatory 

variables   describes the response  , or, in other words, the relationship between   and   is 

of interest (that is supposed to be linear, of course, in context of linear modeling). In terms of 

statistics this relationship is formulated through the mean and the variance of the response   

(denoted by      and       , respectively). The aim is to figure out how the mean      

changes as   is varied, assuming that the variance        stays unaffected. Since   is the 

only random variable in a model, its assumption about the variance also holds for the 

response  , that is,           . 

                                                           
ii
  In context of this work matrices and vectors are presented in boldface. Uppercase letters are used for matrices 

and lowercase letters – for the representation of vectors. 
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Collecting the data from one or more observations of explanatory and response variables, the 

task is to estimate the true coefficients, which quantify the impact of the explanatory 

variables on the behavior of the response. Summarizing all the conditions described earlier, 

the problem can be formulated using the mean and the variance functions in the following 

way: 

    |      ,         |        . (2.2.4) 

The representation (2.2.4) is called the linear regression model. Vector   is then referred to 

as vector of regression parameters. The term „linear regression‟ itself has geometrical origin 

and stands for the technique of fitting a straight line to a set of observations of one 

explanatory variable (in some space). The slope of this line represents the strength of the 

effect of the explanatory variable on the response (see Figure 2.2). 

 

Figure 2.2. Example of linear regression with one explanatory variable. The quantity    (the 

  value when   is zero) stands for the intercept and the slope of the regression line is 
  

  
. 

From the practical point of view, most applications of linear regression fall into two main 

categories: 

 Prediction – given an input vector  , make a good prediction of the output   (the 

prediction is denoted by  ̂)
iii

. Elements of the vector   are then referred to as predictor 

variables or simply predictors. 

After fitting the model (obtaining the values of  ̂) using training datasets of explanatory 

and response variables, it is assumed that with an additional vector   the model will  

                                                           
iii

  „Hat‟ notation is used in this work to represent the estimates. E.g.  ̂ is an estimate of the coefficient   and  ̂ 

is an estimated prediction of the response   etc. 
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make a prediction  ̂ of the output  : 

  ̂   ̂  ∑  ̂   
 
      ̂  (2.2.5) 

Such prediction  ̂ will have an error  ̂ and is called the residual. Residual  ̂      ̂  is 

the difference between the value of the actual response   and the estimated prediction  ̂. 

The residual is expected to be as small as possible. 

The problem known as overfitting occurs when the constructed model gives „good‟ 

results using training data and makes a lot of „mistakes‟ in case of the test data. Such 

overfitted models are meaningful in terms of prediction. 

 Descriptive analysis – given a set of explanatory variables   and the response   one may 

be interested in the quantifying the strength of the relationship between them. This means 

that after estimating the regression parameters, according to their absolute values it is 

possible to find the most influential variables – the higher is the value of the coefficient 

the stronger is the impact of the corresponding variable on the response. Usually, the aim 

is to find the smallest subset of   having the strongest influence on  . 

In this work we are mainly interested in „descriptive analysis‟. However, as it will be seen 

later, the prediction ability of a model and the task to perform a descriptive analysis are 

highly related. 

2.2.3   Least Squares Estimation 

By far the most popular technique for obtaining the estimates of the regression parameters is 

the Least Squares method. It tries to choose the values of   to minimize a quantity called 

Residual Sum of Squares (RSS): 

        ∑ (      ∑     
 
   )

  
    ∑      ̂  

  
    . (2.2.6) 

In the matrix notation equation (2.2.6) has the form: 

                     . 

Formally, model parameters obtained by the Least Squares method are: 

 ̂          ‖    ‖  , 
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where ‖ ‖ denotes the L2-norm (also known as Euclidean norm) of a vector. Vector  ̂   

elements are typically referred to as just the Least Squares estimates. 

       is the quadratic function what means that its minimum always exists, but with a 

possibility being non-unique. Differentiating the function with respect to   and setting it to 

zero the following set of normal equations is got: 

            (2.2.7) 

General solution to equation (2.2.7) has the form          , where        is any 

generalized inverse of    . If     is nonsingular (  has full column rank), then the unique 

Least Squares estimates are computed as follows: 

  ̂              . (2.2.8) 

Theorem 2.1 (Gauss-Markov theorem). Let   be a       random vector with    |   

   and      |       , where   is a       vector of unknown parameters and   is a 

      matrix of unknown constants with rank  ,    . If   is a vector of constants such 

that      is a linear parametric function, then Best Linear Unbiased Estimator of   is 

 ̂    ̂, where  ̂ is the vector which minimizes the quantity                . 

It follows from the Gauss-Markov theorem (Theorem 2.1) that the Least Squares method 

produces unbiased estimates of the regression parameters that have the lowest variance 

among all linear unbiased estimates. Consider either the prediction  ̂    ̂ of  . Its mean 

squared error (MSE) is: 

   ( ̂)     ( ̂)  [ ( ̂)   ]  , 

and it is implied by the theorem that the prediction provided by the Least Squares method has 

the lowest MSE of all other predictions with unbiased parameters. However, this MSE is not 

the minimal and there may exist regression models with biased parameters, which cause 

smaller MSE. Such models sacrifice a little of bias in order to reduce variance, what in 

overall improves the prediction accuracy (see Section 2.2.4).  

Multiple Least Squares.   In typical case regression analysis is applied on data having one 

output (single-response). But as it will be seen later there can be more than one response in 
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the considered data. Let us suppose there are   (   ) response variables, which form the 

vector               .  

A linear model for each of the elements of the vector   is: 

        ∑      
 
       ,             (2.2.9) 

Here     is the variable    coefficient (       ) in case of the  ‟th response. With   

observations of   explanatory and   response variables the representation of equation (2.2.9) 

using matrix notation has the following form: 

        , (2.2.10) 

where   is a     matrix containing   observations of   responses,   is a         

matrix containing observations of   explanatory variables and a column vector of   values 

(because of intercepts            ),   is a         matrix of model parameters (each 

column vector corresponds to a certain response), and   is a     vector of errors. 

Defined RSS function for   in multiresponse setting has then the following form: 

       ∑ ∑       ̂   
  

   
 
                   . 

Note, that there is no relation between the model parameters estimated in case of different 

response variables. Applying the Least Squares method on multiresponse data 

simultaneously is the same as computing the estimates for each of the responses separately. 

2.2.4   Regularization 

It was mentioned above that the Least Squares method provides the unique solution if     is 

nonsingular. But it may happen that   is not of full rank. Rank deficiency occurs if some of 

the matrix   columns are not linearly independent (collinear), or when the number of 

variables exceeds the number of observations (    case). In both cases     is singular 

what makes it hard to invert.  

While performing a regression analysis highly correlated variables allow the corresponding 

coefficients grow in the opposite directions, cancelling each other‟s effects: for example, if 

the coefficient of the first variable grows large in the positive direction, then the second 

coefficient of the second may grow large in the negative direction. When there are many 
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correlated input variables a high variance model is produced that is quite unrealistic (known 

as multicollinearity problem). 

Some techniques like pseudoinverse are available to overcome the rank deficiency problem, 

making possible the inverse of singular matrices, but they do not resolve some other issues 

related to RSS. For example, if   is ill-conditioned (contains quantities that are sensitive even 

to small changes, resulting in different regression models) then computational routines while 

estimating the regression parameters may be numerically unstable due to e.g. rounding, 

cancelation and other operations. 

However, despite the criticism, the Least Squares method still gives adequate solutions that 

are often quite satisfactory. In case of more complex models there is usually a need of better 

accuracy of predictions and interpretations. The technique referred to as regularization 

unlike Least Squares is used to produce biased estimates of regression parameters, improving 

but the overall result in terms of a model error. 

L2-norm Regularization.   The idea of regularization itself was developed by 

mathematician Tikhonov A.
iv

 who was working on the solution to the numerical instability of 

matrix inversions. This technique became popular with a computational method proposed by 

Hoerl and Kennard [    ] for improving the Least Squares solution. This method is known 

as ridge regression. The idea of ridge regression is to add a small positive constant     to 

the diagonal of the matrix    , what makes the matrix nonsingular if it is not of full rank, 

hence,     becomes invertible. The ridge regression estimates are then computed as 

follows: 

  ̂                     , (2.2.11) 

where   is the     identity matrix and     is referred to as regularization parameter. If 

     then  ̂      reduces to the Least Squares estimates  ̂  . And if   is orthonormal 

(      ) ridge estimates are just scaled version of  ̂  , that is,  ̂       ̂        . 

Ridge regression can be characterized as the method that penalizes RSS function and as the 

method that performs the continuous shrinkage of the regression coefficients. Actually, this 

is the common process because the penalty is applied on the size of coefficients.  

                                                           
iv
 Andrey Tikhonov (1906-1993) is Soviet and Russian mathematician known for important contributions to 

topology, functional analysis, mathematical physics, and ill-posed problems. 

http://en.wikipedia.org/wiki/Topology
http://en.wikipedia.org/wiki/Functional_analysis
http://en.wikipedia.org/wiki/Mathematical_physics
http://en.wikipedia.org/wiki/Ill-posed_problem
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Let us consider the penalized RSS function as: 

                            , (2.2.12) 

where      is the ridge penalty, respectively. Differentiating equation (2.2.12) with respect 

to   and setting it to zero, the set of normal equations is got, the solution to which has 

exactly the same form as presented in equation (2.2.11). 

The regularization parameter   controls the amount of shrinkage. The larger the value of  , 

the greater is the amount of shrinkage: the coefficients are shrunk towards zero and each 

other (becoming more similar).  

Let us consider the singular value decomposition (SVD) of the matrix   with   rows and   

columns. That is,          , where   is a     unitary matrix with the columns 

representing the eigenvectors of    ,   is a     unitary matrix (         ) with the 

columns representing the eigenvectors of    , and   is a diagonal matrix holding the 

ordered eigenvalues of    . Thus,           ,          and the ridge estimates 

from equation (2.2.11) can be rewritten as follows: 

 ̂                    

                       

                  , 

where  ‟th element (       ) of the diagonal matrix              is   
   

       . 

In the same way the Least Squares estimates (with some simplifications) are defined as: 

 ̂                                          . 

Now the estimated outputs  ̂    ̂ for the Least Squares method and ridge regression can be 

rewritten as: 

  ̂                     , 

 ̂                                          ∑   

  

      
  

  
 

   
 

If     then the Ridge estimate  ̂      reduces to the Least Squares estimate  ̂  . 

Otherwise,  ̂      is regularized  ̂  . 
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Note, that the matrix of explanatory variables   in equation (2.2.11) does not contain the 

column vector of constants   for estimating the intercept. This is an important assumption 

before performing the regularization that the intercept must be left out from the model. 

Shrinking the intercept would not result in a shift of predictions by the same amount. The 

second reason concerns the need of standardizing the inputs before obtaining the estimates. 

The centering procedure, when all observations of explanatory variables are subtracted by 

their means, is used to reduce the multicollinearity problem without changing the 

„significance‟ of the variables. Hence, it is assumed that the centering of the input matrix   

has been done only in case it just contains the observations of the predictors. Then, the 

intercept    is set to  ̅     ∑   
 
   , where   is the number of observations of the response 

 , and the remaining estimates of the coefficients are obtained without the intercept.  

In conclusion, we define the ridge estimates in the Lagrangian form as: 

  ̂             {∑ (      ∑     
 
   )

  
     ∑   

  
   } . (2.2.13) 

The criterion (2.2.13) using the matrix notation (without the intercept) is presented as: 

  ̂             ‖    ‖   ‖ ‖  . (2.2.14) 

L1-norm Regularization.   While L2-norm regularization is effective in increasing the 

prediction accuracy of regression models it does not address another quite important issue 

related to the Least Squares method – interpretability problem. With a large number of 

predictors usually a smaller subset that has the strongest effect on the output is of interest. 

But applying the L2-norm penalty on the regression parameters does not encourage their 

sparsity – all of them are associated with non-zero values. 

Sparse models are provided by the Subset Selection method, but because of its discrete nature 

(variables are either added or removed from the model) it produces very high variance 

models. Promising technique has been proposed by Tibshirani [     ] – the Least Absolute 

Shrinkage and Selection Operator (LASSO). The LASSO performs the shrinkage of some 

number of regression coefficients while setting all the other coefficients to zero (see the 

graphical representation in Figure 2.3). It turns out that the LASSO performs a continuous 

shrinkage and a variable selection simultaneously. Theoretically, it must help to improve the 
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prediction accuracy like in case of ridge regression and in addition to fit more interpretable 

models. 

The criterion of the LASSO estimates is defined as: 

  ̂             {∑ (      ∑     
 
   )

  
     ∑ |  |

 
   } . (2.2.15) 

Leaving the intercept    out, the criterion (2.2.15) in the matrix form is: 

  ̂             ‖    ‖   ‖ ‖  , (2.2.16) 

where ‖ ‖  denotes the L1-norm of a vector. 

In the case of the orthogonal design the LASSO solution is: 

 ̂       | ̂  |  
 

 
        ̂    , 

where      denotes the positive part (only positive elements are taken from the set). 

The only difference in the representations of the ridge and the LASSO estimates (equations 

(2.2.14) and (2.2.16), respectively) is that the L2-norm penalty ‖ ‖  is replaced by the  

L1-norm penalty ‖ ‖ , referred to as the LASSO penalty. The RSS function penalized by the 

LASSO is not differentiable if some regression parameter from the set   is equal to zero. 

Thus, it is impossible to obtain the solution in a closed-form as in case of ridge regression. 

The specific methods must be used to compute the LASSO estimates. 

Usually, the LASSO is preferred to ridge regression because it provides the possibility to 

prevent the inclusion of irrelevant variables into the model. Such possibility allows to 

produce more accurate models in terms of prediction that often outperform those produced 

using the L2-norm regularization. However, the LASSO has some fundamental limitations, 

which make the technique to be inapplicable in some situations. We describe these 

limitations in Section 3.1.4. 

Constrained formulation.   The lack of a closed-form solution to the LASSO problem leads 

to the constrained optimization problem (refer to [    ]). An equivalent way to represent 

the LASSO criterion from equation (2.2.16) is: 

 ‖    ‖  subject to ‖ ‖    , (2.2.17) 

where the parameter   is one-to-one correspondent to the regularization parameter  . 
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The objective function ‖    ‖  is convex and the constraints define a convex set. This 

forms a convex optimization problem. From this follows that any local minimizer of the 

objective function subject to the constraints is also the global minimizer. The objective 

function is quadratic in  , and the set of non-differentiable constraints from the criterion 

(2.2.17) can be converted into a set of linear constraints. Combining all this enables to 

interpret the problem of computing the LASSO estimates as the quadratic programming 

problem (refer to [    ] for further explanation).  

                   

Figure 2.3. Graphical representation of ridge regression (left) and the LASSO (right) in case 

of two explanatory variables in the model. The ellipses show the contours of the Least 

Squares error function. The circle is the region of the penalty function   
    

    and the 

rhomb shows the boundary of the penalty function|  |  |  |   . The ridge and the LASSO 

solutions are the points at which the innermost elliptical contours touch the circle and the 

rhomb, respectively. 
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2.3   Rationale 

It is believed that microarray data can provide important evidence about the functions of 

genes and relations among them. Unfortunately, transforming such data into knowledge is 

not a trivial task. Development of techniques for analyzing huge amounts of gene expression 

data is the task of computational biology and bioinformatics. 

After hybridization (see Section 2.1.3) the microarray is scanned and the color of each spot 

can be converted to a single real number, representing the expression of the corresponding 

gene – expression value. Performing a series of different experiments for a certain group of 

genes and collecting the data from all the microarrays produced, we can represent these 

expression values in the matrix form with columns corresponding to genes and rows 

corresponding to experiments.  

Suppose we are given a gene expression matrix. We know that microarray measurements 

represent only the amounts of mRNA for each gene. Ideally, these amounts could correspond 

to the amounts of proteins a cell produces. Unfortunately, this does not tend to be true. 

Besides translation the production process of the protein involves complex cell regulation 

machinery, which can modify the proportion of the protein being produced or even suppress 

it. However, in this work we ignore this fact because otherwise one would have to take into 

account all the translational issues and it could be very hard to develop and apply some 

universal techniques. 

Thus, we consider a simplified interpretation of microarray data, which assumes that mRNA 

abundances correspond to protein abundances a cell produces. Then, we assume that some of 

the proteins are transcription factors that influence the synthesis of all the remaining proteins. 

More formal, we are interested in the transcription factor genes, and the influence of their 

expression on the expression of other genes. In context of our current work we seek to find 

the set of the most „influential‟ transcription factor genes. 

We are trying to achieve our aim by using a linear regression model. A linear approximation 

is not necessarily true in reality. However, there are several motivations for preferring a 

linear model over the others: it is simple enough to be fitted to data, it is interpretable and 

there are physical arguments supporting the use of a linear model (see [     ]). 
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Before applying linear regression on the data collected from a set of microarray experiments, 

we have to perform some reconstruction of the data and to describe some more assumptions. 

We divide a gene expression matrix by columns into two sub-matrices, where the first sub-

matrix contains expression of genes involved in the synthesis of transcription factors and the 

second holds the expression of the rest of the genes under the same set of experiments. For 

simplicity, we refer to the first matrix as the matrix of transcription factors, and to the second 

one as the expression matrix of genes. We denote the matrices using the letters   and  , 

respectively. 

We model the expression of each gene as a linear function of the expression of transcription 

factor genes as follows: 

        ∑       
 
        ,            ,          

where   is the number of experiments,   is the number of genes in the dataset (without the 

transcription factor genes),   is the number of transcription factors and   is the noise that 

cannot be explained by the approximation. 

Transcription factors are believed to have the most effect on the expression of genes from all 

the influencing factors. The presence of other impacts besides the transcription factors 

prevents us from considering the problem of inferring true regulators from a microarray data 

as a simple linear regression problem. Besides, this data usually contains measurement errors 

and noise. That is why, classical linear regression methods may have instabilities in the 

produced solutions. We consider some of the state-of-the-art algorithms, which are more 

robust and are designed to resolve the issues inherent to noisy and ill-conditioned data. 
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Chapter 3 

Variable Selection Methods 

Different techniques and methods are available for linear regression. Each of them has its 

own advantages and drawbacks, which force the methods to succeed or fail under various 

circumstances. For example, the typical dataset bioinformatics deals with contains a large 

amount of data without having enough information provided about the nature of this data. In 

context of linear modeling this means there are a lot of explanatory and response variables 

and much less observations in a dataset. In such situations straightforward methods are 

usually computationally inefficient and are not able to guarantee stable solutions. That is 

why, some more specific techniques are of interest. 

We seek to find an optimal approach that could satisfy the needs described in the previous 

chapter. We do not prefer any class of techniques in advance, but investigate the problem 

from different sides, comparing the strategies. We start from the classical Forward Stepwise 

algorithm, proceeding to the recent achievements in the linear regression methodology, 

considering the Least Angle Regression algorithm, the ElasticNet penalty and others. 

3.1   Algorithms 

3.1.1   Forward Stepwise Selection 

Forward Stepwise is the heuristic procedure which greedily adds predictive variables to the 

model according to their significance, and up to some predefined significance threshold. 

Forward Stepwise starts with no variables in a model. Firstly, it selects a single predictor that 

provides the best fit (e.g. the smallest RSS). Then another predictor is added that provides the 

best fit in combination with the first variable. Every next variable is selected by the same 

logic: it must produce the best fit in combination with all of its predecessors. The process 

continues until some stopping conditions are fulfilled. This can be either the number of 

predictors in the model or an insignificant reduction of the model error by appending more 

variables. 
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Usually, the influence of a variable on the prediction accuracy of a model is measured using  

F-test, but also other techniques like t-test, R-square, Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC), False Discovery Rate (FDR) etc. are possible. F-test 

is designed to check if two sample variances are equal by comparing the ratio of these 

variances (F-statistic). As we are going to use the Forward Stepwise procedure for obtaining 

the Least Squares estimates we can define the significance of a regression parameter by 

calculating its F-statistic. The equation is the following: 

 
  

                 

                     
 

(3.1.1) 

where    is the vector of   regression parameters,      is the vector of size    , which 

contains    as the subset and the coefficient of a candidate variable for inclusion into the 

model;   is the number of data observations. In case there are   response variables in 

consideration, it is assumed that the F-statistic (3.1.1) has                   

distribution if the additional element in      does not sufficiently minimizes the RSS  

(see Figure 3.1 for example). 

 

Figure 3.1. Example of F-test application on two simulated regression problems      

 ,         . In both cases there are     observations of    explanatory and    response 

variables. In the first case there are only    of true predictors, in the second – all of the 

variables are predictors. It can be seen from the figure that the F-value falls under its 0.95 

significance bound on the 26’th step in case of    true predictors, and it does not fall at all 

when all variables are significant. 
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In Section 2.2.3 it is shown how to compute the Least Squares estimates solving the set of 

normal equations (see equation 2.2.8). This operation requires           computations 

for   observations of   predictors. If there are   response variables the computational 

complexity is             , respectively. It is possible to decrease this value by using the 

Cholesky decomposition of     or the QR decomposition of  . The Cholesky decomposition 

is computed in             steps, while the QR decomposition requires only        

operations. 

The Forward Stepwise algorithm is greedy. For each new variable in a model it has to follow 

the whole path of computations from the beginning. It is possible to reduce computational 

burden by updating the Cholesky or QR decompositions at each step. However, this strategy 

works until there are less variables than the number observations in a model, because 

performing the decomposition is possible only in case of full-rank matrices. 

The main drawback of the Forward Stepwise procedure is that it does not guarantee the best 

subset of variables. There may exist better combinations of variables, if they enter the model 

in the different order. But often even an approximate combination is sufficient, so the 

Forward Stepwise algorithm is still noteworthy. 

3.1.2   Least Angle Regression 

Least Angle Regression (LAR) algorithm proposed by Efron, et al. [     ] relates to the 

class of Forward Selection methods. Being a stylized version of the Stagewise procedure its 

strategy in principle is very similar to the Forward Stepwise selection.  

LAR works roughly as follows: given a set of predictors   the algorithm first selects the one 

most correlated with the response  , say     (       ). Instead of obtaining the coefficient 

of the selected predictor „completely‟, LAR starts to move the value of this coefficient from 

  towards its Least Squares solution (along the direction of    ). As this value increases the 

    correlation with the residual (denoted by  ) decreases enabling some other predictor, say 

   , to have at least the same correlation with the residual  . At this point newly selected 

variable     joins the active set (the set of the „most correlated‟ variables). The process of 

moving the coefficients is then continued. Instead of continuing along the     direction, LAR 

proceeds in the direction equiangular between     and    , what makes possible to keep these 
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variables  tight and their correlations with the residual decreasing. When the third „most 

correlated‟ predictor     is reached, LAR proceeds in the equiangular direction between    , 

    and    , until a fourth variable enters the model, etc. 

In order to proceed with the further description of the algorithm some notions must be 

defined first. At each step LAR adds one variable to the model, building up an estimate 

 ̂    ̂. So after   steps there are exactly   elements in the vector of regression parameters, 

denoted by  ̂ . Notation    is used to represent the unit bisector, which provides the 

equiangular movement between the   selected variables, and quantity    stands for the 

minimum step required along the   , to allow some other not yet selected variable to enter 

the model. 

The origin of the term „least angle‟ comes from the geometrical interpretation of the LAR 

algorithm. Namely, this means that the unit bisector    forms the smallest angles with the 

selected predictors at  ‟th step (see Figure 3.2). 

 

Figure 3.2. The explanation of the LAR work cycles in case of two predictors. Point  ̅  is the 

Least Squares fit – the projection of   onto the subspace spanned by    and   . Starting from 

the estimate  ̂   , the residual     ̅   ̂  has greater correlation with    than with   . 

LAR proceeds in the direction to    until     ̅   ̂  bisects the angle between    and   , 

where  ̂   ̂      . The next LAR estimate is  ̂   ̂        ̅ . If there are more 

than two input predictors, the  ̂  will not be equal to  ̅ , because the algorithm will change 

the direction before the point  ̅  as new variable enters the model. 

Before applying LAR it is assumed that the predictor variables have been standardized to 

have zero mean and unit length, and that the response has been centered to have zero mean: 

∑   
 
      ,   ∑    

 
        and   ∑    

  
      ,           , 
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where   is the number of predictors and   is the number of data observations. Further details 

of the rest computations performed by LAR are introduced in Algorithm 3.1(a).  

Algorithm 3.1(a) Least Angle Regression 

Input:               ,  . 

1) Start with  ̂  ( ̂   ̂     ̂ )   ,  ̂   , the active set     (         ),  

and the initial step     ; 

2) While | |    : 

a)       ; 

b) Compute the correlations:  ̂        ̂     ; 

c) Find the greatest absolute correlation:  ̂       | ̂ |  ; 

d) Update the active set:         ; 

e) Define the unit vector making equal angles with the    :         
    

     , 

where    [  
    

    
    ]

 
 

   and    is a | |-length vector of constant values 

1; 

f) Compute the equiangular vector:         ; 

g) Choose the step size    along the   : 

i. if | |     then      ̂    ; 

ii. else          
 {

 ̂   ̂

     
 

 ̂   ̂

     
} ,           ,  

where    is an element of inner product vector        and      means 

that the minimum is taken only over positive values; 

h) Update the LAR estimate:  ̂   ̂         ; 

i) Update the regression parameters:  ̂   ̂         ; 

Output:  ̂    ̂    ̂      ̂   . 

If LAR obtains the coefficients for all predictor variables in a model, then these estimates are 

equal to the Least Squares estimates (step 2.g.i. in Algorithm 3.1(a)). Furthermore, it has 

been observed (see [     ]), that the LAR estimates are very similar to the coefficients 
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provided by the LASSO. Thus, with a simple modification the algorithm can provide the full 

set of LASSO solutions.  

The LASSO implies that at the step   the sign of any non-zero coefficient  ̂   (         ) 

is the same as the sign of the corresponding correlation  ̂    
     ̂    . Consider step 2.i 

in Algorithm 3.1(a). It is clear that the  ̂   is changed the sign at  ̃     ̂           (for 

each of the estimates this value is unique). So, if there exists such the smallest  ̃  , that is 

less than the common step size   , then the corresponding variable    is left out from the 

model and the algorithm makes just the step of size  ̃   in the equiangular direction (refer to 

Algorithm 3.1(b)). 

Algorithm 3.1(b) Least Angle Regression (the LASSO modification) 

2) While | |    : 

g) … 

iii.  ̃    ̂       ,  ̃               
   ̃   ; 

iv. if  ̃      then         ,     ̃   ; 

LAR with the LASSO modification is renamed to LARS (LAR-LASSO). In the initial 

implementation (refer to [     ]) LARS uses the Cholesky decomposition of the matrix 

   . It is not computed completely in the beginning, but is updated at each step the 

algorithm performs. This provides the computational complexity           for   

observations of   variables included into the model. This is the cost of a Least Squares fit for 

the same number of variables. Besides, dropping the variables from the model (because of 

the LASSO modification) costs at most       operations per downdate of the decomposition 

matrix. 

3.1.3   Shooting Algorithm for computing the LASSO 

Moving back in time from LARS, it is necessary to point out one either efficient method for 

solving the LASSO. The method is referred to as „Shooting‟ and is developed by Fu [    ]. 

Being a special case of the Coordinate Descent procedure, „Shooting‟ updates estimates of 

the regression parameters one-at-a-time, keeping the remaining variables fixed. The 
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efficiency of the algorithm is explained by its implementation simplicity and the small 

number of computations required to produce the solution. This makes the method more 

attractive in comparison with the similar strategies. Also the idea of „warm start‟ has a high 

effect. „Shooting‟ does not obtain the estimates of the coefficients from zero, but fixes the 

Least Squares estimates given as input, reducing them to the LASSO solution. The 

description of this procedure is provided in Algorithm 3.2. 

Algorithm 3.2 ‘Shooting’ algorithm for computing the LASSO 

Input:               ,  ,  ̂  , tuning parameter  . 

1) Start with  ̂   ̂   ( ̂   ̂     ̂ ) ; 

2) Iterate until convergence : 

a) For each           : 

i. Compute the conventional variable   :       
   ∑   

    ̂     ; 

ii. Update the coefficient  ̂ : 

 ̂  

{
 
 

 
 

    

   
   

              

     

   
   

             

                       |  |    

  

Output:  ̂     . 

3.1.4   LARS-EN 

Combining features from ridge regression and the LASSO, Zou and Hastie [    ] 

introduced new regularization technique called the ElasticNet. Similarly to the LASSO, the 

ElasticNet performs the simultaneous variables selection and the continuous shrinkage. It is 

proposed that the ElasticNet works as well as the LASSO, but overcomes some of its 

limitations, in overall, outperforming the latter in terms of prediction accuracy. 

The fundamental drawbacks of the LASSO are described by Zou and Hastie [    ] with the 

following three scenarios. 
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1. The most sufficient disadvantage of the LASSO concerns its convex nature (the penalty 

function is convex, but not strictly convex). The LASSO is able to include at most 

          predictors into the model, where   is the number of variables and   is the 

number of observations in a dataset. Due to this limiting property the LASSO may be 

inconsistent if the number of potential predictors for inclusion into the model is much 

larger than the number of existing observations. 

2. In the     case the LASSO solution is not uniquely defined (see [     ] for further 

details). Besides, if there are pairwise correlations between variables in a dataset it has 

been empirically observed that ridge regression dominates the LASSO in terms of 

prediction performance (see [     ]). Usually, the high-dimensional data contains many 

variables that are highly correlated. Thus, the LASSO is not very suitable technique in 

this kind of problems as well. 

3. Variables among which there are pairwise correlations form a group. Sometimes, it is 

useful to reveal this kind of information from the data and to consider a group as a 

common entity. The LASSO does not provide this possibility. It selects variables from 

groups without any further analysis which one to select. 

The ElasticNet is supposed to overcome the problems described above. It can select more 

than   variables in the     case and can include the whole groups of correlated variables 

into the model (known as grouping effect of the ElasticNet). 

The ElasticNet criterion is defined in two steps. Let us consider the so-called naïve 

ElasticNet estimates first: 

  ̂       
        ‖    ‖    ‖ ‖     ‖ ‖   , (3.1.2) 

where the penalty function   ‖ ‖     ‖ ‖  is the linear combination of the ridge and the 

LASSO penalties. If      or      then the naive ElasticNet problem reduces to ridge 

regression or the LASSO, respectively. The naïve ElasticNet penalty function as in case of 

the LASSO is not differentiable at zero (refer to Section 2.2.4). This allows the ElasticNet to 

do automatic variable selection. However, unlike the LASSO the function   ‖ ‖   

  ‖ ‖  is strictly convex if     . Thus, the ElasticNet solution is well defined in both the 

    and the     cases. Figure 3.2 represents the ElasticNet penalty function graphically. 



33 
 

Combining both the L1-norm and the L2-norm penalties a double amount of shrinkage 

occurs. Double shrinkage does not help much in reducing the variance of a regression model, 

but spends an extra bias of the coefficients.  

In [    ] is suggested to use the „corrected‟ ElasticNet criterion, which is defined as: 

  ̂           ̂       
  . (3.1.3) 

The correction (3.1.3) is the simpliest way to undo double shrinkage while holding present 

all the other features of the introduced regularization technique. Thus, the ElasticNet 

estimates are just rescaled version of the naïve ElasticNet estimates. 

         

Figure 3.2. The ElasticNet penalty in case of two variables in the model. The outer shape 

stands for the ridge penalty function and the inner one for the LASSO penalty. The ElasticNet 

penalty function is the black contour in between with             =0.5. The   value 

varies from [   ]; when     the ElasticNet becomes ridge regression, and if     the 

ElasticNet reduces to the LASSO. 

In conclusion, we define the ElasticNet criterion in the matrix form as follows: 

  ̂           
 (

       

    
)           ‖ ‖   . 

(3.1.4) 

In the fashion equivalent to (3.1.4) the LASSO estimates are defined as: 

  ̂              
                 ‖ ‖   .  

Hence, it can be seen that the ElasticNet solution is the regularized version of the LASSO 

solution (refer to [    ] for further explanation). 
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LARS-EN.   Like in case of the LASSO computing the ElasticNet solution is a quadratic 

programming problem. In [    ] it is shown that the ElasticNet solution path is a piecewise 

linear function of    for each fixed   . As the LAR algorithm proceeds in the piecewise liner 

fashion (refer to [     ] ) it can be successfully used for computing the ElasticNet 

regularization path also. Zou and Hastie [    ] have developed an appropriate modification 

of LAR, which enables to obtain the ElasticNet estimates in efficient way. As in case of LAR 

it requires           operations for computing the coefficients for   predictor variables. 

3.1.5   Group LASSO 

The ElasticNet exhibits the grouping effect, but these groups are unknown in the beginning 

of analysis. In some situations predictor variables belong to the already predefined groups. 

The task is then to consider the members of a group as one entity, simultaneously selecting 

all of the members, and to shrink the corresponding coefficients together. Bakin [     ] 

proposed an extension to the LASSO for solving these purposes. This extension has been 

generalized by Yuan and Lin [    ] and became known as the Group LASSO. 

Let   be a set of   predictors, which are divided into   groups (         ). We use the 

notation    to represent the predictors of the group   (       ) and the notation    to 

represent the corresponding coefficients. The criterion of the Group LASSO estimates is then 

defined as: 

  ̂               
 

 
‖    ‖   ∑ √|  |‖  ‖

 
     , (3.1.5) 

where | | denotes the number of predictors in    and the L1-norm of the coefficients is 

replaced by the L2-norm (‖  ‖) in a difference from the ordinary LASSO. The norm ‖  ‖ is 

equal to zero only if all coefficients in    are zeros, what explains the possibility of the 

introduced technique to produce sparse solutions on the group level. The illustration of the 

Group LASSO penalty function is brought in Figure 3.3. 

Yuan and Lin [    ] have developed an extension to the „Shooting‟ algorithm for solving 

the Group LASSO. Their idea is based on the Karush-Kuhn-Tucker conditions
v
, which state 

that                is a solution to the problem (3.1.5) if the following two  

  
                                                           
v
   In mathematics, the Karush–Kuhn–Tucker conditions are necessary for a solution in nonlinear programming 

to be optimal. 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Necessary_and_sufficient_conditions
http://en.wikipedia.org/wiki/Nonlinear_programming
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
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requirements are fulfilled: 

 
(1)     

        
 √|  |  

‖  ‖
              

(2)  ‖   
       ‖   √|  |               

(3.1.6) 

The solution to the proposition (3.1.6) is: 

      
 √|  |

‖  ‖
     , 

where      
          and                            . By iteratively 

estimating the group coefficients    (       ), the solution, which satisfies the criterion 

(3.1.5) is produced. 

 

Figure 3.3. The contours of the LASSO penalty (leftmost), the Group LASSO penalty 

(central) and the ridge penalty (rightmost) in case of three variables in the model, where two 

of the variables form a group. It can be seen from the central plot that the ridge penalty is 

applied within the group coefficients     and    , and the LASSO penalty is applied on pairs 

(   ,     and (   ,    . This provides the sparsity within the groups. 

Group LARS.   Solving the Group LASSO based on the „Shooting‟ method may require 

huge amount of computations as the number of predictor variables increases. Using the 

Group LARS algorithm proposed by Yuan and Lin [    ]  is more efficient way for 

obtaining the Group LASSO estimates. The modification of LAR implies that a group of 

variables can be included into the model only if the averaged squared correlation of the 

variables with the residual is the largest. At each step of Group LARS one group enters the 

model, and the coefficients of the elements from all active groups are then shrunk in the 

direction to the Least Squares solution (like in case of the ordinary LAR algorithm). Further 

implementation details are explained in [    ].  
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Park and Hastie [    ] suggest using averaged absolute correlations for each group instead 

of averaged squared correlations because this yields more variables in a group to be strongly 

correlated with the residual. They introduce the Group LARS type II algorithm that is 

described in [    ]. 

3.1.6   Multiresponse Sparse Regression Algorithm 

Similä and Tikka [    ] address the multiple response problem, offering a technique that is 

called the Multiresponse Sparse Regression (MRSR). Its main point is based on the idea that 

observing all the response variables at once may influence the accuracy of the regression 

parameters. This, in turn, is suggested to improve the prediction in terms of the collinearity 

and the overfitting problems. The MRSR implementation is an extension to the LAR 

algorithm which allows the latter to process multiple responses at once. MRSR performs 

simultaneous variable selection and continuous shrinkage with the difference that all 

coefficients corresponding to one predictor are estimated as a group. This means that if a 

predictor variable is not included into the model then its coefficients for every response are 

all zeros, and they are all non-zeros if the variable is selected. 

Let   be a       matrix and   be a       matrix holding   observations of   predictors 

and   response variables, respectively. It is assumed that the variables in   have been 

standardized to have zero mean and the unit length, and the variables in   have been just 

centered (zero mean). The regression model has then the form  ̂    ̂, where  ̂ denotes the 

      matrix of regression parameters for all the responses. At each step   (       ) 

the MRSR algorithm introduces a new row of non-zero coefficients to  ̂, and at the step 

    the matrix  ̂  equals to the Least Squares solution for the considered regression 

problem. 

The vector of correlations between the predictor variables and the residuals  ̂  (   ̂)   

   ̂   ̂     ̂   at the step   is denoted by  ̂    ̂    ̂      ̂   . The correlation between 

the  ‟th predictor (       ) and the residuals ( ̂  ) is computed as follows: 

  ̂   ‖  
     ̂ ‖

 
 , (3.1.7) 

where     fixes the norm of the obtained vector. It is logical to suggest that the  

predictor   , corresponding to the highest value in  ̂ , is the most influential in the reduction 
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 of the residual, and, hence, can be included into the model. 

Let  ̂        ̂    be the maximum correlation at the step  . The active set    is then 

appended by the corresponding index  , that is,            . The Least Squares 

estimates for the selected predictors    are  ̂      
    

    
  . In turn, the MRSR 

estimates of the regression parameters and the corresponding prediction of the response are 

then defined as: 

 (1)   ̂         ̂        ̂   

(2)   ̂         ̂       ̂   
(3.1.8) 

where        ]  is the step size towards the Least Squares solution, which acts like 

shrinking parameter for the coefficients. Shrinking is applied only on the active variables 

while not yet obtained coefficients are constrained to zero. If      MRSR reduces to the 

greedy Forward Selection algorithm producing the Least Squares fit. The task is to find the 

smallest positive   such that some non-active predictor    (    ) could have the same 

correlation with the residuals as those from the active set. 

Substituting equation (3.1.8(1)) into equation (3.1.7) and presenting the latter as the function 

of  , we have: 

 (1)  ̂         |   | ̂                      

(2)  ̂         ‖          ‖ 
           

(3.1.9) 

where              
    and         ̂        

   . New predictor variable    

enters the model when equations (3.1.9(1)) and (3.1.9(2)) are equal. Solving the problem 

(3.1.9) for all the    (    ), the minimum value is chosen from the obtained set as the 

common step size:           
   . The computation of the     value depends on the 

selected norm of the vector of correlations  ̂ . The norms and the corresponding equations 

are: 

                     ‖          ‖ 
       ̂    

     {
 ̂  ∑        

 
   

 ̂  ∑        
 
   

} , where        
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                       ‖          ‖ 

 
        ̂ 

    

     {
  √     

 
 

   ̂ 
  ‖    ‖ 

 

   ̂ 
      

     

   ̂ 
  ‖    ‖ 

 

}  

                     ‖          ‖ 
       ̂   

         
 {

 ̂       

 ̂       
 
 ̂       

 ̂       
}  

Given     ,      and  ̂  the computation of the parameter     is solved in     ) steps in case 

of the L1-norm MRSR algorithm, while the computational complexity of the L2-norm and 

the sup-norm ( -norm) modifications of the algorithm depends on the number of response 

variables linearly, that is    ). Thus, the L1-norm MRSR algorithm may be memory 

consuming as the number of response variables increases. 

3.1.7   Blockwise Coordinate Descent Procedure for the Multi-task 

LASSO 

The definition of the Multi-task LASSO was proposed by Zhang [     ], who generalized 

the LASSO to the multi-task setting. Suppose a dataset consists of some set of variables and 

the corresponding outcome. If there are several datasets sharing the common design, and the 

relationship between variables and outcomes across all the datasets is of interest, then this 

problem is referred to as the multi-task problem.  

We can consider a multiresponse regression model as the multi-task problem with the 

number of tasks corresponding to the number of response variables in the model. The aim is 

then to find the subset of explanatory variables that simultaneously explains all the responses 

in the best manner.  

Let   and   be matrices of   observations of   explanatory and   response variables, 

respectively. The matrix  ̂ is then the (   ) matrix containing the regression parameters. 

Turlach, et al. [     ] define the „simultaneous explanatory power‟ of the  ‟th predictor 

(      ) on all   responses as  ̂ 
         | ̂  | | ̂  |   | ̂  | , and suggest to apply a 

penalty on the sum of these elements  ̂ 
     ̂ 

       ̂ 
   . Hence, L1-norm regularization 
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(the LASSO) in case of multiple responses becomes the sup-norm regularization, named by 

the authors as the Simultaneous LASSO.  

The criterion of the Simultaneous LASSO estimates is formulated as: 

  ̂               
 

 
‖    ‖   ‖    ‖  . (3.1.10) 

An important remark must be made before continuing. The Simultaneous LASSO estimates 

(like the Multi-task LASSO ones defined later) have no any inherent meaning. They are just 

used for the learning which variables to include into the model. Appropriate coefficients can 

be estimated using other statistical methods, for example, the Least Squares method etc. 

The Multi-task LASSO criterion proposed by Zhang has the following form: 

  ̂        
   

        
 

 
‖          ‖

 
  ‖    ‖  , 

(3.1.11) 

where      denotes the regression parameters in case of the task   and      is the vector of 

the maximal   coefficients across all   tasks.  

It is obvious that the criterions (3.1.10) and (3.1.11) are equivalent if the matrix   is fixed for 

all the tasks introduced to the Multi-task LASSO. Collecting the Multi-task LASSO 

estimates into matrix  ̂, the solution to the multiresponse regression problem is produced. 

Zhang has introduced the Double Coordinate Descent procedure for computing the Multi-

task LASSO (see [     ]), while Turlach, et al. [     ] use the Interior-Point method. 

Both of these techniques have the performance issues in the case of large number of inputs. 

More efficient algorithm is proposed by Liu, et al. [     ], which is referred to as the 

Blockwise Coordinate Descent procedure (BCD). BCD is developed to produce the Multi-

task LASSO solution. However, it can be used for solving the Simultaneous LASSO as well. 

The term „blockwise‟ means that the regression coefficients for one predictor in case of the 

multiple tasks (responses) are considered as a block (the same as in case of the MRSR 

algorithm). BCD cycles through blocks updating them one-at-time. Let  ̂   ̂     ̂  be such 

blocks. Each  ̂  (       ) is updated by the following sub-problem: 

  ̂         
 

 
‖      ‖

 
  |      | , (3.1.12) 

where      ∑         denotes the partial residual vector. 
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The solution to the problem (3.1.12) can be efficiently obtained by using a closed-form 

Winsorization operator (see [     ]). This operator makes possible to avoid some sort of 

computations performed by other methods mentioned above (Double Coordinate Descent 

etc.). The BCD procedure is described in detail in Algorithm 3.3. 

Algorithm 3.3 Blockwise Coordinate Descent Procedure for the Multi-task LASSO 

Input:               ,               , tuning parameter  . 

1) Start with  ̂  ( ̂   ̂     ̂ )   ,      , and       ; 

2) Iterate until convergence: 

a) For each           : 

i. Compute   :           ,         ∑  ̂         ; 

ii. If ‖ ‖    then  ̂    

else : 

1. Sort the   indexes : |   
|  |   

|   |   
| ; 

2.        (∑ |   
| 

     )    ; 

3. for each         : 

 if      then  ̂   
    

 

 else compute the Winsorization operator : 

 ̂   
 

        
 

  
(∑ |   

|
  

   
  ) 

Output:   ̂        . 

The most computationally expensive step in Algorithm 3.3 is sorting (step 2.a.ii.1). It takes 

          operations in case of   response variables. However, if a sparse model is 

expected, then sorting is performed more seldom as the coefficients of a whole block are set 

to zero already at the first steps of the algorithm‟s work. This process is controlled by the 

tuning parameter. 
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3.2   The Explanation of Choice 

We started our current research with the Forward Stepwise procedure. We used it mainly for 

identifying the applicability of liner models on microarray data. This algorithm is simple and 

can be easily implemented. We then considered the regularization techniques: ridge 

regression and the LASSO. These techniques help to overcome some of the computational 

issues of the Least Squares method and are suggested to produce more interpretable models. 

We have included the LARS algorithm into the research, first of all, because of its efficiency 

in solving the LASSO problem. There is a set of modifications to LAR that make it possible 

to use the algorithm for other purposes as well. In our case the MRSR and the LARS-EN 

algorithms are based on LAR, and the Group LASSO solution can be obtained using Group 

LARS. 

The Least Squares method, ridge regression, the LASSO, the ElasticNet and the Group 

LASSO are single-response techniques. We consider the MRSR algorithm and the Multi-task 

LASSO as the techniques being able to perform in the multiresponse setting. 

In our analysis of the methods performance we actually do not use the Group LASSO 

technique directly. We do not require a method for handling the grouped variables. However, 

we assume that with the simple data transformation we can convert the grouping property of 

the Group LASSO into the property which could make it possible to include variables into 

the model according to the relation with all the responses simultaneously. 

Suppose   and   are matrices of   observations of   explanatory and   response variables, 

respectively. We can stack the columns of   into a        vector and copy   into the 

diagonal blocks of a new         matrix. Thus, input data becomes single-response. We 

form   groups, each containing one explanatory variable   times. The Group LASSO 

produces then the        vector of regression parameters  ̂. Each group of estimates from 

 ̂ corresponds to the one particular predictor.  
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Chapter 4 

Performance Analysis 

In the previous chapter we presented a number of methods for estimating regression 

parameters in linear models. In this chapter we experimentally analyze these methods in 

order to define their applicability to biological data. We are mainly interested in the variable 

selection ability of the methods. However, we also partially touch their predictive 

performance. We simulate the appropriate datasets and compare performance of the methods 

in various conditions. 

4.1   Experimental Setup 

For the comparison we generate artificial datasets with three different sets of true predictors. 

In all datasets the number of observations is less than the number of explanatory variables, 

and the datasets are multiresponse.  

The performance metrics used in the further analysis are described in Section 4.1.2. 

4.1.1   The Artificial Dataset 

To simulate a gene expression dataset, we first generate a (   ) matrix   representing the 

expression data of   transcription factors collected over   experiments. Next, we generate a 

(   ) weights matrix   holding the regulation rules for   genes. The expression values of 

the transcription factors and the regulation parameters are randomly chosen from the 

standard normal distribution        . In   we substitute rows          , where    , 

with zero vectors in order to simulate the situation when only part of the transcription factors 

influence the expression of genes. The (   ) gene expression matrix   is then constructed 

according to the model: 

       ,   where            . (4.1.1) 
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Using the scheme (4.1.1), we design the simulation as follows: 

 We generate   datasets consisting of expression data of     transcription factors and 

     genes under    experiments.  

In the first dataset    rows in the weights matrix are non-zeros. Thus, only    

transcription factors are true regulators. In the same way, there are    regulators in the 

second dataset, and there are    regulators in the third dataset. 

We use the notation               to represent the constructed datasets. These are: 

                     ,                       and                       , 

respectively. For simplicity we sometimes omit the size indications in the matrices   

and  , and refer to the datasets as       ,        and       .  

 In order to achieve more stable results, we examine the behavior of the methods in case 

of    random datasets of a given type, computing performance metrics as averaged over 

all replications. 

 We assess the stability of obtained test results by comparing the outputs of the methods 

within the datasets also. For that we generate   and   matrices containing     

experiments, and then divide the dataset into two parts:                       and 

                     . We apply each method on both    
   

 and    
   

 and examine 

the difference between two sets of the produced estimates (detailed explanation is 

provided in Section 4.3.2). 

 For fitting the models we use training datasets and independent test datasets for 

evaluating their prediction ability. Independent validation datasets are used for 

estimating the methods‟ tuning parameters. This process is described in Section 4.2.1. 

 In the initial experiments we generate noise-free data. We add noise to datasets and 

analyze the methods‟ dependence on it in Section 4.4. 

4.1.2   Performance Metrics 

The metrics we use for assessing the performance of the techniques being analyzed are 

described below. Formally, we need to examine how good the methods perform variable 

selection, to measure the prediction accuracy of the models produced and to investigate the 
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stability of the estimated model parameters. For that we use the following metrics: the 

coefficient of determination (denoted as   ), the mean squared error (MSE) and the 

discordance measure. 

Coefficient of Determination.   The coefficient of determination (  ) indicates how much 

of the total variation in the response variable is explained by the regression model. In other 

words, it measures the goodness of the fit and how good the model predicts. The    statistic 

is calculated as follows: 

    ̂    
∑   ̂   ̅   

   

∑      ̅   
   

 

where   denotes the response variable,  ̅ denotes its mean, and  ̂ is the estimated prediction 

of  . The    statistic value varies in the range [    ]. The value of      means that the 

estimated model predicts perfectly. If the model does not predict better than just using the 

mean of the considered response, then     . Model that introduces noise rather than 

explaining the data can, in principle, have negative   . 

Mean Squared Error.   The mean squared error (MSE) of the estimated model parameters is 

the mean of the squared differences between the estimates and the true coefficients: 

     ̂  
 

 
∑      ̂  

  
    . 

Discordance measure.   The discordance measure presents the compliance of the solution 

produced by the method with the expected one. In this work we check how good the 

considered methods perform the variable selection quantitatively. We do this by simply 

counting the number of selections made incorrectly plus the number of unselected true 

variables, that is: 

                                              . 
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4.2   Methods Preparation 

In Chapter 3 we present more methods than we compare here. As we are seeking for an 

optimal approach, in addition to the variable selection ability and the prediction accuracy we 

also take into account the computational complexity of the methods. The exact methods we 

are going to test are listed in Table 4.1. 

Method Parameters Multiresponse 

Least Squares (Forward Stepwise) - - 

Ridge regression   - 

The LASSO (LARS) - - 

The ElasticNet (LARS-EN)   - 

The  -norm MRSR algorithm - yes 

The L2-norm MRSR algorithm - yes 

The Multi-task LASSO (BCD)   yes 

Table 4.1. The methods included into the current testing. 

LARS.   It is possible to compute the LASSO estimates with both the „Shooting‟ and the 

LARS algorithms. In our testing we choose the latter. There are two reasons for this choice. 

Firstly, „Shooting‟ implies a tuning parameter. The popular method for selecting tuning 

parameters is  -fold cross-validation. For performing   folds the method requires the amount 

of computations equal to the   Least Squares fits. This may sufficiently slow down the whole 

regression process, especially, if the number of predictor and response variables in the 

dataset is large. A dataset                      may be considered as a large dataset for the 

purposes of this method. 

Higher values of tuning parameters produce more sparse solutions. However, it does not 

guarantee the exact number of variables to be included into the model. Our primary aim is to 

compare the variable selection ability of the presented techniques. Therefore, to make it in a 

more fair way, we choose the LARS algorithm for obtaining the LASSO estimates, because 

it allows to predefine the expected number of variables in the model. 
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LARS-EN.   The statements above also hold for the ElasticNet. Its tuning parameters must 

be cross-validated from the two-dimensional grid. However, using the LARS-EN algorithm, 

only one parameter is sufficient, because the ElasticNet penalty is the regularized LASSO 

(see Section 3.1.4). LARS produces the LASSO solution without any additional inputs, and 

by specifying   for the LARS-EN algorithm we just control the amount of the ridge penalty 

applied on the LASSO estimates, what results in the ElasticNet solution. 

Ridge regression.   Ridge regression is not designed to produce sparse solutions. To make 

its variable selection ability comparable to the other methods we do the following: first, for 

every response we pick up the ‟best‟   predictors, resulting in different subsets of variables 

for different responses; second, we select the common subset of the ‟best‟   predictors 

according to the sum of the corresponding coefficients for all the responses. In both cases we 

consider the absolute values of the coefficients. These two approaches are later in this work 

referred to as „ridge regression (best subsets)‟ and „ridge regression (common subset)‟, respectively.  

4.2.1   The Computational Issues of the Group LASSO 

The Group LASSO is not a multiresponse method. Moreover, we do not expect to have 

groups of correlated variables in the gene expression data simulations, because we generate 

variables independently. In Section 3.2 we proposed an approach for input data 

transformation, which makes it possible to apply the Group LASSO on datasets of type 

     .  

However, the proposed approach is memory consumption. Converting the dataset 

              into single-response requires         memory space. In our case this 

results in a matrix   of size               , what in turn increases the number of 

computations proportionally. In comparison to other methods, such assumption seems to be a 

serious drawback. That is why we have performed only a rough testing, to see if using the 

Group LASSO makes sense at all. 

For computing the Group LASSO estimates we have implemented the „Shooting‟ algorithm. 

We have selected the dataset       , and the optimal tuning parameter was empirically 

chosen to be    . Then we have performed the group-wise test of the approach. This means, 

we have divided the matrix   by columns into   groups (                    ); for 
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each pair of a group and the matrix  , first, the transformation procedure was applied, and 

then the algorithm computed the model coefficients corresponding to the currently 

considered genes. Thus, for a dataset we have run   tests, considering  ,   ,   ,    and     

genes at once. The test results are presented in Figure 4.1.  

 

Figure 4.1. The R2 values and the discordance rates corresponding to the Group LASSO 

while performing the group-wise test. 

The current testing has shown that the accuracy of the Group LASSO estimates does not 

depend on the number of simultaneously observed genes. The percentage of the explained 

variance stays the same for all the group sizes, and the discordance rate decreases only in 2 

points within the groups of sizes 2 and 10 (see Figure 4.1). So, it turns out we can reduce the 

memory usage performing the group-wise analysis of a dataset. Nonetheless, the 

computational burden still holds. Less computations are required if one uses the Group 

LARS algorithm. However, it is obvious that the problem becomes more serious as the 

number of variables grows. 

Fortunately, comparing our various test results we noticed and later found in [    ] the 

confirmation of the fact that the L2-norm MRSR algorithm produces exactly the same 

solution as Group LARS does. In case of MRSR we do not need any reconstructions of the 

data, hence, can compute the estimates efficiently. As it will be seen later, these intermediate 

performance results of the Group LASSO are not perfect. However, we still assess the idea 

of grouping the variables and compare it with other approaches, but through the L2-norm 

MRSR technique. 
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4.2.2   Setting up Tuning Parameters 

Ridge regression, LARS-EN and BCD require tuning parameters. For that, we have defined 

the following grid of values:                                . For each of the   we 

have applied the methods on the datasets       ,        and       . Performance of the 

methods was assessed by calculating the corresponding coefficients of the determination 

(  ) and the discordance rates. These metrics were calculated on the training data. Test 

results are depicted in Figure 4.2. 

 

Figure 4.2. The percentage of the explained variance and the discordance rates of methods 

for different values of   in case of the datasets       ,        and       . 
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It can be seen from Figure 4.2 that the ridge regression and the LARS-EN algorithm perform 

well with   in the range                  . In order to assess the behavior of the ridge and 

the ElasticNet penalties, but keeping their impact on the output relatively small, in the further 

analysis we prefer to use         as the tuning parameter for both of them. 

In all three cases (      ,        and       ) ridge regression with column-wise variable 

selection (common subset) shows better results than „ridge regression (best subsets)‟. 

However, we will not exclude the latter from the analysis, and will investigate whether 

performance difference for these approaches still holds under other testing conditions. 

The optimal tuning parameter for the BCD procedure in our test cases seems to be always 

    . Using the  -fold cross-validation technique, we have performed more accurate 

selection of lambda in the range                    for the datasets        and       . 

The optimal parameters occurred to be     and    , respectively. We ignore some more 

sensitive tunings and assume that the parameters for BCD are        ,        and 

      , accordingly. 

For smaller values of   the BCD procedure does not provide desired sparsity within the 

variables. Besides, it takes a lot of steps until convergence. In this intermediate testing we 

had to interrupt the algorithm at the number of 10000 iterations in case of    . For  

                 and according to the datasets       ,        and        BCD 

converges in  ,    and    steps in average. 

4.3   Performance 

4.3.1   Prediction and Variable Selection 

We have applied the presented methods on the datasets       ,        and       , 

measuring their performance over    replications. For evaluation we measured the prediction 

accuracy of the produced regression models on the test datasets, which were generated 

independently from the training datasets. The corresponding discordance rates were 

computed for the estimated model parameters. The results are provided in Figure 4.3. 

Looking at Figure 4.3 and Figure 4.4 we can say that almost all the methods perform well. 

The obtained results justify  our expectations about the nature  of  the  considered  methods,   
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and prove  the theoretical assumptions provided in Chapter 3.  

 

 

Figure 4.3. Percentage of the explained variance of the methods in case of the datasets 

      ,        and       . 

 

Figure 4.4. Discordance rates of the methods in case of the       ,        and        

datasets. 
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First, we see from Figure 4.3 that using the Forward Stepwise algorithm for computing the 

Least Squares estimates is quite satisfactory. With smaller number of true variables in the 

model, the Least Squares-FS approach predicts better, but in     case (the dataset       
) 

overfitting occurs. The same also holds for the MRSR algorithm, which is related to Least 

Squares (see Section 3.1.6). In typical bioinformatics problems, the smallest sets of 

significant variables are usually of interest. That is why, we can state, that the Least Squares-

FS and the MRSR methods are still applicable to the data.  

The models produced by ridge regression do not seem to predict perfectly. But, as it can be 

seen, their predictive performance is stable. This means that the proportion of the variance 

they explain is similar for all the datasets. And in case of    true regulators (the dataset 

      ) the ridge regression even outperforms all the other methods.  

The LASSO and the ElasticNet techniques show almost the same results until the        

dataset. In this case the ElasticNet predicts better, what follows from the definition  

(see Section 3.1.4). In comparison to ridge regression, the LASSO penalty seems to be more 

efficient in case of the        dataset. Actually, this is the known fact that the LASSO 

provides the best solution when the estimated model is assumed to be very sparse. 

As our primary aim in context of the current work is the methods‟ variable selection ability, 

the more important for us are the discordance rates they provide. From Figure 4.4 we see, 

that the variable selection the Least Squares method performs is quite adequate – the 

discordance rates of the produced estimates are moderate. From    true regulators (the 

dataset       ) the method selects   of them correctly, and in case of    true regulators it is 

mistaken in 11 selections, what is    . The same also holds for the both types of the MRSR 

algorithm, with the difference that the  -norm MRSR algorithm outperforms its relatives a 

little bit, providing the lower discordance in case of the        and giving the      result in 

case of the        datasets. 

In terms of the discordance the ElasticNet solution is again almost identical to the LASSO 

one, except the case of    true regulators – the ElasticNet makes mistakes for    less, what 

is expected. We introduced the two approaches of making the solution of ridge regression 

sparse in the previous section and observed that picking up the best subsets is dominated by 

taking the best subset from all the coefficients according to the sums of their absolute values. 
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Comparing the latter with the LASSO and the ElasticNet techniques, we see that its 

discordance rate is lower in all three cases of the       ,        and        datasets. At the 

same time, the „best subsets‟ approach by the results is the worst from all the other methods. 

Note, that the exact discordance rates are not comparable among the datasets with the 

different number of true variables. Let us consider the results of the BCD procedure. The 

discordance rate when there are    true regulators in the dataset is    and the discordance is 

   when there are    true regulators. This means that in the first case the method selects   

regulators correctly out of   , and in the second case –      out of   . In the percentage 

ratio these values are     and    , respectively. Thus, it comes out that BCD performs the 

best, being applied on the        dataset. 

In conclusion, we would like to point out two superior methods in terms of the variable 

selection task. These are the  -norm MRSR algorithm and the BCD procedure. The first one 

gives      result in case of the         dataset, and the second outperforms in case of the 

       datasets. When the number of true regulators in the dataset is    both methods 

provide almost the same discordance rates. Besides, we could also assume that choosing 

more accurate tuning parameters for the BCD procedure could improve its performance. 

However, this operation in turn requires more computations. 

4.3.2   Comparison of Estimates 

We have performed the test described further in order to assess the presented techniques in 

terms of the stability of the solutions they produce. For that we have generated the dataset 

                        and then have split it into two parts    
    

 and    
    

, each one 

containing    experiments. We have applied the methods on both the sub-datasets, 

measuring the difference between the two sets of estimated model parameters each method 

produces. Actually, we expect such difference to be as small as possible.  

For the purposes described above we have used the MSE metric in the following way: 

     ̂   ̂    [  ̂   ̂  
 ] , where  ̂  and  ̂  are the sets of coefficients computed 

using the    
    

 and    
    

 datasets, respectively. The current testing results are provided in  

Figure 4.5. 
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Performing the comparison of the estimates produced by each method, we see that the     

value in case of the Least Squares fit is twice higher than all the other methods explore. This, 

of course, leads to the overfitting problem, but we still consider this result to be acceptable. 

In overall, all the other methods, except the  -norm MRSR algorithm, perform well under 

the defined conditions. The  -norm MRSR algorithm operates but the best, providing the 

estimates different only in       MSE value. 

 

Figure 4.5. The MSE of two sets of regression parameters estimated using the relative 

datasets    
    

 and    
    

. This metric shows how similar the sets of the estimates 

produced by the presented methods are (smaller value of MSE stands for the less difference). 

4.4   Varying the Noise Level  

We examine roughly the methods‟ dependence on the external influences, that are usually 

unbeneficial for the performance, by adding Gaussian noise (            ) to the dataset 

      . We vary the   from     to     and examine the change in the coefficient of 

determination (R2) values and the discordance rates corresponding to the methods we 

analyze. 

From the obtained results (see Figure 4.6) we can conclude that the prediction accuracy in 

case of all the methods decreases proportionally to the noise variance. The Least Squares 

method and the ridge regression show more quick recession, while the MRSR algorithm 

seems to be more resistant to noise (mainly L2-norm MRSR). 
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In terms of the discordance the stable rates correspond to the L2-norm MRSR algorithm, 

ridge regression (common subset) and the BCD procedure, what means their variable 

selection ability is not affected by the noise sufficiently. 

 

 

Figure 4.6. The influence of Gaussian noise             on the prediction accuracy of the 

models produced by the methods (the upper plot) and on the discordance rates 

corresponding to the variable selections performed by the methods (the bottom plot). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
2

 

noise variance 

R2 dependence on noise 

The L2-norm MRSR

The ∞-norm MRSR 

The ElasticNet (LARS-EN)

The LASSO (LARS)

Ridge regression

The Least Squares (FS)

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

co
rd

an
ce

 

noise variance 

Discordance dependence on noise 

Multi-task LASSO (BCD)

The L2-norm MRSR

The ∞-norm MRSR 

The ElasticNet (LARS-EN)

The LASSO (LARS)

Ridge (common subset)

Ridge (best subsets)

The Least Squares (FS)



55 
 

Chapter 5 

Application on Real Data 

In the previous chapter we examined the behavior of the methods, consider in this work, by 

applying them on artificial data. In order to have a more complete overview of the presented 

methods efficiency, we have to analyze their performance on real life problems. We consider 

two classical yeast cell cycle microarray datasets – the dataset by Spellman, et al. [      ] 

and the dataset by Gasch, et al. [      ]. These datasets are thoroughly studied, and are, 

therefore, are often used as validation frameworks for the techniques being developed. 

Unfortunately, it is not possible to measure the performance of the methods on real data in 

the same way as we did it for artificial data, due to the lack of ground truth to validate 

against. Besides, we must remember that the use of linear models for inferring regulators is 

just an approximation. However, we can assess the methods performance by exploring the 

stability of the solutions they produce. Whenever the method provides similar outputs for 

similar microarray datasets we count it as evidence of biological relevance of the results. 

Analysis we describe below is similar to the one introduced in Section 4.3.2. We split the 

datasets experiment-wise into two parts; apply the algorithms on both sub-datasets; and 

compare the solutions produced by each method. We perform only the quantitative analysis, 

i.e., we just examine the variable selection ability of the techniques without taking into 

account their prediction accuracy. 

5.1   The Spellman Dataset 

The aim of the experiments performed by Spellman, et al. [      ] was to create a catalog 

of Saccharomyces cerevisiae yeast genes whose transcription varies periodically within the 

cell cycle. As a result of this project a dataset was constructed, which contains the expression 

values of      genes measured under    microarray experiments. In the current analysis we 

use pre-processed data from this dataset. 
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The missing values in the dataset we use are imputed using the KNN-impute algorithm. The 

dataset contains the expression values of      genes out of initial      according to the 

sequence data availability in SGD [   ]  on July 1, 2007.     of these genes have 

transcription regulator activity GO annotation (on July 1, 2007). We have constructed the 

corresponding matrices   and  , containing the expression values of     transcription 

factors and      genes under    experiments, respectively. We have divided the matrices   

and   by rows into two parts, thus obtaining two datasets: (                 ) and 

(                ), referred to as     and    . 

We apply the Least Squares method (using the Forward Stepwise algorithm), the ridge 

regression method (where we pick the common subset of variables according to the sum of 

absolute values of the corresponding coefficients, see Section 4.2), the LARS-EN algorithm, 

the  -norm MRSR algorithm and the Blockwise Coordinate Descent procedure (BCD) on 

both datasets described above.  

All the methods, apart from BCD, make it possible to specify the desired number of variables 

to be included into the model. We choose to select the     most „influential‟ transcription 

factors out of    . For that, we have empirically chosen the tuning parameter   for BCD 

to be     . With such   the procedure selects     transcription factors in case of the 

    dataset and     – in case of the     dataset. The tuning parameters for ridge  

regression and the ElasticNet (LARS-EN) were empirically chosen from the range 

(                              ). Both methods produce models with the lowest 

discordance rates using      . 

After applying the methods we computed the discordance rate of both models produced by 

each method. According to these rates we can define the ratio of the commonly selected 

transcription factors by a method and the transcription factors selected differently. The 

corresponding ratios are presented in Figure 5.1.  

From Figure 5.1 we can see that the Least Squares approach is dominated by all the other 

methods. The best results are shown by the ridge regression and the ElasticNet techniques. 

Note, that LARS-EN is the only algorithm of all which does not produce the set of model 

parameter estimates common for all the responses. For every gene we select the set of 

regulators separately. However, even then LARS-EN provides similar discordance rates in  
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Figure 5.1 The percentage of the commonly selected variables by the methods  

(the Spellman dataset) 

comparison to other methods. For example, the discordance of the models produced by the 

Least Squares method in our case is    , while the models by LARS-EN differ in     

selections. In order to perform a more fair comparison, we have processed the LARS-EN 

solution in the same way as the ridge regression solution, by taking the     most 

„influential‟ variables according to the sums of the absolute values of the corresponding 

coefficients. The discordance is then equal to   , which means that    out of     regulators 

are selected by the algorithm differently and the other    are common. 

In case of the datasets     and     each method selects on average    of the same 

transcription factors from both of them (see Figure 5.1). We refer to the commonly selected 

transcription factors as „regulators‟. There are    „regulators‟, which are defined by at least   

algorithms simultaneously. If we consider the selection performed by at least   methods 

sufficient, then this number is   .  

We do not consider the results we have obtained by applying the presented techniques on the 

dataset by Spellman to be perfect, however, we see they are quite adequate, taking into 

account the fact that we are dealing with the     case (the number of experiments in the 

datasets we analyze is   times less than the number of transcription factors). We present the 

list of the   most selectable regulators in Table 5.1. 
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Protein Description 

STB1 Protein with a role in regulation of MBF-specific transcription at Start, 

phosphorylated by Cln-Cdc28p kinases in vitro (ID:YNL309W) 

ACE2 Transcription factor that activates expression of early G1-specific genes, localizes 

to daughter cell nuclei after cytokinesis and delays G1 progression in daughters, 

localization is regulated by phosphorylation (ID:YLR131C) 

GAT1 Transcriptional activator of genes involved in nitrogen catabolite repression 

(ID:YFL021W) 

HCM1 Forkhead transcription factor that drives S-phase specific expression of genes 

involved in chromosome segregation, spindle dynamics, and budding 

(ID:YCR065W) 

TEC1 Transcription factor required for full Ty1 expression, Ty1-mediated gene 

activation, and haploid invasive and diploid pseudohyphal growth (ID:YBR083) 

Table 5.1. Proteins correspondent to the transcription factor genes selected by the methods. 
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5.2   The Gasch Dataset 

The dataset we use for the second analysis contains microarray data provided by Gasch, et al. 

[      ], who measured the expression of genes in the yeast Saccharomyces cerevisiae 

responding to a set of external physical impacts. The dataset contains the expression values 

of    transcription factors and      genes collected under     experiments.  

We reconstruct the Gasch dataset in the same way as described in the previous section (see 

the section 5.1) into the corresponding     and     sub-datasets. We apply the same 

methods on     and     and explore the discordance rates of the models produced. We 

choose to select    the most „influential‟ transcription factors out of   . The obtained results 

are presented in the Figure 5.2. 

 

Figure 5.2 The percentage of the commonly selected variables by the methods  

(the Gasch dataset) 

The discordance rates obtained using the dataset by Gasch, et al. [      ] are slightly lower 

than the discordance rates in case of the dataset by Spellman, et. al [      ] (see Section 

5.2). The difference in performance of the presented methods can be explained by the fact 

that in the current case the number of experiments in the datasets     and     exceeds the 

number of transcription factors (    case).  

Ridge regression performs the best, selecting    „regulators‟ out of    (with the tuning 

parameter         ). The LARS-EN algorithm produced the model with the lowest 

discordance rate with         . In case of the     dataset the BCD procedure required 
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the tuning parameter to be      in order to select    transcription factors, and in case of the 

    dataset this value occurred to be     . 

The common set of „regulators‟ defined by at least   of the considered methods contains   

transcription factors. This number in ratio to the number of the „regulators‟ expected (  ) is 

  times higher than in case of our previous analysis (Spellman dataset). The most influential 

selections are presented in Table 5.2. 

Protein Description 

BMH1 14-3-3 protein, major isoform; controls proteome at post-transcriptional level, 

binds proteins and DNA, involved in regulation of many processes including 

exocytosis, vesicle transport, Ras/MAPK signaling, and rapamycin-sensitive 

signaling (YER177W) 

ATG1 Protein serine/threonine kinase required for vesicle formation in autophagy and 

the cytoplasm-to-vacuole targeting (Cvt) pathway; structurally required for pre-

autophagosome formation; during autophagy forms a complex with Atg13p and 

Atg17p (YGL180W) 

PPT1 Protein serine/threonine phosphatase with similarity to human phosphatase PP5; 

present in both the nucleus and cytoplasm; expressed during logarithmic growth; 

computational analyses suggest roles in phosphate metabolism and rRNA 

processing (YGR123C) 

XBP1 Transcriptional repressor that binds to promoter sequences of the cyclin genes, 

CYS3, and SMF2; expression is induced by stress or starvation during mitosis, 

and late in meiosis; member of the Swi4p/Mbp1p family; potential Cdc28p 

substrate (YIL101C) 

USV1 Putative transcription factor containing a C2H2 zinc finger; mutation affects 

transcriptional regulation of genes involved in protein folding, ATP binding, and 

cell wall biosynthesis (YPL230W) 

Table 5.2. Proteins correspondent to the transcription factor genes selected by the methods. 
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Summary 

Processes that take place in the biological cell are very complex and are not yet completely 

understood by the contemporary molecular biology. What is known is that the most of the 

activities in the cell are performed by proteins. The exact structure of a protein determines its 

function. The structure of each protein is encoded by the particular region (gene) of the DNA 

molecules stored in the cell. The process of mapping from a gene to the particular protein is 

referred to as gene expression. Despite the fact that every cell of an organism contains 

exactly the same copy of the DNA, and, hence, the same genes, the differently specialized 

cells produce different proteins. This is because the different genes are expressed among 

different cell types. Besides, there is a complex regulation machinery inside each cell, which 

defines when and what protein to produce. This machinery uses a certain group of proteins 

knows as transcription factors. These proteins influence the production of the other proteins. 

The question of which genes encode the transcription factors is of great interest for 

contemporary molecular biology. With the development of the high-throughput techniques, 

such as the microarray technology, studying the processes underlying the cell cycle has 

become more convenient. Unfortunately, converting the data produced by the microarray 

experiments into knowledge is not a trivial task. Usually, it implies a series of biological 

studies with an application of statistical techniques. 

In this work we addressed the problem of inferring influential transcription factor genes from 

microarray data. Assuming that transcription factors have the most effect on the expression 

of genes, we modeled the expression of each gene as a linear function of the expression of 

transcription factor genes. We examined the applicability of the linear model to biological 

data. Experiments on both the simulated and the real gene expression datasets demonstrated 

that the linear approximation is quite interpretable. 

Microarray data is usually high-dimensional and contains noise and measurement errors. 

This makes the application of the classical linear regression methods complicated. In this 

work we described several techniques which are proposed to outperform the ordinary Least 

Squares approach in terms of the variable selection ability and the prediction accuracy. These 

are ridge regression, the LASSO, the ElasticNet, MRSR and the Multi-task LASSO.  
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We studied the properties and the computational complexity of the presented algorithms in 

order to choose the most reliable of them. We analyzed performance of the techniques on 

both real and artificial data.  The obtained test results demonstrated that almost all of the 

considered methods are efficient and are able to produce biologically meaningful solutions.   
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Oluliste transkriptsioonifaktorite tuvastamine 

lineaarsete mudelite abil 

Magistritöö (30EAP) 

Nikita Shipilov 

Resümee 

Mitmerakuline organism tavaliselt koosneb erinevatest rakutüüpidest, kuid kõikides rakkudes 

on sama DNA. Vastavalt teatud DNA lõikudele (geenidele) sünteesitakse rakus valke. 

Erinevat tüüpi rakud toodavad erinevaid valke vastavalt sellele, mis geenid rakus aktiivsed 

on. Geenide aktiivsust määravad spetsiifilised valgud – transkriptsioonifaktorid. Nad on 

võimelised seonduma DNA ahelaga teatud kohtades ning aktiveerima või deaktiveerima 

vastavaid geene. 

Transkriptsioonifaktorite tuvastamine on aktuaalne probleem molekulaarbioloogias. 

Tänapäeval võimaldavad erinevad tehnoloogilised saavutused jälgida rakus toimuvaid 

protsesse, kuigi nende analüüs ei ole triviaalne ülesanne, mis vajab erinevate teaduste 

kaasamist. Nende hulgas on ka statistika. 

Käesolevas töös kirjeldatakse lineaarsete mudelite kasutamise võimalusi oluliste 

transkriptsioonifaktorite tuvastamiseks mikrokiibi andmetest. Lineaarse mudeli parameetreid 

võib käsitleda kui transkriptsioonifaktorite olulisust määravaid näitajaid. Töös on vaadeldud 

erinevad lineaarregressiooni meetodid koos nende iseärasuste põhjaliku kirjeldusega ning on 

analüüsitud nende sobivus bioloogiliseks rakenduseks. 

  



64 
 

References 

[     ] Bakin, S. Adaptive regression and model selection in data mining problems. Ph.D. 

thesis, The Australian National University, 1999. 

[    ] Boyd, S. and Vandenberghe, L. Convex Optimization. Cambridge University 

Press, New York, USA, 2004. 

[     ] Efron, B., Hastie, T., Johnstone, I. and Tibshirani. R. Least angle regression (with 

discussion). Annals of Statistics, 32: 407-451, 2004. 

[    ] Fu, W. J. Penalized regressions: The bridge versus the lasso. Journal of 

Computational and Graphical Statistics, 7(3): 397-416, 1998. 

[    ] Hoerl, A.E. and Kennard, R.W. Ridge regression: Biased estimation for 

nonorthogonal problems. Technometrics, 12: 55-67, 1970. 

[     ] Liu, H.,  Palatucci, M. and Zhang, J. Blockwise Coordinate Descent Procedures 

for the Multi-task Lasso, with Applications to Neural Semantic Basis Discovery. 

International Conference on Machine Learning, 2009. 

[     ] Osborne, M. R., Presnell, B. and Turlach, B. A. On the LASSO and its dual. 

Journal of Computational and Graphical Statistics, 9: 319–337, 2000. 

[    ] Park, M. Y. and Hastie, T. Regularization path algorithms for detecting gene 

interactions. Technical report, Department of Statistics, Stanford University, 2006. 

[    ] Similä, T. and Tikka, J. Common Subset Selection of Inputs in Multiresponse 

Regression. International Joint Conference on Neural Networks, 2006. 

[    ] Similä, T. and Tikka, J. Multiresponse sparse regression with application to 

multidimensional scaling. Proceedings of the 15th International Conference on 

Artificial Neural Networks, vol. 3697 of Lecture Notes in Computer Science, pp. 

97–102, 2005. 



65 
 

[     ] Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the 

Royal Statistical Society, Series B, 58: 267-288, 1996. 

[     ] Turlach, B., Venables, W. N. and Wright, S. J. Simultaneous variable selection. 

Technometrics, 27: 349-363, 2005. 

[     ] Weisberg, S. Applied Linear Regression. 3rd edition. Wiley, New York, USA, 

2005. 

[    ] Yuan, M. and Lin., Y. Model selection and estimation in regression with grouped 

variables. Journal of the Royal Statistical Society, Series B, 68: 49-68, 2006. 

[     ] Zhang, J. A probabilistic framework for multi-task learning. Ph.D. thesis, 

Carnegie Mellon University, 2006. 

[    ] Zou, H. and Hastie, T. Regularization and variable selection via the elastic net. 

Journal of the Royal Statistical Society, Series B, 67: 301-320, 2005. 

[      ] Spellman, P. T. , Sherlock, G., Zhang, M. Q.,  Iyer, V. R., Anders, K., Eisen, M. 

B., Brown, P. O., Botstein, D. and Futcher, B. Comprehensive identification of 

cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray 

hybridization. Mol Biol Cell, 9(12): 3273-3297, 1998. 

[      ] Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, 

G., Botstein, D. and Brown, P. O. Genomic expression programs in the response 

of yeast cells to environmental changes. Mol Biol Cell, 11(12): 4241-4257, 2000. 

[     ] Someren, E. P., Wessels, L. F., Backer, E. and Reinders, M. J. Genetic network 

modeling. Pharmacogenomics, 3(4):507-25, 2002. 

[   ] SGD Project. “Saccharomyces Genome Database”. 

http://www.yeastgenome.org/ 

 

 

http://www.citeulike.org/user/alokm/author/Spellman:PT
http://www.citeulike.org/user/alokm/author/Sherlock:G
http://www.citeulike.org/user/alokm/author/Zhang:MQ
http://www.citeulike.org/user/alokm/author/Iyer:VR
http://www.citeulike.org/user/alokm/author/Anders:K
http://www.citeulike.org/user/alokm/author/Eisen:MB
http://www.citeulike.org/user/alokm/author/Brown:PO
http://www.citeulike.org/user/alokm/author/Botstein:D
http://www.citeulike.org/user/alokm/author/Futcher:B
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gasch%20AP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Spellman%20PT%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kao%20CM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Carmel-Harel%20O%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Eisen%20MB%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Storz%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Storz%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Botstein%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Brown%20PO%22%5BAuthor%5D

