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LIST OF TERMS AND ABBREVIATIONS 

abaxial side of leaf the lower side (usually) of a bilateral leaf, which is 
often exposed to lower levels of light than leaf adax-
ial side 

adaxial side of leaf the upper side (usually) of a bilateral leaf, which is 
often exposed to higher levels of light than leaf 
abaxial side 

APAR annually absorbed photosynthetically active radia-
tion (MJ m-2 yr-1) 

carboxylation capacity the maximum rate of CO2 fixation of photosynthesis 
(μmol m-2 s-1) 

Chl a/b the ratio of concentrations of chlorophyll a to chlo-
rophyll b 

Chl b  chlorophyll b 
chlorophyll fluorescence fluorescent light that has been re-emitted after being 

absorbed by the chlorophyll molecules of a plant  
Chls chlorophyll content per unit leaf area (μmol m-2) 
fAPAR  the fraction of photosynthetically active radiation 

absorbed by vegetation  
far-red irradiation  the red end of the visible light spectrum, wavelength 

region of 700–800 nm 
fluorescence the emission of light by a substance that has ab-

sorbed light, here used in the meaning of chlorophyll 
fluorescence 

Fv/Fm quantum yield of PSII of dark adapted (relaxed) lea-
ves, calculated as the proportion of absorbed quanta, 
used in photochemical reactions 

GPP  gross primary production, calculated as annual up-
take of carbon by vegetation per unit ground area (g 
C m-2 yr-1)  

green LAI leaf area index of green plant parts, calculated as 
leaf area per unit ground area (m2 m-2) 

green LAIe  effective projected green leaf area, calculated as the 
average number of contacts of inserted pin (pinpoint 
method) with green plant parts (leaves and green 
branches)  

LAI  leaf area index, calculated as leaf area per unit 
ground area (m2 m-2) 

LAIe effective projected leaf area, calculated as average 
number of contacts of inserted pin (pinpoint method) 
with plant parts  

LHC light harvesting complex, a complex of proteins and 
photosynthetic pigments focusing light energy to the 
reaction centre of the photosystem 
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LHCI  LHC focusing light energy to the reaction centre of 
PS I 

LHCII LHC focusing light energy to the reaction centre of 
PS II 

LHCII trimer  large trimeric subunit of LHCII  
LMA  leaf dry mass per unit leaf area (g m-2) 
LUE light use efficiency, defined as the amount of carbon 

in produced biomass per unit of absorbed light  
(g C MJ-1) 

MODIS  Moderate Resolution Imaging Spectroradiometer ac-
quiring daily reflectance data of Earth's surface 

NDVI Normalized Difference Vegetation Index, acquired 
from vegetation reflectance at the visible and far-red 
spectral regions  

NDVI570 NDVI, calculated from reflectance at 570 and 780 nm  
NDVI680 NDVI, calculated from reflectance at 680 and 780 nm 
Nm leaf nitrogen content per unit dry mass (g g-1) 
Non-photochemical quenching mechanism in plants for dissipating excess 

light energy as heat  
NPP net primary production, calculated as annual produc-

tion of carbon per unit ground area when carbon cost 
of respiration is subtracted (g C m-2 yr-1) 

NPQ non-photochemical quenching, calculated from chlo-
rophyll fluorescence  

Ns leaf nitrogen content per unit leaf area (g m-2) 
PAR photosynthetically active radiation (MJ m-2 yr-1) 
photosystem protein complex that carry out the primary absorp-

tion of light and the transfer of energy and electrons 
during photosynthesis 

PPFD photosynthetic photon flux density, the number of 
photons in the 400–700 nm waveband incident per 
unit time on a unit surface (µmol photons m-2 s-1) 

PRI Photochemical Reflectance Index, calculated using 
reflectance at wavelengths of 531 and 570 nm  

PSI a protein complex that captures and uses light 
energy to mediate electron transfer from plastocya-
nin to ferredoxin 

PSI antenna complex of proteins and photosynthetic pigments fo-
cusing light energy toward the reaction centre of PS I 

PSII  a protein complex that carries out the primary ab-
sorption of light in photosynthesis and uses light 
energy to energize electrons that are then transferred 
through a variety of coenzymes and cofactors to re-
duce plastoquinone to plastoquinol  
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qN non-photochemical quenching, calculated on a scale 
of 0–1 from chlorophyll fluorescence  

qP photochemical quenching, an approximation of the 
proportion of PSII reaction centres that are open, cal-
culated from chlorophyll fluorescence 

quantum use efficiency  the proportion of absorbed light that is used in photo-
chemical reactions 

red-irradiation the wavelength region of 600–700 nm of the visible 
light spectrum 

Rubisco  ribulose-1,5-bisphosphate carboxylase-oxygenase, an 
enzyme catalysing the fixation of CO2 during photo-
synthesis 

ΦII quantum yield of PSII of light adapted leaves, calcu-
lated as the proportion of light absorbed by PSII that 
is used in photochemical reactions  
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1. INTRODUCTION 

1.1. Carbon and nitrogen budget of ecosystems 

Understanding the determinants of the global carbon cycle is becoming a more 
and more important task of plant ecophysiology due to predictions of large-
scale changes in global climate (IPCC, 2007). Roughly 50 Gt of carbon is annu-
ally acquired through photosynthesis just by terrestrial plants (Potter, 2012) and 
even small changes in climate may cause substantial changes in local scale plant 
production (Parmesan and Yohe 2003, Peñuelas et al. 2007, Bokhorst et al. 
2011). The relationships between vegetation production and irradiance, mois-
ture, temperature and nitrogen, as major limiters of vegetation carbon assimila-
tion, have been studied over different biomes and functional groups and extra-
polated to the global scale (e.g. Field et al. 1992, Potter et al. 1993, White et al. 
2000, Caylor et al. 2003, Wright et al. 2004, Yuan et al. 2007, Street et al. 2012, 
Peltoniemi et al. 2012). However, compared to abundant studies on forests and 
grasslands, very few papers on the carbon balances of shrublands are available, 
although this data is also needed for the determination of global carbon budgets.  

In parallel with studies on carbon budget of different ecosystems, more and 
more attention is paid also to nitrogen content of plants. Already in 1987 Hirose 
and Weger demonstrated that nitrogen distribution has a strong effect on daily 
canopy carbon gain, and plants from a denser stand should benefit more from 
the nonuniform distribution of nitrogen in the canopy (Hirose 2005). Therefore 
it was assumed that the modelling of canopy photosynthesis with leaf nitrogen 
distribution enables us to scale up from chloroplast biochemistry to canopy car-
bon gain (Kull and Jarvis, 1995, De Pury and Farquhar, 1997). Recently canopy-
scale measurements have also proven the significant effect of the nitrogen bud-
get of ecosystems on canopy carboxylation capacity, respiration and soil turn-
over rates, all of which control the canopy carbon cycle and influence the sen-
sitivity of the global carbon cycle to changes in climate (Lambers et al. 2008, 
Ollinger et al. 2008). Thus C/N ratios of different functional types of plants are 
often incorporated into plant production models (White et al. 2000, Wania et al. 
2012). At the same time the whole concept of nitrogen assimilation by plants 
has changed (Schimel and Bennett 2004) more efficiently explaining the link 
between carbon and nitrogen budgets. Nevertheless, there are still large dis-
agreements in calculations of global scale nitrogen balance (Zaehle and Dal-
monech 2011, Wania et al. 2012) partly due to changes in C/N ratio in plants as 
a result of changing climate (Sardans et al. 2012) and partly because of a lack of 
knowledge on the nitrogen cycles of different ecosystems and plant functional 
types.   

Today the main obstacle for modelling global vegetation processes lies in the 
identification of a minimal number of plant functional types, in order to reduce 
the complexity of traits that are needed for productivity predictions (Lavorel et 
al. 2008). On the other hand, to be able to select those relevant traits and plant 
groups we need enough knowledge on the whole range of natural variability in 
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different light-capture and light-use parameters and strategies, which determine 
the productivity. Thus, two different approaches are used for modelling global 
productivity: ´top-down´ models using remotely sensed data integrate both phy-
siological and structural vegetation parameters, and ´bottom-up´ models scale 
productivity to the canopy level from the known chloroplast- and leaf-level phy-
siology and its relations to resource availability (Houborg et al. 2009). 

 
 

1.2. Remote sensing of plant productivity 

Often the ´top-down´ approaches are based on interpretations of remotely sen-
sed canopy reflectance signals (Hilker et al. 2008). To detect changes in global 
plant cover, remote sensing technologies are constantly developing and there is 
a search for the best remotely estimated fit for key parameters of productivity 
(Monteith and Moss 1977): leaf area index (LAI), the fraction of photo-
synthetically active radiation absorbed by vegetation (fAPAR) and the light use 
efficiency (LUE). Reflectance index NDVI (Rouse et al. 1974) is one remote 
sensing parameter that is often used as an estimate of the fraction of photo-
synthetically active radiation absorbed by vegetation (fAPAR) (Huemmrich et 
al. 2010, Peng et al. 2012, Lausch 2013) and a closely related parameter, green 
leaf area index (green LAI) (Fensholt et al. 2004, Haboudane et al. 2004). The 
estimations of fAPAR and LAI have already been improved over a number of 
years and the best outcome is that based on MODIS algorithm global LAI and 
fAPAR data at a 1×1 km spatial resolution is collected on regular basis (Myneni 
et al. 2002). However, MODIS sorts the vegetation within each pixel to one of 
six given biomes leaving room for misclassifications and similarly to small-
scale NDVI measurements, at dense canopies MODIS LAI tends to saturate 
(Myneni et al. 2002). Differently from fAPAR and LAI, estimations of LUE 
have been improved most extensively over the last decade as spectrometers with 
better resolution became available.  

In general two different approaches for determining LUE from a distance are 
used: the first option is the prediction of LUE indirectly from environmental 
stresses, the other possibility is to predict LUE more-or-less directly from chan-
ges in spectral reflectance (Hilker et al. 2008). The environmental-stress based 
LUE estimations using narrow waveband reflectance are highly sensitive to 
atmospheric scattering and direction of measurements (Liu et al. 2006), yet 
recently hyperspectral imagery has quite successfully been used for prediction 
of foliage nitrogen content from narrow waveband reflectance (Martin et al. 
2008, Ollinger et al. 2008). The MODIS project also gives estimates of GPP, 
which use biome-specific information about stress-induced changes in maxi-
mum LUE (Heinsch et al. 2003), even though several studies have reported 
LUE to vary not only between biomes but also between different functional 
groups of species (Nichol et al. 2000, Ahl et al. 2004, Kergoat et al. 2008).  
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The alternative approach is estimating LUE more directly from spectral re-
flectance, for instance by measuring solar induced chlorophyll fluorescence 
emissions of canopies, or more precisely the impact of fluorescence emissions 
on apparent spectral reflectance (Zarco-Tejada et al. 2000, Moya et al. 2004). 
However, this approach has been technically tricky since right now, remote 
detection of chlorophyll fluorescence is possible only by using sub-nanometre 
reflectance bands in the red and near infrared regions where solar radiation is 
not abundant (Meroni and Colombo 2006). Concurrently remotely sensed chan-
ges in the photoprotective mechanism are also used for estimations of canopy 
LUE, since a reflectance index PRI has been proposed as an optical proxy of 
light use efficiency (Garbulsky et al. 2011). Using a reflectance band at 531 nm, 
reflectance index PRI involves combined information on changes in the xantho-
phyll cycle and the aggregation state of PSII antennas (Gamon et al. 1992, 
Peñuelas et al. 1995, Gamon et al. 1997). For measurements from space the 
relationship between LUE and PRI is better if an atmospherically corrected 
band of 678 nm is used for PRI calculations, and PRI measurements from space 
seem to improve MODIS LUE derivations immensely when compared to the 
previously-used biome-specific look-up table of maximum LUEs (Drolet et al. 
2008). Yet, the relationship between PRI and LUE seems to be species-specific, 
much less variance in LUE is described by PRI when different functional types 
of plants are investigated (Garbulsky et al. 2011). Also the reliance of PRI on 
canopy structure and light conditions has been reported (Barton and North 
2001, Grace et al. 2007, Hilker et al. 2008). Thus the applicability of PRI for 
estimation of LUE of different ecosystem types with varying canopy structure 
still needs to be tested.  

 
 

1.3. The effect of canopy structure on  
estimations of light use efficiency 

Currently one of the most challenging aspects of remote sensing is tracking the 
photosynthetic activity of forests, since the remote estimation of carbon uptake 
by multilayered forest ecosystems involves several difficulties (Grace et al. 
2007). The structure dependence of PRI values applies also to the vertical struc-
ture of vegetation (Nichol et al. 2000, Barton and North 2001, Damm et al. 
2010). Forests, as very complex systems of coexisting species with different 
spatial and temporal strategies for light capture may as a whole system in fact 
be much more efficient in light use than simpler canopy-systems (Ishii and 
Asano 2010). For instance the productivity of the whole ecosystem appears to 
be higher in mixed forests, which consist of both broadleaved and coniferous 
species (Aiba et al. 2007). Mostly the ´top-down` models using reflectance data 
for estimations of light use efficiency, are very simple. Nevertheless simple 
LUE models may perform even better than more detailed ´bottom-up` scaled-
leaf models containing several species-specific parameters (Houborg et al. 
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2009). It is difficult to obtain enough input data for multilayer models in order 
to derive total canopy-scale fluxes.  

However, to understand the mechanistic basis of changes in leaf and canopy-
level light use, more complex models are necessary. Multilayer models that 
consider the vertical variability of photosynthesis or at least divide canopy into 
shaded and sunlit fractions have proven to better estimate the diurnal changes in 
canopy photosynthesis (Chen et al. 1999, Baldocchi and Wilson, 2001, Damm 
et al. 2010). Among other factors that influence canopy photosynthesis, the effi-
ciency with which leaf canopy is exposed to light is shown to be a function of 
inclination angles and spatial aggregation of leaves (Cescatti and Niinemets 
2004, Niinemets 2010). However, simpler models assume the inclination angle 
distribution of plant canopies to be spherical, even if such a generalization may 
cause significant bias in the estimations of vertical distribution of light and 
photosynthesis within the canopy (Stadt and Lieffers 2000, Sarlikoti et al. 
2011). This is because real vegetation canopies consist of a mixture of species 
with several alternative leaf inclination distributions (Niinemets 2010).  

Another topic that needs to be studied more explicitly is the physiological 
relationship between leaf level chlorophyll fluorescence measurements and CO2 
assimilation, as there are indications that this relationship may change among 
leaves with different inclination angles and resultant light conditions (Myers et 
al. 1997, Tsuyama et al. 2003, Damm et al. 2010). This suggests that if estima-
tions of leaf level quantum use efficiency derived from chlorophyll fluorescence 
are used for modelling canopy photosynthesis, the inclusion of leaf angle dis-
tribution into the model may be necessary. Most probably, leaf-level differences 
in light acclimation strategies also influence the upscaling from leaf-level quan-
tum use efficiency to canopy light use efficiency (Damm et al. 2010).  

 
 

1.4. Within-leaf mechanisms influencing  
light-use efficiency 

In order to understand the factors influencing the up-scaling of photosynthetic 
properties from leaf to canopy the variations in leaf structure and the differences 
in light-acclimation of chloroplasts within the leaf must be considered. The leaf 
and chloroplast properties that define light use efficiency of the whole canopy 
have been studied profoundly (Kull 2002), but the magnitude of these light 
induced changes in leaf morphology and physiology is not known for different 
environmental conditions and for different species or functional groups (Ishii 
and Asano 2010). Valladares and Niinemets (2008) concluded that the magni-
tude of light acclimation of leaf morphology is larger in shade tolerant species, 
whereas high-light demanding species change their physiology more plastically. 
However, the morphology of shade tolerant species can not be the major means 
of optimizing the quantum use of sunfleck energy, which is one factor strongly 
influencing the carbon gain of lower canopy regions (Porcar-Castell and Palm-
roth 2012, Way and Pearcy 2012). Furthermore, the regulation of one trait, such 
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as leaf chlorophyll content, which has been shown to be a very sensitive indi-
cator of different environmental stresses, can be achieved either through chan-
ges in the overall percentage of chlorophyll, through physiological redistribu-
tion of chlorophyll between different photosynthetical units, but also through 
changes in leaf morphology as changes in LMA with constant chlorophyll con-
tent may affect light capture efficiency significantly (Niinemets 2010).  

The distribution of leaf photosynthetic traits through the canopy seems to be 
controlled not only on the leaf level but is evidently a whole-canopy phenome-
non (Givnish 1988, Kull 2002). Indeed, Moreau et al. (2012) found that the 
relationship between canopy nitrogen gradient and the corresponding light gra-
dient is a function of canopy size. Yet, changes in leaf nitrogen have proven to 
be of key importance in the acclimation of leaf photosynthesis to different light 
conditions (Hirose 2005). In fact, the photosynthetic performance of leaf and 
canopy is defined not only by within leaf and canopy nitrogen distribution, but 
also the magnitude of changes in different leaf traits depends on the availability 
of resources, such as nitrogen (Portsmuth and Niinemets 2007). The reason be-
hind the nitrogen dependence of chlorophyll content and distribution is that 
chlorophylls need to be bound to proteins that are costly since they contain 
nitrogen (Evans 1989). The magnitude of light adjustment of the photosynthetic 
apparatus is not only restricted by the availability of resources (such as nitro-
gen), but there probably also exists a lower limit of acclimation, as certain con-
structional features define the minimum amount of nutrients for photosynthetic 
units to remain intact and active (Kull 2002, Meir et al. 2002).  

The consideration of chloroplast-level light acclimation differences within 
the leaf have not been very common in ecological studies as many gaps are still 
present in the knowledge of the molecular-level adjustment of photosynthetic 
compounds to irradiance. Due to technical limitations the differentiation be-
tween photosynthetic subunits and the detection of the allometric redistribution 
of different components of the photosynthetic apparatus in situ in leaves from 
natural canopies has not been possible until recently. That is why the accli-
mation of the photosystem has remained relatively unnoticed until advances in 
state transition studies have stressed the variability in light harvesting abilities 
of PSI (Ruban et al. 2006, Ruban and Johnson 2009, Minagawa 2011). Tra-
ditionally a lot of attention has been paid to the light adjustment of photosystem 
II since in ecological research, leaf chlorophyll a/b ratio has often been ob-
served to decrease with decreasing light availability and has been interpreted as 
a proportional increase in the chlorophyll b binding light harvesting complex of 
LHCII complexes (Evans 1989). However, studies on the molecular-scale light 
acclimation of photosystem II implicate multiple locations for chlorophyll b 
(Ruban et al. 2006, Kouřil et al. 2013).  

In addition to light acclimation of photosystems, other nitrogen-rich units of 
the photosynthetic apparatus, such as ribulose-bisphosphate carboxylase-oxy-
genase (Rubisco), are also subjected to changes in light environment. It has 
been shown that in high-light species the investment of nitrogen into carbo-
xylation enzymes, rather than into chlorophyll, increases photosynthetic 
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capacity more efficiently (Niinemets and Tenhunen 1997, Terashima et al. 
2006). The inclusion of parameters considering light-acclimation-induced chan-
ges in the allocation of protein between different components of photosynthesis 
could improve the predictions of maximum photosynthetic capacity of photo-
synthesis models (Mott and Woodrow 2000, Porcar-Castell and Palmroth 2012). 
Nevertheless, too little is known about the natural variability in the amount of 
Rubisco and other units of photosynthetic apparatus across several species and 
plant functional groups in order to construct mechanistic models linking nitro-
gen allocation to electron transport, carboxylation, respiration, storage and light 
use efficiency (Xu et al. 2012).  

 
 

1.5. Aims of the thesis 

The general aim of this study was to investigate the factors that influence pri-
mary production of vegetation and remote estimations of primary production, 
focusing on the most variable component of primary production – light use effi-
ciency. In particular, we studied which factors are most responsive to changes 
in leaf and canopy light environment and how do these differences in canopy, 
plant and leaf architecture and physiology influence optical estimations of leaf- 
and canopy-level light use capacity and the green leaf area index (green LAI). 
First, based on previous knowledge of the dependence of remote estimations of 
vegetation physiology on the wavelength region from where optical signals are 
obtained, we assumed that measurements from the region of maximum absorp-
tion of chlorophyll might be worse estimators of plant properties than measure-
ments from wavelength region where chlorophyll absorption is weaker. Se-
condly, we expected that canopy reflectance index PRI is well suited for esti-
mating canopy light-use efficiency in European shrublands. We also assumed 
that the fraction of whole-leaf light capture efficiency that is described by opti-
cal measurements of chlorophyll fluorescence, changes within the vegetation 
canopy as a function of leaf angles, since differences in leaf orientation cause 
larger or smaller irradiance differences between alternate sides of a bilateral 
leaf. Additionally we expected that canopy and leaf nitrogen content adjusts 
more extensively to differences in light conditions than light-absorbing chloro-
phyll content. 

 
The specific objectives of this thesis were: 
1.  To produce an integrated scheme of carbon and nitrogen pools and fluxes of 

European shrublands. 
2. To estimate the applicability of reflectance indices NDVI (calculated from 

two different wavelength regions) and PRI in estimating green LAI and light 
use efficiency of different shrubland communities that are subjected to vary-
ing conditions of irradiance, precipitation and temperature. 
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3. To investigate the effect of canopy and leaf structure on remote estimations 
of canopy-level light-use efficiency and leaf-level quantum capture effi-
ciency. 

4. To search for differences in leaf chlorophyll distribution within leaves from 
different canopy positions and different species. 

5.  To study the natural variation in the fraction of photosynthetic and non-
photosynthetic nitrogen in leaves from different irradiance conditions and 
different species.    

6. To find out if canopy nitrogen content can be used for estimating differences 
in carbon production of aboveground vegetation of European shrublands. 
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2. MATERIALS AND METHODS 

2.1. Study sites and experimental set-up 

Field studies were carried out at two different spatial scales. A large-scale mani-
pulation experiment of European shrublands differing in annual irradiation, 
moisture and temperature has been described in I and II. The steep vertical 
canopy light gradient of a multi-layered deciduous forest at Järvselja, Estonia, 
was investigated in III and IV. 

 
Papers I and II 
The experimental sites of six European shrublands were located in Wales-UK, 
Denmark, Netherlands, Hungary, Sardinia-Italy, and Catalonia-Spain where 
next to three control plots, three repetitions of warming and drought systems 
were installed in order to imitate changed climate. In warming experiment the 
vegetation was covered with reflective curtains at night: this decreased the loss 
of heat and increased soil temperature by 0–3 °C, depending on the site. For 
drought treatments, during precipitation the vegetation was covered with trans-
parent waterproof covers for two-month periods within the growing season, 
reducing the precipitation of year 2003 by 39–349 mm, depending on the site. 
This experiment was part of EU projects CLIMOOR and VULCAN (Beier et al. 
2004). The meteorological survey and measurements for canopy belowground 
and aboveground carbon and nitrogen pools and fluxes were performed during 
the years 1998–2004 for I. Optical measurements of II were carried out in sum-
mer 2003, in a period when drought treatment was being applied at each site. 
During both studies, air and soil temperature, precipitation and irradiance were 
constantly recorded by permanent sensors.  

In I the aboveground vegetation structure and frequency (pinpoint measure-
ments), carbon and nitrogen content of plant tissue and litter, litter decompo-
sition rate, belowground root length, soil carbon and nitrogen content at main 
rooting depth and in mineral soil, the carbon content of microbial biomass, soil 
respiration, concentrations of NO3 and NH4 in soil, NO3

¯ and dissolved organic 
carbon (DOC) concentration in soil water were measured in order to calculate 
plant biomass, root litterfall, the decomposition of soil organic matter, the frac-
tion of autotrophic and heterotrophic soil respiration, nitrogen mineralization 
rate, soil water balance, leaching losses of NO3

¯ and DOC and eventually the 
carbon and nitrogen pools and fluxes of different shrubland ecosystems.  

In II canopy reflectance, chlorophyll fluorescence, concentration of leaf 
chlorophyll, leaf mass per area (LMA) and leaf nitrogen content were measured. 
Canopy reflectance measurements and part of the leaf-level fluorescence mea-
surements of II were performed on the same subplots as measurements of 
canopy structure (pinpoint measurements) of I. Canopy reflectance was measu-
red using a ground-based S2000-FL spectrometer (Ocean Optics Inc., Dunedin, 
FL, USA) from the spectral region between 400 nm and 950 nm at 1 m height 
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above the canopy, and vegetation indices PRI and NDVI680 and NDVI570 were 
calculated. See more details in I and II. 
 
Papers III and IV 
The experiments were performed in Estonia at Järvselja Experimental forest 
(58°22´N, 27°20´E) in the summers of 1999–2002. Permanent scaffholding 
towers were used to access the topmost and lowest canopy layers of the studied 
tree species: shade intolerant Betula pendula Roth. and Populus tremula L. and 
shade tolerant subcanopy Tilia cordata Mill. In IV, a herbaceous species Soli-
dago virgaurea was also taken under examination. Above each measured leaf 
light conditions were estimated by using hemispherical photography.  

In III, chlorophyll fluorescence from the adaxial and abaxial side of the leaf, 
leaf concentrations of chlorophyll a and b, LMA, and leaf angles were mea-
sured. Leaf adaxial/abaxial fluorescence ratios were used as estimations of vary-
ing intraleaf light acclimation profiles of chloroplasts. In the following year, 
leaf reflectance from the wavelength range of 655–665 nm (red spectral region) 
and 550–560 nm (green spectral region), LMA and leaf chlorophyll content and 
nitrogen content were measured at the same canopy heights of the same trees 
where the fluorescence measurements of previous year had been carried out. We 
measured leaf transmittance and reflectance with an integrating sphere (ISP-80-
8-R, Ocean Optics) and fibre optic spectrophotometer (S2000, Ocean Optics).  

In IV, shoots of B. pendula and T. cordata were cut and immediately placed 
into water, while the herbaceous species S. virgaurea was dug up and planted 
into pots with moist soil. For non-destructive measurements of partial reactions 
of photosynthesis a combined gas exchange/optical system was used in order to 
simultaneously measure quantum flux densities and chamber CO2 and O2 con-
centrations and to record CO2 uptake, O2 evolution, chlorophyll fluorescence, 
and 820 nm absorptance (Laisk et al. 2002, Eichelmann et al. 2004). In addition 
we measured chlorophyll a and b content, concentration of proteins (including 
Rubisco), leaf dry weight and area and leaf nitrogen concentration. Data was 
used for calculations of PSII quantum capture efficiency and PSII e– transport 
rate, relative optical cross-section of PSII, relative absorption cross-section of 
PSI, densities of PSII and PSI and antenna sizes of PSII and PSI and the mass of 
nitrogen in different photosynthetic compartments. See more details in III and 
IV. 

Leaf chlorophyll fluorescence of was measured using modulated chlorophyll 
fluorescence equipment PAM-2000 (WalzGmbH, Effeltrich, Germany) at both 
study-sites. See more details in II–IV. 
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2.2. Data processing  

Total ecosystem C balance (∆C-System) at I was calculated as: 
 

 ∆C-System = DepDOC+NPP–SoilrespHet–C-LeachDOC (1) 
 
where DepDOC is deposition of carbon into soil as dissolved organic carbon  
(g C m-2 y-1), NPP is net uptake of carbon by plants (g C m-2 y-1), SoilrespHet is 
carbon used in heterotrophic soil respiration (g C m-2 y-1), LeachDOC accounts 
for losses in dissolved organic carbon through leaching (g C m-2 y-1). See more 
details in I. 

Effective projected leaf area (green LAIe) of shrublands at II was calculated 
as the average number of contacts with green parts (leaves and green branches) 
of the plants per pin. See further details in II.  

The vegetation reflectance indices at II were calculated as follows: 
 

 NDVI680 = (R780−R680)/(R780 + R680) (2) 
 NDVI570 = (R780−R570)/(R780 + R570) (3) 
 PRI = (R531−R570)/(R570 + R531) (4) 

 
Rx in the equations is the reflectance at x nm. For more details of canopy ref-
lectance measurements see details in II. 

Leaf-level reflectance parameters for alternate leaf sides of deciduous trees 
at III were averaged from the red spectral region (655–665 nm) and the green 
spectral region (550–560 nm). Sample absorption at the same wavelength ran-
ges was calculated from the equation: 

 
 absorptance = (1−reflectance−transmittance) (5) 

 
Leaf-level chlorophyll fluorescence parameters, such as quantum yield of PSII 
of dark-adapted leaves (Fv/Fm) and light-adapted leaves (ΦII), photochemical 
quenching (qP) and non-photochemical quenching (NPQ and qN) in II–IV were 
calculated from equations: 

 
 ΦII = (Fm`–F)/Fm` (6) 
 Fv/Fm = (Fm–Fo)/Fm  (7) 
 qP = (Fm`–F)/(Fm`–Fo`)  (8) 
 NPQ = (Fm–Fm`)/Fm` (9) 
 qN = (Fm–Fm`)/(Fm–Fo) (10)  

 
where Fo is minimum fluorescence yield and Fm maximal fluorescence yield of 
dark-adapted leaves. Fm` is maximal fluorescence yield and Fo` minimum fluo-
rescence yield of light-adapted leaves. See further details in II–IV. 

The relative absorption cross-section of PSII (aII) and PSI (aI) and antenna 
sizes of PSII (PSUII) and PSI (PSUI) in IV were calculated as follows: 
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 aII = Yc/ΦII (11) 
 aI = Yc/Yp (12) 
 Yp = Po–Ps/Pm (13) 
 PSUI = (aI/aI+aII)Chl/NI (14) 
 PSUII = (aII/aI+aII)Chl/NII (15) 

 
where Yc is quantum yield of linear electron transport, calculated from the 
photosynthetic carbon metabolism, Pm is the transmittance signal at 820 nm that 
corresponds to totally oxidized PSI, Po is the pulse-oxidizable fraction of PSI, Ps 
is the transmittance signal corresponding to the steady-state oxidation of PSI, NI 

is the density of PSI, and NII is the density of PSII. NII was determined as four 
times the oxygen evolution from a saturating single-turnover flash. Two differ-
ent kinetic methods were used for determining NI, see IV for details. Chl is the 
fraction of total chlorophyll that is bound to a certain photosystem. Total Chl 
was assumed to be distributed between the photosystems proportionally with aII 
and aI. The mass of nitrogen in the cores of PSI and PSII in IV was calculated 
from the measured NI and NII. 

For more information about the calculation of different plant parameters see 
details in I–IV. 

 
Light use efficiency: 
For this thesis we calculated the light use efficiency, LUE (g C MJ-1), of six 
European shrublands from a simple equation (Monteith 1972, Montieth and 
Moss 1977):  

 
 LUE = NPP/APAR  (16) 
 APAR = PAR×fAPAR (17) 

 
We used net primary production NPP (kg C m-2 yr-1) estimations for different 
European shrublands, which were calculated as described in I. APAR was ab-
sorbed photosynthetically active radiation (MJ m-2 yr-1), which was calculated 
from PAR (photosynthetically active radiation, MJ m-2 yr-1) multiplied by green 
fAPAR (fraction of PAR absorbed by green vegetation canopy). fAPAR was 
calculated as a function of LAI (Ruimy et al. 1999):  

 
 fAPAR = 0.95×(1–e-k×LAI)  (18) 

 
For the light extinction coefficient (k) a default value of 0.5 (Campbell and Nor-
man 1998) was used. LAI was measured by the pin-point method (Jonasson 
1988, description at II) where we assumed LAI to be robustly half of the ave-
rage number of contacts with a plant per pin (LAIe): 

 
 LAI = 0.5×LAIe  (19) 
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A different index for estimating LUE of shrublands was derived from a paper 
by Green et al. (2003), where the strongest predictor of LUE across all data ap-
peared to be an index using nitrogen content of leaves: 

 
 IndexLUE = (LAI×Nm/100)/fAPAR  (20) 
 
where Nm was obtained from the average nitrogen content of the leaves of the 
dominant species.  

 
Statistical analysis: 
For statistical analysis we used STATISTICA software (StatSoft Inc. USA). 
Linear and nonlinear regression analysis were used in I, II and IV for analysing 
the effect of differences in climate and irradiance on mean ecosystem parame-
ters of different study-sites, for estimating light use efficiency of leaves from 
reflectance parameters and for finding the best fit of relationships between 
different ecosystem, canopy and leaf parameters. Multiple regression analysis 
was performed to estimate different light use parameters from reflectance indi-
ces measured above plants in II. Pearson´s correlation in II and IV or Spearman 
correlation coefficients in III (in the case of heteroscedasticity) were calculated 
between various leaf and canopy parameters. The normality and homoscedas-
ticity of data was tested. Logaritmic transformation was performed if deviation 
from normal distribution was found. General linear models (GLM) were con-
structed in II, considering different categorical and continuous predictors. The 
squared component of a continuous factor was included in the models if the tes-
ted variable was nonlinearly related to a given factor. The significance of differ-
ences between separate groups was investigated using the Fisher LSD post-hoc 
test in II and IV. Non-parametrical Kruskal–Wallis ANOVA by ranks was used 
for analysing the data in III, due to heteroscedasticity. For testing the signifi-
cance of differences between species in III, Wilcoxon signed rank test was 
used. In IV the significance of differences between shade and sun leaves was 
tested using the t-test for independent groups. See more details about statistical 
analysis in I–IV. 
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3. RESULTS AND DISCUSSION 

3.1. Primary production of shrublands 

In order to remotely estimate and model changes in shrubland production we 
first need data on a varying range of carbon storage rates/fluxes and biochemi-
cal cycles of different shrublands, since not many papers about the carbon bud-
gets of shrublands have been published. Our studies at six different sites in 
Europe revealed that apparently similar shrubland ecosystems range from being 
carbon sinks in moist areas (system uptake 126 g C m-2 y-1 in Wales) to carbon 
sources in more arid regions (system emission up to 536 g C m-2 y-1 in non-
steady-state Italian shrubland) (Fig. 4 in I).  

Models of the global carbon cycle have demonstrated that in forest ecosys-
tems, belowground carbon allocation is one of the largest fluxes of C aside from 
canopy assimilation (Davidson et al. 2002). Our study (I) revealed that steady-
state shrubland systems appear to allocate even larger amounts of carbon below-
ground relative to litterfall (an average of 5:1) compared to most forest systems 
(2:1) as shown by Davidson et al. (2002). We also found that differences in car-
bon allocation of various European shrublands could not be explained by differ-
ences in annual temperature or precipitation, even if the non-steady-state shrub-
land of Italy was left out of the analysis (Fig. 1). Neither did mean annual radia-
tion explain differences in carbon allocation (data not shown).  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Ratio between belowground and aboveground carbon content related to (a) 
mean annual temperature and (b) mean annual precipitation at six European shrublands. 
High ratios in Italy result from the early successional stage of the shrubland after 
clearcut.  

 
 

As a result, we expected that large belowground C fluxes of shrublands make it 
difficult to detect changes in the carbon balance of shrublands by remote-
sensing tools, as this method deals only with parameters that can be measured 
aboveground. However, the aboveground carbon of different shrublands 
showed a significant exponential relationship to mean annual precipitation (Fig. 
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2b in I). Higher precipitation increased also the quantum absorbing area of 
vegetation, green LAIe (Fig. 1a in II). Despite site-specific allocational diffe-
rences in carbon pools, our measurements at five European shrublands suggest 
that at a large scale, aboveground carbon pools of shrublands are likely to be rela-
ted (though according to five studied shrublands the relationship might be non-
linear) to belowground carbon pools in steady-state shrublands (Fig. 1a in I), 
assuring that robust assumptions about belowground carbon pools can be made 
based on aboveground or above canopy measurements. 

 
 

3.2. Green LAI of shrubland communities,  
estimated by NDVI 

If we intend to estimate carbon pools and fluxes from a distance, we can not 
deal just with allocational differences, but must also consider that canopy struc-
ture and background properties affect our estimations (Barton and North 2001, 
Grace et al. 2007, Hall et al. 2008, Hilker et al. 2010). Our measurements of re-
flectance index NDVI680 at six European shrublands revealed a positive rela-
tionship between NDVI and green LAIe (effective green leaf area index). How-
ever this relationship tended to saturate at medium to high green LAIe con-
ditions (Fig. 4 in II, Table 4 in II). Similar levelling off of NDVI at dense vege-
tation has been reported in different vegetation types at multiple spatial scales 
(Gamon et al. 1995, Myneni et al. 2002, Haboudane et al. 2004, Lausch 2013). 
Thus, our result indicates that NDVI680, which is calculated using red spectral 
region near maximum absorbtance of chlorophyll, cannot be used for detecting 
changes in green LAI in dense shrublands.  

In order to lessen the saturation effect of NDVI680, we additionally calculated 
NDVI570, which used green spectral region (less absorbed by chlorophyll). Al-
though, at northern sites, relationships between NDVI570 and green LAIe or fluo-
rescence parameters were slightly stronger than the same relationships with 
NDVI680 (Table 5 in II), saturation of NDVI570 still occurred in denser vege-
tation (Fig. 4 in II). However, a recent multi-scale study with different spectro-
meters gives hope that NDVI calculated from the green spectral region can also 
be used at higher LAI conditions if the methodology is improved (Lausch 2013).  

While testing NDVI for detecting the effect of drought and night-time war-
ming on shrubland vegetation, we found that generally lower values of NDVI 
were recorded in drought treatment plots (mean effect at Fig. 2 in II). On the 
other hand, if we searched for treatment effects at different study-sites sepa-
rately, we found no significant drought effect on NDVI, and the warming treat-
ment significantly increased NDVI only in the Italian site (Fig. 2 in II). As the 
treatments simulated realistic climate changes (being realistically small), the 
possible changes in green LAIe were not large either and we found green LAI to 
be significantly affected by manipulations just in Denmark, where artificial 
drought significantly decreased green LAIe (Fig. 2 in II). In fact, green LAI and 
related parameter fAPAR may not react too quickly to small changes in en-
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vironmental conditions. The additional component of primary production – LUE, 
on the other hand, is highly variable and has been shown to respond strongly to 
different environmental changes (Gamon et al. 1997, Guo and Trotter 2004, Ahl 
et al. 2004, Hilker et al. 2012). 

 
 
3.3. LUE of shrubland communities, estimated by PRI 

Recently Garbulsky et al. (2011) reviewed studies where the relationship be-
tween remotely sensed vegetation index PRI and vegetation LUE was tested, 
and found that, in general, PRI can be used at different spatial scales, from lea-
ves to ecosystems, for estimating changes in vegetation light use efficiency. 
They showed that PRI may be useful in remote sensing assessment of LUE, sin-
ce it accounted for between 42 and 67% of the total variance of LUE at all spa-
tial scales from leaves to ecosystems. However, they found the lowest R2 values 
for PRI vs LUE relationships for shrubland ecosystems.  

Our measurements, on the other hand, suggested that PRI can be used for 
detecting changes in leaf-level quantum use (Fig. 5 in II, Table 7 in II) and 
changes in green LAIe (Fig. 4c in II) of dense shrublands, however additional 
data on shrublands with different productivity would be useful for more con-
clusive results. We also calculated two different estimations of LUE using data 
from direct measurements on the ground for separate shrublands and we found 
that PRI correlated with an index of LUE (Fig. 2c), which is a function of 
canopy nitrogen content and LAI (Green et al. 2003). Nevertheless, a significant 
relationship was not found between LUE (based on NPP estimations) and PRI, 
however, we had too few shrublands with medium to large LUE and we did not 
use site-specific light extinction coefficients. As the assumption of spherical 
leaf angle distribution is often not valid, (an example of actual leaf angle 
distributions of forest canopy is given in Fig. 2 in III), site specific light ex-
tinction estimations should be used when calculating LUE (Stadt and Lieffers 
2000, Sarlikioti et al. 2011). Both LUE estimations were significantly correlated 
with each other (Fig. 2c). The low R2 of LUE-PRI relationship in shrublands in 
the paper by Garbulsky et al. (2011) is based on data from southern shrublands, 
as only a few studies on PRI and LUE relationships in shrublands are available.  

Our measurements of southern shrublands also revealed that, in sparse vege-
tation (Fig. 4c in II) and brighter soil (Tables 6 and 7 in II), PRI is not sensitive 
enough for detecting differences in vegetation. Indeed, Filella et al. (2004) 
showed in the sparse southern shrubland of Spain that NDVI followed the 
seasonal fluctuations in photosynthesis much better than PRI. PRI has also been 
reported to be a less reliable estimator of photosynthetic activity in severe stress, 
including drought conditions (Sims et al. 2006, Ripullone et al. 2011, Porcar-
Castell et al. 2012). However, in our experiment with modest drought treatment 
no significant differences in variances of PRI vs quantum use relations were 
detected when compared to control plots (Fig. 5 in II). Even though we did not 
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detect any effect of artificial drought on PRI (Fig. 2b in II), we found that 
warming treatment generally increased PRI values in shrublands (Fig. 2a in II).  

 
 

 
 

Figure 2. Relationship between two estimations of canopy light-use efficiency and a 
reflectance index PRI. (a) LUE was estimated using calculations of NPP and LAI 
(Monteith 1972, Montieth and Moss 1977). (b) IndexLUE is a function of nitrogen 
content of leaves and LAI (Green et al. 2003). p values for significant differences are 
shown, ns means p>0.05, N=6. 

 
 

Our study suggests that in modest stress conditions, PRI is more sensitive to 
changes in the physiological processes of shrubland vegetation than the previ-
ously discussed NDVI, since the PRI vs green LAIe relationship was affected by 
treatments (Table 4 in II), unlike the NDVI vs green LAIe relationship. More 
challenging is the interpretation of the exact physiological mechanism, that influ-
ences PRI, as we found no significant treatment effect on leaf-level measurements 
of quantum capture of PSII (Fig. 5 in II), even though PRI was significantly cor-
related to fluorescence-based quantum use efficiency, since the largest part of the 
variation in PRI among fluorescence parameters was described by changes in 
non-photochemical quenching (Fig. 5 in II, Table 5 in II). It is probable that 
treatments influenced the carotenoid/chorophyll relationship of plants, which has 
been shown to be another parameter that affects the PRI signal (Filella et al. 
2009). However, as the relationships between PRI and plant physiological traits 
appear to be species-specific, much work remains to be done to understand the 
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short and long-term factors influencing the values of PRI for different plant com-
munities (Peñuelas et al. 1995, Ahl et al. 2004, Filella et al. 2004, Liu et al. 2013). 

 
 
3.4. Effect of canopy structure on light use efficiency of 

canopies and single leaves 

Our results in European shrublands showed that the structure of vegetation 
(approximated as the variation in green LAIe) clearly explained the largest part 
of the variation in the reflectance index PRI (Table 5 in II), even if PRI was 
significantly related to the physiological traits of vegetation. In fact, it is shown 
that not only LAI but also the vertical structure of the canopy and leaf orien-
tation affects values of PRI (Nichol et al. 2000, Barton and North 2001, Damm 
et al. 2010). Barton and North (2001) demonstrated that angle between leaf nor-
mal and the sun determines the intensity of light received by the leaf and hence 
the LUE and PRI of the leaf, but also it determines the signal strength from that 
leaf and therefore its relative contribution to canopy PRI. Thus, as real canopies 
vary in leaf angle distributions, and this changes during plant growth and due to 
changes in environmental conditions, it is very problematic to draw a single 
function which transfers PRI or fluorescence yield into LUE of the whole 
canopy without considering differences in canopy structure (Barton and North 
2001, Damm et al. 2010). In the case of forests the effect of structure and resul-
tant leaf-level light-acclimation differences on parameters of remote sensing are 
even more severe, as the fraction of leaves of the whole canopy that can actually 
be remotely “sensed“ from a single view angle is even smaller. Fortunately the 
first steps for incorporating estimations of shadow fraction into remote esti-
mations of LUE have recently been taken (Hall et al. 2011, 2012, Hilker et al. 
2012) and an increasing network of carbon dioxide flux measurement towers 
(Baldocchi, 2008) further helps us to understand the deviations between re-
motely sensed vegetation indices and carbon fluxes of whole communities. 

In III we focused on the impact of canopy structure on light capture effi-
ciency of forest ecosystems, more specifically on leaf- and chloroplast-level 
light acclimation differences between two contrasting tree species. An often 
used equivalent for leaf-level light use efficiency is quantum capture efficiency 
of a leaf, estimated by changes in fluorescence emission. Differences in quan-
tum efficiencies of leaves have often been demonstrated along the vertical light 
gradient of the forest canopy (Fig. 1 d–f in III). Less noticed is the within-leaf 
chloroplast acclimation profile, which also adapts to changes in light environ-
ment. In fact, similarly to other optical methods, leaf-level fluorescence mea-
surements also estimate light capture efficiency remotely, and our aim was to 
evaluate the dependence of fluorescence-based light capture efficiency estima-
tions on canopy structure, focusing on leaf angle distribution (III).  

Our measurements of chlorophyll fluorescence in trees showed that the ratio 
of ΦII, qP and NPQ between alternate leaf sides, as an approximation of intra-
leaf light acclimation differences, significantly correlated with leaf angles (Fig. 
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3 in III). The ratio between quantum use efficiency of alternate leaf sides was in 
general larger in more horizontal leaves, as opposed to vertically oriented lea-
ves. However, our results also indicated that the relationship between adaxial/ 
abaxial quantum use efficiency of leaves and leaf angles was species specific 
(Fig. 3 in III), being significant in the case of light-demanding Populus tremula 
and not significant in shade-tolerant Tilia cordata. Considering that the chloro-
phyll fluorescence of only the upper side of the leaf is often used for estimating 
the light capture efficiency of the whole leaf, our results indicate that, depen-
ding on species, the actual light capture efficiency of the whole leaf can be a 
function of local light conditions that are determined by leaf angle.  

Tsuyama et al. (2003) suggested that the measurements of gas exchange and 
chlorophyll fluorescence detect signals from different populations of chloro-
plasts in a leaf. If so, the disproportion between fluorescence measurements of 
leaf abaxial side and gas exchange measurements might also be different for 
leaves with different orientation and resultant light conditions. This is because 
variations in the light conditions of different subpopulations of chloroplasts can 
change the correlation between whole-leaf photosynthetic properties and the 
photosynthetic properties of individual chloroplasts near the leaf surface, from 
where the fluorescence signal is mainly derived (Peguero-Pina et al. 2009). At 
the same time the region from which the fluorescence signal originated also de-
pends on leaf structure, chlorophyll content and excitation wavelength (Cui et 
al. 1991, Evans 1999, Vogelmann and Han 2000, Buschmann 2007, Peguero-
Pina et al. 2009), all of which change depending on leaf orientation and species. 
Therefore, for parameterization of vegetation structure so that leaf-scale proper-
ties may be related to the properties of the whole ecosystem, different adap-
tation strategies of species must be taken into account. Unfortunately only a few 
models currently include representations of specific plant responses, probably 
because available empirical studies are often not at scales relevant for models 
(Smith and Dukes 2013). 

 
 
3.5. Chlorophyll distribution within leaves and canopy 

Although leaf angles correlated with the gradient of within-leaf physiology, leaf 
orientation is merely controlling the amount of photochemically active radiation 
that is received by both leaf sides at different depths in the forest canopy. Thus, 
to understand the mechanisms behind the above discussed differences in leaf 
light use efficiency and optical estimations of light use efficiency, we perfor-
med additional studies. In III and IV we investigated the physiological traits 
that respond to differences in local light environment and thus produce the 
different fluorescence figures for alternate leaf sides. First we studied leaf 
reflectance in red and green spectral regions, which, similarly to fluorescence 
signals are influenced by a combination of leaf anatomy and biochemistry 
(Govaerts et al. 1996, Peguero-Pina et al. 2009). Leaf reflectance and absorp-
tance measurements from alternate leaf sides indicated that light demanding P. 



28 
 

tremula enhanced the photosynthetic potential of leaf biochemistry by decreas-
ing the interception of excess irradiance on the abaxial side of the leaf by in-
creased reflectance (Table 1 in III), resulting in smaller differences in fluores-
cence parameters measured from leaf adaxial and abaxial surfaces (Fig. 3 in 
III). Shade-tolerant T. cordata on the other hand increased the light absorptance 
of leaves (Table 1 in III).  

Based on earlier studies, which have determined leaf-area-based chlorophyll 
content (Chls) and leaf mass per area (LMA) as being the best proxies for light 
adaption of the photosynthetic apparatus of leaves (Tsuyama et al. 2003), we 
investigated Chls and LMA as parameters correlating to most of the optical and 
photochemical differences between alternate leaf sides. Indeed, LMA and 
chlorophyll content correlated with optical properties for a single species (Fig. 4 
in III). But when we pooled together data from both species with different 
strategies (shade-tolerant and light-demanding) the correlative relationship often 
failed (Fig. 4 in III). Furthermore, leaf reflectance and absorptance in the green 
spectral region were more strongly correlated to variations in leaf chlorophyll 
content and LMA than reflectance and absorptance measured from the strongly 
absorbing red spectral region (Table 2 in III). Within one species, LMA ex-
plained more of the variance in leaf optics than Chls (Table 2 in III), possibly 
because the arrangement of chloroplasts can be a more important determinator 
of light capture than the quantity of chlorophyll per se (Souza and Válio 2003).  

The importance of leaf structural properties in regulating light use efficiency 
became especially evident with the finding that P. tremula with leaves of signi-
ficantly more mass per area than T. cordata (Fig. 1b in III), revealed lower 
values of absorption (Table 1 in III) and smaller differences between light dissi-
pation regulations of alternate leaf sides (NPQ, Fig. 3 in III). However, for 
light-demanding P. tremula, leaf angles appeared to be better estimators of 
differences between quantum use efficiency of alternate leaf sides (Fig. 3 in III) 
than LMA or Chls, contrary to T. cordata, where the ratio of adaxial/abaxial 
NPQ was significantly correlated to LMA (r=0.52, p<0.05). The results given in 
IV confirmed our findings of species specific differences in chlorophyll distri-
bution, as similar shade adjustment of LMA was accompanied with modest 
changes in chlorophyll concentration, while the densities of different photosyn-
thetic units adjusted to light differences more extensively (Table 1 in IV). 

In order to investigate more precisely the rearrangement of pigments and to 
find which parts of the photosynthetic machinery are most responsive to differ-
ences in light conditions, we performed an additional investigation (IV). Main 
chloroplast parameters, which have shown to influence the efficiency of light 
harvesting in photosystem II are the number of LHCII subunits, the arrange-
ment of pigments within them, the interaction between subunits and their dis-
tance from the reaction centre complex (Horton 2012). Our results on chloro-
phyll a/b ratio (Chl a/b) showed significant redistribution of chlorophylls due to 
acclimation to shade in the canopies of the measured tree species (Fig. 3). The 
parameter Chl a/b is often used as a measure of the distribution of chlorophyll 
between antenna and core complexes of the photosynthetic machinery, as most 
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studies show that Chl b is present mainly in the antenna complex of photo-
system II (LHCII) (Evans 1989, Green & Durnford 1996, Kitajima and Hogan 
2003). However, recent studies have shown significant migration of LHCII to 
PSI complexes during state transition (Minagawa 2011) and in mutant plants 
lacking state transitions, LHCI itself can be enriched in chlorophyll b (Ruban et 
al. 2003, Ruban and Johnson 2009). Thus it may be difficult to deduce the 
actual quantity of LHCII of PSII complex from the changes in Chl a/b in natural 
canopies.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Ratio of leaf chlorophyll a and b for different deciduous forest species, 
measured in different study years. Different letters at the top of columns indicate 
significant differences between shade and sun leaves of the same species and same year 
according to Wilcoxon signed rank test, p<0.001. 

 
 

Our calculations of realistic shade acclimation in natural forest systems (IV) 
showed that sun leaves of B. pendula on average attached 2.2 trimers of LHCII 
to PSII, while shade leaves of the same species on average added one more 
trimer of LHCII to the PSII core, resulting in 3.2 LHCII trimers per PSII on 
average at shade. The addition of one trimer of LHCII was accompanied by a 
decrease in Chl a/b ratio of B. pendula by 0.4 units in shade, which is consistent 
with earlier studies (Walters et al. 1999). At the same time the similar decrease 
of 0.4 units of Chl a/b in the shade-adapted leaves of T. cordata did not mean a 
similar increase in LHCII per PSII. In sun leaves of T. cordata, on average 2.6, 
and in those of Solidago virgaurea, 3.9 LHCII trimers were attached to PSII, 
but the average number of trimers did not change due to shade adjustment in 
those two species (Table 1 in IV).  

According to our data, the main difference between B. pendula and T. 
cordata lied in different densities of PSI and PSII and in the size of PSI antenna 
(Table 1 in IV). The light adjustment of LHCII is widely known, but our results 
indicate significantly larger light adjustment of PSI, which increased by about 
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two LHC trimers due to shade adjustment in Betula pendula and was larger on 
average than the PSII antenna of same leaves (Table 1 in IV). A similar doub-
ling of the light harvesting complex of PSI has been observed by Bailey et al. 
(2001), while Ballottari et al. (2007) recorded no adjustment of numbers of 
LHCI in Arabidopsis thaliana and revealed that the increase in light capture 
ability of PSI at low light conditions was achieved through migration of LHCII 
to PSI complex. It is most probable that the increase in PSI LHC due to shade 
adjustment in IV was also caused by the migration of two trimers of LHCII to 
PSI. Recently a lot of work has been done in order to understand the environ-
mental triggers for the photosynthetic state transitions and accompanying 
migration of LHCII to PSI-LHCI systems (Kovács et al. 2006, Ruban and 
Johnson 2009, Minagawa 2011, Kouřil et al. 2013), but a lot more needs to be 
done to understand this mechanism at the level needed for ecological applica-
tions. Most probably the capacity for state transitions might be one of the para-
meters determining the light use efficiency of different species. 

Our investigations showed that an increase in PSI antenna occurred not due 
to increasing chlorophyll concentration, but due to decreasing PSI density in all 
studied species (Table 1 in IV) and therefore an increasing PSII/PSI ratio with 
decreasing irradiation was found in all studied species. Most probably the 
decreasing density of PSI with shade can be associated with a higher proportion 
of far-red irradiation, which has been shown to be characteristic of lower layers 
of the forest canopy (Lieffers et al. 1999), since previous studies have shown 
that changes in red/far-red ratio of irradiation may cause changes in photo-
system stoichiometry (Chow et al. 1990, Murchie and Horton 1998). A paper by 
Ruban et al. (2006) showed that the LHCI antenna itself can also be 
considerably upregulated when state transition is absent, however no data exists 
on wild-type species with the absence of photosynthetic state transition. Several 
contradictions in papers on light acclimation of photosystems suggest that the 
acclimational changes of PSI might be species specific, and thus, studies on 
single model-species cannot be applied to a larger set of species. Very little is 
yet known also about the effect of spectral differences at the top and bottom of 
forest canopies on the differences in the photosystem composition and how this 
relates to the quantum yield of photosynthesis (Hogewoning et al. 2012). Our 
findings of different stoichiometrical changes in chlorophyll distribution be-
tween different species as a result of shade explain the reports of species spe-
cific relationship between PRI and plant physiology (Peñuelas et al. 1995, Ahl 
et al. 2004, Filella et al. 2004, Liu et al. 2013) as canopy reflectance measure-
ments often reflect more strongly certain aspects of light use efficiency, such as 
PRI is significantly influenced by the xanthophyll cycle of nonphotochemical 
quenching, underestimating the possibility that similar light use efficiency may 
be achieved through alternative mechanisms of light capture and re-funnelling 
of excess light. 
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3.6. Nitrogen distribution within leaves and canopy 

The high density of chlorophyll in light harvesting complexes is crucial for effi-
cient use of leaf nitrogen as nitrogen availability is often limiting photosyn-
thesis. Remarkably small concentration of nitrogen-containing proteins binds 
chlorophylls in light harvesting complexes in a way, which enables the efficient 
capture of light (Beddard and Porter 1976). Despite of nitrogen-efficient 
molecules of light capture plants appear to optimize nitrogen use at every step 
of light acclimation. Besides modest changes in chlorophyll concentration, we 
found concentrations of leaf nitrogen and the nitrogen-rich protein ribulose-
bisphosphate carboxylase-oxygenase (Rubisco) per leaf area to be more respon-
sive to changes in light conditions, as nitrogen of leaves decreased by a factor of 
three and Rubisco decreased by a factor of four as a response to shade if mea-
sured on the basis of leaf area (Fig. 7 in IV). Fig. 4 shows that a similar 
decrease in leaf-area-based nitrogen (Ns) was present both in the vertical light 
gradient of the forest canopy of III and in the case of decreasing annual 
irradiance associated with the vertical distance between different shrublands in 
Europe (I and II). However, the significant shade acclimation for nitrogen and 
protein concentration came mainly from differences in LMA, since mass-based 
leaf nitrogen (Nm) was not significantly related to different light regimes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Leaf-area-based nitrogen content of (a) lower canopy species T. cordata and 
upper canopy species P. tremula in a deciduous forest in Järvselja, Estonia and (b) 
dominant species of six European shrublands. Mean±St. Err. are shown, different letters 
on top of mean values of forest species denote significant differences between sites 
according to Fisher LSD post-hoc test. 

 
 

According to our results on forest species with similar nitrogen availability, Ns 
investment into light-harvesting components of photosynthesis increased as a 
result of shade acclimation, while Ns invested into Rubisco decreased (Fig. 8 in 
IV). Our results indicated that the larger investment of nitrogen into light-har-
vesting proteins in shade might not be enough to keep the excitation rate of a 
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PSII centre invariant. As PSI is in close contact with the carbon assimilation 
system, the density of PSI shade-adjusted almost proportionally to changes in 
Rubisco, while antenna of PSI correspondingly increased (Fig. 8 in IV). The 
general changes in Rubisco and light capture compartments did not differ con-
siderably between the herbaceous species Solidago virgaurea and tree species 
(Fig. 7 in IV), in contrast to what was theoretically predicted by a nitrogen 
allocation model by Xu et al. (2012). The model (Xu et al. 2012) predicted that 
lower levels of radiation will have a much stronger effect on the allocation of 
nitrogen to carboxylation for herbaceous plants than for trees, based on the 
assumption of proportionally smaller investment of nitrogen into the cell walls 
of herbaceous leaves. However, the non-photosynthetical nitrogen is not just in 
cell-walls but also in amino acids, nucleic acids, cytosolic proteins, ribosomes 
and mitochondria (Evans and Seemann 1989, Hirose et al. 1989). Additionally 
it has been shown that part of the Rubisco can be inactive and is functioning as 
reserve protein (Eichelmann and Laisk 1999, Warren et al. 2000).  

Our study, on the other hand, excluded also the inactive Rubisco from the 
calculations of non-photosynthetic nitrogen. Nevertheless, we found that leaf 
acclimation to shade was followed by a considerable decrease in the reserve of 
non-photosynthetic fraction of nitrogen (Fig. 7 in IV) in tree species and also in 
the herbaceous Solidago virgaurea. Recently the effect of variation in the non-
photosynthetic component of N on nitrogen allocation to photosynthesis has 
been further investigated and it was found that nitrogen investment to cell walls 
does not always affect the content of photosynthetic N (Hikosaka and Shigeno 
2009) although N in cell walls is strongly related with LMA as was expected 
previously (Hikosaka 2004). However, as the non-photosynthetic N fraction 
does change within a single canopy, extrapolation of nonphotosynthetic N 
content from the nitrogen-photosynthesis relationship, where photosynthesis has 
reached zero, might be questionable (Wright et al. 2004).  

Thus investigations on a larger variety of species are needed to understand 
the origin and variability of the non-photosynthetic fraction of nitrogen in dif-
ferent functional groups, since our study indicated the importance of light accli-
mation of non-photosynthetic N also in short-lived herbaceous species. Simi-
larly the variability in Rubisco has not yet been studied across a range of differ-
ent species, although there are indications that the relationship between leaf 
maximum carboxylation capacity and leaf-area-based photosynthetic nitrogen 
differ between plant functional groups (Maire et al. 2012). Significant differ-
ences in the light-acclimation related variability in photosynthetic compart-
ments or non-photosynthetic N may have considerable effect on modelling 
vegetation production using C/N relations. This might become even more rele-
vant, if canopy nitrogen content is aquired from remotely sensed data that does 
not consider within-canopy variation in the fraction of non-photosynthetic nitro-
gen in leaves.  
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3.7. Nitrogen budget in relation with  
carbon production of vegetation 

The availability of nitrogen has been shown to be one of the main constraints in 
the carbon cycling of terrestrial ecosystems (LeBauer and Treseder 2008), and 
models of ecosystem functioning need input info about nitrogen pools and fluxes of 
different ecosystems. Nevertheless, very fragmented data is available on the nitro-
gen cycle of shrublands. Thus in I we constructed an integrated scheme of above-
ground and belowground nitrogen distribution and fluxes at six European shrub-
land ecosystems (Fig. 7 in I). The largest nitrogen resources (468 g N m-2) were 
found in soil organic matter and roots of the wettest and coldest shrubland in the 
UK, while lowest values of belowground nitrogen (93 g N m-2) were found on 
Hungarian dry and sandy soils (Fig. 7 in I) however, the ratio of C/N in the top 
soil was also largest at the UK site and lowest at the Spanish site (Table 2 in I). 
We found that the size of the aboveground nitrogen pool of the studied 
shrublands was 2–6% of the belowground nitrogen concentration (Fig. 7 in I).  

On the other hand, the aboveground nitrogen content, measured as average 
nitrogen content per leaf area generally increased with increasing light availa-
bility according to our study (Fig. 4), and nitrogen has been shown to relate 
significantly also with photosynthesis across various species and vegetation 
types (Reich et al. 1997, Niinemets et al. 2001, Green 2003, Niinemets 2010). 
Therefore, relationships between canopy irradiance, nitrogen and photosynthe-
sis are used for modelling global carbon exchange between vegetation and the 
atmosphere (Friend 2001, Mäkelä et al. 2008), but these known relationships 
are mainly scaled up from leaf-level measurements. Recently also a strong rela-
tionship between remotely sensed nitrogen content of aboveground vegetation 
and photosynthetic capacity of whole canopy has been reported for forest eco-
systems (Ollinger et al. 2008). However, Ollinger et al. (2008) did not include 
respiration into their calculations and thus they were not able to conclude, 
whether changes in nitrogen content and photosynthesis will always lead to a 
variation in net carbon sequestration. Also the prediction of carbon sequestra-
tion using data on canopy nitrogen content may be problematic in changing 
climate conditions, as a review paper by Sardans et al. (2012) showed signifi-
cant differences in C/N relationships of plants as a response to changed climate 
and nitrogen deposition. 

Nevertheless, our results on six shrublands suggested that canopy nitrogen 
content of shrublands possibly gives information about the most variable com-
ponent of primary production, the light use efficiency (LUE), since an index of 
LUE, which was calculated as a function of leaf nitrogen content (see equation 
20. of thesis; Green et al. 2003), was significantly correlated with calculations 
of LUE and remotely sensed PRI (Fig. 2). For a large variety of forest tree 
species, maximal light use efficiency has also been found to depend linearly on 
nitrogen content (Kergoat et al. 2008, Peltoniemi et al. 2012) at all levels of in-
cident PPFD, while Peltoniemi et al. (2012) found that canopy LUE increased at 
all forest sites by 23% when mean canopy N increased from 1 % to 2%.  
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Figure 5. Relationship between mean carbon and nitrogen content of six European 
shrubland ecosystems.  

 
 

According to six shrublands of present study, the aboveground nitrogen content 
and aboveground carbon pools appeared to be linearly related (Fig. 5), suggest-
ing that using nitrogen content of vegetation for estimating vegetation produc-
tivity could be valid also for European shrublands. However, for more conclu-
sive results additional data on shrublands with medium to high biomass would 
be needed. Also, further investigations on the same shrublands by Beier et al. 
(2008) revealed that C and N cycles respond asymmetrically to warming treat-
ment and concluded that global warming effects on shrublands may lead to pro-
gressive nitrogen limitation and resultant changes in plant production. As the 
effect of climate on C/N relationships in plants is shown to be quite universal 
(Sardans et al. 2012), estimations of carbon sequestration using data on canopy 
nitrogen content is even more complicated. On a global scale the inevitable 
factor determining the C/N ratio of the vegetation is the proportion of wood in 
plants (Wania et al. 2012). We found the average C/N ratio to be 68 in Euro-
pean shrublands (carbon/nitrogen in aboveground plant parts and roots), which 
is consistent with that predicted for shrubs by a model of Wania et al. (2012), 
predicting an average C/N for shrublands to be 75±37. However, at large scale 
there is a discrepancy between calculations of global C/N ratio, since very diffe-
rent estimations of global nitrogen concentrations (3–18 Pg N) have been repor-
ted for the same years (Lin et al. 2000, Yang et al. 2009, Zaehle et al. 2010, 
Wania et al. 2012), resulting in average global C/N ratio to vary extensively 
from 30–200 (Wania et al. 2012). Thus the relationships between canopy-scale 
nitrogen concentration and plant production still need to be tested in different 
ecosystem types and climatic conditions on a canopy scale, and information on 
the nonphotosynthetic proportion of canopy and root N is evidently lacking. 
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4. CONCLUSIONS 

1. We conclude that in remote estimations of carbon budget of shrublands, con-
siderable accumulation of carbon into belowground must be taken into account. 
In case of studied shrublands the average ratio of belowground/litterfall carbon 
content in general exceeded the respective ratio of carbon reported for forest 
systems. Nevertheless, the sizes of above- and belowground carbon pools of dif-
ferent shrublands were related to each-other. European shrublands ranged from 
being carbon sinks to carbon sources and differed in soil nitrogen content and 
availability.  
 
2. Differences in green leaf area index and light use efficiency of vegetation 
were efficiently detected by remotely measured canopy reflectance indexes 
NDVI and PRI above several European shrublands. However, the relationship 
between NDVI and green leaf area index tended to saturate at dense shrublands, 
even if the green spectral region was used in NDVI calculations instead of red. 
Nevertheless, in dense northern shrublands the relationship was found to be 
stronger if NDVI was calculated using the green spectral region. Reflectance 
index PRI appeared to be closely related to changes in light use efficiency of 
plants at dense northern shrublands, but this relationship was absent in sparse 
southern shrublands. The treatment effects on green leaf area index and light 
use efficiency, estimated by reflectance indexes, were minimal and differed in 
directions of change between shrublands. 
 
3. This study revealed strong effect of canopy structure on the canopy- and leaf-
level estimations of light use efficiency. The reflectance parameter PRI was sig-
nificantly influenced by variations in green leaf area index of shrublands. Mea-
surements of leaf fluorescence revealed, that for light-demanding Populus tre-
mula, leaf angles appeared to estimate the differences between light use effi-
ciency of alternate leaf sides (suggesting within-leaf differences in chloroplast 
acclimation to light), compared to Tilia cordata, where the differences in chlo-
roplast light acclimation were better correlated to leaf mass per area. 
 
4. Our investigations of within-leaf mechanisms that influence leaf light use 
efficiency revealed that differences in leaf chlorophyll a/b ratios, which have 
long been used as a proxy for chlorophyll distribution between light harvesting 
complex of photosystem II and core complexes of photosystems, reflected dif-
ferent stoichiometrical changes in different species. Unlike many earlier studies, 
we found that the size of light harvesting complex of photosystem I and the 
abundance of photosystem I were more responsive to differences in irradiance 
than the size of light harvesting complex of photosystem II.  
 
5. We demonstrated that the main leaf trait changing due to light adjustment in 
all studied species appeared to be the non-photosynthetical fraction of leaf nitro-
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gen, variation of which may have significant effect on modelling vegetation 
production using C/N relation and remotely sensed nitrogen estimations. 
 
6. The finding of significant correlation between light use efficiency and nitro-
gen based index of light use efficiency according to six shrublands suggests that 
at European shrublands it may be possible to calculate canopy light use effi-
ciency as a function of canopy nitrogen, since the aboveground nitrogen and 
carbon pools of studied shrublands were also related, however reports of signi-
ficant changes in carbon/nitrogen ratios of plant tissues as a result of changing 
climate may complicate the extrapolation over larger areas and over time. 
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SUMMARY IN ESTONIAN 

Taimede valguskasutuse efektiivsus ning süsiniku ja lämmastiku bilanss: 
kaugseire kasutamine ja füsioloogilised determinandid 

 
Globaalse kliima pidev muutumine põhjustab muutusi maailma erinevate taime-
koosluste primaarproduktsioonis, mistõttu uuritakse järjest enam taimkatte sü-
sinikuringet mõjutavaid tegureid. Selleks, et me võiksime piisava täpsusega en-
nustada muutusi süsiniku sidumises ja primaarproduktsioonis, on vaja teada, mil 
moel keskkonna erinevad omadused primaarproduktsiooni mõjutavad. 

Laias laastus määrab taimkatte produktsiooni taimede eri osadeni jõudev 
fotosünteetiliselt aktiivse kiirguse hulk ning valguse kasutamise efektiivsus tai-
mede fotosünteesisüsteemi poolt. Neid kahte primaarproduktsiooni osa mõjuta-
vad omakorda erinevad tegurid, teiste hulgas võra ja lehe liigi- ja kooslusespet-
siifiline ehitus, fotosünteesiaparaadi võime kohaneda valgustingimuste erine-
vustega, mullalämmastiku kättesaadavus ning lämmastiku kasutamise tõhusus, 
vee kättesaadavus ja temperatuur. Arvestades ülemaailmsete uuringute ulatust, 
ei ole võimalik muutusi taimede süsinikutasakaalus jälgida vaid paikkondlikult - 
väga oluline osa taimede ökofüsioloogilistest uuringutest baseerub kaugseire-
infol. Seetõttu on kaugseire abil saadud taimkatte peegeldumisindeksite täiusta-
mine ja kasutatavuse hindamine erinevates taimekooslustes üks olulisemaid tai-
mede ökofüsioloogia uurimissuundi tänasel päeval. Et aga kindlaks teha taim-
katte peegeldumisindekseid mõjutavad tegurid, on jätkuvalt oluline mõista, mil 
viisil toimub erinevatele taimeliikidele ja funktsionaalsetele gruppidele omane 
valguskohanemine nii võra, lehe kui ka kloroplasti tasandil. Seejuures on kloro-
plasti tasandil toimuva valguskohanemise mehhanismide varieeruvuse kohta 
reaalsetes taimekooslustes vähe infot. Sama oluline on uurida lehe valguskasu-
tuse tõhusust mõõtvate tulemuste laiendatavust kogu võrale ja kooslusele, kuna 
taimevõra valguskasutuse efektiivsuse n-ö alt üles modelleerimisel võib võra 
struktuurierinevuste või kloroplasti tasandil toimuvate erinevate valguskohane-
mise strateegiatega arvestamine oluliselt parandada mudeli vastavust reaalsu-
sega.  

Käesoleva doktoritöö laiemaks eesmärgiks oli uurida, millised faktorid 
mõjutavad taimkatte produktsiooni ja selle hindamist kaugseire meetodeil, kes-
kendudes valguskasutuse efektiivsusele, mis on primaarproduktsiooni üks va-
rieeruvamaid ja raskemini ennustatavaid komponente. Uuriti, millised taimede 
parameetrid reageerivad kõige ulatuslikumalt muutustele valguskeskkonnas 
ning kuidas nende parameetrite erinevad väärtused mõjutavad taimkatte valgus-
kasutuse mõõtmisi nii lehe kui võra tasandil.  

 
Töö kitsamad eesmärgid olid järgmised. 

 
1.  Kaardistada taimede süsiniku- ja lämmastikuvarusid erinevates Euroopa 

puhmastikukooslustes. 
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2. Analüüsida kaugseire meetodil mõõdetud peegeldumisindeksite NDVI ja 
PRI kasutatavust Euroopa puhmastike primaarproduktsiooni komponentide - 
efektiivse lehepinnaindeksi (green LAIe) ja  valguskasutuse efektiivsuse 
(LUE) - hindamisel. 

3. Uurida võra ja lehestiku struktuuri mõju valguse kasutamise efektiivsuse 
mõõtmistele. 

4. Uurida, kuivõrd varieerub liigiti ja võra erinevates piirkondades klorofülli 
jaotus lehes, mis omakorda mõjutab taimede valguse kasutamise efektiiv-
sust. 

5. Uurida looduslikku varieeruvust fotosünteetilise ja mittefotosünteetilise läm-
mastiku hulgas ning jaotuses erinevatel liikidel ja erinevates valgustingimus-
tes.  

6. Uurida Euroopa puhmastike näitel, kas taimede lämmastikusisalduse alusel 
on võimalik kaudselt hinnata süsinikuproduktsiooni. 
 

Loetletud eesmärkide saavutamiseks viidi läbi kaks erinevat eksperimenti. Uuri-
ti koosluse süsiniku ja lämmastiku jaotust ning hinnati kaugseire meetodeid 
kuues erineva valgus-, niiskus- ja temperatuurirežiimiga puhmastikus: Suurbri-
tannias Walesis, Taanis, Hollandis, Ungaris, Hispaanias Kataloonias ja Itaalias 
Sardiinias. Lisaks pidevale keskkonnaparameetrite salvestamisele mõõdeti ka 
taimede ja varise süsiniku ning lämmastiku kontsentratsiooni, mulla lämmas-
tikuühendite ja lahustunud orgaaniliste ühendite sisaldust, taimkatte struktuuri 
parameetreid, mulla hingamist ja dominantsete liikide ülemistel lehtedel kloro-
fülli fluorestsentsi. Lisaks mõõdeti 1 m kõrguselt taimkatte kohalt peegeldumis-
indeksid NDVI (spektri punasest piirkonnast NDVI680 ja rohelisest piirkonnast 
NDVI570) ja PRI. 

Valguskasutuse efektiivsuse ja seda mõjutavate faktorite, klorofülli ja läm-
mastiku jaotumise varieeruvust lehes, võras ja liigiti uuriti Eestis Järvselja heit-
lehises segametsas, kus võrastiku tornid lubasid ligipääsu erinevate valgustingi-
mustega kohanenud lehtedele. Lehe eri külgedelt mõõdeti erinevates valgus-
tingimustes kasvanud lehtede klorofülli fluorestsentsi ja peegeldumist spektri 
nähtavas osas ning hinnati lehe ja erinevate fotosünteesisüsteemi komponentide 
klorofülli- ja lämmastikusisaldust. 

Selleks, et kaugseire meetodeil hinnata muutusi puhmastike primaarprodukt-
sioonis, on vaja infot süsiniku jaotumise ja biokeemiliste tsüklite kohta puhmas-
tikukooslustes, kuna erinevalt metsa- ja niidukooslustest on süsiniku ja lämmas-
tiku tasakaalu puhmastikes üsna vähe uuritud. Käesoleva uurimuse tulemusel 
selgus, et Euroopa puhmastikud varieeruvad oluliselt süsiniku omastamise poo-
lest. Uuritud puhmastike hulgas leidus nii süsinikku neelavaid kooslusi (126 g C 
m-2 a-1 niiskes Walesi kanarbiku-mustikapuhmastikus) kui ka süsiniku emiteeri-
jaid (-536 g C m-2 a-1 mittestabiilses kuivas Itaalia puhmastikus). Niiskes Walesi 
puhmastikus oli samuti suurim mulla lämmastikusisaldus (468 g N m-2), mada-
laim oli see aga Ungaris kuival liivmullal (93 g N m-2). Vaatamata kõrgele süsi-
niku sidumisele ja mulla lämmastikusisaldusele, oli lämmastiku kättesaadavus 
üheks taimede kasvu pidurdavaks teguriks Walesi puhmastikus: mulla C/N suhe 
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Walesi puhmastikus oli 37,4, samas kui vastav suhe kuivas Hispaania puhmas-
tiku mullas oli 12,8. Maapealsete taimeosade süsinikusisaldust puhmastikes mõ-
jutas tugevalt keskkonna niiskusrežiim. Kuigi niiskusrežiimi mõju maa-alusele 
süsinikusisaldusele ei väljendunud nii selgelt, olid maapealne ja maa-alune süsi-
nikusisaldus omavahel tugevas mittelineaarses seoses. Tänu maapealse ja maa-
aluse süsiniku kontsentratsioonide tugevale seotusele on põhjust otsida võima-
lusi ka kogu koosluse primaarproduktsiooni hindamiseks puhmastikukoosluste 
kohalt kaugseire meetodite abil.  

Varasemalt on näidatud, et kaugseire meetodeil saadud peegeldumisindeks 
NDVI väärtused sõltuvad taimkatte efektiivse lehepinnaindeksi (green LAIe) 
väärtustest ja taimede poolt neelatud fotosünteetiliselt aktiivse valguse hulgast. 
Käesolev uurimus näitas, et NDVI väärtused olid küll oluliselt seotud muutus-
tega puhmastikukoosluste efektiivses lehepinnas, kuid NDVI väärtused küllas-
tusid keskmiste ja suuremate green LAIe väärtuste juures isegi juhul, kui indeksi 
arvutamisel kasutati spektri rohelist piirkonda (570 nm) punase (680 nm) 
asemel. Siiski oli tihedates põhjapoolsetes puhmastikes NDVI ja green LAIe 
vaheline seos tugevam juhul, kui NDVI arvutamisel kasutati spektri rohelise 
piirkonna väärtusi. Teise peegeldumisindeksi, PRI väärtusi kasutatakse taime-
koosluste valguskasutuse efektiivsuse hindamiseks. Käesoleva uuringu põhjal 
korreleerusid erinevate puhmastike PRI väärtused taimede lämmastikusisalduse 
baasil arvutatud valguskasutusefektiivsuse indeksiga. Samuti oli PRI tihedates 
põhjapoolsetes puhmastikes tugevalt seotud taimelehtede kohalt mõõdetud 
valguskasutuse efektiivsuse väärtustega, kuid lõunapoolsetes puhmastikes tao-
line seos puudus. Kui uurisime kunstlikult tekitatud põua ja öise temperatuuri 
tõusu mõju puhmastikele, siis põua tõttu puhmastike NDVI keskmised väärtu-
sed enamasti vähenesid ja temperatuuri tõustes PRI väärtused enamasti suure-
nesid, kuid üksikute puhmastike lõikes oli mõõduka temperatuuritõusu ja põua 
mõju produktsiooni erinevatele komponentidele vähene ja eri maades isesuguse 
suunaga. 

Nii puhmastikukooslustes kui ka Järvselja metsas toimunud uuringud näita-
sid, et taimede ja koosluse struktuur mõjutab tugevalt nii lehtede (fluorestsentsi 
mõõtmised) kui koosluse (PRI mõõtmised) valguskasutamise efektiivsuse mõõt-
misi. Peegeldumisparameeter PRI näitas valguskasutuse efektiivsust tunduvalt 
halvemini hõredamates puhmastikes, kus PRI väärtusi mõjutas heleda mulla 
peegeldumine taimestiku vahelt. Lehe tasandil toimunud mõõtmised näitasid, et 
ülemise metsarinde liigi, hariliku haava (Populus tremula) puhul oli erinevuste 
järgi lehe nurkades võimalik hinnata lehe üla- ja alaküljelt mõõdetud valgus-
kasutuse efektiivsuste erinevusi (ΦII lehe ülakülg / ΦII lehe alakülg), mis oma-
korda viitab nähtusele, et erinevused lehe nurkades peegeldavad erinevusi leh-
tede kloroplastide valguskohanemises. Metsa alumise rinde puuliigi, hariliku 
pärna (Tilia cordata) puhul aga kajastasid lehtede pindtiheduse (LMA) erinevu-
sed muutusi lehe eri külgedelt mõõdetud liigse valguse eemale juhtimises (NPQ 
lehe ülakülg / NPQ lehe alakülg) paremini kui lehe nurgad. Lehe eri külgede 
teistsugune valguse kasutamine tingib selle, et erinevate nurkade ja pindtihe-
dustega lehtede puhul kirjeldavad fluorestsentsi meetodil lehe ülaküljelt 
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mõõdetud valguskasutuse efektiivsuse väärtused erinevat fraktsiooni lehe kloro-
plastidest. 

Uurides seejärel põhjalikumalt taimede valguskohanemise mehhanisme, sel-
gus, et kloroplastide valguskohanemise tulemusena muutub lehes klorofüll a ja 
b jaotus. Metsa ülarinde liigi, arukase (Betula pendula) varjulehtedes lisandus 
fotosüsteem II (PSII) valguspüügi süsteemile (LHC) üks täiendav trimeer ja 
fotosüsteem I (PSI) valguspüügi aparaadile lisandus varjus kaks trimeeri. Hari-
liku pärna või hariliku kuldvitsa (Solidago virgaurea) puhul sellist selget LHC 
suurenemist ei ilmnenud. Küll aga vähenes kõigil uuritud liikidel PSI tihedus 
lehes, mistõttu kõigi liikide varjulehtedes suurenes PSII/PSI suhe. Lehe läm-
mastikusisaldust mõjutasid veelgi enam erinevused valgustingimustes. Varju-
lehtedes suurenes sellise lämmastiku hulk, mis oli paigutatud LHC-sse, ning vä-
hem lämmastikku paigutati Rubisco ning PSI tootmisesse. Eriti rõhutas käes-
olev uuring mittefotosünteetilise lämmastiku osalust taimede valgusega kohane-
mises, kuna tulemused näitasid, et erinevates valgustingimustes varieerus kõige 
enam mittefotosünteetilise lämmastiku kogus. Taimede lämmastikusisalduse 
tugevat seotust valguse kasutamisega näitas ka koosluse valguse kasutuse efek-
tiivsuse (LUE) hea korrelatsioon lehtede lämmastikusisalduse baasil arvutatud 
LUE-indeksiga, kusjuures erinevate Euroopa puhmastike maapealsed lämmas-
tiku- ja süsinikuvarud olid omavahel seotud. 
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