
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Lauris Kruusamäe

Energy-aware Sensor Data
Collection for Mobile Users

Bachelor Thesis (6 EAP)

Supervisor: Satish Narayana Srirama, PhD

Co-supervisor: Huber Flores, MSc

Author:.................................... "....." May 2013

Supervisor:............................... "....." May 2013

Professor:................................. "....." May 2013

TARTU, 2013

Abstract

Nowadays, mobile applications are becoming more context aware due

to technological achievements which enable the applications to antic-

ipate users' intentions. This is achieved through using the device's

own micromechanical artifacts that can be used to perceive the en-

vironment. However, this is constrained to the hardware limitations

of devices as not all devices provide the same options. Moreover,

perceiving the environment strains the battery and therefore has its

impact on devices' everyday usage.

To remedy this, a proposed solution has been made in the thesis �Con-

text Sensor Data on Demand for Mobile Users Supported by XMPP�

by Kaarel Hanson. The solution is to gather environmental data by

specialized sensor modules and store it in a data server. Afterwards,

devices can query the data from the server and thus gain access to

information beyond the capabilities of their own hardware.

The solution uses XMPP for transporting sensor data from Arduino

microcontrollers (sensor modules) to the cloud. Arduino provides low-

cost hardware, while the cloud o�ers the reliable and high- availability

means for storing and processing sensor data. However, the developed

prototype shows that running on a 9V battery the microcontroller

lasts for 101 minutes when using an Ethernet module and 161,5 min-

utes with a WiFi module. These results are not good enough for

remote data collection with limited access as the maintenance cost

would be too high when the batteries need to be replaced frequently.

This thesis proposes an optimisation for the system so that instead

of reading and sending sensor data every 10 seconds, the cloud server

would notify the controller when to start sending data and when to

stop. This means implementing an algorithm for detecting similar

sensor data readings and notifying the microcontroller of needed op-

erations. With similar readings, the microcontroller could be put to

an idle state to limit power consumption, which would prolong battery

life.

The aim is to optimise the sensor reading process enough to prolong

Arduino microcontroller's battery life on a 9V battery.

Contents

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 2

1.3 Outline . 2

2 State of the Art 4

2.1 Arduino . 4

2.1.1 Arduino Mega ADK . 5

2.1.2 Wireless SD Shield . 6

2.1.3 RN-XV WiFly Module . 7

2.1.4 TinkerKit . 7

2.2 Fuzzy Logic . 9

2.2.1 Fuzzy Set . 9

2.2.2 Fuzzy Set Operations . 10

2.2.3 Fuzzy Control Systems . 10

2.2.3.1 Fuzzy control process 11

2.3 Simple Linear Regression . 13

3 Problem Statement 14

3.1 Current Solution . 14

3.1.1 Arduino . 14

3.1.2 XMPP Communication . 15

iii

CONTENTS

3.1.3 Data Collection Server . 16

3.2 Problems . 17

3.2.1 Hardware . 17

3.2.2 Software . 18

3.2.3 Power Consumption . 18

4 Towards an Energy-aware Solution 19

4.1 Overcoming Power Consumption Issues 19

4.1.1 Sleep . 19

4.1.1.1 Watchdog Timer 20

4.1.1.2 Arduino Mega ADK 20

4.1.1.3 WiFly module 20

4.1.2 Communication . 21

4.2 Server-side Client . 22

4.2.1 Prediction Module . 24

4.2.2 Fuzzy Logic Engine . 25

4.3 Results . 30

4.3.1 PeakTech 1890 Power Supply 30

4.3.2 Overview of Tests . 31

4.3.3 Test Results . 31

5 Conclusions 34

6 Related Work 35

7 Future Research Directions 36

Resümee 38

Licence 39

Bibliography 40

Appendix A 42

iv

List of Figures

2.1 Arduino Mega ADK . 5

2.2 Wireless SD Shield . 6

2.3 RN-XV Wi�y Module . 7

2.4 Complete Arduino Sensor Module 8

2.5 Trapezoidal and Triangular Membership Functions 10

2.6 Fuzzy Control Process (1) . 12

2.7 Least Squares Fitting Regression Line 13

3.1 XMPP Session Lifecycle (2, p. 40) 16

3.2 Server-side Data Model (2, p. 46) 17

4.1 Power Consumption at 30 Second Interval 23

4.2 Final Solution Architecture . 24

4.3 Updated Server-side Data Model 24

4.4 Regression Con�dence Fuzzy Sets 26

4.5 Sensor Value Fuzzy Sets . 27

4.6 Idle Time Fuzzy Sets . 28

4.7 PeakTech 1890 . 30

4.8 Current Measurements Comparison 32

4.9 Battery Lifetime and Idle Time Comparison 32

v

List of Tables

4.1 Selected Error Values . 27

4.2 Overview of Current Measurement Results 31

4.3 9V Battery Lifetime Test Results 33

vi

1

Introduction

Mobile applications are becoming more context aware and depend on perceiving

the surrounding environment to provide users with the best functionality possible.

This is achieved due to technological advances that enable the device to sense

the surroundings, however, these abilities are limited to each device's hardware

con�guration.

A solution was proposed in the thesis "Context Sensor Data on Demand for

Mobile Users Supported by XMPP" by Kaarel Hanson (2) to give devices access

to more elaborate data not constrained by their hardware and to save battery

life. The solution is to have special sensor modules perceive the environment and

gather the measurements in a central data center, which can then be used to

provide data to mobile users. Devices could just use their network connectivity

to get access to data beyond the reach of their own hardware capabilities, thus

giving applications the opportunity to provide users with a richer environment.

A prototype was developed based on Arduino for the sensors and XMPP for

communication, however it had some areas of improvement. The battery life

on a 9V battery was measured to be 161,5 minutes, which is not enough to

actually place a sensor module in a remote location and gather valuable data as

the batteries would need replacements too frequently. Therefore, it is crucial to

make the modules last longer. This thesis proposes improvements to the existing

prototype to enable sleep mode for the sensor modules and data prediction on

the data server side to lessen the need for actual data transmissions.

1

1.1 Motivation

The main goal of this thesis is to improve battery life by conserving power

where possible. A more �exible data transmission system and optimized modules

would provide a basis for a more energy-aware system, thus making it more usable.

1.1 Motivation

The developed prototype (2) works well when the general idea and goal is con-

sidered. However, the lack of �exibility of data transmission intervals and high

power needs constrain the implementation usages. In order to take full advantage

of the prototype, power usage should be reduced and more �exibility added to

the communication between the server-side client and sensor modules.

1.2 Contributions

A more �exible data collection solution is developed based on HTTP. The changes

made enable more energy-e�cient data collection by predicting sensor data when

possible. A fuzzy control system was developed to decide if sensor data is pre-

dictable and for what time period. Moreover, the prototype's Arduino-based

sensor module has been improved to support sleep mode while no sensor data is

sent to the server-side client. Power consumption before and after the changes

was tested to indicate changes' e�ect on battery life.

1.3 Outline

Chapter 2: introduces the Arduino framework and modules used in the proto-

type. Finally, a description of fuzzy control systems and simple linear regression

is given.

Chapter 3: describes the existing prototype and gives an overview of its imple-

mentation details. Later, an overview of identi�ed areas of improvement is given.

2

1.3 Outline

Chapter 4: explains the improvements made to the prototype. Firstly, describes

changes made to the Arduino sensor module. Secondly, changes in the communi-

cation between the sensor module and the server-side client are discussed. Lastly,

an overview of the server-side fuzzy control system and data prediction techniques

is given. The chapter is ended by a power consumption comparison between the

initial and improved prototype.

Chapter 5: draws conclusions and summarizes the results.

Chapter 6: discusses a related paper and the thesis which the current work is

based on.

Chapter 7: points out some areas of the prototype which can be developed fur-

ther to improve the results.

3

2

State of the Art

This chapter introduces the Arduino prototyping platform along with the used

components. Secondly, as providing �exibility to a system means implementing

some sort of decision making mechanism, an overview of fuzzy logic and fuzzy

control systems is given. Finally, a short description of simple linear regression to

brie�y describe the mathematics behind linear prediction of future values based

on a sample set.

2.1 Arduino

Arduino (3) is an open-source prototyping platform based on a simple microcon-

troller board and a development environment. It is meant for anyone interested

in creating interactive applications. Arduino can take inputs from a variety of

sensors and control various actuators. The microcontroller is programmed using

the Arduino programming language (based on Wiring) and the Arduino develop-

ment environment (based on Processing). Arduino IDE enables to choose between

di�erent board models, microcontroller programmers and communication ports.

Programs (called sketches) are written and uploaded to the board using the

Arduino IDE. Each sketch must have two functions- setup() and loop(). setup() is

the �rst function called after Arduino is started or rebooted. It is called once and

afterwards the function loop() is called consecutively until the board is stopped,

restarted or crashes. When a crash occurs, the program is restarted, which means

calling setup() again.

4

2.1 Arduino

Since programs are written in C/C++, there are a lot of libraries available

for use.

2.1.1 Arduino Mega ADK

Figure 2.1: Arduino Mega ADK

Arduino Mega ADK (4) is one of the most capable boards available. The

Arduino ADK is based on the ATmega2560. It has an ATmega8U2 programmed

as a USB-to-serial converter, USB host interface to connect with Android based

phones, 54 digital input/output pins, 16 analog inputs, 4 UARTs (hardware serial

ports), a 16 MHz crystal oscillator, USB B, micro B connections and a 2.1mm

center-positive power jack. The ADK has 256 KB of �ash memory for storing

code. The Arduino ADK can be powered via the USB connection or with an

external power supply. The board can operate on an external supply of 5.5 to 16

volts, recommended range is 7 to 12 volts. The board can be seen in Figure 2.1

5

2.1 Arduino

2.1.2 Wireless SD Shield

Figure 2.2: Wireless SD Shield

The Wireless SD shield (5) gives an Arduino board wireless communication

capabilities. The module can communicate up to 100 feet indoors or up to 300

feet outdoors. The module can be seen in Figure 2.2

The shield has an on-board switch which allows to select between USB and

Micro modes. In USB mode, the shield bypasses Arduino board's microcontroller

and communicates directly to the USB-to-serial converter. In Micro mode, data

sent from the microcontroller will be transmitted via USB and by the wireless

module at the same time. The microcontroller is not programmable via USB in

Micro mode.

6

2.1 Arduino

Figure 2.3: RN-XV Wi�y Module

2.1.3 RN-XV WiFly Module

The RN-XV module (6) is produced by Roving Networks. It is based upon

their RN-171 Wi-Fi module and has 802.11 b/g radio, 32 bit processor, TCP/IP

stack, real-time clock and a power management unit. It has a pre-loaded Roving

�rmware to enable simple con�guration and usage. The module can be seen in

Figure 2.3

2.1.4 TinkerKit

TinkerKit (7) is a tool to simplify interactive product prototyping using Arduino

boards. It consists of modules (sensors, actuators) and a sensor shield. The tool

greatly simpli�es product assembly, because instead of building circuits out of

low level components, all the modules can be attached to the TinkerKit sensor

7

2.1 Arduino

shield with a snapping cable.

The modules are divided into sensors and actuators. Sensors can measure their

surrounding environment (provide input) and actuators perform actions (provide

output). The sensors used are thermistor, LDR and Hall. The fully assembled

module is shown in Figure 2.4

Thermistor sensor (8) is a resistor whose resistance changes signi�cantly with

temperature. The module's output ranges from 0V to 5V.

Hall sensor (9) creates a voltage related to the magnetic �eld near the sensor.

It can detect the presence of a nearby magnet or magnetic �eld induced in a wire

or coil. The output ranges from 0V (no presence) to 5V (presence detected).

Light Dependent Resistor or LDR (10) is a variable resistor whose resistance

is decreased when light falls on the sensor. The module's output is 5V when the

module receives no light and 0V when bright light falls on it.

Figure 2.4: Complete Arduino Sensor Module

8

2.2 Fuzzy Logic

2.2 Fuzzy Logic

Fuzzy logic is a form of logical reasoning which is based on approximate instead

of exact reasoning. When traditional reasoning has binary values like true (1)

and false (0), fuzzy logic has values ranging from 0 to 1. These values represent a

partial truth or in other words the degree of truth. This is similar to probability

which also describes partial truth. The di�erence between probability and fuzzy

logic is that whereas fuzzy logic describes how true a statement is, probability

describes how likely it is for the statement to be true.

2.2.1 Fuzzy Set

Fuzzy sets (11) are the main building blocks of fuzzy logic. In traditional set

theory where an element can either belong or not belong to a set. With fuzzy

sets, an element has a degree of membership to a set.

Fuzzy sets are represented by membership functions, which measure the de-

gree of membership (DOM) a given value has to a set. Membership functions

are usually depicted graphically and have names based on the shape of their

graphical representation. Membership functions are depicted as 2-dimensional

graphs, where the x-axis represents the values and y-axis the degrees of member-

ship (ranges from 0 to 1). The degree of membership for a given value can be

found by projecting vertically to the upper boundary of the membership function.

The most used membership functions are triangular and trapezoidal func-

tions. Sample sets are shown in Figure 2.5. Based on these graphs the DOM can

easily be seen. Furthermore, from this graph the di�erence between fuzzy sets

and traditional sets can be seen. Let us assume that the values represent age,

trapezoidal membership function describes young people and triangular describes

middle-aged people. Now when we have an age value that is between points X2

and X3, this value belongs to both the young and middle-aged sets. The di�er-

ence is in the value of DOM to either set. When the value is nearer to point

X3 than to X2 the statement that it belongs to the middle-aged set has a higher

truth value.

9

2.2 Fuzzy Logic

Figure 2.5: Trapezoidal and Triangular Membership Functions

2.2.2 Fuzzy Set Operations

Fuzzy set operations (12) are a generalized version of standard set operations.

The most widely used generalization is referred to as the standard fuzzy set

operations. This generalization includes three main operations - complement,

union and intersection. Lets assume we have two fuzzy sets with membership

functions A and B, then these operations can be de�ned as:

Complement: ¬A(x) = 1− A(x)

Intersection: (A ∩B)(x) = min{A(x), B(x)}
Union: (A ∪B)(x) = max{A(x), B(x)}

2.2.3 Fuzzy Control Systems

Fuzzy control systems (11) take a heuristic modeling approach to describing the

controllable domain. The heuristic model is based on a set of rules in the form:

if < condition > then < action >.

With the fuzzy logic part, the control system has a set of input variables and

output variables, which are mapped into fuzzy sets. These variables and fuzzy

10

2.2 Fuzzy Logic

sets have linguistic variables called labels.

These fuzzy sets and rules combined give us a control system which consists

of a set of rules where conditions and actions are de�ned as fuzzy values. For

example if we have an input variable temperature with a fuzzy set labelled cold

and an output variable heat with a fuzzy set labelled on, we could write a following

rule: IF temperature = cold THEN heat = on. Based on this rule, the system

can decide that if the temperature is cold then the heat should be turned on.

In an actual system there are multiple rules de�ned. As rules are activated

only if their condition holds, the process of adding rules and variables has little

computational overhead making the rulebase easily extendable.

Fuzzy control systems are mostly based on experience and experiments. Fur-

thermore, as input and output variables are mapped into fuzzy sets, which have

linguistic labels, the system's control rules are easily understandable. This makes

fuzzy control systems usable in cases where the actual users have little knowledge

of the implementation details. Instead, they can focus on the control process by

de�ning understandable variables, their fuzzy sets and rules based on these sets.

2.2.3.1 Fuzzy control process

The decision making process has 3 main steps - fuzzi�cation, rule evaluation and

defuzzi�cation. These steps assume that the rules, input and output variables

have already been de�ned. An overview of a fuzzy control process can be seen in

Figure 2.6.

The �rst step in the process is fuzzi�cation. In this step, the system's input

and/or output variables are mapped into fuzzy sets. Each input variable can have

one or more associated fuzzy sets. What this process does is decompose the crisp

input values into fuzzy values. These fuzzy values are expressed by linguistic

terms (labels) which can then be used in the rule evaluation process.

The next step is to use the fuzzi�ed values in rule evaluation. A set of pre-

de�ned rules is evaluated based on the fuzzy values created during the fuzzi�ca-

tion process. Rules are activated when their condition holds, otherwise they are

skipped. After all rules have been considered, the activated ones are gathered

11

2.2 Fuzzy Logic

Figure 2.6: Fuzzy Control Process (1)

together. The results or actions of these rules are the basis of the next step called

defuzzi�cation.

Defuzzi�cation is the �nal step in the fuzzy control process. This part is

responsible for translating the fuzzy values (linguistic terms) into a crisp quan-

ti�able result. Usually in the previous step, rule outputs will be linguistic terms

(fuzzy sets) and corresponding degrees of membership for a de�ned output vari-

able. In the defuzzi�cation part, the di�erent fuzzy sets and their DOMS for the

output variable must be somehow added together to produce a �nal output.

There are several defuzzi�cation methods. The simplest of which would be

to use the fuzzy set with the highest DOM as the �nal result. However, center

of gravity is the most commonly used method. First, the di�erent degrees of

membership calculated from rules must be combined for each output variable's

fuzzy sets. Then, the membership functions are depicted on a graph and for each

fuzzy set, the top of the membership function is cut o� in a straight horizontal

line at the height of the DOM value. When this is done for all fuzzy sets of the

output variable, the center of gravity for the remaining shape is calculated. The

center point's projection on the value axis (usually the x-axis) is the crisp result.

12

2.3 Simple Linear Regression

2.3 Simple Linear Regression

Linear regression uses a linear model to predict future values based on a sample of

previous measurements. Simple linear regression is a linear regression model that

uses least squares �tting (least squares method) (13) to determine the placement

of the linear function line based on the given sample values. The model has

one explanatory (the x-axis) variable, based on which the future values of the

predicted variable (y-axis) are calculated.

Figure 2.7: Least Squares Fitting Regression Line

Least squares �tting uses a simple approach to determine the placement of the

regression line. The line placement is determined by minimizing the sum of the

squares of the residuals. Residuals are the di�erence of the predicted values and

actual values in the sample. A sample regression line can be seen in Figure 2.7.

From there it can be seen that the regression line �ts in the middle of the sample

points so that their residuals (depicted by the dotted lines) would be minimal.

13

3

Problem Statement

In this chapter, the prototype developed in Context Sensor Data on Demand for

Mobile Users Supported by XMPP (2) is described. The prototype was successful,

but had some areas of improvement. Secondly, an overview of these possible

improvements is given.

3.1 Current Solution

The current solution (2) has three main components:

1. Arduino sensor module

2. OpenFire XMPP server

3. Data collection server in the cloud

There were two separate con�gurations described in Context Sensor Data on

Demand for Mobile Users Supported by XMPP - one using Wi-Fi and the other

Ethernet for network communication. Only Wi-Fi con�guration is considered in

this thesis due to the fact that the availability of an Ethernet connection (a cable)

usually means that there is a power outlet nearby.

3.1.1 Arduino

The �rst component is the Arduino sensor module. The hardware con�guration

is based on the Arduino Mega ADK board. Wireless Shield with RN-XV WiFly

14

3.1 Current Solution

module is mounted on top of the board. Wireless Shield and Arduino board

communicate over UART (hardware serial). TinkerKit Mega Sensor Shield is

mounted on top of the Wireless Shield with 7 modules attached to it: 4 LED

indicator lights, Hall, thermistor and LDR sensors. The external power source

used is a 9V battery.

On the software side, the implementation mainly relies on an XMPP library

and a WiFly module library called WiFlyHQ. The WiFlyHQ library is responsible

for creating a TCP connection and communication over the network, the XMPP

library handles all the XMPP implementation details.

The sketch itself is fairly straightforward - in setup() a wireless network is

joined, a TCP connection established and lastly an XMPP session is initialized.

In loop() all connections are checked and re-established if needed. Then the last

transmit time variable is compared to the current time and if the report step

amount (currently 10 seconds) has passed, data is collected from the sensors,

formatted to a JSON string and sent to the server-side client. A sample data

string:

SensorData {" location ": 1, "data": [{" type": 1, value: 5.00} ,

{"type": 2, "value": 500.00} , {"type": 3, "value": 312.00}]}

3.1.2 XMPP Communication

Both the data collection server and Arduino module are XMPP clients. The

XMPP OpenFire server runs in the cloud and provides XMPP communication

to both clients. Clients connect to the same chat where the server listens for

messages from the sensor module. When a message is received by the server,

sensor data is parsed from it and saved in a database.

XMPP session lifecycle can be seen in Figure 3.1. With the current imple-

mentation, steps 1 - 5 are done once when establishing the connection or when

the connection drops. Data transmission step is done every 10 seconds and the

last 2 steps are done when the connection is closed.

15

3.1 Current Solution

Figure 3.1: XMPP Session Lifecycle (2, p. 40)

3.1.3 Data Collection Server

The data collection server is responsible for gathering sensor data and saving it

in a database. Its implementation is written in Java and uses Smack XMPP API

16

3.2 Problems

to communicate over XMPP. Data is stored in an H2 database because of its

simplicity and suitability for prototyping.

The database has three main tables - sensors, data and locations. Locations

table has di�erent sensor module locations, sensors table has di�erent types of

sensors and data has measurements gathered from di�erent locations and sensors.

The data model can be seen in Figure 3.2.

Figure 3.2: Server-side Data Model (2, p. 46)

3.2 Problems

Previously mentioned implementation has a few problems which will be discussed

in this section. The two main points are power consumption and data collection

�exibility.

According to the tests run in the previous thesis, the battery is able to power

the module for 161,5 minutes using Wi-Fi (2, p. 50-51). This, however, is not

su�cient to enable actual data collection from a remote location. The problem

can be addressed by using a larger battery, but the actual power consumption

should be optimized, too. Additionally, the 10 second data transmission interval

is hard coded into the Arduino sensor module, which does not provide enough

�exibility. The following chapter describes changes to the hardware, software and

communication methods which improve on these error points.

3.2.1 Hardware

The hardware con�guration has two main problems. Firstly, communication over

the wireless module can be unstable at times as parts of the messages might be

missing or scrambled when read from the UART (2, p. 47). Since XMPP session

17

3.2 Problems

initialization is quite verbose, the possibility of receiving scrambled or incomplete

messages e�ects the process.

Secondly, all parts of the hardware con�guration are run in full power mode.

As there is a 10 second gap between data transmission and sensor reads, there

is a time period when most components are idling. This, in turn, means that

some parts of hardware could use less power during these intervals and therefore

reduce overall power consumption.

3.2.2 Software

With the existing implementation loop() is called consecutively and time di�er-

ences are checked to determine when 10 seconds has passed using the internal

millis() function, which gives the current Unix time. Since we have a 10 second

interval, we do not need to waste cycles on time di�erence checks we now will fail

for the next 10 seconds. A way to delay program execution could be used to stop

the execution until we know the de�ned amount of time has passed.

In addition, as messages from the Wireless Shield might not be complete and

XMPP session initialization is a verbose process, the current XMPP implemen-

tation hangs when scrambled messages are received during session start up. The

library checks from complete XML tags, but when the attributes are incomplete,

connection will not be successful and the session initialization hangs.

3.2.3 Power Consumption

Power consumption is the main problem this thesis focuses on. With the existing

con�guration, the average current drawn is around 111mA as seen in ??. Battery

lifetime tests in the previous thesis showed that the module runs for 161,5 minutes

on a 9V battery (2, p. 50). However, 161,5 minutes is not enough to gather

contextual data for the proposed data collection system. The batteries need to

be changed too often for it to be a viable solution.

18

4

Towards an Energy-aware Solution

In this chapter improvements to the existing implementation are discussed. First,

changes to the Arduino sensor module are described. Secondly, an overview of

changes in the communication between the module and data collection server.

Secondly, an overview of the implemented fuzzy control and data prediction sys-

tems is given. Lastly, the �nal results are discussed.

4.1 Overcoming Power Consumption Issues

The �rst problem addressed is power consumption. There are two main ideas

behind reducing it - put the sensor module to sleep mode when not transmitting

data and reduce the need for data transmission. For this, the server-side client

was improved to predict sensor data when possible and notify the sensor module

of the next data transmission time. This enables the module to enter sleep mode

for the given time period and thus reduce power consumption.

4.1.1 Sleep

The module consists of 3 components - Arduino Mega ADK, Wireless SD Shield

with WiFly module and TinkerKit Sensor Shield. Both the Mega ADK and

WiFly module support sleep modes, however, TinkerKit Sensor Shield does not.

19

4.1 Overcoming Power Consumption Issues

4.1.1.1 Watchdog Timer

A watchdog timer (14) is an electronic timer used to recover from computer

malfunctions. They are found in automated systems where human interference is

not possible and therefore the system must be able to recover from malfunctions

on its own. A watchdog timer essentially performs a timing function producing

a delayed response to an input trigger. The most common implementation has

a digital counter that counts from a speci�ed value down to a terminal value.

Usually the initial value is programmable. When the counter reaches the terminal

value, the timer timeouts and triggers a timeout signal. Usually this means

restarting the program from the start. A program can restart the watchdog

timer at any time. The act of restarting is usually referred to as "kicking the

dog". In this way, a program can be written which never lets the counter reach

the terminal value.

4.1.1.2 Arduino Mega ADK

In case of an Arduino board, when the watchdog timer timeouts, the sketch is

restarted (new call to setup()). Furthermore, a watchdog timeout signal is sent

and this signal can be captured by the sketch. In the Arduino sketch, this is

implemented by the JeeLib library (15). JeeLib is a library written for experi-

menting with JeeLabs products, however, some parts of the library are written

for Arduino boards and can be used with them. Speci�cally, the Ports class (16)

is the one used in this implementation to put the Arduino Mega ADK into sleep

mode. The sketch execution stops for the speci�ed sleep time and afterwards

continues from the call to the sleep function. The implementation code can be

seen in GitHub 1.

4.1.1.3 WiFly module

The RN-XV WiFly module can be put to sleep in two ways - sleep timer or sleep

command. With the sleep timer, the shield will enter sleep mode after a speci�ed

time period has passed since all active TCP connections have closed. With the

1https://github.com/huber�ores/ArduinoXMPP/tree/dev

20

4.1 Overcoming Power Consumption Issues

sleep command the module will enter sleep mode immediately unless an active

TCP connection exists. (17).

This means that in order to put the WiFly module to sleep, all active connec-

tions must be closed. For the XMPP session, this means closing the active stream

and the underlying TCP connection. Once this has been done, the module can

successfully enter sleep mode.

The module can be waken up by either sending characters of the UART or by

using the wake timer. In our implementation the activity on the UART wakes

the module up when the sketch execution continues after the Mega ADK wakes

up from sleep mode and establishes a new TCP connection at the start of loop()

method call. This e�ectively means going through the �rst 5 stages of XMPP

session lifecycle on every wake up. Since XMPP session initialization is quite

verbose and the communication over Wi-Fi is unstable, the possibility of receiving

scrambled or incomplete messages creates a problem.

4.1.2 Communication

Because all TCP connections and therefore the XMPP session have to be closed

after every data transmit, XMPP session lifecycle steps 1 - 5 shown in Figure 3.1

are executed multiple times. When testing the XMPP implementation with Ar-

duino Mega ADK and WiFly module sleep modes enabled, a troubling fact was

discovered - the XMPP session negotiation fails at least once for every 30 minute

test. The reason for these connection failures are scrambled authentication or

stream opening stanzas.

From the tests, it could be seen that the average XMPP session start up time

was 15 seconds. Data needs to be transmitted every 10 seconds, which means

that the module can never be put to sleep as it will not be able to go through

the sleep and wake up cycle during the available time period. Moreover, data

transmission took on average 1 second, meaning that 15 seconds spent on wake

up would result in a second of actual work, which is not e�cient.

During testing the sleep and wake up cycles with XMPP, it was found that

XMPP session negotiation will hang approximately once in 15 minutes. As the

maximum sleep time in our implementation is 65 seconds, this means that there

21

4.2 Server-side Client

are at least 13 separate session negotiations. Of course, this is the problem of the

XMPP library in use and its lack of error handling.

As a result, XMPP as a means of communication was not viable when trying

to minimize power consumption. As an alternative, web sockets, raw sockets and

HTTP was considered. Web sockets were left out because a web socket connection

is opened with an HTTP request. Thus, using that one request to actually send

the data is more e�cient. Therefore, HTTP was preferred to web sockets. Raw

socket implementation in Arduino would add needless complexity to the sketch

and was therefore not implemented. Here is a sample of used HTTP request:

POST /data/ HTTP /1.1

Host: ec2 -54 -224 -196 -78. compute -1. amazonaws.com

Connection: close

Content -Type: application/json

Content -Length: 105

{" location ":1, "data ":[{" type":1, "value ": 7.87}, {"type":2, \

"value ":512.00} ,{" type":3, "value ":166.00}]}

The main advantages of HTTP are connection initialization speed and sim-

plicity. The average time to wake up from sleep mode, send an HTTP request

and receive response from the server, was measured to be around 5 seconds. In

the previous scenario of 10 second transmission interval, it would mean 5 seconds

could be spent in sleep mode, 5 seconds to wake up and transmit the data. This

implementation would be more energy e�cient, which can be seen in Figure 4.1.

The data was gathered while running the prototype for 30 minutes with a data

sending interval of 30 seconds. The sleep times were adjusted for both con�gura-

tions based on their wake up times. As seen in the �gure, the HTTP con�guration

consumes approximately 20% less power than the one using XMPP.

4.2 Server-side Client

With the move from XMPP to HTTP, the server-side client's implementation

changed. Instead of using XMPP Smack library, a web server was needed. Jetty

was selected because of its simplicity and possibility to embed it into the appli-

22

4.2 Server-side Client

XMPP HTTP
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00
79.66

63.65

Average current (mA)

Figure 4.1: Power Consumption at 30 Second Interval

cation. A web server embedded in an application is useful when prototyping,

because it saves time on con�guration and deployment.

Furthermore, to take full advantage of the newly developed sleep mode func-

tionality, the client was further developed to predict sensor values for some time.

Two modules were added the server for this - simple linear regression and fuzzy

control engine. In addition, the data model was modi�ed to suit the new mod-

ules. The �nal web server consists of 4 modules and a �gure of the architecture

can be seen in Figure 4.2

1. HTTP Request handler

2. Prediction module (Linear regression model)

3. Fuzzy control engine

4. Data storage

The new data model can be seen in Figure 4.3. Data table now has a

measured �eld, which indicates if the value has been measured or predicted.

SensorTypes table has two new �elds - regression_error and measure_error.

23

4.2 Server-side Client

Fuzzy Logic
Engine

Prediction

Module

HTTP

Handler

Database

Received Sensor Data,
Predicted Data

Regression Models

Sensor Data

Idle Time

Arduino
Sensor
Module

Sensor Data JSON

Idle Time JSON

Client-side Server

Figure 4.2: Final Solution Architecture

regression_error is the acceptable regression model error for future predictions.

measure_error indicates the acceptable variance for measured values.

Figure 4.3: Updated Server-side Data Model

4.2.1 Prediction Module

A simple linear regression model was selected to predict future data, which uses

the least squares method to calculate the future values. A linear regression model

is su�cient to predict sensor data (18, p. 1066). The model has a single explana-

tory variable - Unix time. This variable is used to predict the future values of

sensor readings based on previous measurements.

The model sample is taken from previous measurements during the last 4

minutes. The 4 minute interval is selected to balance out errors caused by extreme

24

4.2 Server-side Client

values. This is necessary because a single value with big enough deviation can

cause the regression model to become inaccurate.

To measure the accuracy of the model, an con�dence level of 90% was intro-

duced. If the sample for last 4 minutes provides an accurate enough regression

model, then the predictions can be used. Otherwise, fresh data should be queried

and added to the model until the error threshold is satis�ed. The equation to

calculate regression model's con�dence level α (18, p. 1066):

α = 2Φ
(

ε
RMSE

)
− 1.

Here Φ is the CDF (Cumulative Distribution Function) of residuals, ε is the

allowed error (in the database model named as regression_error and RMSE

is the root mean square error (also known as standard error of estimate) of the

regression model. The original equation used standard deviation of errors instead

of RMSE, but RMSE is used here because of computational ease. RMSE is the

square root of the mean squared deviation (19) which is assumed to show the

same thing as standard deviation (deviations from the mean). Furthermore, as

the actual value received is the ratio of ε to the calculated RMSE value, the ε

value is selected with respect to RMSE.

Regression models are created separately for each sensor. Each model has a

sample of previous measurements and the allowed error ε de�ned in the database.

The con�dence level α is calculated for each model and has to be over 90% which

is the selected threshold. If all regression models satisfy the con�dence level, then

the fuzzy control system is initialized with data from previous measurements and

calculated con�dence levels.

4.2.2 Fuzzy Logic Engine

The next step in predicting future sensor values is to calculate the time interval

for the next measurement request. To calculate the time, a fuzzy control system

was introduced to provide �exible decisions based on multiple input variables.

The input variables are:

1. temp

25

4.2 Server-side Client

2. temp predictability

3. light

4. light predictability

5. hall

6. hall predictability

Here each sensor has a pair of input variables - measured sensor value and sen-

sor value predictability (regression model con�dence level α). All these variables

are mapped into fuzzy sets, a procedure call fuzzi�cation. The predictability vari-

ables are mapped into sets which all have the same membership functions shown

in �gure Figure 4.4.

Figure 4.4: Regression Con�dence Fuzzy Sets

The fuzzy control system is initialized with a previous measurement for each

sensor. This e�ectively sets the bounds of each sensor's fuzzy sets as seen in

Figure 4.5. The PREDICTABLE fuzzy set's DOM (degree of membership)

reaches maximum at a con�dence level of 0.95 or 95% because for our prototype

anything above that level is highly predictable.

26

4.2 Server-side Client

The measured sensor values are fuzzi�ed into sets, which each have di�erent

membership functions. The membership functions are calculated on the last

measurement received as seen in Figure 4.5. Here X in set labels notes the sensor

type currently used as the sets are the same relative to each sensor's previous

measurement. The center point O is the previously measured value. ||X2X3|| is
the prede�ned sensor measurement error (sensor_error �eld in the data model).

This means that if the new measurement is between the points X2 and X3, there

is no change in the measurement for the fuzzy system. The lengths ||X0X2||,
||X1O||, ||OX4|| and ||X3X5|| are de�ned by the same variable slope_width.

Currently, slope width is the same as the selected regression_error values which

are 5 times the value of measure_error. The selected error values can be seen

in Table 4.1.

Figure 4.5: Sensor Value Fuzzy Sets

Temp Hall LDR

measure_error 0.1 0.5 10

regression_error 0.5 2.5 50

Table 4.1: Selected Error Values

27

4.2 Server-side Client

The output variable is defuzzi�ed from the idle time sets which have mem-

bership functions described in Figure 4.6. The sets request and predict are sym-

metrical to enable easy defuzzi�cation. The maximum idle time is 65 seconds,

which is the maximum length of one sleep cycle for the sensor module.

Figure 4.6: Idle Time Fuzzy Sets

When all input variables have been fuzzi�ed and degrees of membership cal-

culated, then the next step is to �re all prede�ned rules. For each sensor, there

is a collection of 3 rules, making a total of 9 rules (here x ∈ {hall, temp, light}):

1. IF x IS x_changed_left OR x_changed_right AND x_predictability IS

not_predictable OR predictable THEN request

2. IF x IS x_same AND x_predictability IS not_predictable THEN request

3. IF x IS x_same AND x_predictability IS predictable THEN predict

The previously calculated degrees of membership are fed into these rules.

For AND relationship, the minimum value is selected, for OR relationship, the

maximum value is selected. For each rule, the output variable receives a DOM

28

4.2 Server-side Client

equal to the DOM of the premise. When all rules have been evaluated, the results

are defuzzi�ed into a single crisp value, which is the idle time decision.

During defuzzi�cation the DOMs of result sets request and predict for each

rule are combined into a single DOM for the speci�ed set. For this, request

output has an OR relationship (maximum value) and the predict set has an

AND relationship (minimum value). These relationships mean that the most

inaccurate sensors would be represented in the �nal result. For example if hall

has a DOM of 1.0 to predict, but temp has a DOM of 0.5 to predict, then the

outcome would be a DOM of 0.5, because we need the output for least accurate

sensors. For request this logic is reversed as the maximum DOM to request

represents the output for the least accurate sensor.

The next step is to get the crisp result value. For this process, the idle time

values for predict and request set membership functions at the speci�ed DOM

are calculated. x is found the equation f(x) = DOM , where x is the idle time

and f is the membership function. request and predict membership functions

are symmetric with the axis being in the point x = 0 as seen in Figure 4.6. The

�nal defuzzi�ed idle time is equal to max{xpredict − xrequest, 10}. Meaning that if

the DOM to request was higher that to predict, then the default idle time of 10

seconds is returned. Otherwise the value at the center point of the two results is

returned.

When the crisp result is received from the fuzzy control system and idle time

is longer than 10 seconds, future data is predicted for the idle period. This

means that using the regression models, future values with 10 second intervals

are inserted into the database for each sensor.

Finally, the idle time with a minimum value of 10 seconds is written as a JSON

format string to the response body of the HTTP request. A sample response

would look like:

HTTP /1.1 200 OK

Content -Type: application/json;charset=utf -8

Content -Length: 12

Connection: close

Server: Jetty (7.2.0. v20101020)

{"idle": 34}

29

4.3 Results

4.3 Results

4.3.1 PeakTech 1890 Power Supply

Figure 4.7: PeakTech 1890

A PeakTech 1890 programmable power supply was used when testing the

power consumption of the Arduino sensor module. The power supply enables

to set variable output voltage and current values and has RS-232 and RS-485

interfaces for connecting with external devices. The RS-232 interface was used

to collect drawn current values with 1 second interval. The power supply can be

seen in Figure 4.7

30

4.3 Results

4.3.2 Overview of Tests

All average current tests were carried out using the PeakTech 1890 power supply.

The power supply collected data with 1 second interval for 1800 seconds (30

minutes).

When testing with the server hosted in an Amazon EC2 micro instance, it was

discovered that the previously used 3G wireless connection was not stable enough

to provide consistent connections. Previous tests were made in a local area net-

work where 3G was su�cient. To �x this, a switch to local Wi-Fi connection was

made, the connection speeds were measured at 17.68 Mb/s download and 23.44

Mb/s upload. The latency of HTTP response for the we server was measured with

Google Chrome web browser's developer tools console and produced an average

of 120ms.

4.3.3 Test Results

Firstly, the average current drawn in a second was measured for the original

XMPP implementation, the �nal HTTP implementation with a hard coded 10

second idle time (same as the original XMPP version) and �nally, the HTTP

implementation with variable idle times enabled. The results can be seen in

Figure 4.8 and Table 4.2. As seen from the table, there was a 23% improvement

for the HTTP version with the same �xed idle time. With variable idle time, the

improvement was 42% with the average idle time measured at 37.15 seconds.

Average current (mA) Percentage Improvement

XMPP 10s interval 111.74 100%

HTTP 10s interval 86.14 77% 23%

HTTP �nal 64.39 58% 42%

Table 4.2: Overview of Current Measurement Results

Secondly, the module's lifetime on a 9V battery was tested. The result time

was the time di�erence between the �rst and the last request received by the

server-side client after powering the sensor module from a 9V battery. Two sepa-

rate tests were carried out - one later in the day and one earlier to show behaviour

31

4.3 Results

Figure 4.8: Current Measurements Comparison

in di�erent conditions. The di�erence mainly involved the LDR sensor which is

quite sensitive and slight �uctuations in lighting a�ect the measurements.

Figure 4.9: Battery Lifetime and Idle Time Comparison

32

4.3 Results

Lifetime (min) Improvement (%) Total Idle Time (min)

Previous Prototype 161.5 - 0

Test 1 340 111 266

Test 2 291 80 194

Table 4.3: 9V Battery Lifetime Test Results

From Table 4.3 it can be seen that the two test results di�er a bit. This is

because Test 1 was done in the evening and Test 2 was done during the day,

which a�ects the LDR sensor's readings. During the day the sensor readings

change a lot due to the variable lighting conditions. However, both tests con�rm

that the fuzzy control engine and prediction system work well together and that

the overall battery lifetime has improved. The decrease in power consumption is

dependent on the actual time spent in idle mode, because the more the module

sleeps, the less power it consumes in total.

As can be seen in Figure 4.9, change in total idle time and battery lifetime

have almost identical lines, which indicates that they are closely correlated. This,

in fact, is quite logical because the main decrease in power consumption comes

from utilizing idle mode as much as possible.

The server-side client was not separately load tested, because the average

request handling time was measured to be 53ms, which is quick enough to handle

sensor module loads. Furthermore, since Jetty web server is a Java application

server, which has proven itself in real commercial implementations, the solution

was trusted to handle a large number of requests.

All in all, the outcome is positive with the daytime test giving an 80% and the

evening test giving 111% improvement. The di�erent results are caused by the

selection of acceptable error values, which can be �ne tuned based on the actual

measurement characteristics needed.

33

5

Conclusions

Context aware applications have become more common in recent years and there-

fore mobile applications need to take advantage of the possibilities they o�er. To

provide this contextual information, a prototype solution was developed, which

registers sensor data from an Arduino-based module and saves it in a data server.

The prototype solution was further developed in this thesis to increase battery

performance and therefore the usability of the prototype. For this, a variable

sensor reading interval solution was developed, which consists of a fuzzy control

engine and a simple linear regression model. Moreover, the sensor module was

improved to enable sleep mode during periods of inactivity to fully utilize the

variable sensor reading times.

A switch from XMPP to HTTP was made on the communication protocol

part. This switch was necessary to enable sleep mode in the sensor modules,

since XMPP session negotiation is a verbose process and therefore takes longer

than making a simple HTTP request. The move to HTTP decreased connection

initialization times, which enabled the module to utilize sleep mode for longer

periods.

Several tests were carried out to measure the actual bene�ts of the proposed

improvements and the results were positive. Two tests, with improvements of

80% and 111% over the previous prototype's battery lifetime, were carried out.

These tests show that the proposed solution of enabling sleep mode in the sensor

module for idle periods decreases power consumption and enables the module to

perform its tasks for a longer period of time.

34

6

Related Work

A solution for energy-e�cient data collection for clustering-based wireless sensor

networks has been suggested (18). This solution has wireless sensor clusters with

a head node, which actively decides if new sensor data should be requested from

the nodes or if they can be predicted. The communication with the central data

collection point goes through cluster heads only, which reduces transfer overhead.

This is similar to the current thesis in a sense that data is predicted or requested

and then forwarded, with the exception that this prototype does not have clusters

and extra complexity that comes with clustering. The general implementation

idea has been taken from this solution and prediction algorithm details, as in

both cases linear regression is used to predict sensor data.

The previous prototype (2) is the main basis of this work as it was the starting

point. The previous implementation used XMPP as the communication protocol

and a �xed interval data collection. XMPP has several advantages over simple

HTTP requests, mainly because the protocol supports message queues and secu-

rity. However, actually useful security options (SSL/TLS) are unavailable due to

their overhead and implementation complexity for Arduino boards. On the other

hand, XMPP protocol has communication overhead which reduces its usability

when fast connection establishment and data transmission is required.

35

7

Future Research Directions

The changes made in this thesis are done with the notion of improving on a proof

of concept prototype. This means that the changes are done to prove a concept as

well. Hence, several aspects of the changes implemented can be improved upon.

Firstly, starting with the Arduino sensor module, the hardware side of the

module can greatly a�ect the power consumption of the device. Currently, Ar-

duino Mega ADK is used, which is one of the most power-hungry boards available.

Currently, the board draws 55mA of current in sleep mode, which is very close to

the average current drawn as seen in Figure 4.8. When this number is lowered,

the average current drawn will decrease and thus improve battery lifetime.

Secondly, the server-side client's fuzzy control engine and prediction models

can be improved. At the moment, the fuzzy control engine checks if the measured

value has changed from a previous measurement by a degree x. If it has, a new

measurement is requested. However, this con�guration does not cover the case

when the measurement values changes steadily by a degree which is larger than

the acceptable measure_error. In this case, the changes in value might be large,

but if they are consistent, then the future values could still be predictable.

Thirdly, the prediction model can be improved upon to better handle extreme

values, because currently a large enough deviation can cause the model to become

inaccurate. The selected measure_error and regressin_error values can be

adjusted to better suit the selected sensors and their data ranges. At the moment,

the values are based on a trial and error tuning of the models to suit the needs of

the prototype level device. However, in an actual implementation environment,

36

these values should be based on the type of information needed from the sensors.

For example, a small change in the light sensor measurements might indicate that

an object (a bird) has �own past the sensor, but if the goal is to measure the

cloudiness of the sky or the time of day, the acceptable deviations in the sensor

values can be larger to ignore small �uctuations.

Finally, as XMPP was replaced by HTTP for the sleep mode to be usable

in the Arduino sensor module, a large component of the previous prototype was

changed. This switch gave faster connection establishment. On the other hand,

several advantages of XMPP have gone missing, most notably the possibility to

queue o�ine messages and status updates for sensor modules. Therefore, a more

complex communication solution can be developed to provide these possibilities

while still providing fast connection times.

37

Mobiilsetele kasutajatele sensoritelt

kogutud keskonnapõhiste andmete

energiateadlik edastamine

Bakalaureusetöö (6 EAP)

Lauris Kruusamäe

Tänapäeval levib järjest rohkem rakendusi, mis tajuvad ümbritsevat keskkonda

ning pakuvad sellele põhinevalt kasutajale lisavõimalusi. Selliste võimaluste pakku-

miseks on arendatud prototüüp, mis kogub keskkonna kohta andmeid kasutades

Arduino platvormil põhinevad sensorite moodulit ning keskset andmet kogumise

serverit.

Käesolevas töös arendati antud prototüüpi edasi, et tõsta aku vastupidavust

ning seeläbi parandada lahenduse kasutatavust. Selleks loodi varieeruva senso-

riandmete saatmise intervalliga lahendus, mis koosneb hägusloogikat kasutavast

kontrollsüsteemist ning lihtsa lineaarse regressiooni mudelist. Lisaks loodi lahen-

dus, mis lubab sensorite moodulil vabadel hetkedel minna puhkereºiimi.

Töö käigus asendati seni kasutuselolev XMPP protokoll HTTP protokolli

vastu, et parandada ühenduse loomise ajakulu ning lubada sensorite moodulil

kauem puhkereºiimis olla.

Parandatud lahenduse tulemusi mõõdeti mitme testi käigus. Kaks põhilist

testi, mille käigus sensorite moodul sai voolu 9-voldiselt patareilt, andsid vas-

tavalt tulemusteks 80 ja 110 % pikema eluea. Sellest tulenevalt saab eeldada, et

pakutud puhkereºiimi ja muutuva intervalliga andmete kogumist kasutav lahen-

dus parandab aku vastupidavust ning seega ka prototüübi kasulikkust.

38

Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Lauris Kruusamäe (date of birth: 30/12/1989), herewith grant the Univer-

sity of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the

public, including for addition to the DSpace digital archives until expiry of the

term of validity of the copyright, and

1.2. make available to the public via the web environment of the University

of Tartu, including via the DSpace digital archives until expiry of the term of

validity of the copyright,

Energy-aware Sensor Data Collection for Mobile Users

supervised by Huber Flores and Satish Narayana Srirama,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intel-

lectual property rights or rights arising from the Personal Data Protection Act.

Tartu, 13.05.2013

39

Bibliography

[1] H. Flores, S. N. Srirama, Adaptive code o�oading for mobile cloud applications:

Exploiting fuzzy sets and evidence-based learning, in: Proceedings of the 4th ACM

Workshop on Mobile Cloud Computing and Services (MCS 2013), ACM, 2013. v,

12

[2] Kaarel Hanson, Context Sensor Data on Demand for Mobile Users Supported by

XMPP (2012). v, 1, 2, 14, 16, 17, 18, 35, 42

[3] Arduino - HomePage, http://www.arduino.cc/, 2013-04-16. 4

[4] Arduino - ArduinoBoardADK, http://arduino.cc/en/Main/ArduinoBoardADK,

2013-04-18. 5

[5] Arduino - ArduinoWirelessShield, http://arduino.cc/en/Main/ArduinoWirelessShield,

2013-04-18. 6

[6] RN-XV WiFly module - wire antenna - SparkFun electronics,

https://www.sparkfun.com/products/10822, 2013-04-18. 7

[7] Tinkerkit introduction, http://www.tinkerkit.com/introduction/, 2013-04-19. 7

[8] Thermistor sensor, http://www.tinkerkit.com/thermistor/, 2013-04-27. 8

[9] Hall sensor, http://www.tinkerkit.com/hall/, 2013-04-27. 8

[10] Light sensor, http://www.tinkerkit.com/ldr/, 2013-04-27. 8

[11] Marcelo Godoy Simoes, Introduction to Fuzzy Control, 1610 Illinois Street Golden,

Colorado 80401-1887 USA. 9, 10

[12] Lot� A. Zadeh, Information and Control, 1965, Ch. Fuzzy Sets, p. 338�353. 10

40

BIBLIOGRAPHY

[13] Least squares �tting � from wolfram MathWorld, http://mathworld.wolfram.com/

LeastSquaresFitting.html, 2013-05-04. 13

[14] Jim Lamberson, Single and Multistage Watchdog Timers (2012). 20

[15] JeeLib: introduction, http://jeelabs.net/pub/docs/jeelib/, 2013-04-23. 20

[16] JeeLib: port class reference, http://jeelabs.net/pub/docs/jeelib/classPort.html,

2013-04-23. 20

[17] WiFly user guide - WiFly-RN-UM.pdf, http://dlnmh9ip6v2uc.cloudfront.net/datasheets/

Wireless/WiFi/WiFly-RN-UM.pdf, 2013-04-23. 21

[18] H. Jiang, S. Jin, C. Wang, Prediction or not? an energy-e�cient framework

for clustering-based data collection in wireless sensor networks, Parallel and Dis-

tributed Systems, IEEE Transactions on 22 (6) (2011) 1064�1071. doi:10.1109/

TPDS.2010.174. 24, 25, 35

[19] Root-mean-square � from wolfram MathWorld,

http://mathworld.wolfram.com/Root-Mean-Square.html, 2013-05-04. 25

41

http://dx.doi.org/10.1109/TPDS.2010.174
http://dx.doi.org/10.1109/TPDS.2010.174

Appendix A

The Arduino sensor module sketch and server-side client implementation code can

be accessed from https://github.com/huber�ores/ArduinoXMPP/. The master

branch contains the original prototype (2). The improved implementation is in the

dev branch, last change commit hash - c5126a9a36dd362596444dbadc901ea083bf4031.

The code and collected data are also available on a CD attached to the thesis

with a sample requirements document to run the applications.

42

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline

	2 State of the Art
	2.1 Arduino
	2.1.1 Arduino Mega ADK
	2.1.2 Wireless SD Shield
	2.1.3 RN-XV WiFly Module
	2.1.4 TinkerKit

	2.2 Fuzzy Logic
	2.2.1 Fuzzy Set
	2.2.2 Fuzzy Set Operations
	2.2.3 Fuzzy Control Systems
	2.2.3.1 Fuzzy control process

	2.3 Simple Linear Regression

	3 Problem Statement
	3.1 Current Solution
	3.1.1 Arduino
	3.1.2 XMPP Communication
	3.1.3 Data Collection Server

	3.2 Problems
	3.2.1 Hardware
	3.2.2 Software
	3.2.3 Power Consumption

	4 Towards an Energy-aware Solution
	4.1 Overcoming Power Consumption Issues
	4.1.1 Sleep
	4.1.1.1 Watchdog Timer
	4.1.1.2 Arduino Mega ADK
	4.1.1.3 WiFly module

	4.1.2 Communication

	4.2 Server-side Client
	4.2.1 Prediction Module
	4.2.2 Fuzzy Logic Engine

	4.3 Results
	4.3.1 PeakTech 1890 Power Supply
	4.3.2 Overview of Tests
	4.3.3 Test Results

	5 Conclusions
	6 Related Work
	7 Future Research Directions
	Resümee
	Licence
	Bibliography
	Appendix A

