
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Steve Mägi

Tracking framework for object
localization using Arduino

Bachelor Thesis (6 EAP)

Supervisor: Satish Srirama, PhD

Co-supervisor: Carlos Paniagua

Author: .. ”....” May 2012

Supervisor: .. ”....” May 2012

Co-supervisor: .. ”....” May 2012

Professor: .. ”....” May 2012

TARTU, 2012

Contents

1 Introduction 5

1.1 Motivation . 6

1.2 Contributions . 6

1.3 Outline . 7

2 State of the Art 9

2.1 Bluetooth . 9

2.2 Arduino . 10

2.3 Android . 11

2.4 Amarino . 13

2.5 Object Tracking and Localization Frameworks 14

3 Problem Definition 17

4 Object Localization Framework using Arduino and Android 19

4.1 Use Cases . 19

4.2 Architecture . 26

4.2.1 Communication Protocol . 26

4.2.2 Tracker . 28

4.2.2.1 Hardware Realisation 28

4.2.2.2 Software Realisation . 32

4.2.3 Object . 35

5 Object Localization Framework Performance 39

5.1 Outdoor Connectivity . 39

5.2 Outdoor Bluetooth Signal Strength . 41

3

CONTENTS

5.3 Indoor Bluetooth Signal Strength . 42

5.4 Power Consumption . 43

5.5 Multiple Objects . 44

6 Conclusions and Future Work 45

Abstract (in Estonian) 47

Bibliography 49

Appendix A 51

4

1

Introduction

Mobile devices such as smartphones, digital cameras, personal navigation devices and

handheld game consoles are quite popular these days. New technologies and improve-

ments in hardware have made mobile devices more widespread. They offer various

ways of communication. For instance, Bluetooth [1] is used for wireless data trans-

fer between Bluetooth enabled devices such as headsets, personal computers, mobile

phones, remote controls - anything that needs to exchange digital audio or other data

over short distances. Furthermore, Bluetooth module is embedded in almost every

smartphone today.

Android [2] is one of the popular smartphone platforms. It is an open source oper-

ating system for mobile phones. Developers can create software, which runs on Android

mobile phones and makes use of its features, such as multi-touch screen, camera, ac-

celerometer, GPS, gyroscope and Bluetooth. By using Bluetooth, Android phone can

communicate with other devices, for example, Arduino [3] microcontroller. Arduino is

an open source physical computing platform which is based on a microcontroller board.

Arduino can be used for prototyping a hardware system which is easy to integrate with

Android or other mobile technologies.

In this work we attempt to bring mentioned technologies together to develop a

tracking framework for object localization. In addition, we analyse the prototype.

5

1. INTRODUCTION

1.1 Motivation

Finding a lost mobile phone can be a real challenge, even if the phone was misplaced

at home. Of course, if the phone was lost at home, it is possible to call the missing

phone from another one and find the misplaced phone. But what if there are no other

phones nearby? Then we would need another solution.

Besides mobile phone, the object that is important does not have to be an electronic

device. A wallet is an example of an object that we want to keep close to us whenever

we go. Especially, if the wallet was left in the pocket of a jacket in coatroom, then it

may cause us discomfort. In worst case scenario, someone may steal it.

The object we care about can sometimes move away from us, but in some scenarios

it is critical to keep it close to us. As an example, when a parent goes to a shopping mall

with children, it is important for the parent to keep an eye on the children. Children

may move away from the parent, but not too far.

There are always some objects that we want to keep close to us. It is important to

know the location of these objects and to get notified whenever any of these objects

moves away from us. Therefore we propose a tracking framework for object localization

based on Arduino.

1.2 Contributions

For the problems mentioned in previous section we propose a solution - an object local-

ization and tracking system. The system consists of one or multiple Objects which are

connected to the central Tracker device. The Tracker is always attached to the user.

For example, user carries it on his belt. The Object is a personal item, its location is

important for the user. Object can be a mobile phone, keys with attached microcon-

troller as a keychain, a wallet with embedded microcontroller or microcontroller in a

child pocket, among others. See an example of different Objects in the Figure 1.1. The

system must notify user when an object of interest is left behind or help him find the

object.

The Tracker has two major tasks. Firstly, it is responsible for managing connection

between the Tracker and the Object. Secondly, it has to notify the user about events

such as alarm sent from the Object, connection was lost to the Object, and new Object

6

1.3 Outline

Figure 1.1: Tracker device attached to user’s belt and two Objects connected to the

Tracker.

was connected. In contrast, the Object is in a more passive role. Depending on the

available hardware features, Object can send and/or receive alarms.

As for the Tracker we will be using an Arduino microcontroller with an integrated

Bluetooth module. For Object, we will be using an Android smartphone which also has

Bluetooth module.

1.3 Outline

Chapter 2: Introduces the state of the art of the localization framework and technol-

ogy choices. Moreover, it gives an overview of the related work.

Chapter 3: The problem definition is discussed in this chapter.

Chapter 4: This section describes the framework for object localization.

Chapter 5: Explains performance and scalability of the framework.

Chapter 6: Provides conclusions and future work.

The Appendix A section contains the source code and binaries which were developed

or used in this work.

7

1. INTRODUCTION

8

2

State of the Art

This thesis combines different technologies that can be used for creating a tracking

system for object localization. In the following sections each of the used technologies is

described and explanation is provided about why this particular technology was chosen.

2.1 Bluetooth

Bluetooth [1] is a radio frequency based wireless communication technology which is

based on the IEEE 802.15.1 standards [4]. Bluetooth was designed to be short-range

and cheap replacement for cables for creating Wireless Personal Area Network (WPAN).

WPAN is a network for interconnecting personal devices in close range. For example,

Bluetooth can be used for connecting keyboard, printer, audio headset to a computer

or mobile phone. Moreover, it is possible to create a bridge between mobile phone and

a computer to share the Internet connection by using Bluetooth.

Bluetooth is often compared to Wireless Local Area Network (WLAN) [5] tech-

nology, which is also known as Wi-Fi [6]. Wi-Fi is similar to Bluetooth in means of

data transmission, they both use the same range of radio frequency to transmit data.

However, Wi-Fi transmission output power is higher. This makes the working radius

larger than the Bluetooth has, but on the other hand, this also has bigger impact on

the battery life. Depending on the class of the Bluetooth device, the connectivity range

can be up to few hundred meters. A major disadvantage of using WLAN is that Wi-Fi

devices need an access point such as Wi-Fi router to connect to other devices, whereas

Bluetooth device can be connected directly to multiple devices simultaneously.

9

2. STATE OF THE ART

All things considered, the Bluetooth technology was chosen in this thesis because a

wide range of devices already support Bluetooth compared to other WPAN technologies

like IrDA [7] (Infrared Data Association) or ZigBee [8]. Furthermore, the connectivity

radius of a Bluetooth device is large enough for short distance object localization.

2.2 Arduino

Arduino [3] is an open source platform for developing electronics prototypes, it is based

on a simple microcontroller board and software. The software includes integrated de-

velopment environment (IDE), compiler and a bootloader for the microcontroller. Pro-

grams can be written in Arduino programming language, which is very similar to C++

programming language.

Arduino board has an Atmel AVR microprocessor and input/output support via

on-board pins. There are many official Arduino boards available which come in different

shapes and sizes. As an example, two Arduino boards are shown in the Figure 2.1. Some

Figure 2.1: Arduino BT [9] (left) and Arduino LiliPad [10] (right).

of them may be coupled with additional modules, for instance, Arduino BT board has

embedded Bluetooth module as shown in the Figure 2.1.

What makes Arduino boards very useful is that they have input and output support,

meaning that the board can interact with the physical world. For example, by connect-

ing light dependent resistor sensor into the board input pins it is possible to measure

the light intensity falling on the sensor. Electric voltage values from analog input pins

10

2.3 Android

are converted into digital levels by using the 10-bit analog-to-digital converter (ADC)

unit that is part of the microprocessor [11]. Similarly, light emitting diode (LED) can

be connected to the output pins of the board. When board applies electrical power on

the output pins, LED will lit up.

Compared to other microcontroller boards, Arduino is relatively inexpensive with

open source platform and extensible hardware. Arduino has also a board which has

already a built-in Bluetooth module which makes it easier to use with other wireless

devices.

2.3 Android

Android is an open source operating system for mobile devices. According to Andy

Rubin [12], who is the Senior Vice President of Mobile at Google Inc, over 300 million

Android mobile phones have been sold and activated, which makes it one of the most

popular operating system for smartphones.

Android architecture can be divided into 5 parts [13]: Linux kernel, Android run-

time, Libraries, Application framework and Applications. Figure 2.2 shows the major

components of the Android operating system.

The core of Android architecture is a Linux kernel which is slightly modified to

match the special needs for mobile devices such as power and memory management.

The kernel is a layer between hardware and rest of the software. Android runtime sits on

top of the kernel, it consists of core libraries and Dalvik Virtual Machine (DVM). Every

Android application process has an instance of DVM. The DVM executes files that are

compiled from the Java language to the Dalvik Executable format. Applications can use

a set of available general purpose libraries for managing databases, media, graphics and

other resources. The application framework makes use of general purpose libraries and

combines them into reusable components. Components help developers to create rich

and innovative applications. Android applications are written in the Java language.

Android operating system includes some core applications such as Phone, Contacts,

Web browser, Email client and others.

A typical Android application contains one or more Activities. The Activity is a

screen with a user interface. In addition, an application may have a Service. Service

11

2. STATE OF THE ART

Figure 2.2: Android system architecture [13].

runs in the background and executes long running tasks, like music player. The differ-

ence between Activity and Service is that the Activity does not perform long operations

and may be destroyed when another Activity is opened, but the Service has to complete

its task before it is destroyed.

Services and Activities can be in different applications, yet it is possible for them to

communicate with each other. Android has an interprocess communication system, the

communication uses messages that are called Intents. Intent contains an information

about the operation to be performed and it can also contain some extra custom infor-

mation. Activity and Service are subclasses of Context. To send a message to another

Context, one must create an Intent and broadcast it. To receive a message, Context

must register broadcast receiver and set up an IntentFilter to filter Intents of interest.

Android smartphone was chosen in this thesis for the prototype object that needs

to be localized because most of the Android phones have a Bluetooth module, also the

development tools for Android are cross-platform and there are lot of resources about

12

2.4 Amarino

the development available on the Internet.

2.4 Amarino

Amarino [14] is a toolkit to connect Android mobile devices with Arduino microcon-

trollers via Bluetooth. The toolkit consists of two parts, ”Amarino” and ”MeetAn-

droid”. ”Amarino” includes an application for Android with a graphical user interface

(GUI) and a library with an application programming interface (API) to communicate

with Arduino. ”MeetAndroid” is a library for Arduino, it provides an API to exchange

data with Android.

Furthermore, ”Amarino” offers a GUI to monitor Bluetooth connections. It also

includes a background service that is called AmarinoService. The service manages

Bluetooth connections, that includes connecting, disconnecting, sending and receiving

messages from Arduino Bluetooth device. The GUI interacts with the AmarinoService

by using Android Intents. Decoupling between the GUI and the AmarinoService al-

lows other Android applications to use the same service as an interface to connect to

Arduino devices. The library which comes with the ”Amarino” does not include the

AmarinoService, it only has a wrapper to pass Intents to the service. In order to use

the Amarino toolkit in a custom Android application the ”Amarino” application has

to be installed.

On the Arduino side, ”MeetAndroid” library is used for sending and receiving data

from Android device. Unlike the Amarino toolkit for Android, the ”MeetAndroid”

library does not manage Bluetooth connections. Arduino does not provide standard

API for Bluetooth, instead, each Bluetooth module may have its own API, for example

IWrap [15] which Arduino BT uses.

Moreover, Amarino API offers a communication protocol which simplifies sending

and receiving messages. A message has identifier and content. The identifier is a

character such as ”A”, ”B”, ”C”, etc. Content can be a wide variety of data types,

including string of characters, integers, floating point numbers and booleans.

On the whole, Amarino simplifies the setup and communication between Android

and Arduino devices, it also provides tools for creating a protocol for the communi-

cation. There are no other similar libraries available, these were the main reasons for

using Amarino toolkit in this thesis.

13

2. STATE OF THE ART

2.5 Object Tracking and Localization Frameworks

There are different approaches which can be used to create an object localization sys-

tem. A way of categorize object localization systems is to use location sensing tech-

niques [16] such as triangulation/trilateration, scene analysis and proximity. Triangula-

tion and trilateration techniques use trigonometry between multiple objects to calculate

their location. The triangulation technique uses location of two known objects, distance

between them and angles to the object which needs to be localized to calculate its loca-

tion. Trilateration uses location of two known objects and distances between all objects

to calculate location of third object. Likewise, scene analysis observes the scene and

makes conclusions about the location of objects. Further, proximity technique uses the

physical contact, line of sight or wireless technologies to determine whether the object

is near or away from the measuring object. These techniques can be subdivided into

absolute and relative location systems.

In absolute location system, if one object measures or calculates other object’s

location, the result will be the same as if another object would have measured the

same object’s location. For example, when geographic coordinates of the same place

are calculated by Global Positioning System (GPS) device or measured by using world

map, then it doesn’t matter which method was used, the longitude and the latitude of

the result would be the same. In relative location system, the object’s location is given

relative to the measuring object’s location. For example, if two objects are measuring

the location of another object, then results can be different such as ”next building” or

”building across the street” which actually refer to the same building.

In outdoor environment, GPS [17] can be used to get accurate location information.

GPS is a network of multiple satellites in the orbit of Earth, originally 24 satellites.

Satellites are placed in the orbit so that at least 5 are in the view at any point on the

Earth. Each of the satellites transmit navigational data which is used by receivers on

Earth to calculate the location of the receiver device. GPS technology is an example of

trilateration where the calculated location is absolute. Advantage of GPS technology is

wide area coverage. In contrast, the disadvantages are: limited accuracy, not available

for indoor environments, devices using GPS consume lot of battery power.

RADAR [18] is a Radio-frequency (RF) based indoor user location and tracking

system which uses both, scene analysis and proximity techniques. The idea is that there

14

2.5 Object Tracking and Localization Frameworks

are some wireless hosts with fixed locations in a building. Wireless hosts broadcast and

listen data packets. The building is divided into 2-dimensional grid. In the setup

phase, user visits all the sectors of the grid and broadcasts its absolute location and

facing direction in the building. Wireless hosts listen this broadcast and store the data

along with timestamp and the signal strength of the broadcast. Later, in the real time

phase, this information is combined and can be used to calculate user’s location based

on the signal strength. The advantages of this system are that it doesn’t require ad

hoc wireless hosts, it can use existing RF wireless LAN (Local Area Network) devices.

Disadvantages are that the RADAR can be used only indoor. If the room plan in the

building changes or some bigger objects change place, then it may need recalibration.

In addition, RADAR cannot track users on multiple floors of the building.

Reminder systems keep track of objects of interest and raise alarm when any of

these objects are lost. The solution presented in this thesis is probably most similar

to reminder systems. An example of such system is presented in Ubicomp 2004: Ubiq-

uitous computing [19] where passive Radio-frequency identification [20] RFID tags on

objects are used to generate reminders about objects left behind. This design is using

proximity technique with relative location system. The advantage of this system is that

it is not dependent on the environment like RADAR. The main disadvantage of this

design is that it doesn’t allow two-way communication between tag (transponder) and

reader. This becomes a problem when the tag is lost and reader needs to send alarm

to the tag.

In object search systems, every trackable object’s location is stored in the central

database when the tracker passes by. Later on, when an object needs to be located,

the central database can be queried. In Hourglass [21], there can be several trackers

which collect the data. Each tracker may use different sensors to identify objects.

The database can be queried by another service which doesn’t need to be the tracker

itself. Depending on the trackers and their methods of data collection, this system can

be combination of triangulation, scene analysis and proximity techniques. Location

system can be both, absolute and relative. Advantage of this object search system is

that it can track many objects simultaneously in a very large area. Disadvantage is

that it collects and stores large amount of data which is unnecessary most of the time,

the data is shared with all the participants who wish to use the localization system

which may raise concerns about privacy.

15

2. STATE OF THE ART

16

3

Problem Definition

In everyday life, it is often important to know the location of objects which we are

interested in. The location of immovable objects is easier to remember. The problem

arises when we are dealing with smaller objects such as TV remote control, wallet or

mobile phone, which can be moved or misplaced. In this case it may be sometimes hard

to remember the location where the object was placed last time we used it. Even if we

had a good memory, then someone else may move the object, so this is still a problem.

By specifying the problem a bit without simplifying it, we restrict the objects of

interest to be personal objects (Objects). Personal objects like wallet, mobile phone,

purse or back bag need to be close to us when we travel from one place to another.

The owner of these objects carries a device called Tracker. In this scenario, we do not

want to lose these objects. In other words, we need to know the relative position of

the Object from the perspective of the Tracker. This problem can be divided into sub

problems.

The first sub problem: Is the Object in the vicinity of the Tracker? To define

the ”vicinity” we say that the Object and the Tracker are both electronic devices

and they can communicate over the wireless network, then the ”vicinity” will be the

connectivity range of the Tracker device. In essence, if an Object can connect to the

Tracker, then the Object is in close range.

Knowing that the Object is in close range may not be good enough. For example,

we do not want to move away from our mobile phone more than a couple of meters,

but we can leave our back bag into another room. So the second sub problem is similar

17

3. PROBLEM DEFINITION

to the first one: If the Object is in the vicinity of the Tracker, is it possible to

evaluate the proximity of the Object?

Usually, there are more than one Object that we want to track. For instance, if a

person leaves from home then he wants to have a key chain and a mobile phone with

him. Therefore the Tracker should be able to track multiple Objects simultaneously.

This is the third sub problem: Is it possible to track multiple Objects?

Even if we know that the Object is close to the Tracker, then we still may not be

able to find the Object because it may be hidden. For example, if the mobile phone

was placed on the sofa and it fell down under the sofa, then it is still in the vicinity of

the Tracker, but we cannot find it. If the Object is able make a noise or other action

which helps the owner of the Object to identify its location, then the owner could use

the Tracker to send a signal to the Object which will make the noise. The final sub

problem: Is it possible for the Tracker to send an alarm to the Object, which,

in return, makes a sound so that a person can follow the sound and find the

Object?

To counter these problems this thesis proposes a tracking framework for object

localization. The next chapter will discuss about the architecture of the proposed

solution.

18

4

Object Localization Framework

using Arduino and Android

In this chapter we propose the tracking framework for object localization based on

the Arduino and the Bluetooth technology. The framework will be used for offering a

solution for the problems described in the previous chapter.

To begin with, the system consists of multiple devices. One of the devices is called

Tracker which tracks other devices called Objects. The Tracker is based on the Arduino

microcontroller board with an embedded Bluetooth module. The Tracker has to be

close to a person who wants to track multiple Objects. Considering that, it could be

attached to a belt or put into the pocket. The Object is a device with a Bluetooth

module, it can be embedded in items which do not have Bluetooth available such as

back bag, thus making these objects trackable. Also, the Object itself can qualify as

the object of interest, for example, a smartphone with a Bluetooth module. Different

types of Objects are illustrated in the Figure 4.1. The bare minimum requirement for

an object to qualify as the Object is that it must be able to establish a Bluetooth

connection to the Tracker device.

4.1 Use Cases

In this section we give an overview of the available features of the proposed object

localization system by describing common usage scenarios. As an Object we use an

Android smartphone with the PhoneWatch application installed that was developed in

19

4. OBJECT LOCALIZATION FRAMEWORK USING ARDUINO AND
ANDROID

Figure 4.1: Tracker tracking multiple Objects.

this thesis. As a Tracker we use the Arduino BT microcontroller with the ObjectTracker

software installed which was also developed in this work. To summarize, the following

list contains the common use cases, more detailed information about each use case can

be found in the referenced use case tables:

• Connect an Object to the Tracker (Table 4.1)

• Disconnect an Object from the Tracker (Table 4.2)

• Send an alarm to the Tracker (Table 4.3)

• Send an alarm to the Object (Table 4.4)

• The user sets the Object as ”short range” device (Table 4.5)

• The user gets notified about an Object which was left behind (Table 4.6)

20

4.1 Use Cases

Use case number 1

Use name Connect an Object to the Tracker

Description The user connects the Object to the Tracker to start

tracking it.

Actors User

Preconditions The Tracker is turned on and is ready to receive new

connections. The Object is in the connectivity range of

the Tracker. The user has started the PhoneWatch ap-

plication.

Trigger The user taps on the ”Connect” button in the

PhoneWatch application.

Expected result The Object is successfully connected to the Tracker.

Main scenario 1. The user taps on the ”Connect” button in the

PhoneWatch application.

2. The PhoneWatch shows a message that the connec-

tion was successful.

Table 4.1: Connect an Object to the Tracker.

21

4. OBJECT LOCALIZATION FRAMEWORK USING ARDUINO AND
ANDROID

Use case number 2

Use name Disconnect an Object from the Tracker

Description The user disconnects the Object from the Tracker in order

to stop tracking it.

Actors User

Preconditions The Object is connected to the Tracker.

Trigger The user taps on the ”Disconnect” button in the

PhoneWatch application.

Expected result The Object is successfully disconnected from the Tracker.

Main scenario 1. The user taps on the ”Disconnect” button in the

PhoneWatch application.

2. The PhoneWatch sends a Disconnect command to

the Tracker.

3. The ObjectTracker receives the command and

marks the connection as disabled.

4. The PhoneWatch closes the Bluetooth connection.

5. The PhoneWatch shows a message that the connec-

tion was closed.

Table 4.2: Disconnect an Object from the Tracker.

22

4.1 Use Cases

Use case number 3

Use name Send an alarm to the Tracker

Description The user sends an alarm from the Object to the Tracker.

Useful when the user cannot find the misplaced Tracker.

Actors User

Preconditions The Object is connected to the Tracker.

Trigger The user taps on the ”Alarm” button in the PhoneWatch

application.

Expected result The Tracker raises alarm.

Main scenario 1. The user taps on the ”Alarm” button in the

PhoneWatch application.

2. The PhoneWatch sends an Alarm command to the

Tracker.

3. The ObjectTracker receives the command and ac-

tivates the alarm.

Table 4.3: Send an alarm to the Tracker.

Use case number 4

Use name Send an alarm to the Object

Description The user sends alarm from the Tracker to the Object.

Useful when the user cannot find the misplaced Object.

Actors User

Preconditions The Object is connected to the Tracker.

Trigger The user pushes the alarm button on the Tracker.

Expected result The Object raises the alarm by making a noise.

Main scenario 1. The user pushes the alarm button on the Tracker.

2. The ObjectTracker sends an Alarm command to

the Object.

3. The PhoneWatch receives the command and acti-

vates the alarm by showing notification and playing

the alarm sound.

Table 4.4: Send an alarm to the Object.

23

4. OBJECT LOCALIZATION FRAMEWORK USING ARDUINO AND
ANDROID

Use case number 5

Use name The user sets the Object as ”short range” device

Description The user sets the Object as ”short range” device which

suggests the Tracker to raise alarm when the Object

leaves from the short range.

Actors User

Preconditions The Object is connected to the Tracker.

Trigger The user taps the ”Short range” button in the

PhoneWatch.

Expected result The Tracker marks the Object as a ”short range” track-

able object.

Main scenario 1. The user taps the ”Short range” button in the

PhoneWatch.

2. The PhoneWatch sends an Alarm range command

with the Short range parameter to the Tracker.

3. The ObjectTracker receives the command and

marks the Object as a ”short range” trackable ob-

ject.

Table 4.5: The user sets the Object as ”short range” device.

24

4.1 Use Cases

Use case number 6

Use name The user gets notified about an Object which was left

behind

Description When the user leaves an Object behind and the Object

moves out of the vicinity of the Tracker, the Tracker no-

tifies the user with an alarm.

Actors User

Preconditions The Object is connected to the Tracker.

Trigger The Object goes out of the vicinity of the Tracker

(connection breaks) or the Object moves out of the

”short/long range” tracking distance, which was re-

quested by the Object.

Expected result The Tracker raises alarm.

Main scenario 1. The Object goes out of the vicinity of the Tracker

(connection breaks).

2. The ObjectTracker receives NO CARRIER event

from the Bluetooth module.

3. The ObjectTracker marks the connection as dis-

abled and raises alarm.

Alternative scenario

1. The Object moves out of the ”short/long range”

tracking distance, which was requested by the Ob-

ject.

2. The ObjectTracker receives RSSI event from the

Bluetooth module with a Bluetooth signal strength

value that is lower than the minimum required for

the ”short/long range”.

3. The ObjectTracker marks the connection as dis-

abled and raises an alarm.

Table 4.6: The user gets notified about an Object which was left behind.

25

4. OBJECT LOCALIZATION FRAMEWORK USING ARDUINO AND
ANDROID

4.2 Architecture

4.2.1 Communication Protocol

In general, when two persons meet and want to exchange the information they use

a language to accomplish this. Similarly, the communication protocol specifies the

message format and rules for exchanging the information. It is needed for understanding

the content and intention of the messages sent between the Tracker and the Object.

By understanding the communication protocol it is possible to develop a new Object

without changing the existing software on the Tracker device.

At this level, to pair and to connect two Bluetooth devices is out of the scope of

this communication protocol, it is the responsibility of the Bluetooth module itself.

The Bluetooth module automatically accepts all connections coming from the paired

devices. The communication is initiated when the Object connects to the Tracker. The

Tracker will be notified of this event, however, it does not send any response back. Even

more, the Tracker does not send any messages at all if the Object has not requested to

be notified about special events such as alarm. This is to maximize the flexibility of the

possible Objects which could be used with the Tracker. If an Object is able to connect

to the Tracker, then it is possible to track this Object. Further, the communication

ends when the connection breaks. Although, it is possible that the Object can send

a disconnect command before it closes the connection. In case if the Object supports

more than just opening the connection, the Tracker supports various commands such

as raising alarm or setting the distance at which the Tracker activates alarm when the

Object moves away from the Tracker. These and other commands are described in the

following paragraph.

The message format used in communication protocol has two parts: Command

identifier and Parameter. Both, Command and Parameter are represented with a

character. The character is actually one byte (256 different possible values), but only

values of ASCII [22] characters from ”A” to ”Z” are being used. The message content

is encapsulated into Amarino message format which wraps it between two bytes, re-

spectively ASCII codes 18 and 19. The following Table 4.7 contains all the available

commands.

26

4.2 Architecture

Command ASCII

character

Parameter

values

Description

Alarm A none Tells to activate the alarm feature.

Enable feature E A An Object can send this command.

By default, the Tracker expects no

features enabled. It means that the

Object supports the feature defined

by the parameter value:
• A - When an Alarm command

is received, the Object will ac-

tivate its alarm.

Disable feature D A The Object can send this command.

The Object tells that it does not

support the feature defined by the

parameter value:
• A - The Object does not want

to receive the Alarm com-

mand.

Alarm range R S, L, C The Object suggests the Tracker

from which distance it should raise

an alarm when it leaves from the

vicinity of the Tracker. The dis-

tance is given by the parameter

value:
• S - Short range.

• L - Long range.

• C - Connectivity range, the

connection is broken. This

is the default setting if the

Tracker does not receive this

command.

Disconnect T none The Object sends this before it dis-

connects, the Tracker will not raise

the alarm then.

Status S none The Tracker sends this in every

minute. It was needed for the bat-

tery experiment.

Table 4.7: Communication protocol commands.
27

4. OBJECT LOCALIZATION FRAMEWORK USING ARDUINO AND
ANDROID

4.2.2 Tracker

4.2.2.1 Hardware Realisation

The physical architecture of the Tracker contains 5 major parts: Arduino microcon-

troller, Bluetooth module, power supply, sensor and actuator. All of these components

can be seen in the Figure 4.2.

Figure 4.2: Tracker.

The core of the Tracker is an Arduino BT-V06 [9] microcontroller board. The Ar-

duino BT is based on the ATmega328 microcontroller and it has a Bluegiga WT11-A

Bluetooh module embedded on the board. Here are the characteristics of the micro-

controller:

• Microcontroller ATmega328

• Operating Voltage 5V

• Input Voltage 1.2-5.5 V (uses DC-DC converter to convert to 5V)

28

4.2 Architecture

• Digital I/O Pins 14 (of which 6 provide PWM output)

• Analog Input Pins 6

• DC Current per I/O Pin 40 mA

• DC Current for 3.3V Pin 50 mA

• Flash Memory 32 KB (of which 2 KB used by bootloader)

• SRAM 2 KB

• EEPROM 1 KB

• Clock Speed 16 MHz

The microcontroller and the Bluetooth module are integrated in the same board, how-

ever, the only bridge between the Bluegiga module and the microcontroller is the serial

connection via RX (receive pin 0) and TX (transmit pin 1) pins. The Bluetooth module

has two important purposes. Firstly, it is used for communication between the Arduino

BT and other Bluetooth devices. Secondly, while some Arduino boards use the USB

port for uploading new program to the board, then on the Arduino BT the Bluegiga

module is the only interface which can be used for this task.

The Bluegiga WT11-A [23] is a Class 1, Bluetooth 2.0 module. It is an autonomous

unit with its own processor and memory. The following list contains more technical

information about the module:

• Fully Qualified Bluetooth system v2.0 + EDR, CE and FCC

• Class 1, range up to 200 meters

• Integrated chip antenna

• Enhanced Data Rate (EDR) compliant with v2.0.E.2 of specification for both 2

Mbps and 3 Mbps modulation modes

• Support for 802.11 Coexistence

• 8 Mbits of Flash Memory

• 16-bit reduced instruction set computer (RISC) microcontroller

29

4. OBJECT LOCALIZATION FRAMEWORK USING ARDUINO AND
ANDROID

Furthermore, the IWrap [15] firmware runs on the Bluegiga module. The IWrap can

be configured over the serial interface by using simple ASCII commands. The module

supports up to 16 Bluetooth device pairings. By default, the firmware operates in

the Data/Command mode which means that it is possible to configure the module

or exchange data with the connected Bluetooth device one at the time by selecting

between the Command or Data mode respectively. However, this method has some

pitfalls, switching between the modes takes some time (over 2 seconds according to

IWrap documentation). Moreover, if there are multiple connections then receiving

and sending the data is difficult. Each time the data needs to be sent or received

from another connection, first, the Command mode should be selected and then it is

possible to select the next connection. In contrast, there is the Multiplexing (MUX)

mode available, it allows the data and commands to be sent at the same time, without

the need for switching between the Data/Command mode. Furthermore, it supports

up to 4 multiple simultaneous connections. However, the disadvantage of the MUX

mode is that all the data/commands have to be wrapped into frames using the IWrap

MUX protocol so that the module would know where to send these frames.

As all electronic devices the Arduino BT board needs a power supply to operate.

Because of the DC-DC converter on the board, it is possible to power the board with

the minimum of 1.2V and the maximum of 5.5V power supply. Therefore, we are using

the battery holder which has place for three AA type batteries. Rechargeable batteries

of 1.2V each are being used, so the board is powered with 3.6V. Actually it can be

up to 3.6V because the voltage drops when batteries drain. The Arduino BT has a

special on-board LED that will lit up before batteries run out. The battery holder (B)

is connected via two wires to the V+ and GND screw terminals on the board as can

be seen in the Figure 4.3.

The Tracker has one alarm module attached to the microcontroller board. The

purpose of the alarm module is to notify the user about events like when the object

being tracked goes out of the vicinity of the Tracker. The alarm module is an actuator.

The actuator performs an action when it receives power. For the alarm module we are

using a Tinkerkit’s LED [24]. The LED (A) is connected to the digital output pin 12

of the board, see Figure 4.3. When the microcontroller applies 5V electrical voltage on

the output pin, the LED will lit up.

30

4.2 Architecture

Figure 4.3: Tracker’s wiring schematic.

31

4. OBJECT LOCALIZATION FRAMEWORK USING ARDUINO AND
ANDROID

Besides the alarm module, the Tracker has also a push button module. This module

is a sensor. The sensor module outputs electrical voltage when it is activated by the

environment. The push button (C) is connected to the analog input pin 4 of the board

as shown in the Figure 4.3. We are using a Tinkerkit’s Push button module [25], it

outputs 5V when it is pressed and 0V when it is released. The purpose of this push

button is to send an alarm command to the object being tracked.

4.2.2.2 Software Realisation

To make use of the components described in the previous section the software called

ObjectTracker was developed. The software controls the interaction between the mi-

crocontroller and other modules. It consists of a program written in the Arduino

programming language. The program is stored in the flash memory on the Arduino

board. When the microcontroller is powered up, it starts the bootloader. It is a small

program which has two important tasks. First, by using the bootloader it is possible

to upload a new program onto the board. When the new program is uploaded to the

board, the old one is overwritten. Second, the bootloader starts the program which

was uploaded onto the board when the board is powered on.

Next, we describe the ObjectTracker software. The program architecture can be

divided into multiple components as seen in the Figure 4.4. The following list gives a

short overview for each of the components:

• Communication manager - Responsible for communicating with the Bluetooth

module (follows the IWrap protocol by packing/unpacking data frames).

• Event manager - Responds to events coming from the Bluetooth module, checks

and responds to the events, for instance, a button press.

• Scheduler - Creates events at regular intervals such as measuring signal strength

of a Bluetooth device.

• Button controller - Checks the state of a button and creates an event when

the button is pressed.

• Alarm controller - Responsible for turning on/off the alarm.

32

4.2 Architecture

Figure 4.4: Tracker’s architecture.

33

4. OBJECT LOCALIZATION FRAMEWORK USING ARDUINO AND
ANDROID

Firstly, the communication manager is a layer between the serial interface and rest

of the ObjectTracker program. The serial interface is a bridge between the Bluetooth

module and the Arduino microcontroller. The communication manager’s task is to

pack the data into frames before it is sent to the serial interface. There can be two

levels of encapsulation. The data is always encapsulated into the first level frames, it

is required by the IWrap MUX mode. The first level frame contains the destination’s

identification number (ID) and the data to be sent. The ID can be from 0 to 8 for

connected Objects or it can be 255, which is the ID of the Bluetooth module. The sec-

ond level of encapsulation is used when the data needs to be sent to the Object. This

encapsulation is needed to be compatible with the Amarino communication protocol.

The Amarino MeetAndroid library for the Arduino already has the Amarino protocol

implemented, although, this library was not used, because it supports only one device.

The MeetAndroid library was only used as a base for implementing the communica-

tion manager. However, to meet the requirements it was extended by adding support

for multiple Bluetooth devices. The communication manager is also responsible for

unpacking incoming frames and forwarding the content to the event manager. The

incoming data is encapsulated in the same fashion as the outgoing data except there

is no second level encapsulation. Based on the ID, incoming messages will go to the

event manager’s Bluetooth module event handler or Bluetooth Object event handler.

Secondly, the event manager handles Bluetooth module events, Bluetooth Object

events, Scheduler events and Input controller events. The event manager processes

incoming events and makes decisions, for example, if Alarm command comes, it raises

alarm in the alarm controller. Furthermore, there are three events which can be received

from the Bluetooth module: RING, NO CARRIER and RSSI. The RING event is

sent by the Bluetooth module when a new Bluetooth device connects. The Tracker

stores this information, so it does not have to query the Bluetooth module for all the

connected devices. The NO CARRIER event is sent when the connection to one of

the Objects closes. This event includes the end device ID. If the Tracker receives NO

CARRIER event, it marks the corresponding connection as inactive which means that

global outgoing events such as Alarm will not be forwarded to this connection any

more. The RSSI event is a response to the Bluetooth signal strength RSSI query. The

event contains device ID and its Bluetooth signal strength. This information is used for

raising an alarm when the Object ’s Bluetooth signal strength drops below -11 or -32.

34

4.2 Architecture

More information about the Bluetooth signal strength and how these values were picked

can be found in the Chapter 5. Another responsibility of the event manager is to handle

events (commands) coming from the Objects. All these commands are described in the

Table 4.7. For example, if the Tracker receives Disconnect command from an Object,

it marks the corresponding connection as disabled and ignores future NO CARRIER

events on that connection which would normally raise an alarm. Another task of the

event manager is to forward scheduler commands to the communication manager. The

last purpose of the event manager is to respond to the button controller events by

sending Alarm to all connected devices that support the Alarm command.

Thirdly, the scheduler has two tasks. First, it needs to send RSSI queries to the

Bluetooth module in every 5 seconds. Second, the Status command is sent to each

Object in every minute, it was needed for the battery testing, which was one of the

experiments discussed in Chapter 5.

Fourthly, the button controller is responsible for checking the alarm button state

and sending the button pressed event to the event manager.

Finally, the alarm controller manages the on/off state of the alarm, also it controls

how long the alarm is active.

4.2.3 Object

As a prototype Object we will be using an Android smartphone, although any Bluetooth

device that can open a connection could be used as an Object. The reason we are using

the Android phone is that it allows us creating a program which fully supports the

communication protocol that the Tracker is using. A prototype application called

PhoneWatch was developed in this thesis for the Android Phone 2 (Table 5.1) and was

verified to be working on all three test phones (Table 5.1).

The PhoneWatch application needs the Amarino Android application [26] to be

installed in order to work correctly. The Amarino application is required because it

contains an Android Service called AmarinoService that is a layer between the Blue-

tooth module and other Android applications. The AmarinoService is responsible for

following the Amarino communication protocol and managing Bluetooth connections.

When the AmarinoService receives the data from one of the connected Bluetooth de-

vices, it broadcasts the message by using Android Intents. Any Android application

35

4. OBJECT LOCALIZATION FRAMEWORK USING ARDUINO AND
ANDROID

can receive Intents by registering a BroadcastReceiver. Therefore, the PhoneWatch

application has the BroadcastReceiver registered for Amarino Intents.

The incoming data is received by using Intents in the PhoneWatch application.

The outgoing data moves a bit differently. Instead of Intents, the PhoneWatch uses the

Amarino class from the Amarino library for Android. The Amarino class can connect,

disconnect and send data to a Bluetooth connected device. Internally, the Amarino

class still uses Intents to forward the data to AmarinoService.

In addition to the interaction with the AmarinoService, the PhoneWatch has a GUI,

shown on Figure 4.5. The GUI has several buttons which are binded to the responding

commands of the Tracker ’s communication protocol:

• Connect - Connects to the Tracker.

• Disconnect - Disconnects from the Tracker.

• Alarm - Sends an Alarm command to the Tracker.

• Alarm short range - Sends an Alarm range command with the corresponding

parameter to the Tracker.

• Alarm long range - Sends an Alarm range command with the corresponding

parameter to the Tracker.

• Alarm range off - Sends an Alarm range command with the corresponding

parameter to the Tracker.

• Enable alarm feature - Sends an Enable feature command to the Tracker with

parameter A (Tracker is allowed to send alarm commands).

• Disable alarm feature - Sends a Disable feature command to the Tracker with

parameter A (Tracker will not send alarm commands any more).

36

4.2 Architecture

Figure 4.5: Android PhoneWatch application GUI.

37

4. OBJECT LOCALIZATION FRAMEWORK USING ARDUINO AND
ANDROID

38

5

Object Localization Framework

Performance

Several experiments were conducted in this thesis to study the performance, usability

and scalability of the framework. The first three experiments analysed the connec-

tivity of the Tracker device. The usability was measured by the power consumption

experiment. Finally, multiple devices were connected to test the scalability.

Experiments were carried out between one Tracker and one Object, except the

last experiment where more than one Object was involved. As an Object, Android

phone 1 (Table 5.1) was used during the tests. The Tracker ’s technical parameters

were provided in the previous chapter. To monitor events and send commands to the

IWrap, a laptop computer with Bluetooth module was connected to the Tracker as a

second Object. Bluetooth signal strength was measured with the IWrap RSSI command

which returns the Bluetooth signal strength of the connected device. According to the

IWrap documentation [15], the signal strength can be within the range of 20 (Good)

to -120 (Poor).

5.1 Outdoor Connectivity

The aim of the first experiment was to test the limits of the connectivity range. The

experiment was conducted in outdoor environment on an open field. The Object was

moved away from the Tracker and when the connection link between the Tracker and

the Object broke, the distance to the Tracker was measured. Even though the IWrap

39

5. OBJECT LOCALIZATION FRAMEWORK PERFORMANCE

Android phone 1 Android phone 2 Android phone 3

Model LG GT540 Opti-

mus [27]

Samsung I9100

Galaxy S II [28]

Samung Galaxy Mini

S5570 [29]

OS Android 2.1 Android 4.0.3 Android 2.3

CPU 600 MHz Dual-core 1.2 GHz

Cortex-A9

600 MHz ARMv6

RAM 156 MB 1 GB 384 MB

Bluetooth 2.1 with A2DP 3.0+HS 2.1 with A2DP

Table 5.1: Technical information about Android phones which were used in the experi-

ments.

sends NO CARRIER event when the connection breaks, the alarm command was sent

to the Tracker every few seconds while the Object was moved away to ensure that the

communication was working correctly. Five tests were performed with the following

results in the Table 5.2.

Test 1 Test 2 Test 3 Test 4 Test 5 Average

73 m 98 m 81 m 80 m 99 m 86 m

Table 5.2: Outdoor connectivity range test results, shows at which distance the connection

breaks.

Although, the Bluegiga WT11-A documentation states that the maximum connec-

tivity range is 200 meters, the average distance measured in this experiment was 86

meters. This is still good enough for the tracking framework which aims for tracking

personal items.

Another part of this experiment was to check at which distance the Object is able

to open a connection to the Tracker. The Object was moved to the farthest point

(according to the results in previous tests) where the connection link broke and then it

was moved back towards the Tracker while in every two meters the connection attempt

was made. If the connection was successful, distance to the Tracker was measured.

Again, five tests were performed with the following results in the Table 5.3. The results

of this experiment show that the Object cannot be farther than approximately 30 meters

from the Tracker in order to open the connection. It is a noticeable difference compared

to the maximum connectivity range where the Object is able to communicate with the

40

5.2 Outdoor Bluetooth Signal Strength

Test 1 Test 2 Test 3 Test 4 Test 5 Average

28 m 33 m 31 m 31 m 29 m 30 m

Table 5.3: Outdoor connectivity range test results, shows at which distance the connection

can be opened.

Tracker. Still, this is good enough because the user is expected to wear the Tracker

device. When the user turns on the Object and connects to the Tracker, then the

Tracker and the Object should be very close to each other.

5.2 Outdoor Bluetooth Signal Strength

The purpose of the next two experiments was to check whether it is possible to use

the Bluetooth signal strength for proximity calculations in different conditions. If the

signal strength could be used to measure the distance between the Tracker and the

Object device, then it would allow setting custom range for different Objects at which

distance the alarm would be raised.

Five tests were performed at distances up to 30 meters (20 tests in total). The

results are available in the Table 5.4 and illustrated in the Figure 5.1. As we can

Distance Test 1 Test 2 Test 3 Test 4 Test 5 Average

0 m 0 0 0 0 0 0

10 m -17 -11 -16 -11 -20 -15

20 m -26 -26 -31 -32 -31 -29

30 m -31 -32 -32 -32 -32 -32

Table 5.4: Outdoor Bluetooth signal strength test results. Object was in direct line of

sight. Results are in IWrap RSSI units.

see, the Bluetooth signal strength at different distances was not a constant value, for

example it varied from -11 to -20 when the Object was 10 meters away from the Tracker.

However, if we have a signal strength value then we can say that this value was not

measured farther than X meters. For instance, if we measured signal strength -25 then

we can say that the Object is not likely farther than 20 meters, because the average

signal strength at 20 meters is -29.

41

5. OBJECT LOCALIZATION FRAMEWORK PERFORMANCE

Figure 5.1: Outdoor average Bluetooth signal strength.

5.3 Indoor Bluetooth Signal Strength

The second Bluetooth signal strength experiment was carried out in the indoor en-

vironment. The purpose of this experiment was to check if the indoor environment

affects the signal strength and also use the results for calibrating the Tracker. Tests

were performed at distances up to 10 meters, also with and without the 10 cm thick

concrete wall in between the Tracker and the Object. In total, 20 tests were performed

in the experiment. The results of these tests are in the following Tables 5.5, 5.6 and

illustrated in the Figure 5.2: At 10 meters the average indoor signal strength was

Distance Test 1 Test 2 Test 3 Test 4 Test 5 Average

0 m 0 0 0 0 0 0

2.5 m -2 -2 -3 -3 -2 -2

5 m -11 -10 -13 -11 -11 -11

10 m -22 -22 -20 -20 -22 -21

Table 5.5: Indoor Bluetooth signal strength test results. Object was in direct line of

sight. Results are in IWrap RSSI units.

poorer compared to the average signal strength measured in the outdoor environment

at the same distance. However, the signal strength was more stable in the indoor en-

vironment. If we compare the indoor direct line of sight results with the results where

there was a wall in between the Object and the Tracker, then there is even greater

42

5.4 Power Consumption

Distance Test 1 Test 2 Test 3 Test 4 Test 5 Average

2.5 m -19 -18 -19 -20 -19 -19

5 m -23 -23 -24 -22 -23 -23

10 m -23 -25 -24 -24 -24 -24

Table 5.6: Indoor Bluetooth signal strength test results. Object was behind the wall.

Results are in IWrap RSSI units.

Figure 5.2: Indoor average Bluetooth signal strength.

difference in the signal strength.

In conclusion, it seems reasonable to use the indoor signal strength results for

calibrating the Tracker ’s proximity measurement. For the ”short range” alarm distance

we are using the average signal strength of the indoor tests at 2.5 meters. This gives

us the average signal strength -11 (calculated by combining the data in the Table 5.5

and Table 5.6). If the signal strength of a ”short range” tracked Object is worse than

-11, then the alarm will be raised. However, for the ”long range” alarm distance we use

the worst signal strength measured in the experiments. This is -32, an average signal

strength measured at 30 meters in the outdoor environment (Table 5.4).

5.4 Power Consumption

Because the Tracker is a mobile object, it needs a power supply which has to store the

energy. This sets some limits for the usage of such a system. To check the usability

of the Tracker device we did a power consumption experiment. The purpose of this

43

5. OBJECT LOCALIZATION FRAMEWORK PERFORMANCE

experiment was to check whether it is feasible to use regular alkaline batteries that can

be found in a commodity store.

We used three AA type 1.5 V (LR6) batteries. The Tracker was scheduled to

continuously send out a Status command once in a minute. When the phone received

this command it stored the current time stamp. At first, when the experiment started,

the start time was noted. After the Tracker ’s batteries were drained out, the last Status

time stamp was retrieved from the phone. The result was 39 hours and 20 minutes.

From the experiment, it can be observed that the system has reasonable performance

levels when using three AA type alkaline batteries. However, rechargeable batteries

can be also used. Moreover, since this is a prototype of the Tracker device, it is not

optimized for the power consumption. According to EngBlaze [30] it is possible to

increase the battery life by using the Arduino sleep mode. Even more, the IWrap offers

several ways to reduce the power consumption by configuring the Bluetooth module

such as using the SET BT PAGEMODE to specify how often the module checks for

incoming connections.

5.5 Multiple Objects

To see if the tracking framework is scalable, we made an experiment where multiple

Objects were connected to the Tracker. The IWrap manual states that it supports up

to 4 simultaneous Bluetooth connections [31], but when we tried to connect all three

mobile phones (Table 5.1), the Bluegiga WT11-A module did not accept more than 2

simultaneous Bluetooth connections. Although, each phone was able to establish the

connection when we tried to connect them one at the time.

Despite this issue, we connected Android phone 1 and Android phone 2 to the

Tracker. The Tracker was able to send and receive the Alarm commands without any

problems. Also, the tracking by signal strength was tested by setting both phones as

”short range” Objects. The Tracker was able to track both devices and when one of

them left from the short range, the alarm was raised.

44

6

Conclusions and Future Work

In this thesis the tracking framework for object localization was developed and studied.

The aim of this work was to see if it is possible to create a system which help us track

or find misplaced personal belongings. The existing object localization systems are

rather expensive, immobile or not usable in both indoor and outdoor environments.

The proposed solution is based on a relatively low cost Arduino BT microcontroller

and widely used Bluetooth technology. The microcontroller tracks other Bluetooth

devices. As a prototype object that needs to be tracked Android smartphone was used.

For both prototypes, Arduino BT microcontroller and Android phone, a software was

developed which supports various features, for instance, alarm is raised when object is

left behind or misplaced phone can be located by sending alarm message to it.

A series of experiments were conducted with the prototypes such as connectivity

range and battery consumption tests to study and verify the feasibility of the imple-

mented system. The experiments confirmed that the Bluetooth signal strength could

be used as proximity indication. The power consumption test verified that the system

can run on batteries.

Moreover, experiment results were used for calibrating the software for the tracking

device (Arduino BT microcontroller). The Bluetooth signal strength was used as prox-

imity indicator, although as a future research it could be improved by calibrating each

object individually when it is connected to the system. Moreover, the power consump-

tion of the tracking device could be improved by using special power saving modes for

Arduino BT microcontroller and Bluetooth module.

45

6. CONCLUSIONS AND FUTURE WORK

Furthermore, the prototype application for Android phone has very primitive graph-

ical user interface which could be improved, it was designed to be functional rather than

putting emphasis on the user interface. In addition, the application depends on the

Amarino application, it is possible to extract the required parts and put them into a

library which would significantly improve the usability of the application.

46

Arduinol põhinev jälgimise

raamistik objekti asukoha

määramiseks

Bakalaureusetöö (6 EAP)

Steve Mägi

Resümee

Paljudel inimestel on kodust lahkudes kaasas isiklikud asjad, nagu näiteks rahakott,

koduukse võtmed või mobiiltelefon. Kui vahel mõni neist koju ununeb, siis see tekitab

ebameeldivusi. Selle vältimiseks oleks vaja esemetel paremini silma peal hoida.

Käesolev bakalaureusetöö pakub välja lahenduse, mis aitab objekte jälgida ja va-

jadusel nende asukohta kindlaks määrata. Süsteem põhineb Arduino mikrokontrolleril

(Jälgija) ja Bluetooth’i tehnoloogial. Jälgitavaks objektiks (Objekt) võib olla näiteks

võtmehoidja, milles on Bluetooth’i moodul. Objektiks sobib ka Bluetooth’iga varus-

tatud mobiiltelefon. Jälgija kinnitatakse kasutajale vööle, seejärel ühendab kasutaja

jälgitavad objektid üle Bluetooth’i ühenduse Jälgija külge. Kui mõni Objektidest Jälgi-

jast liiga kaugele liigub, siis käivitub alarm. Samas on võimalik Jälgijast saata signaal

Objektile ja helina järgi üles leida näiteks diivani padja alla ununenud mobiiltelefon.

Lahendusena valmisid prototüübid Jälgijast ja Objektist. Jälgijana kasutati Ar-

duino BT (Bluetooth) mikrokontrollerit ning Objektina Android operatsioonisüsteemil

põhinevat nutitelefoni. Töös antakse ülevaade kasutatud tehnoloogiatest. Seejärel kir-

jeldatakse erinevaid objekti asukoha määramise ja jälgimise tehnoloogiaid ning tuuakse

välja nende eelised ja puudused. Töös vaadeldakse ka valminud lahenduse nii riistvar-

alist kui ka tarkvaralist arhitektuuri.

47

Valminud prototüüpidega tehtud eksperimendid näitasid, et Bluetooth’i signaali-

tugevust on võimalik kasutada seadme kauguse hindamiseks. Elektrienergia tarbimise

katses veenduti, et Jälgija prototüüp on võimeline ka tavaliste Alkaline patareidega

edukalt töötama.

48

Bibliography

[1] Bluetooth SIG, Bluetooth, [Online; accessed

06.05.2012].

URL http://www.bluetooth.com/Pages/Bluetooth-Home.aspx

5, 9

[2] Google Inc, Android, [Online; accessed 06.05.2012].

URL http://www.android.com/ 5

[3] Arduino, Arduino, [Online; accessed 06.05.2012].

URL http://www.arduino.cc/ 5, 10

[4] IEEE, IEEE Standard 802.15.1-2005, IEEE Standard

for Information Technology - Telecommunications and

Information Exchange Between Systems - Local and

Metropolitan Area Networks - Specific Requirements. -

Part 15.1: Wireless Medium Access Control (MAC) and

Physical Layer (PHY) Specifications for Wireless Per-

sonal Area Networks (WPANs) (08 2005). 9

[5] IEEE, IEEE Standards 802.11x, IEEE Standard for In-

formation technology–Telecommunications and informa-

tion exchange between systems Local and metropolitan

area networks–Specific requirements Part 11: Wireless

LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications. 9

[6] Wi-Fi Alliance, Wi-fi, [Online; accessed 06.05.2012].

URL http://www.wi-fi.org/ 9

[7] Infrared Data Association, Infrared Data Association,

[Online; accessed 06.05.2012].

URL http://www.irda.org/ 10

[8] ZigBee Alliance, Zigbee technology, [Online; accessed

06.05.2012].

URL http://www.zigbee.org/ 10

[9] Arduino, Arduino BT (Bluetooth), [Online; accessed

06.05.2012].

URL http://arduino.cc/en/Main/ArduinoBoardBluetooth 10,

28

[10] Arduino, Arduino LiliPad, [Online; accessed 06.05.2012].

URL http://arduino.cc/en/Main/ArduinoBoardLilyPad 10

[11] Arduino wiki, Arduino analog input, [Online; accessed

06.05.2012].

URL http://arduino.cc/playground/CourseWare/

AnalogInput 11

[12] A. Rubin, Number of android phones activated, [Online;

accessed 06.05.2012].

URL https://plus.google.com/u/0/112599748506977857728/

posts/Btey7rJBaLF 11

[13] Google Inc, Android architecture, [Online; accessed

06.05.2012].

URL http://developer.android.com/guide/basics/

what-is-android.html 11, 12

[14] B. Kaufmann, Amarino toolkit, [Online; accessed

06.05.2012].

URL http://www.amarino-toolkit.net/ 13

[15] Bluegiga Technologies, IWrap 2.2.0 User Guide, Version

3.3, Bluegiga Technologies (09 2007). 13, 30, 39

[16] J. Hightower, G. Borriello, Location systems for ubiqui-

tous computing, Computer 34 (8) (2001) 57–66. 14

[17] R. Bajaj, S. Ranaweera, D. Agrawal, Gps: Location-

tracking technology, Computer 35 (4) (2002) 92–94. 14

[18] P. Bahl, V. Padmanabhan, Radar: An in-building rf-

based user location and tracking system, in: INFOCOM

2000. Nineteenth Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings.

IEEE, Vol. 2, Ieee, 2000, pp. 775–784. 14

[19] G. Borriello, W. Brunette, M. Hall, C. Hartung,

C. Tangney, Reminding about tagged objects using pas-

sive rfids, in: N. Davies, E. Mynatt, I. Siio (Eds.), Ubi-

Comp 2004: Ubiquitous Computing, Vol. 3205 of Lec-

ture Notes in Computer Science, Springer Berlin / Hei-

delberg, 2004, pp. 36–53, 10.1007/978-3-540-30119-6-3.

URL http://dx.doi.org/10.1007/978-3-540-30119-6_3 15

[20] C. Roberts, Radio frequency identification (rfid),

Computers & Security 25 (1) (2006) 18 – 26.

doi:10.1016/j.cose.2005.12.003.

URL http://www.sciencedirect.com/science/article/pii/

S016740480500204X

[21] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos,

M. Seltzer, M. Welsh, Hourglass: An infrastructure for

connecting sensor networks and applications, Tech. rep.,

Harvard Technical Report TR-21-04 (2004). 15

[22] Wikipedia, Ascii, [Online; accessed 06.05.2012].

URL http://en.wikipedia.org/w/index.php?title=

ASCII&oldid=489175974 26

[23] Bluegiga Technologies, WT11 Data Sheet, Version 3.3,

Bluegiga Technologies (10 2011). 29

[24] Tinkerkit, Tinkerkit’s LED module, [Online; accessed

06.05.2012].

URL http://tinkerkit.com/en/Modules/T010117 30

[25] Tinkerkit, Tinkerkit’s Push Button module, [Online; ac-

cessed 06.05.2012].

URL http://tinkerkit.com/en/Modules/T000180 32

[26] B. Kaufmann, Amarino Android application, [Online;

accessed 06.05.2012].

URL http://www.amarino-toolkit.net/index.php/download.

html 35

[27] GSM Arena, LG GT540 Optimus, [Online; accessed

06.05.2012].

URL http://www.gsmarena.com/lg_gt540_optimus-3081.php

40

[28] GSM Arena, Samsung I9100 Galaxy S II, [Online;

accessed 06.05.2012].

URL http://www.gsmarena.com/samsung_i9100_galaxy_s_

ii-3621.php 40

49

http://www.bluetooth.com/Pages/Bluetooth-Home.aspx
http://www.bluetooth.com/Pages/Bluetooth-Home.aspx
http://www.android.com/
http://www.android.com/
http://www.arduino.cc/
http://www.arduino.cc/
http://www.wi-fi.org/
http://www.wi-fi.org/
http://www.irda.org/
http://www.irda.org/
http://www.zigbee.org/
http://www.zigbee.org/
http://arduino.cc/en/Main/ArduinoBoardBluetooth
http://arduino.cc/en/Main/ArduinoBoardBluetooth
http://arduino.cc/en/Main/ArduinoBoardLilyPad
http://arduino.cc/en/Main/ArduinoBoardLilyPad
http://arduino.cc/playground/CourseWare/AnalogInput
http://arduino.cc/playground/CourseWare/AnalogInput
http://arduino.cc/playground/CourseWare/AnalogInput
https://plus.google.com/u/0/112599748506977857728/posts/Btey7rJBaLF
https://plus.google.com/u/0/112599748506977857728/posts/Btey7rJBaLF
https://plus.google.com/u/0/112599748506977857728/posts/Btey7rJBaLF
http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html
http://www.amarino-toolkit.net/
http://www.amarino-toolkit.net/
http://dx.doi.org/10.1007/978-3-540-30119-6_3
http://dx.doi.org/10.1007/978-3-540-30119-6_3
http://dx.doi.org/10.1007/978-3-540-30119-6_3
http://www.sciencedirect.com/science/article/pii/S016740480500204X
http://dx.doi.org/10.1016/j.cose.2005.12.003
http://www.sciencedirect.com/science/article/pii/S016740480500204X
http://www.sciencedirect.com/science/article/pii/S016740480500204X
http://en.wikipedia.org/w/index.php?title=ASCII&oldid=489175974
http://en.wikipedia.org/w/index.php?title=ASCII&oldid=489175974
http://en.wikipedia.org/w/index.php?title=ASCII&oldid=489175974
http://tinkerkit.com/en/Modules/T010117
http://tinkerkit.com/en/Modules/T010117
http://tinkerkit.com/en/Modules/T000180
http://tinkerkit.com/en/Modules/T000180
http://www.amarino-toolkit.net/index.php/download.html
http://www.amarino-toolkit.net/index.php/download.html
http://www.amarino-toolkit.net/index.php/download.html
http://www.gsmarena.com/lg_gt540_optimus-3081.php
http://www.gsmarena.com/lg_gt540_optimus-3081.php
http://www.gsmarena.com/samsung_i9100_galaxy_s_ii-3621.php
http://www.gsmarena.com/samsung_i9100_galaxy_s_ii-3621.php
http://www.gsmarena.com/samsung_i9100_galaxy_s_ii-3621.php

[29] GSM Arena, Samsung Galaxy Mini S5570, [Online;

accessed 06.05.2012].

URL http://www.gsmarena.com/samsung_galaxy_mini_

s5570-3725.php 40

[30] EngBlaze, Arduino sleep mode, [Online; accessed

06.05.2012].

URL http://www.engblaze.com/

hush-little-microprocessor-avr-and-arduino-sleep-mode-basics/

44

[31] Bluegiga Technologies, IWrap 2.2.0 User Guide, Version

3.3, page 73, Bluegiga Technologies (09 2007). 44

50

http://www.gsmarena.com/samsung_galaxy_mini_s5570-3725.php
http://www.gsmarena.com/samsung_galaxy_mini_s5570-3725.php
http://www.gsmarena.com/samsung_galaxy_mini_s5570-3725.php
http://www.engblaze.com/hush-little-microprocessor-avr-and-arduino-sleep-mode-basics/
http://www.engblaze.com/hush-little-microprocessor-avr-and-arduino-sleep-mode-basics/
http://www.engblaze.com/hush-little-microprocessor-avr-and-arduino-sleep-mode-basics/

Appendix A

CD Content

The accompanied CD-ROM has the following content:

• Source code for the ObjectTracker program for Arduino BT microcontroller

• Source code of the PhoneWatch application for Android smartphone

• PhoneWatch application for Android smartphone

• Amarino application for Android smartphone

51

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline

	2 State of the Art
	2.1 Bluetooth
	2.2 Arduino
	2.3 Android
	2.4 Amarino
	2.5 Object Tracking and Localization Frameworks

	3 Problem Definition
	4 Object Localization Framework using Arduino and Android
	4.1 Use Cases
	4.2 Architecture
	4.2.1 Communication Protocol
	4.2.2 Tracker
	4.2.2.1 Hardware Realisation
	4.2.2.2 Software Realisation

	4.2.3 Object

	5 Object Localization Framework Performance
	5.1 Outdoor Connectivity
	5.2 Outdoor Bluetooth Signal Strength
	5.3 Indoor Bluetooth Signal Strength
	5.4 Power Consumption
	5.5 Multiple Objects

	6 Conclusions and Future Work
	Abstract (in Estonian)
	Bibliography
	Appendix A

