
UNIVERSITY OF TARTU
Faculty of Mathematics and Computer Science

Institute of Computer Science
Computer Science

Kairi Kangro

On Attribute-Based Encryption for Circuits
from Multilinear Maps

Bachelor Thesis (6 EAP)

Supervisors: Helger Lipmaa, PhD
Sven Laur, PhD

Author: . " " May 2013

Supervisor: . " " May 2013

Supervisor: . " " May 2013

Approved for defence

Professor: . " " May 2013

Tartu 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

Introduction 3

1 Preliminaries 5
1.1 Groups and Generators . 5
1.2 Circuits . 8

1.2.1 Definitions and Examples . 8
1.2.2 Monotone Circuits . 9
1.2.3 Layered Circuits . 11

1.3 Complexity of Algorithms . 11

2 Attribute-Based Encryption with Bilinear Maps 13
2.1 Bi- and Multilinear Maps . 13
2.2 Attribute-Based Encryption . 14

3 The Construction 17
3.1 Assumptions and Notations . 17
3.2 The Garg-Gentry-Halevi-Sahai-Waters Construction 18

3.2.1 The Algorithms . 18
3.2.2 Efficiency . 20

3.3 The Modified Construction . 21

4 Security 23
4.1 Security Definition . 23
4.2 Proof of Security . 24

Summary 29

Summary (in Estonian) 30

References 30

2

Introduction

In traditional public key encryption, one can send someone an encrypted message using
the other person’s public key, which can be looked up in a public database. This ensures
that only the intended recipient can read the message, even if someone else manages to
intercept the encrypted message. This is used for example by the Estonian police when
sending encrypted e-mails - they use the public key associated with the recipient’s ID-card to
encrypt the message. However, traditional public key encryption also has its drawbacks. One
of the main drawbacks is that when sending the same message to many different recipients,
it needs to be encrypted for each recipient separately. Another one is that once a message
has been encrypted, it is not possible to give someone else the ability to decrypt it without
either re-encrypting it or giving the person in question the corresponding private key (which
is usually not a good idea). This might be a problem when for example encrypting a file that
many people might need to be able to access.

One possible way to solve this problem is to use Attribute-Based Encryption (ABE).
Sahai and Waters first introduced the notion of ABE in [SW05]. The variant of ABE used
in this work, the Key-Policy ABE (introduced by Goyal et al in [GPSW06]) allows an user
to define during the encryption of a message a set of so-called attributes to be associated
with the resulting ciphertext. The users of the system each receive a secret key associated
with some function f defined on the sets of attributes. An user can decrypt a ciphertext only
if their function outputs true on the attribute set that the ciphertext is associated with. This
can be used for example to implement something like file permissions on an encrypted file
system: each file could be associated with the username of its owner and the name(s) of some
user group(s), and each user would receive a secret key for a function that would evaluate to
true only if either their username or user group belonged to the attributes associated with a
file.

Even though there have been many advances in multiple directions since the introduc-
tion of ABE, the problem of expanding the set of allowable functions has proved to be hard.
The construction in [GPSW06] proved security for the set of functions representable by
polynomial-size boolean formulae (alternatively, functions computable by logarithmic depth
circuits, see [AB09]), which has remained the best known result until recently, when Garg
et al presented a construction in [GGH+13] that achieves security for general polynomial
size circuits, which are widely believed to be much more powerful than boolean formulae
([AB09]). Garg et al use multilinear maps to achieve their construction, citing the exis-
tence of an attack called the backtracking attack as a reason why bilinear maps, which are
commonly used for ABE, might not be enough.

The aim of this work is to introduce and slightly improve the construction in [GGH+13]
while giving most of the background theory needed to understand the construction. Our
contribution lies in lessening the amount of key components required and ensuring that de-
cryption works always instead of with high probability. A full security proof is given for the
improved construction.

3

This work consists of four chapters. Chapter 1 gives an overview of some notions to-
gether with the relevant results that are necessary for understanding the construction given
in later chapters. Topics covered include group theory, boolean circuits and time complexity
of algorithms. Chapter 2 introduces the notion of Attribute-Based Encryption and gives an
overview of relevant results. An attack on an existing Attribute-Based Encryption scheme
called the backtracking attack is also introduced, giving the motivation of the construction
presented in the next chapter. In Chapter 3, the construction of [GGH+13] is given along
with our improvements. In Chapter 4, a full security proof of our improved construction is
given, together with the necessary security definitions.

4

Chapter 1

Preliminaries

In this chapter, an overview of some important notions for understanding the construction
in Chapter 3 is given. All the results and definitions in this chapter are standard and are
presented here in order for the thesis to be self-containing. See [Kil05] and [AB09] for more
details on the topics presented here.

1.1 Groups and Generators
The definitions and results in this section follow the ones in [Kil05].

Definition 1.1.1. A non-empty set G together with a binary operation · : G×G→ G (de-
noted by (G, ·)) is called a group if it satisfies the following properties:

• a · (b · c) = (a · b) · c for all a, b, c ∈ G (associativity).

• There exists an element e ∈ G, called the identity element, such that a · e = e · a = a
for all a ∈ G.

• For every element a ∈ G there exists an element b ∈ G, called the inverse element of
a, such that a · b = b · a = e.

If the binary operation is clear from the context, the notation „group G” is used instead
of „group (G, ·)”. Note that if b ∈ G is the inverse element of a ∈ G, then a is also the
inverse element of b in group G.

Proposition 1.1.1. The identity element of a group is unique.

Proof. Let (G, ·) be a group and let e, e′ ∈ G be identity elements of the group. Then, by the
identity element property, we have that e = e · e′ = e′. Therefore, the identity element of a
group is unique.

Proposition 1.1.2. Every element of a group has exactly one inverse element.

Proof. Let (G, ·) be a group and let a ∈ G be an element of that group. By the definition
of a group, a has to have at least one inverse element. Now suppose that b, b′ ∈ G are both
inverse elements of a. Then, using the associativity property, we get b = b · e = b · (a · b′) =
(b · a) · b′ = e · b′ = b′. Therefore, every element a ∈ G has exactly one inverse element.

5

If the binary operation of a group is multiplication, then the group is called a multiplica-
tive group and the unit element is denoted by 1 and the inverse element of element a is
denoted by a−1. If the binary operation of a group is addition, then the group is called an
additive group and the unit element is denoted by 0 and the inverse element of element a is
denoted by −a.

Example 1.1.1. The set of integers Z is a group with respect to ordinary addition:
a+ (b+ c) = (a+ b) + c, a + 0 = 0 + a = a and a + (−a) = (−a) + a = 0 for all
integers a, b, c.

Definition 1.1.2. Let G be a multiplicative group. The integer powers of an element g ∈ G
are defined as follows:

• g0 = 1

• gm = g · g · . . . · g︸ ︷︷ ︸
m multiplicands

for all positive integers m.

• g−m = (g−1)m for all positive integers m.

Lemma 1.1.1. Let G be a multiplicative group and a, b ∈ G elements of that group. Then
(a · b)−1 = b−1 · a−1.

Proof. This follows from the fact that

(a · b) · (b−1 · a−1) = a · b · b−1 · a−1 = a · 1 · a−1 = a · a−1 = 1 and
(b−1 · a−1) · (a · b) = b−1 · a−1 · a · b = b−1 · 1 · b = b−1 · b = 1.

Proposition 1.1.3. Let G be a multiplicative group and g ∈ G an element of that group.
Then gm+n = gm · gn and (gm)n = gmn for all integers m,n.

Proof. If m = 0 then

g0+n = gn = 1 · gn = g0 · gn and
(g0)n = 1n = 1 = g0n.

If m = 0 then

gm+0 = gm = gm · 1 = gm · g0 and
(gm)0 = 1 = g0m.

If m > 0 and n > 0 then

gm+n = g · g · · · g︸ ︷︷ ︸
m+n multiplicands

= g · g · · · g︸ ︷︷ ︸
m multiplicands

· g · g · · · g︸ ︷︷ ︸
n multiplicands

= gm · gn and

(gm)n = gm · gm · · · gm︸ ︷︷ ︸
n multiplicands

= (g · g · · · g︸ ︷︷ ︸
m multiplicands

) · (g · g · · · g︸ ︷︷ ︸
m multiplicands

) · · · (g · g · · · g︸ ︷︷ ︸
m multiplicands

)

︸ ︷︷ ︸
n multiplicands

= g · g · · · g︸ ︷︷ ︸
mn multiplicands

= gmn.

6

If m < 0 and n < 0 then

gm+n = g−(|m|+|n|) = (g−1)|m|+|n| = (g−1)|m| · (g−1)|n| = gm · gn and

(gm)n = (((g−1)|m|)−1)|n| = ((g−1)|m|)−1 · ((g−1)|m|)−1 · · · ((g−1)|m|)−1︸ ︷︷ ︸
|n| multiplicands

= (g−1 · g−1 · · · g−1︸ ︷︷ ︸
|m| multiplicands

)−1 · (g−1 · g−1 · · · g−1︸ ︷︷ ︸
|m| multiplicands

)−1 · · · (g−1 · g−1 · · · g−1︸ ︷︷ ︸
|m| multiplicands

)−1

︸ ︷︷ ︸
|n| multiplicands

= (g · g · · · g︸ ︷︷ ︸
|m| multiplicands

) · (g · g · · · g︸ ︷︷ ︸
|m| multiplicands

) · · · (g · g · · · g︸ ︷︷ ︸
|m| multiplicands

)

︸ ︷︷ ︸
|n| multiplicands

= g · g · · · g︸ ︷︷ ︸
|m|·|n| multiplicands

= g|mn| = gmn.

The rest of the cases are analogous.

Definition 1.1.3. A multiplicative group G is called a cyclic group if there exists an element
g ∈ G, called the generator of G, such that G = {gn|n ∈ Z} (i.e, all elements of G can be
written as ga for some integer a).

Note that by proposition 1.1.3 , a cyclic group is always commutative, since ga · gb =
ga+b = gb+a = gb · ga for all integers a, b.

Definition 1.1.4. A group (G, ·) is called finite if the number of elements in G is finite. In
this case, the number of elements in G is called the order of the group.

Proposition 1.1.4. If G is a finite cyclic group with order n and generator g, then n is the
smallest natural number for which gn = 1 and G = {1, g, g2, . . . , gn−1}.
Proof. Since G is a cyclic group, G = {gt|t ∈ Z}. Since G is also finite, there have to
exist k, l ∈ Z, k > l such that gk = gl (otherwise all powers of g would be different and
therefore G would be infinite). Multiplying that equation by g−l, we get gk−l = 1, where
k − l > 0 is a natural number. Now let m be the smallest natural number such that gm = 1.
We will show that G = {1, g, g2, . . . , gm−1}. For that, we need to show two things: first, that
gt ∈ {1, g, g2, . . . , gm−1} for all integers t, and second, that all the elements in the set are
different.

Let us show that gt ∈ {1, g, g2, . . . , gm−1} for all integers t. Dividing t by m, we get
t = q · m + r for some integers q and r with 0 6 r < m. Therefore, gt = gq·m+r =
(gm)q · gr = 1q · gr = gr ∈ {1, g, g2, . . . , gm−1}.

Now let us show that the elements 1, g, g2, . . . , gm−1 are all different. Suppose that
there exist some integers 0 6 t < u < m such that gt = gu. Then, multiplying by
g−u, we get gt−u = 1, where 0 < t − u < m, which is contradictory to the choice of
m. Therefore G = {1, g, g2, . . . , gm−1}, and since the order of G is n, then m = n and
G = {1, g, g2, . . . , gn−1}.
Example 1.1.2. Z5\{0} = {1, 2, 3, 4} with multiplication defined modulo 5 is a cyclic finite
group with 2 as a generator: 1 = 20, 2 = 21, 3 = 23, 4 = 22.

Proposition 1.1.5. For any element ga in a finite cyclic group G with generator g and order
p, (ga)−1 = (ga)p−1.

Proof. Since gp = 1, then g · gp−1 = gp−1 · g = 1, and therefore g−1 = gp−1. Then, by
proposition 1.1.3, (ga)−1 = g−a = (g−1)a = (gp−1)a = (ga)p−1.

7

1.2 Circuits
In this section, an overview of circuits is given. Since the construction in Chapter 3 is

given for monotone layered circuits, the necessary results for transforming a general circuit
into one are given as well. See [AB09] and references therein for more detail.

1.2.1 Definitions and Examples

AND

OR

NOT

X Y Z

OR

 Inputs

Gates

Output

Figure 1.1: A Boolean circuit with three inputs and one output. Corresponds to the boolean
formula X ∧ (Y ∨ Z) ∨ ¬X .

Definition 1.2.1. A Boolean circuit (Figure 1.1) with n ∈ N inputs and one output is a
directed acyclic graph that satisfies the following conditions:

• It has n vertices with no incoming edges (called the inputs) and one vertex with no
outgoing edges (called the output)

• All the other vertices except the inputs are called gates and labelled with either AND,
OR or NOT. The AND and OR gates have exactly two incoming edges, and the NOT
gates have exactly one incoming edge.

The size of the circuit is said to be the number of gates it has.

In the rest of this work, we will use „circuit” to mean „boolean circuit with one output”.
Since a circuit is acyclic, there can only be a finite number of different paths from one vertex
to another, and therefore we can define the concept of depth as follows.

Definition 1.2.2. The depth of an input is defined to be 1. The depth of a gate is equal to the
length (number of edges) of the longest path from any input plus 1. The depth of a circuit is
equal to the depth of its output.

Definition 1.2.3. The evaluation of a circuit f with n ∈ N inputs labelled with the numbers
1, . . . , n in some way on the input x ∈ {0, 1}n is defined as follows:

• The output value of input number i is the ith bit of x.

• The output value of an AND gate is defined to be 1 if the output values of the vertices
connected to the incoming edges of the AND gate are both 1, and 0 otherwise.

8

• The output value of an OR gate is defined to be 0 if the output values of the vertices
connected to the incoming edges of the AND gate are both 0, and 1 otherwise.

• The output value of a NOT gate is defined to be 1 if the output value of the vertex
connected to the incoming edge of the NOT gate is 0, and 0 otherwise.

• The output value of the circuit f on input x is defined to be the output value of the
output of f .

Since the circuit does not have cycles, the output values of all vertices are well-defined in
the sense that by evaluating the outputs of vertices in order of increasing depth, the output
values of the vertices connected to the incoming edges of a gate will be determined by the
time the gate itself is evaluated. It is easy to see that in this way, every circuit implements a
function from {0, 1}n to {0, 1}.

1.2.2 Monotone Circuits
Definition 1.2.4. A circuit is said to be monotone if it has only AND and/or OR gates, but
no NOT gates.

Since the construction in Chapter 3 is given for monotone circuits, we would like to be
able to transform a general circuit into a monotone one. Unfortunately, this is not always
possible, but it is possible to convert any circuit to an equivalent circuit that has NOT gates
only directly after the inputs:

Theorem 1.2.1. Every circuit C can be converted into an equivalent (i.e., outputs the same
value given the same input) circuit C ′ that has NOT gates only at depth 2.

Proof. Let the depth of C be d. First, we will use De Morgan’s rule to create a circuit C̃
from C such that every AND and OR gate in C has a corresponding gate in C̃ that outputs
the negation of that gate. De Morgan’s rule for circuits states that inverting the output of an
AND gate is equivalent to replacing the AND gate with an OR gate and inverting both of its
inputs, and vice versa. Also, inverting the input of a NOT gate is equivalent to inverting its
output. We construct C̃ from C by adding a negation gate after every outgoing edge of every
input and replacing all AND gates with OR gates and vice versa (Figure 1.2).

NOT

AND

X Y Z

OR

NOT

OR

X Y Z

AND

NOT NOT NOT

Figure 1.2: Constructing C̃ from C.

9

Obviously there is a one-to-one correspondence between gates with depth j in C and
gates with depth j + 1 in C̃, j ∈ {2, . . . , d}. We will prove by induction on the gate depth j
that all gates in C̃ output the negation of the corresponding gate in C.

First, we look at gates at depth 2 in C. Then by De Morgan’s rule, the corresponding
gates at depth 3 in C̃ will output the negation of the gates in C, because we inverted all of
their inputs and replaced AND gates with OR gates and vice versa. Now assume that for
gates up to depth k < d in C, the corresponding gates in C̃ output their negation. Then,
for gates at depth k + 1 in C, the corresponding gates at depth k + 2 in C̃ output their
negation as well, since they receive their inputs from gates with depth less than k + 2, and
by the induction assumption, the outputs of these gates are the inverse of the outputs of the
corresponding gates in C, and we have changed AND gates to OR gates and vice versa.
Therefore for every gate in C there is a corresponding gate in C̃ that computes its negation,
and vice versa (excluding the NOT gates at depth 2 in C̃).

NOT

AND

OR

NOT

OR

X Y Z

AND

NOT NOT NOT

Figure 1.3: Merging inputs and eliminating a NOT gate.

Now we start constructing C ′. First, if the output of C (and hence also C̃) is a NOT gate,
eliminate the NOT gate from both C and C̃ and designate the gate that was connected to the
output in C̃ as the output of C ′. Otherwise, designate the output of C as the output of C ′.
Repeat, swapping the roles of C̃ and C, until the output of C ′ is not a NOT gate. Second,
merge the inputs of C and C̃ (since they have the same inputs). Next, for every NOT gate (in
decreasing order of depth) A in either C or C̃ with depth greater than 2 (i.e., the NOT gate
gets its input from a gate, not a circuit input), let B be the gate A gets its input from. Find
the gate (or the corresponding input, if B happens to be one of the added NOT gates) B′ in
either C if A is in C̃ or C̃ if A is in C that computes the negation of B. Then remove the A
with all of its connecting edges, and create a new edge from B′ to every gate that received
one of their inputs from A (Figure 1.3). This will remove all NOT gates with depth greater
than 2. Finally, remove all gates that are not the output but have no outgoing edges (repeat
until the output is the only gate with no outgoing edges). Then C ′ will have NOT gates only
at depth 2, if at all. The equivalence of C and C ′ follows from the construction of C ′. Note
that the depth of C ′ without counting the NOT gates is the same as the depth of C without
counting the NOT gates.

10

1.2.3 Layered Circuits
Definition 1.2.5. A circuit with depth d is called layered if every gate with depth j receives
all of its inputs from gates/inputs with depth j − 1 for all j ∈ {2, . . . , d}.

Since the construction in Chapter 3 uses layered circuits, we show here how to change an
arbitrary circuit into a layered one while increasing the size by at most a polynomial factor.

Theorem 1.2.2. For every circuit C with size s there exists a layered circuit C ′ that has the
same depth and whose size at most s(s− 1).

OR

Non-layered Layered

AND

X Y Z

OR

AND

X Y Z

AND

Figure 1.4: Converting a non-layered circuit into a layered one.

Proof. Let the size of C be s and depth of C be d. Consider a gate A that has depth j. Since
it has depth j, at most one of the gates/inputs connected to the incoming edges of A can have
depth not equal to j − 1 (if all of them had depth less than j − 1, the depth of A would be
less than j). Suppose that one of them, called B, has depth k < j − 1. To remedy this, we
add j − 1 − k dummy AND gates between B and A, so that the first AND gate would get
both of its inputs from B (and thus have depth k + 1), the second AND gate would get both
of its inputs from the first AND gate (and thus have depth k + 2),. . . ,A would get its input
from the AND gate from the (j − 1 − k)th AND gate, which has depth j − 1 (Figure 1.4).
Therefore, A and all added AND gates satisfy the layered circuit condition. Notice that this
does not change the depth of neither A nor B, so the depth of the circuit is still d. We repeat
this procedure for every gate in C. Let C ′ denote the resulting circuit. Since j 6 d and
k > 1, j − 1− k 6 d− 2 for all gates in C, and therefore we added at most (d− 2)s gates.
This means that the size of C ′ is at most (d−2)s+ s = (d−1)s < (s−1)s (since obviously
d < s), which is polynomial in s, and has depth d.

1.3 Complexity of Algorithms
For a cryptographic scheme to be of practical use, it is necessary for it to be efficient in

some sense. For this, we need a formal notion of efficiency.

Definition 1.3.1. The worst case time complexity T (n) of an algorithm is the maximum
number of elementary operations it does on an input with length n.

11

Exactly what operations are considered elementary operations depends on the computa-
tional model, but the class of efficient algorithms as defined below is believed to be the same
for all physically realizable computational models (see [AB09] for details). Intuitively, an
algorithm is considered efficient if its time complexity is bounded above by some polynomial
for large enough inputs.

Definition 1.3.2. An algorithm is said to run in polynomial time if there exists a polyno-
mial p(·) and positive constants c,N ∈ N such that for all inputs with length n > N ,
T (n) 6 cp(n). An algorithm is considered efficient if and only if it runs in polynomial time.

For the sake of simplicity, most cryptographic schemes use a security parameter λ ∈ N
instead of the input length n to define the complexity of algorithms. In this case, the algo-
rithms of the scheme are provided λ in unary notation (i.e., 11 · · · 1︸ ︷︷ ︸

λ ones

, denoted by 1λ) as an

input.

12

Chapter 2

Attribute-Based Encryption with
Bilinear Maps

In this chapter, the definitions for bi- and multilinear maps are given. The notion of
Attribute-Based Encryption and the definition for Key-Policy Attribute-Based Encryption is
given. An attack on an existing ABE scheme ([GPSW06]) called the backtracking attack is
explained.

2.1 Bi- and Multilinear Maps
In cryptography, bilinear maps are defined on groups instead of on vector spaces as is

usual in algebra.

Definition 2.1.1. Let G1, G2, G3 be cyclic multiplicative groups with the same order and
g1, g2, g3 be their respective generators. Then e : G1 × G2 → G3 is called a bilinear map if
e(ga1 , g

b
2) = gab3 for all a, b ∈ Z.

In cryptographic applications, it is also assumed that e is efficiently computable. One of
the earliest cryptographic schemes based on bilinear maps was an Identity-Based Encryption
scheme by Boneh and Franklin in [BF01]. Since then, bilinear maps have been used with
great success to construct many different cryptographic schemes, including Attribute-Based
Encryption schemes.

A natural extension of bilinear maps are so-called multilinear maps:

Definition 2.1.2. Let G1, G2, . . . ,Gk+1 be cyclic multiplicative groups with the same order
and g1, g2, . . . , gk+1 be their respective generators. Then e : G1 ×G2 × . . .×Gk → Gk+1 is
called a k-multilinear map if e(ga11 , g

a2
2 , . . . , g

ak
k) = ga1a2···akk+1 for all a1, . . . , ak ∈ Z.

Boneh and Silverberg showed in [BS03] that multilinear maps would have many interest-
ing applications in cryptography. However, they also showed that cryptographically useful
multilinear maps might be hard to find, and until recently, no such multilinear maps were
known. But in [GGH12], Garg Gentry and Halevi presented a mechanism that is the equiv-
alent of multilinear maps for many applications, therefore giving new motivation for using
multilinear maps in construction cryptographic schemes. The construction presented in this
work can also be directly translated into the framework given in [GGH12] (see [GGH+13]
for details).

13

2.2 Attribute-Based Encryption
The notion of Attribute-Based Encryption (ABE) was introduced by Sahai and Waters in

2005 [SW05] and expanded upon by Goyal et al in 2006 [GPSW06], defining two variants of
ABE: Key Policy ABE (KP-ABE) and Ciphertext-Policy ABE (CP-ABE). In a KP-ABE sys-
tem, ciphertexts are associated with an assignment x of boolean variables (called attributes)
and users are issued secret keys that are associated with a boolean function f from some set
of allowable functions F . An user with a secret key for f should be able to able to decrypt
a ciphertext associated with x if and only if f(x) = 1. In a CP-ABE system, ciphertexts are
associated with a boolean function f from some set of allowable functions F and users are
issued secret keys associated with some assignment x of attributes. An user with a secret
key associated with x should be able to decrypt a ciphertext associated with f if and only if
f(x) = 1.

Example 2.2.1. Suppose the faculty of Mathematics and Computer Science wanted to use
KP-ABE to encrypt some files. The allowed set of attributes might be Student, Lecturer, CS,
Statistics, Math. A student in computer science would receive the secret key to the access
structure "Student AND CS", a lecturer would receive the secret key to the access structure
"Lecturer AND {institute to which lecturer belongs}". To encrypt a file so that all lecturers
could decrypt it, it would be associated with the attributes {Lecturer, CS, Statistics, Math}.
To encrypt a file so that only people belonging to the Institute of Computer Science could
decrypt, it would be associated with the attributes {Student, Lecturer, CS}.

Since the introduction of ABE, there have been many advances in multiple directions.
However, the set of allowable functions F has remained rather limited: in terms of cir-
cuit classes, the best result was achieved by Goyal et al in [GPSW06], whose construction
achieved security for circuits with depth log n, where n is the number of inputs, which is
equivalent to the class of functions representable by polynomial size boolean formulas. Garg
et al cite in [GGH+13] the existence of a so-called backtracking attack as a possible reason
why it might not be possible to achieve (KP-)ABE for general circuits using only one bilinear
map .

OR

AND

X=1 Y=0 Z=1

AND

Figure 2.1: Example of the backtracking attack where it enables the attacker to decrypt the
ciphertext. The values in red can only be computed due to the attack.

To illustrate the nature of the backtracking attack, we use the construction from
[GPSW06] as an example. In their construction, keys are elements in a cyclic group G

14

with order p, and there exists a bilinear map e : G×G→ Gt, where Gt is also a cyclic group
of order p. The access structures are circuits with only one outgoing edge allowed per vertex.
Every input w is associated with a value rw ∈ Zp, and the secret keys are chosen in such a
way that e(g, g)srw , where s ∈ Zp is a randomizing factor used to encrypt the ciphertext we
wish to decrypt, is computable only if the attribute associated with w in the attribute vector
x ∈ {0, 1}n is set to 1 (note that there may be multiple inputs associated with one attribute,
and therefore we can assume that each input has at most one outgoing edge). Every gate
A is associated with a value rA such that e(g, g)srA is computable if A outputs 1 on input
x, and routput is set to such a value that knowing e(g, g)sroutput will enable us to decrypt the
ciphertext. This means that if gate A is an OR gate and receives its inputs from gates (or
inputs) B and C, it must be possible to compute e(g, g)srA knowing either of e(g, g)srB or
e(g, g)srC . In [GPSW06], this is done by setting rA = rB = rC . But this means that if (say)
B outputs 1, then even if C outputs 0, we will still learn the value e(g, g)srC = e(g, g)srB .
If every gate and input has exactly one outgoing edge, as is the case with boolean formulas,
then this does not have any serious consequences, because C is only connected to A, which
evaluated to 1 anyway. But if we allowed our gates to have more than one outgoing edge,
and C was connected to another gate D as well, an adversary could use its knowledge of
e(g, g)srC to pretend in the computation for gate D that C outputs 1, and in the worst case,
end up being able to decrypt the ciphertext (Figure 2.1).

The construction in [GGH+13] and therefore the construction in this work aims to expand
the allowable set of functions to polynomial size boolean circuits with an arbitrary number
of outgoing connections allowed for each vertex. The construction is of the KP-ABE variety,
and therefore we will give a formal definition of a KP-ABE scheme for bounded circuits
here.

Definition 2.2.1. A KP-ABE scheme for polynomially bounded circuits is a set that consists
of the following four algorithms

• Setup(1λ, n, `). The setup algorithm takes as input the unary representation of the
security parameter λ, the length n of the possible attribute vectors and a bound ` on
the circuit depth, where n and ` are polynomially bounded by λ. It outputs the public
parameters PP and a master key MSK which is given to a trusted authority.

• Encrypt(PP, x,M). The encryption algorithm takes as input the public parameters
PP, a bit string x ∈ {0, 1}n representing the set of attributes the message should be
encrypted for, and a message M . It outputs a ciphertext CT.

• KeyGen(MSK, f). The key generation algorithm takes as input the master key MSK
and a description of a polynomial-size (in the security parameter λ) circuit f , where
the depth of f is at most `. The algorithm outputs a private key SK.

• Decrypt(SK, CT). The decryption algoritm takes as input a secret key SK and cipher-
text CT. The algorithm attempts to decrypt and outputs a message M if successful;
otherwise, it outputs a special symbol ⊥.

that satisfy the following conditions:

• The algorithms are efficiently (i.e., in polynomial time) computable

• For all messages M , strings x ∈ {0, 1}n and depth ` circuits f for which f(x) = 1, if
Encrypt(PP, x, M) outputs CT and KeyGen(MSK, f) outputs SK, where PP, MSK
were generated by the setup algorithm, then Decrypt(SK, CT) =M .

15

The security definition for KP-ABE schemes will be given in Chapter 4.

16

Chapter 3

The Construction

In this chapter, we first define some necessary assumptions and notations for introducing
the KP-ABE construction in [GGH+13]. Then we give a presentation of that construction.
Finally, we suggest some modifications that could be made to improve the construction in
[GGH+13]. Specifically, we show that it is possible to reduce the amount of necessary secret
key components by one for every gate.

3.1 Assumptions and Notations
Since by Theorem 1.2.1 and Theorem 1.2.2, every circuit can be transformed to an equiv-

alent almost monotone layered circuit without increasing the depth of the circuit (if not
counting the NOT gates at depth 2), and we can eliminate the NOT gates at depth 2 by adding
a new attribute to encode the negation of every existing attribute and instructing honest en-
cryptors to set exactly one of every pair to one, we can assume without loss of generality that
all of our circuits are monotone and layered.

We will now define some formal notation to describe a circuit f with n inputs and q
gates that will be used in describing the construction in the following section. This nota-
tion mostly follows the one used in [GGH+13], which in turn follows the notation used in
a paper by Bellare, Hoang and Rogaway ([BHR12]). We number our vertices with num-
bers 1 to n + q, with 1 to n being assigned to inputs, n + q being assigned to the output
and the remaining numbers being assigned to the remaining gates so that a gate with greater
depth will always have a greater number than a gate with lower depth, and define the sets
Inputs = {1, . . . , n}, Gates = {n + 1, . . . , n + q} and Vertices = Inputs ∪ Gates. Let
A : Gates→ Vertices\{n+ q} be a function such that A(w) equals the number of the vertex
connected to one incoming edge of the gate w and B : Gates→ Vertices\{n+ q} be a func-
tion such that B(w) equals the number of the vertex connected to the other incoming edge of
the gate w, with A(w) 6 B(w) for every gate w. Let GateType : Gates→ {AND,OR}
be a function such that GateType(w) returns the type of gate w. Then the circuit f can be
described with the five tuple (n, q, A,B,GateType). Note that since our circuit is layered,
if the depth of a gate w is j, then the depths of the vertices A(w) and B(w) is j − 1. We will
use f(x) to denote the output of the circuit f on input x and fw(x) to denote the output of
vertex w in circuit f on input x.

Since using only one bilinear map does not seem to be enough to avoid the backtrack-
ing attack, the construction of Garg et al in [GGH+13] uses a set of bilinear maps that
can be seen as implementing multilinear maps. Namely, we assume the existence of an

17

efficient group generator G that takes as input a security parameter λ and a positive inte-
ger k, and outputs a sequence of groups ~G = {G1, . . . ,Gk} each of a large prime order
p > 2λ. For the sake of efficiency, we assume that the length of p in bits is polyno-
mial in λ. Let gi denote the generator of the group Gi, i ∈ {1, . . . , k} (we assume this
is known from the group description). We then assume that there exists a set of bilinear
maps {ei,j : Gi ×Gj → Gi+j|i, j > 1; i+ j 6 k}. When the indices are clear from the con-
text, we will abuse notation and write e instead of ei,j . It is easy to see that for example the
function e′ : G1 × . . .×G1︸ ︷︷ ︸

k−1

→ Gk defined as

e′(gα1
1 , . . . , g

αk−1

1) = e(e(. . . e(e(gα1
1 , gα2

1), gα3
1) . . . , g

αk−2

1), g
αk−1

1) = g
α1α2···αk−1

k

implements a multilinear map.

3.2 The Garg-Gentry-Halevi-Sahai-Waters Construction
We will now describe the GGHSW KP-ABE scheme of [GGH+13] for polynomially

bounded circuits. In the GGHSW construction, it is assumed for ease of exposition that all
of the circuits have depth `, where ` is the maximal circuit depth defined during setup. We
will explain how to handle circuits with depth less than ` after the construction.

3.2.1 The Algorithms
Setup(1λ, n, `). The setup algorithm takes as an input a security parameter λ, the number
of boolean inputs n and the maximum depth ` of the circuits. It then runs G(1λ, k = `+ 1)

to obtain the group descriptions ~G = {G1, . . . ,Gk} of prime order p > 2λ together with
their generators g1, . . . , gk. We let g = g1. Next, it chooses at random α ∈ Zp and
h1, . . . , hn ∈ G1. The public parameters PP consist of the group sequence description plus
gαk , h1, . . . , hn. The master secret key MSK is gαk−1.

Encrypt(PP, x ∈ {0, 1}n, M ∈ {0, 1}). The encryption algorithm takes as input the public
parameters PP, an attribute vector x ∈ {0, 1}n and a message bit M . The encryption algo-
rithm chooses a random s ∈ Zp. If M = 1, it sets CM to (gαk)

s. Otherwise, it sets CM to a
random group element in Gk. Next, let S be the set of such i that xi = 1. Then the ciphertext
is created as

CT = (CM , g
s, ∀i ∈ S Ci = hsi).

KeyGen(MSK, f = (n, q, A,B,GateType)). The key generation algorithm takes as input
the master secret key MSK and the description f of a circuit. The algorithm chooses random
r1, . . . , rn+q ∈ Zp, where we think of rw as being associated with vertex w. It produces a
header component using the master secret key as

KH = g
α−rn+q

k−1 .

Next, it generates key components for every vertex w. The structure of the key components
depends on whether w is an input, an AND gate or an OR gate. We will describe how the
algorithm generates the key components in each case.

18

• Input.
If w ∈ Inputs, the algorithm chooses a random zw ∈ Zp and creates the key compo-
nents as

Kw,1 = grwhzww , Kw,2 = g−zw .

• OR gate.
If w ∈ Gates and Gatetype(w) = OR, then the algorithm chooses random
aw, bw ∈ Zp and creates the key components as

Kw,1 = gaw , Kw,2 = gbw , Kw,3 = g
rw−awrA(w)

j , Kw,4 = g
rw−bwrB(w)

j ,

where j is the depth of w.

• AND gate.
If w ∈ Gates and Gatetype(w) = AND, then the algorithm chooses random
aw, bw ∈ Zp and creates the key components as

Kw,1 = gaw , Kw,2 = gbw , Kw,3 = g
rw−awrA(w)−bwrB(w)

j ,

where j is the depth of gate w.

The secret key SK consists of the description of f , the header component KH and the key
components for each vertex of f .

Decrypt(SK, CT). Given a secret key SK associated with a circuit
f = (n, q, A,B,GateType) and a ciphertext associated with the attribute vector x,
decryption should be possible if (and only if) f(x) = 1. The goal of the decryption
algorithm is to compute gαsk , so that it could compare it to CM . First, it computes
E = e(KH , g

s) = e(g
α−rn+q

k−1 , gs) = gαsk g
−srn+q

k . Now it would suffice to compute gsrn+q

k . It
does this by iterating over all w ∈ Vertices in increasing order of value (this ensures that
computations for inputs to a gate are done before trying to do computations on the gate
itself) and computing Ew = gsrwj+1 for each vertex w for which fw(x) = 1. The computation
steps are again divided by whether w is an input, OR gate or AND gate.

• Input.
If w ∈ Inputs and fw(x) = xw = 1, then the ciphertext contains Cw and the algorithm
computes

Ew = e(Kw,1, g
s) · e(Kw,2, Cw) = e(grwhzww , g

s) · e(g−zw , hsw) = gsrw2 .

• OR gate.
If w ∈ Gates, Gatetype(w) = OR and fw(x) = 1, then at least one of fA(w)(x)
and fB(w)(x) evaluates to 1. Let j be the depth of gate w. If fA(w)(x) = 1, then the
algorithm computes

Ew = e(EA(w), Kw,1) · e(Kw,3, g
s) = e(g

srA(w)

j , gaw) · e(grw−awrA(w)

j , gs) = gsrwj+1.

If fA(w)(x) = 0, but fB(w)(x) = 1, then the algorithm computes

Ew = e(EB(w), Kw,2) · e(Kw,4, g
s) = e(g

srB(w)

j , gbw) · e(grw−bwrB(w)

j , gs) = gsrwj+1.

19

• AND gate.
If w ∈ Gates, Gatetype(w) = AND and fw(x) = 1, then both fA(w)(x) = 1 and
fB(w)(x) = 1. Let j be the depth of gate w. The algorithm computes

Ew = e(EA(w), Kw,1) · e(EB(w), Kw,2) · e(Kw,3, g
s)

= e(g
srA(w)

j , gaw) · e(gsrB(w)

j , gbw) · e(grw−awrA(w)−bwrB(w)

j , gs) = gsrwj+1.

If f(x) = fn+q(x) = 1, then the algorithm will be able to compute En+q = g
srn+q

k . It then
computes E · En+q = gαsk , compares it to CM and outputs M = 1 if they are equal and
M = 0 otherwise. Correctness holds with high probability.

There are many ways to handle circuits with depth d < `. One of the simplest ways
would be to add an extra step to the decryption algorithm. Since following the decryption
algorithm, we can compute En+q = g

srn+q

d+1 (assuming we should be able to decrypt), we
can use the multilinear maps to compute e(En+q, gk−d−1) = g

srn+q

k and proceed with the
decryption.

3.2.2 Efficiency
According to the definition of a KP-ABE scheme, all of the algorithms have to be effi-

cient, i.e., computable in time polynomial in the security parameter λ. To show this, we first
recall that we assume that k, n and the circuit size are all polynomially bounded by λ, the
group generator G and the bilinear maps are all efficiently computable, and that group multi-
plication in the generated groups is efficient as well. From this, it follows that exponentiation
in the generated groups is efficient as well: even though at first glance, it might seem that we
might need more than 2λ multiplications to compute large powers of group elements (since
p > 2λ), it is actually possible to use only approximately log2 p multiplications (which by
assumption is polynomial in λ) using the fact that for any group element a and exponent m
we have

am =

{
a · (am−1

2)2, if m is odd
(a

m
2)2, otherwise.

By proposition 1.1.5, this means that finding the inverse element is efficient as well. Also,
choosing a random number from Zp is equivalent to choosing a sequence of p bits at random,
which is obviously efficiently doable (since the length of p is polynomial in λ). Now let us
examine the efficiency of the algorithms (note that n and ` are constants with respect to λ):

• The Setup algorithm runs G, picks a polynomial (since n is polynomial in λ) number
of random elements and does a polynomial number of exponentiations. Since all of
these are efficient operations, the Setup algorithm is efficient as well.

• The Encrypt algorithm chooses at most two random elements and then does at most
n+2 exponentiations (one for each set attribute, one for CM and one for gs), therefore
it is efficiently computable.

• The KeyGen algorithm chooses a constant number of random elements and does a
constant number of exponentiations and multiplications for every vertex of the given
circuit. Since the size of the circuit is polynomial in λ, the KeyGen algorithm does
a polynomial number of polynomial time operations, and therefore is efficiently com-
putable

20

• The Decrypt algorithm computes a constant number of bilinear maps and does a con-
stant number of group multiplications for every vertex in the given circuit, plus some
additional polynomial time computation (the header computation etc). Since we as-
sume that the bilinear maps are efficiently computable, the Decrypt algorithm is effi-
cient as well.

3.3 The Modified Construction
We will now explain our modifications to the original scheme. Firstly, in the original

scheme, when encrypting the bit 0, decryption will fail with probability 1
p
, since CM is set to

a random group element and therefore might coincide with the encryption of 1. We solve this
by encrypting 0 in such a way that it can never collide with the encryption of 1. Secondly,
in the original scheme, two random values aw and bw are chosen for every gate w during key
generation. We will show that it is sufficient to choose only one random value zw for every
gatew and set aw = bw = zw in the key components, thereby eliminating one key component
for every gate. The formal definitions of the modified algorithms follow.

Encrypt(PP, x ∈ {0, 1}n,M ∈ {0, 1}). The encryption algorithm takes as input the public
parameters PP, a descriptor input x ∈ {0, 1}n and a message bitM . The encryption algorithm
chooses a random s ∈ Zp. If M = 1, it lets CM = (gαk)

s. Otherwise, it chooses a random
y ∈ Zp and tests whether (gαk)

s is equal to gyk . If it is, the algorithm chooses a random
z ∈ Zp\{y} and lets CM = gzk. Otherwise, it lets CM = gyk . Next, let S be the set of such i
that xi = 1. Then the ciphertext is created as

CT = (CM , g
s,∀i ∈ S Ci = hsi)

KeyGen(MSK, f = (n, q, A,B,GateType)). The key generation algorithm takes as input
the master secret key MSK and the description f of a circuit. The header component and the
keys components for the inputs are computed as in the original scheme.

• OR gate
Ifw ∈ Gates and Gatetype(w) = OR, then the algorithm chooses a random zw ∈ Zp
and creates the key components as

Kw,1 = gzw , Kw,2 = g
rw−zwrA(w)

j , Kw,3 = g
rw−zwrB(w)

j ,

where j is the depth of gate w.

• AND gate
If w ∈ Gates and Gatetype(w) = AND, then the algorithm chooses a random
zw ∈ Zp and creates the key components as

Kw,1 = gzw , Kw,2 = g
rw−zw(rA(w)+rB(w))

j ,

where j is the depth of gate w.

Decryption works analogously to the original scheme.
For an intuition why this construction might be secure (at least against the backtracking

attack), consider an OR gate w. Suppose fA(w)(x) = 1, but fB(w)(x) = 0 for some input

21

x ∈ {0, 1}n. Then, using the bilinear maps, it is possible to compute g
srA(w)

j , gsrwj+1 and
g
srw−szwrB(w)

j+1 , from which it is possible to compute g
szwrB(w)

j+1 , but since our bilinear maps
are not invertible (this follows from the security assumption given in Chapter 4), it is not
possible to even compute g

szwrB(w)

j . The formal proof of security will be given in Chapter 4.

22

Chapter 4

Security

In this chapter, the security of a KP-ABE scheme and the security assumption under
which we prove security are defined. These are exactly the same as in [GGH+13]. Then we
give the proof of security for our modified scheme.

4.1 Security Definition
Definition 4.1.1. A function µ : N→ R is called negligible, if for every positive polynomial
p (i.e., p(n) > 0 ∀n ∈ N) there exists a N ∈ N such that for all n > N , |µ(n)| < 1

p(n)
.

Definition 4.1.2. Define the selective security game for KP-ABE for bounded circuits with
maximum depth ` and input number n between an adversary and a challenger as follows:

• Init. The adversary chooses a challenge attribute set x∗ and sends it to the challenger.

• Setup. The challenger runs the setup algorithm with inputs 1λ, n, `, where λ is the
security parameter, and sends the public parameters PP to the adversary.

• Phase 1. The adversary makes up to a polynomial number of queries for private keys
for any circuit f with f(x∗) = 0. The challenger responds with KeyGen(MSK, f).

• Challenge. The adversary sends two equal length messages M0 and M1 to the chal-
lenger. The challenger chooses b ∈ {0, 1} at random and sends Encrypt(PP, x∗,Mb)
to the adversary.

• Phase 2. Phase 1 is repeated.

• Guess. The adversary outputs a guess b′ of b.

An encryption scheme for ABE for polynomially bounded circuits is said to be selectively
secure if for all polynomial time adversariesA the advantage ofAwith respect to the security
parameter λ AdvA(λ) = Pr[b′ = b] − 1

2
is negligible (an encryption scheme for ABE for

polynomially bounded circuits is said to be (non-selectively) secure, if in the security game
above the adversary sends the challenge attribute set x∗ not during the Init phase, but during
the Challenge phase).

Intuitively, Phase 1 and Phase 2 represent the situation where many dishonest users try
to work together to break a ciphertext that none of them would be able to decrypt on their
own. This security definition ensures that the scheme remains secure even if such a situation
should occur.

23

4.2 Proof of Security
For the proof of selective security for the original construction, please see [GGH+13]. In

this section, we will give a proof that our modified scheme remains selectively secure. As is
done in [GGH+13], we prove the selective security of the modified construction under the
following assumption, called the k-Multilinear Decisional Diffie-Hellman assumption.

Assumption (k-MDDH). A challenger runs the group generator G(1λ, k), where λ is the
security parameter, to generate k groups and generators of order p > 2λ. Then it picks
random s, c1, c2, . . . , ck, and chooses b ∈ {0, 1} at random. If b = 1, it sets T equal to
gsc1c2···ck , otherwise it sets T equal to a random element of Gk. Then it sends the group
descriptions ~G = (G1, . . . ,Gk) and p, g = g1, g

s, gc1 , . . . , gck , T to the adversary, and the
adversary (possibly using the set of bilinear maps) outputs its guess b′ of b. The assumption
states that for all polynomial time adversaries A the advantage of A with respect to the
security parameter λ AdvA(λ) = Pr[b′ = b]− 1

2
is negligible.

Theorem 4.2.1. The modified construction given in the previous chapter achieves selective
security for circuits of depth k − 1 under the k-MDDH assumption.

Proof. The proof is almost identical to the one in [GGH+13], with the exception of the
KeyGen phase for AND and OR gates and the fact that the probability computations are
explicit.

We will show that if there exists a polynomial time adversaryA that has a non-negligible
advantage in the selective security game for circuits of depth k−1 and inputs of length n, then
there exists a polynomial time adversary B that breaks the k-MDDH security assumption. In
the following, we describe how B can use A to break the security assumption by simulating
the challenger in the selective security game.
Init. B first receives the group descriptions ~G = (G1, . . . ,Gk) and
p, g = g1, g

s, gc1 , . . . , gck , T from the challenger of the k-MDDH assumption, where
T is either gsc1c2···ckk or a random group element of Gk with probability 1

2
. A chooses the

challenge attribute set x∗ ∈ {0, 1}n and sends it to B.
Setup. B chooses random y1, . . . , yn ∈ Zp and sets

hi =

{
gyi if x∗i = 1

gc1+yi if x∗i = 0
, i ∈ {1, 2, . . . , n}.

Note that the choices of hi above are distributed identically to the hi in the actual con-
struction: for a fixed a ∈ Zp and i ∈ {1, 2, . . . , n}, Pr[hi = ga] = 1

p
in the actual construc-

tion, and in for the choices of hi above Pr[hi = ga] = Pr[gyi = ga] = 1
p

if x∗i = 1 and
Pr[hi = ga] = Pr[gc1+yi = ga] = Pr[gyi = ga−c1] = 1

p
if x∗i = 0.

Next, B sets gαk = gξ+c1···ckk , where ξ ∈ Zp is chosen randomly (this can be computed by
using the pairing function on gc1 , . . . , gck repeatedly). Note that again, the distribution is the
as the distribution of gαk in the actual construction. B then sends gαk , h1, . . . , hn to A.

KeyGen Phase. Both key generation phases will be executed in the same way by
B, so they will be described here only once. B will receive a circuit description
f = (n, q, A,B,Gatetype) from A such that f(x∗) = 0. Note that B cannot just use
the actual construction to generate the secret keys, since B does not know the actual value
of α and therefore cannot (or at least we cannot assume that it can) compute the master

24

secret key MSK = gαk−1 and therefore is unable to directly compute the header compo-
nent KH = g

α−rn+q

k−1 just from knowing rn+q. On the other hand, the distribution of keys
and the values of rw has to be identical to the one in the actual construction for the success
probability of A to remain the same.

To overcome these problems, B does the following for every vertex w with depth j.
If fw(x∗) = 1, it views rw as a random element in Zp (as in the actual construction). If
fw(x

∗) = 0, it views rw as c1 · · · cj+1 + ηw, where ηw is a random element in Zp known by
B. Then the distribution of rw is the same as in the actual construction, and since fn+q(x∗) =
f(x∗) = 0, B will view rn+q as c1 · · · ck + ηn+q and know how to compute gηn+q

k−1 , which will
allow it to compute the header component by cancellation as

KH = g
α−rn+q

k−1 = g
ξ+c1·...·ck−(c1·...·ck+ηn+q)
k−1 = gξk−1 · (g

ηn+q

k−1)
−1.

The details of the key generation for each vertex w follow.

• Input
Consider w ∈ Inputs. If x∗w = 1, then B chooses rw, zw ∈ Zp at random and sets
the key components as is done in the actual construction. If x∗w = 0, B chooses
ηw, νw ∈ Zp at random and views rw as c1c2 + ηw and zw as −c2 + νw (therefore the
distributions of rw and zw are the same as in the actual construction). Then the key
components are

Kw,1 = grwhzww = gc1c2+ηw(gc1+yw)−c2+νw = gηw(gc2)−yw(gc1)νwgνwyw

and
Kw,2 = gzw = g−c2+νw = (gc2)−1gνw .

• OR gate
Consider w ∈ Gates with Gatetype(w) = OR. Let j be the depth of gate w. If
fw(x

∗) = 1, then B behaves exactly as the KeyGen in the actual construction (note
that this can be done due to the fact that g

rA(w)

j and g
rB(w)

j can always be computed
no matter what the output values of the vertices A(w) and B(w) were: if they were
1, B knows rA(w)/rB(w), and if say fA(w)(x∗) = 0, then B can knows ηA(w) and can
compute g

rA(w)

j = g
c1···cj
j · gηA(w) using the multilinear maps). If fw(x∗) = 0, then

B chooses random ηw, φw ∈ Zp, views zw as cj+1 + φw and rw as c1 · · · cj+1 + ηw.
Note that if fw(x∗) = 0, then fA(w)(x∗) = 0 and fB(w)(x

∗) = 0 as well, and therefore
rB(w) = c1 · · · cj + ηB(w) and rA(w) = c1 · · · cj + ηA(w). B sets the key components to

Kw,1 = gzw = gcj+1+φw ,

Kw,2 = g
rw−zwrA(w)

j = g
c1···cj+1+ηw−(cj+1+φw)(c1···cj+ηA(w))

j

= g
ηw−cj+1ηA(w)−φwc1···cj−φwηA(w)

j

= g
ηw−φwηA(w)

j · e(gcj+1 , g
−ηA(w)

j−1) · (gc1···cjj)−φw ,

Kw,3 = g
rw−zwrB(w)

j = g
c1···cj+1+ηw−(cj+1+φw)(c1···cj+ηB(w))

j

= g
ηw−cj+1ηB(w)−φwc1···cj−φwηB(w)

j

= g
ηw−φwηB(w)

j · e(gcj+1 , g
−ηB(w)

j−1) · (gc1···cjj)−φw

25

B can compute Kw,2 and Kw,3, because it knows ηw, φw, ηB(w) and ηA(w) and can
compute gc1···cjj by using e repeatedly. Since the distributions of zw and rw are the
same as in the actual construction, the distribution of the simulated keys is also the
same as in the actual construction.

• AND gate
Consider w ∈ Gates with Gatetype(w) = AND. Let j be the depth of gate w. If
fw(x

∗) = 1, then B behaves exactly as the honest KeyGen. If fw(x∗) = 0, then B
chooses random φw, ηw ∈ Zp and views rw as c1 · · · cj+1 + ηw. Since fw(x∗) = 0,
either fA(w)(x∗) = 0 or fB(w)(x

∗) = 0 or both. If fA(w)(x∗) = 0 and fB(w)(x
∗) = 1,

then rA(w) = c1 · · · cj + ηA(w), B views zw as cj+1 + φw and sets the key components
as

Kw,1 = gzw = gcj+1+φw ,

Kw,2 = g
rw−zw(rA(w)+rB(w))

j

= g
c1···cj+1+ηw−(cj+1+φw)(c1···cj+ηA(w)+rB(w))

j

= g
ηw−cj+1(ηA(w)+rB(w))−φwc1···cj−φw(ηA(w)+rB(w))

j

= g
ηw−φw(ηA(w)+rB(w))

j · e(gcj+1 , g
−(ηA(w)+rB(w))

j−1) · (gc1···cjj)−φw .

B can computeKw,2, because it knows ηw, φw, rB(w) and ηA(w) and can compute gc1···cjj

by using e repeatedly. The case fA(w)(x∗) = 1 and fB(w)(x
∗) = 0 is analogous.

If both fA(w)(x∗) = 0 and fB(w)(x
∗) = 0, then both rA(w) = c1 · · · cj + ηA(w) and

rB(w) = c1 · · · cj + ηB(w), B views zw as 2−1cj+1 + φw and sets the key components as

Kw,1 = gzw = g2
−1cj+1+φw ,

Kw,2 = g
rw−zw(rA(w)+rB(w))

j

= g
c1···cj+1+ηw−(2−1cj+1+φw)(2c1···cj+ηA(w)+ηB(w))

j

= g
ηw−2−1cj+1(ηA(w)+ηB(w))−2φwc1···cj−φw(ηA(w)+ηB(w))

j

= g
ηw−φw(ηA(w)+ηB(w))

j · e(gcj+1 , g
−2−1(ηA(w)+ηB(w))

j−1) · (gc1···cjj)−2φw .

B can compute Kw,2 for the same reasons as above. It remains to show that the distri-
bution of zw is the same as in the actual construction. For a fixed element a ∈ Zp, the
probability that a randomly chosen element of Zp is equal to 1

p
, and therefore in the

actual construction, Pr[zw = a] = 1
p
. In the simulated construction,

– If fA(w)(x∗) = 1 and fB(w)(x
∗) = 1, then fw(x∗) = 1 and B behaves exactly as

in the actual construction, and therefore Pr[zw = a] = 1
p
.

– If fA(w)(x∗) = 1 and fB(w)(x
∗) = 0 or fA(w)(x∗) = 0 and fB(w)(x

∗) = 1, then
Pr[zw = a] = Pr[φw = a− cj+1] =

1
p

– If fA(w)(x∗) = 0 and fB(w)(x
∗) = 0, then Pr[zw = a] = Pr[φw = a− 2−1cj+1] =

1
p

26

Therefore the distribution of the simulated zw is the same as the zw in the actual con-
struction in all possible cases.

B sends the secret key SK to A.

Challenge. We can assume without loss of generality that the two messages that A sends to
B are 0 and 1, since there are only two possible messages in our construction and sending
two equal messages would only decrease the likelihood of A guessing correctly. Therefore
B has to create a ciphertext that is an encryption of either 0 or 1 with equal probability. Let
S∗ be the set on indices i for which x∗i = 1. B creates the challenge ciphertext as

CT = (T · gsξk , g
s,∀j ∈ S∗Cj = (gs)yj).

If T = gsc1c2···ckk , then this in an encryption of 1. Otherwise, if T was chosen randomly in
Gk, this is an encryption of 0 with probability p−1

p
and an encryption of 1 with probability

1
p
. Therefore, B sends A the encryption of 1 with probability 1

2
+ 1

2p
and the encryption of

0 with probability 1
2
− 1

2p
. This somewhat skews the probability of A winning the selective

security game, fortunately by a small enough amount (this will be proved later).
After repeating the KeyGen phase, A outputs a guess b′′ of whether the encrypted mes-

sage was 1 or 0, and B outputs b′ = b′′ as its guess of b.
It remains to be shown that if A has a non-negligible advantage in the selective security

game for circuits of maximum depth k − 1 and n inputs, then B has a non-negligible advan-
tage in the k-MDDH assumption game. Denote by a(λ) the advantage of A in the selective
security game. Let C be the event that A wins in the selective security game, D be the event
that A is sent an encryption of 1, and E be the event that A is sent an encryption of 0. Let
a1(λ) = Pr[C|D] − 1

2
and a2(λ) = Pr[C|E] − 1

2
. Then from the normal selective security

game, we get

1

2
+ a(λ) = Pr[C] = Pr[D]Pr[C|D] + Pr[E]Pr[C|E]

=
1

2

(
1

2
+ a1(λ)

)
+

1

2

(
1

2
+ a2(λ)

)
=

1

2
+
a1(λ) + a2(λ)

2
,

from which

a(λ) =
a1(λ) + a2(λ)

2
.

Since a(λ) is not negligible, then by the definition of negligible functions, there exists a pos-
itive polynomial p1 such that for every N ∈ N there exists a λ > N such that |a(λ)| > 1

p1(λ)
.

It remains to show that such a polynomial exists for the advantage of B b(λ) in the k-MDDH
security game as well. As shown in the description of the Challenge phase, in our simulated
selective security game, we have Pr[D|b = 1] = 1, Pr[D|b = 0] = 1

p
, Pr[E|b = 1] = 0 and

27

Pr[E|b = 0] = 1− 1
p
. Therefore,

1

2
+ b(λ) = Pr[B wins]

= Pr[b = 1]Pr[D|b = 1]Pr[C|D] + Pr[b = 1]Pr[E|b = 1] (1− Pr[C|E])
+ Pr[b = 0]Pr[D|b = 0] (1− Pr[C|D]) + Pr[b = 0]Pr[E|b = 0]Pr[C|E]

=
1

2

(
1

2
+ a1(λ)

)
+ 0

+
1

2
· 1
p
·
(
1− 1

2
− a1(λ)

)
+

1

2

(
1− 1

p

)(
1

2
+ a2(λ)

)
=

1

2
+
a1(λ) + a2(λ)

2
− a1(λ) + a2(λ)

2p

=
1

2
+ a(λ)

(
1− 1

p

)
From the fact that p > 2λ, we get that for every λ for which |a(λ)| > 1

p1(λ)
,

|b(λ)| = |a(λ)
(
1− 1

p

)
| = |a(λ)|

(
1− 1

p

)
> |a(λ)|

(
1− 1

2λ

)
>

1

2
|a(λ)| > 1

2p1(λ)
.

Since 2p1(λ) is a polynomial as well, it follows that b(λ) is not negligible.
B is a polynomial time algorithm, because A is a polynomial time algorithm, all the al-

gorithms in the actual construction are polynomial time algorithms, and B only a constant
amount of extra polynomial time computations for every gate compared to the actual con-
struction.

28

Summary

In this work, an overview of Attribute-Based Encryption was given. A recent construc-
tion for Key-Policy Attribute-Based Encryption which expands the allowable class of func-
tions from boolean formulae to polynomial size circuits that was presented in [GGH+13]
was introduced. Some suggestions for improving the original construction were given, and
the security of the resulting scheme was proved.

There are many possible research problems remaining in connection with the KP-ABE
constructions given in this work. Some examples include proving non-selective security
and encrypting messages longer than one bit. Whether it is possible to further decrease the
necessary number of key components also remains an interesting open question.

29

Multilineaarsetel kujutustel baseeruvast
atribuudipõhisest krüpteerimisest
loogikaskeemide jaoks

Bakalaureusetöö

Kairi Kangro

Resümee
Tänapäeval on avaliku võtme krüptograafia laialdaselt kasutuses, näiteks krüpteeritud

meilide saatmisel. Sellel on aga üks oluline puudus: saajaid saab olla ainult üks. Üks või-
malik lahendus sellele probleemile on Sahai ja Watersi poolt välja töötatud atribuudipõhine
krüpteerimine (Attribute-Based Encryption,[SW05]), mis võimaldab paindlikumalt määra-
tleda, kes milliseid krüpteeritud andmeid lahti krüpteerida saab.

Käesolevas töös käsitletakse põhjalikumalt võtmepoliitika atribuudipõhist krüpteerim-
ist (Key-Policy Attribute-Based Encryption,[GPSW06]), mis võimaldab siduda andmed
krüpteerimisel teatud hulga atribuutidega ja väljastada kasutajatele võtmeid, mis on seo-
tud teatud funktsioonidega. Kasutaja saab šifferteksti lahti krüpteerida ainult siis, kui tema
võtmega seotud funktsioon on šiffertekstiga seotud atribuutide korral tõene.

Töös tutvustatakse hiljuti Garg et al poolt avaldatud artiklis [GGH+13] toodud võt-
mepoliitika atribuudipõhise krüpteerimise skeemi, mis laiendab lubatavate funktsioonide
klassi seni parimalt polünomiaalse suurusega loogiliste avaldiste klassilt polünomiaalse su-
urusega loogika-skeemide klassile, mida peetakse oluliselt suuremaks klassiks ([AB09]).
Skeemi loomiseks kasutatakse atribuudipõhises krüpteerimises üldlevinud bilineaarsete ku-
jutuste asemel multilineaarseid kujutusi, ja Garg et al toovad artiklis [GGH+13] esile ühe tea-
tud tüüpi ründe, nn tagurdusründe, võimaliku põhjusena, miks bilineaarsete kujutustega pole
seni õnnestunud lubatavate funktsioonide klassi laiendada. Töös tuuakse ära ka skeemist
arusaamiseks vajalikud põhimõisted ja -tulemused, nende hulgas olulisemateks on rühmad,
loogikaskeemid ja algoritmide efektiivsus.

Lisaks eelmainitud tulemuste ja mõistete tutvustamisele pakutakse töö autori poolt välja
üks moodus skeemis vajaminevate võtmekomponentide arvu vähendamiseks, ja esitatakse
tulemusena saadud skeemi täielik turvatõestus koos vajalike turvalisuse definitsioonide ja
eeldustega.

30

Bibliography

[GPSW06] V. Goyal, O. Pandey, A. Sahai, B. Waters. Attribute-based encryption for fine-
grained access control of encrypted data, ACM Conference on Computers and
Communications Security, pages 89-98, 2006.

[AB09] S. Arora, B. Barak. Computational Complexity: A Modern Approach, Cam-
bridge University Press, 2009. 594 pages.

[BHR12] M. Bellare, V. T. Hoang, P. Rogaway. Foundations of garbled circuits, Cryptol-
ogy ePrint Archive, Report 2012/265, 2012. http://eprint.iacr.org/2012/265.pdf.

[BF01] D. Boneh, M. K. Franklin. Identity-based encryption from the weil pairing,
CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 213-229,
2001.

[BS03] D. Boneh, A. Silverberg. Applications of multilinear forms to cryptography,
Contemporary Mathematics, 324:71-90, 2003.

[GGH12] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lat-
tices and applications, Cryptology ePrint Archive, Report 2012/610, 2012.http:
//eprint.iacr.org/2012/610.pdf.

[GGH+13] S. Garg, C.Gentry, S.Halevi, A. Sahai, B. Waters. Attribute-Based Encryp-
tion for Circuits from Multilinear Maps, Cryptology ePrint Archive, Report
2013/128, 2013. http://eprint.iacr.org/2013/128.pdf. (accepted for publication in
CRYPTO 2013)

[Kil05] M. Kilp. Algebra I, Eesti Matemaatika Selts, 2005. 311 pages.

[SW05] A. Sahai, B. Waters. Fuzzy identity-based encryption, EUROCRYPT, pages 457-
473, 2005.

31

Non-exclusive licence to reproduce thesis and make thesis public

I,
Kairi Kangro
(date of birth: 03.03.1991),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives until expiry of the term of validity of
the copyright,
„On Attribute-Based Encryption for Circuits from Multilinear Maps”,
supervised by Helger Lipmaa and Sven Laur.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual prop-
erty rights or rights arising from the Personal Data Protection Act.

Tartu, 13.05.2013

32

	Introduction
	Preliminaries
	Groups and Generators
	Circuits
	Definitions and Examples
	Monotone Circuits
	Layered Circuits

	Complexity of Algorithms

	Attribute-Based Encryption with Bilinear Maps
	Bi- and Multilinear Maps
	Attribute-Based Encryption

	The Construction
	Assumptions and Notations
	The Garg-Gentry-Halevi-Sahai-Waters Construction
	The Algorithms
	Efficiency

	The Modified Construction

	Security
	Security Definition
	Proof of Security

	Summary
	Summary (in Estonian)
	References

