
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Valdur Kadakas

Establishing Scientific
Computing Clouds on Limited

Resources using OpenStack

Bachelor Thesis (6 EAP)

Supervisor: Satish Narayana Srirama, PhD

Co-supervisor: Pelle Jakovits, MSc

Author:.................................... ”.....” May 2013

Supervisor:............................... ”.....” May 2013

Professor:................................. ”.....” May 2013

TARTU, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This work explores how OpenStack cloud platform could be used on limited

hardware resources for scientific computing and teaching purposes. Open-

Stack has deep learning curve and most of the documentation is targeted

for creating large scale clouds with hundreds of servers. OpenStack has a

lot of components and configuration options which are quite hard to navi-

gate at first. Thus this work tries to provide the rationale for making those

technology choices and bases this on sample two server setup belonging to

Tartu University Mobile Cloud Lab.

Contents

1 Introduction 1

2 Technology Overview 3

2.1 Eucalyptus . 3

2.2 OpenStack . 4

2.3 Platform Comparison . 6

3 Requirements, Constraints, and Design Principles 7

3.1 Cloud Hardware . 7

3.2 Mobile Cloud Lab Requirements . 8

3.3 Likely Hardware Constraints . 10

3.4 Deployment Design and Implementation Principles 11

4 Deployment Architecture and Implementation 13

4.1 Technology Choices . 13

4.1.1 Storage . 13

4.1.2 Networking . 14

4.2 A Cloud on Two Servers . 15

4.3 Implementation . 19

4.4 Software Defects . 20

5 Performance Tests and Results 22

5.1 Synthetic Performance Tests . 22

5.1.1 Virtual Machine Launch Time 22

5.1.2 Java Install Time . 23

5.2 Actual Performance in Labs . 23

ii

CONTENTS

5.3 Likely Amendments to Configuration . 24

5.4 Extending Cloud to 10 Servers and up 25

6 Conclusions 26

7 Sisukokkuvõte 27

Bibliography 29

Appendices 29

A Cloud Controller Installation Notes 31

Licence 39

iii

1

Introduction

OpenStack (1) is one of the fastest developing open source cloud computing platforms.

As its name might indicate it is not a single program nor does it have a fixed set of

components. It is more like a suite of open source solutions that together form a in-

frastructure as a service (IaaS) stack. The number of different components to configure

and the different configuration possibilities contribute a lot to the complexity of its

setup. Learning curve for OpenStack is still deep. There are guides presenting simple

demo setups for testing purposes and there is extensive documentation on configuration

options but the latter is of more use to a large scale cloud owner who has time and

resource to find a configuration suiting their specific needs. This thesis aims to fill part

of the gap in between by providing both a sample setup for a small OpenStack cloud

deployment running on commodity hardware as well as the rationale for the technology

choices made in the process. The work grew out of the needs of Tartu University Mobile

Cloud Lab to find an alternative to their existing Eucalyptus (2) installation. They

had been using it for research as well as for teaching and were not satisfied with its per-

formance nor stability. They expected a newer open source cloud platform OpenStack

to address these issues.

OpenStack is an attractive choice as it is the cloud project with largest momentum

at the moment, it is open source, and has the backing of several large organizations

and companies including NASA, Rackspace Cloud, Intel, IBM, etc.

The main goal of this work was to provide Mobile Cloud Lab (3) with working

installation of OpenStack. They had two servers dedicated to this project and wanted

to use this small cloud in the course Basics of Cloud Computing. In case of success, this

1

means that the installation could be used in the course, and with spare time, the cloud

was to be extended with 5 PCs formerly used in their Eucalyptus setup. The secondary

goal was to run benchmarks, assess this OpenStack installation and try to provide a

balanced hardware and software configuration for running scientific calculations in a

small private cloud.

Chapter one of this work gives an overview of both OpenStack and Eucalyptus cloud

platforms and their components. It also provides a comparison of the two technolo-

gies while concentrating on the features relevant for Mobile Cloud Lab. Chapter two

describes the requirements of Mobile Cloud Lab, translates these to hardware terms,

iterates on likely constraints of given hardware, and sets deployment design principles.

Third chapter uses the latter to make technology choices and describes the actual im-

plementation. It also lists software defects that had to be overcome during cloud setup.

The fourth chapter presents the results of synthetic performance tests and describes

actual performance during Basics of Cloud Computing lab sessions. It also provides

advisable amendments to the configuration and gives advise for scaling up the cloud to

more hosts.

2

2

Technology Overview

Everything related to cloud computing has become popular in recent years. The cause

is clear as moving IT infrastructure to public clouds allows to dynamically allocate

computer resources depening on current needs. Computing is becoming utility in that

sense.

It is also possible to establish smaller private clouds. Besides business purposes these

are often established in universities. Assoc. Prof. Dr. Srirama of Tartu Univercity has

defined the purpose of such clouds in the following way: “With these clouds, researchers

can efficiently use the already existing resources in solving computationally intensive

scientific, mathematical, and academic problems.” (4)

There are several open souce platforms that allow to establish private clouds. Mobile

Cloud Lab of Tartu Univercity has used Eucalyptus technology. An other popular

platform is OpenStack. Below we will provides an overview of these cloud platforms

and briefly discus their features in the light of using them in teaching and in scientific

computing.

2.1 Eucalyptus

Eucalyptus is an open source IaaS cloud platform first released in 2008. Eucalyptus

Systems has published their source code under GPL v3 license. They advertise its

product as compatible with Amazon Web Services (AWS) APIs. This means that

Eucalyptus commands can be used to manage both AWS and Eucalyptus instances. It

is also possible to move virtual machine images between Eucalyptus private cloud and

3

2.2 OpenStack

Amazon public one. This allows to create hybrid clouds where applications are set up

on private cloud and lend public cloud resources on demand.

Eucalyptus consists of the following components:

• Cloud Controller (CLC): this component provides AWS EC2 functionality, i.e.

allows to command virtual server resources

• Walrus: this component provides object storage functionality (S3 in AWS terms)

typically used for backup or for storing huge media files

• Cluster Controller (CC): this component provides management service for a clus-

ter in your cloud

• Storage Controller (SC): this component provides block storage functionality

(EBS in AWS terms)

• Node Controller (NC): this component controls virtual machine instances

2.2 OpenStack

OpenStack Foundation advertises its cloud platform mainly through openness stating

that OpenStack is a result of global collaboration delivering the ubiquitous open source

cloud computing platform for both public and private clouds. The project aims to

provide solutions for all types of installations. It tries to be simple to implement,

yet massively scalable, and feature rich. The software stack consists of a series of

interrelated projects delivering various components for a cloud infrastructure solution.

Rackspace Housing and NASA jointly launched this project in July 2010 and re-

leased the source code under Apache license. NASA’s gave part of the early code from

its Nebula and Rackspace from its Cloud Files platforms. As of now more than 150

companies have joined the project (5). This broad industry support indicates that

OpenStack is likely to be around for years to come.

OpenStack software is released twice per year. Mobile Cloud Lab’s OpenStack

deployment was set up using latest stable release at that time - 12.2 named Folsom.

This release contained the following main components:

4

2.2 OpenStack

• OpenStack Compute (Nova): is the core of the stack allowing to manage large

networks of virtual machines. It makes compute resources accessible via native

and Amazon EC2 APIs as well as a web interface. The Compute architecture is

designed to scale horizontally on standard hardware. It can work with common

virtualization technologies, on bare metal and with high-performance computing

configurations. KVM and XenServer are usual choices.

• Object Storage (Swift): is a massively scalable redundant storage system. It

allows objects and files to be written to multiple disk drives spread throughout

the data center, takes care of automatic data replication and integrity checks.

Inexpensive commodity hard drives can be used. Swift is commonly used as a

back-end for OpenStack image service Glance.

• Block Storage (Cinder): provides persistent block level storage devices for use

with OpenStack compute instances. OpenStack allows cloud user to create, at-

tach, and detach block devices to the servers, i.e. manage their own storage needs.

Besides using simple Linux Logical Volume Management it has support for var-

ious storage platforms including Ceph, NetApp, Nexenta, SolidFire and Zadara.

It is possible to create snapshots of existing block storage volumes allowing an

easy way to back ups.

• Networking (Quantum): OpenStack Networking is a pluggable, scalable and API-

driven solution for managing networks and IP addresses. It allows to virtualize

network stack.

• Dashboard (Horizon): The OpenStack dashboard is a web based administrative

interface for cloud resources management.. Its design allows to easily plug in and

expose third party products and services like billing, monitoring and management

tools.

• Identity (Keystone): OpenStack Identity provides the cloud with central user

and access management. It acts as a common authentication system across the

cloud operating system and also allows integration with LDAP. Multiple forms of

authentication are supported, including standard username and password, tokens,

and AWS-style logins.

5

2.3 Platform Comparison

• Image Service (Glance): stores virtual machine images and snapshots. It can

copy or snapshot a server image and immediately store it away. These can be

used as a template for getting new server sup and running in very short time

frame. Typical work flow consists of configuring one server, creating a snapshots

of it and using that snapshot for provisioning multiple servers. It can also be

used to store and catalog an unlimited number of backups. Glance can use Swift

as back-end.

2.3 Platform Comparison

Both Eucalyptus and OpenStack are open source and offer approximately the same

functionality. Eucalyptus is a bit older and won market share due to that. OpenStack

started later but has passed Eucalyptus in public interest. The key difference is that

Eucalyptus offers a fixed set of components while OpenStack allows to choose from

several options. OpenStack is likely to scale better to different needs due to that. It is

hard to say which IaasS platform is better. A more appropriate question is which IaaS

framework is right for particular application (6).

Mobile Cloud Lab is interested in fast launch time as they need a cloud for cloud

computing course lab sessions. There has been research on virtual machine provisioning

speed (7) (6) but there is no clear winner. Both platforms are under development and

a lot of depends on configuration.

6

3

Requirements, Constraints, and

Design Principles

Tartu University Mobile Cloud Lab needs a small cloud for both teaching and scientific

research. They had been using Eucalyptus technology for that purpose before and thus

it was quite well defined what was expected of the setup. The new OpenStack setup

had to perform better than the existing Eucalyptus one. Existing cloud shortcomings

were clear. It could not stand the load that students put on it during lab sessions. It

was not known if the cause was in hardware, Eucalyptus software or in the way it was

set up but the aim was to address these issues in new OpenStack installation. This

cloud platform is more flexible in configuration choices, allows to replace components

as the needs change and thus scales better from very small to very large cloud. We

will try to define requirements of this cloud installation in both usability and hardware

resources terms, list available hardware resources, set design principles for such a small

cloud setup, and based on above describe appropriate technology choices for the actual

OpenStack installation.

3.1 Cloud Hardware

Eucalyptus was running on five personal computer with each of them having:

• 4 core CPU

• 8GB of RAM

7

3.2 Mobile Cloud Lab Requirements

• single 500GB hard disk

• single gigabit NIC

One of the PCs was acting as a cloud controller. The other four were running virtual

machine instances. For OpenStack we had two HP ProLiant DL180 G6 servers with

each of them having:

• 8 core CPU

• 32GB of RAM

• 2x2TB hard disks

• two gigabit NICs

Those ProLiant servers are more powerful but there are only two of them. As of the

Eucalyptus cloud only four hosts was used for running virtual machines those cloud

installations would still be comparable in the total number of CPUs and total amount

of memory.

3.2 Mobile Cloud Lab Requirements

There would be two typical use cases on cloud installations. Teaching involves two

practice sessions as part of two courses Basics of Grid and Cloud Computing and

Basics of Cloud Computing where students access cloud services directly. During the

two lab session students are to launch new virtual machine, log in over ssh, install Java

software, make a snapshot of the running virtual machine, and calculate PI with a

Java program. Though OpenStack has a web based graphical user interface (Horizon)

students would be using EC2 API either from command line or with browser plugi-ns

(hybridfox and elasticfox) for the most of the tasks. As part of the first lab session each

student gets its personal user account.

Those tasks above should not cause any severe load on any modern computer but

the key problem is that up to 28 students would be doing this in parallel. This had

caused the existing Eucalyptus setup crash during the previous years.

Thus clearly set requirements for the cloud installations were:

8

3.2 Mobile Cloud Lab Requirements

• withstanding the parallel launch of up to 28 virtual machines in acceptable time

frame

• not to crash during all those student operations

• be usable during lab sessions.

Scientific research requirements are different. Typical use case would be running highly

parallel computations using MapReduce programming model.

Of course, the cloud software would need to survive provisioning of huge amounts of

virtual machines as well as finish the calculations but the response time of the shell of

individual instances does not matter that much as nobody would be logging in to all of

them at the same time with ssh. Thus this use case did not add any extra requirements

to the list above.

In order to find possible hardware constraints on those use cases we need to de-

scribe those requirements in hardware terms. In general cloud platform virtualizes four

hardware resources:

• cpu time

• memory

• storage

• networking

Any process running on the cloud can be said to become slow if it needs more of those

resources than the cloud hardware can provide, i.e. it is waiting for cpu time, its

memory pages are being swapped to disk, total storage read/write operations are over

available storage bandwidth, or the same about read/write operations over network.

As we are interested in only those cases that cause hardware load we can say

that some activity is either cpu intensive, memory intensive, storage intensive (disk

reads/disk writes), or network intensive. (We can skip describing activity’s memory

intensity as we can forbid cloud software from over committing available memory, i.e.

launching excess virtual machines)

Virtual machine provisioning would mean getting the machine image from image

service Glance (disk reads), transferring it over network (network intensive), storing it

9

3.3 Likely Hardware Constraints

on local hard disk (disk writes), creating a copy of it on local hard disk (disk writes)

and launching the virtual machine (cpu time and disk writes)

Installing Java involves getting the installer (network, disk writes) and deploying it

(cpu and disk writes).

Creating VM snapshot would mean copying it to OpenStack Image Service (Glance)

that is both network and I/O intensive on both sides.

Running PI calculations in Java is cpu intensive.

Accessing virtual machine over SSH does not put much load on hardware. What

we are interested in is the user experience, i.e. shell responsiveness.

User access over ec2 api and the OpenStack Dashboard can put some load on the

cloud components as well if users are constantly trying to check if their virtual machines

have become available. Under normal conditions this is unlikely to cause problems but

in case of existing load it can make the situation worse.

MapReduce programming model is known for moving a lot of data between the

hosts (network intensive) and storing it on local storage (storage intensive). The aim

of this model is to run computations in parallel, thus it is cpu intensive as well.

3.3 Likely Hardware Constraints

It was not known to author if given hardware can stand the load that the students are

likely to put on it. Mobile Cloud Lab had experienced problems with Eucalyptus on

comparable hardware on previous labs but it was not known if the cause was in over

committed hardware, Eucalyptus configuration or Eucalyptus software itself.

On software side it is known that both Eucalyptus and OpenStack have had prob-

lems with launching a huge number of virtual machine instances in parallel.(6)

Looking at the possible hardware limits it is clear that we can skip the possibility of

running out of memory. Those two ProLiant servers have a total of 64GB of memory.

Having 28 virtual machines with 2GBs of memory each leaves 4GBs for the operating

system and cloud software on both hosts.

CPU resources were an unlikely limit as well. In case of 28 virtual machines there

would be less than two instances per core. Running PI calculations would definitely

stress the cpus but it is unlikely that all students would run this task in parallel.

10

3.4 Deployment Design and Implementation Principles

Launching virtual machines would also stress the cpus but booting an operating system

is something that a modern Xeon cpu can handle with ease.

More likely limits are cloud internal networking and storage.

Launching 28 virtual machines in parallel on two servers would mean copying of the

image at least 14 times over a network unless we run Glance on both hosts or cache

the images on compute nodes. Both Eucalyptus and OpenStack cache the image if

configured properly. Saving snapshots into Glance would also stress the network but

this is unlikely to happen in parallel.

Storage bandwidth is the most likely limiting factor on this two server set up. There

would be 14 instances per server and with two hard disks this would mean creating 7

virtual machine image files on both of them during launch at best case.

3.4 Deployment Design and Implementation Principles

Deployment of OpenStack is known to be difficult due to the number of different com-

ponents it may contain and for the number of different configuration possibilities these

may have. Mobile Compute Lab does not have human resources to maintain a highly

complex cloud installation. This means that setup has to be as simple as possible with-

out losing key functionality. Some optional features of the cloud are not needed. Other

areas where we can make compromises include security and high availability.

For the same maintenance reasons this deployment will stick to established and well

known technologies if possible. This should ease the learning curve for anyone charged

with maintenance work on the cloud software.

This cloud would not be used for running business nor time critical software. There

is no serious impact if the the whole cloud is taken down for a day or two for mainte-

nance. Scientific calculations can be restarted and virtual machines and images could

be recreated in case of disaster. Detailed and repeatable instructions (in appendix A)

allow to set up the cloud from scratch in acceptable time frame. Still, protecting data

against simple hardware failure is advisable. Thus, cloud controller data, image files

and snapshots, and persistent storage volumes should be on raid1 if possible.

This cloud will not contain confidential information. Of course, only authorized

users should have access to the cloud but there is no need to create complex configu-

11

3.4 Deployment Design and Implementation Principles

ration in order to restrict users from seeing each others virtual machines. This cloud

will be accessible from campus network only.

There are several tools for automating OpenStack setup but automation is not a

goal by itself as there are a few hosts only.

Limited hardware resources will also have an impact on configuration options avail-

able. We must set up the cloud on two servers first but must also take into consideration

the possibility that we might need to add the five hosts under Eucalyptus to the Open-

Stack installation later on. Low numbers of hosts means that it is not practical to

dedicate whole servers to single specific cloud component being it a cloud controller,

image service or persistent storage provider. The lack of high performance file server

means that we must distribute I/O operations as evenly as possible between all cloud

components. Single NIC gigabit network sets a cap on available network bandwidth.

This itself indicates that we can’t have dedicated storage servers and must limit net-

work bandwidth if possible.There is no need to create complex configuration in order

to restrict users from seeing each others virtual machines. This cloud will be accessible

from campus network only.

There are several tools for automating OpenStack setup but automation is not a

goal by itself as there are a few hosts only.

12

4

Deployment Architecture and

Implementation

4.1 Technology Choices

There is no universal answer to the questions how to set up a OpenStack. Large

production clouds have servers or clusters of servers along with load balancers dedicated

to different OpenStack components. A small private cloud does not have those hardware

resources nor the need for them as there are less virtual machines and thus less load

on storage, on networking as well as on cloud software itself. Its owners are likely to

prefer simpler solutions and OpenStack can offer these to them. In fact, one key factor

in the growing popularity of this cloud platform is the availability of choice.

In order to create a balanced set up of OpenStack components one must understand

how OpenStack and clouds in general use storage and what impact can this usage have

on network resources.

4.1.1 Storage

OpenStack as well as Eucalyptus use three types of storage: ephemeral, object, and

blocks storage. The latter is also known as volume storage.

Ephemeral storage is allocated when a virtual machine is created. It persists until

VM is terminated. VM root resides on it. Besides the root file system it is possible to

allocate additional ephemeral block devices to the VM. OpenStack Compute takes care

of ephemeral storage. It creates ephemeral storage as files on local server file system

13

4.1 Technology Choices

under /var/lib/nova/instances directory. This directory should be shared among com-

pute nodes in order to support VM migration. Those files could reside on traditional

NFS share or on a distributed file systems like GlusterFS or MooseFS.

As opposed to ephemeral storage object and block storages are persistent. The

latter means that they won’t be deleted on virtual machine termination.

Object storage is used to access binary objects. Possible operations are upload and

download. In place editing is not possible. It is typically used for storing backups and

sharing huge media files. OpenStack can store virtual machine images and snapshots in

object storage as an alternative to the local file system. Swift is the component taking

care of object storage in OpenStack. Third party open source solutions are Ceph’s

RADOS (8) and Gluster.(9) Both offer distributed object storage with automatic data

replication and failover.

Block storage volumes are independent of virtual machine life cycle. Users can

create and attach them as unformatted block devices to existing virtual machines.

Block storage volumes can be moved between virtual machines but can be attached to

only one at a time. OpenStack component Cinder takes care of block storage. It has

drivers for several back-ends including Linux LVM and Ceph’s RADOS Block Device

(RBD) (10).

Ephemeral storage usually resides on local disk and is limited by its bandwidth. It

is common to provide faster I/O with block storage by putting it on dedicated storage

arrays or on Ceph’s RDB cluster.

4.1.2 Networking

Networking decision are an integral part of OpenStack setup. From the guest point of

view virtual machines need to talk each other, access remote servers, and be accessible

from remote servers. From the cloud perspective OpenStack has to logically separate

tenants from each other, allow virtual machines to access remote block storage, copy

virtual machine images to compute nodes, allow storage nodes to replicate data over

network, etc. There can be a lot of traffic.

OpenStack uses four logical networks: management network for inter-server com-

munication, public network for providing public access to API endpoints, VM network

for inter-VM communication, floating IP network for providing public IP accessibility

to cloud instances. At best these all should be on separate physical networks in order

14

4.2 A Cloud on Two Servers

to avoid congestion. VM and management networks should be separated because of

security reasons.

Folsom release offers two networking components. Nova-network is an older and

more simpler option and is part of the OpenStack Compute. Quantum is a new and

more feature rich virtual network service. Among other things it allows tenants to

define their own private networks. Mobile Cloud Lab needs were not complex and thus

we don’t cover Quantum features in this work.

In its simplest form nova-network running on one of the hosts acts as gateway for

all virtual machines. It provides private Fixed IP addresses using dnsmasq (11) to all

instances and uses iptables and NAT to connect the VMs to public Floating IP number.

Usually the communication is over a separate physical network connecting network host

and compute hosts. Both nova-network and all virtual machines use Linux bridging to

connect to it.

Though OpenStack recommends at least two separate physical networks between

cloud components it is possible to deal with only one.

4.2 A Cloud on Two Servers

Setting up a cloud on two servers is easier than on a cluster of servers. There are

still many choices. As stated previously the principles of using standard solutions and

avoiding excess components are to be used in current cloud setup. For that reason it

is advisable to follow OpenStack official install and deployment manuals (12) unless

Mobile Cloud Lab needs dictate otherwise.

Large production clouds are likely to have dedicated servers for different cloud

components. Mobile Cloud Lab has two servers only with the possibility that five hosts

can be added later on. It is clear that those two servers must distribute all the needed

services between themselves initially.

For a minimum production deployment OpenStack recommends to have dedicated

cloud controller (running everything but the virtual machines) on a quad core server

with 12GBs of memory and compute nodes (running virtual machines) with 32GBs of

memory. Having only two servers Mobile Cloud Lab can’t afford to have a dedicated

cloud controller. Thus the simplest choice would be to make one of them run all the

services including virtual machines and the other virtual machines only. Both servers

15

4.2 A Cloud on Two Servers

have two network interfaces but cloud controller needs one for Internet connectivity.

This leaves us with one physical network for both management and VM network. Two

services Cinder and nova-network are likely to cause a lot of traffic if we should expand

the cloud. It might be wise to but them on separate hosts.

Before we can decide how to distribute different cloud components between avail-

able hardware we need to have a clear understanding what components we need at

all. Identity Service (Keystone), Image Service (Glance), and Compute (Nova) are key

components that we can’t do without. We need Keystone for authentication, Glance for

storing virtual machine images and snapshots and Nova for running virtual machines

themselves. It is possible to manage virtual machines with API calls only (using Open-

Stack own API or EC2 API) form command line or browser plug in but OpenStack’s

native web interface is more convenient for that purpose, thus we need Dashboard

(Horizon).

Concerning Object Storage (Swift) we might want to use it as a back end for Glance.

Otherwise we don’t need it as Mobile Cloud Lab has no plan to directly offer Amazon

S3 like service.

Students won’t need Block Storage (Cinder) in their labs but persistent storage

could be useful for cloud users interested in research as it offers a virtual machine

independent storage for data, shell scripts, etc. As it is quite easy to set up in basic

form there is no reason not to do it.

OpenStack Networking (Quantum) is a new optional component. Mobile Cloud

Lab does not need the advanced virtual networking capabilities it provides and thus it

is simpler to use nova-network that is part of Compute.

In the following paragraphs we will describe the choices made in the order in which

OpenStack components are typically set up.

OpenStack documentation favors two Linux distributions Ubuntu and Red Hat

(along with CentOS and Fedora). They provide deployment guides for both. For a

production cloud a release with long term support should be chosen. These are likely

to contain OpenStack packages already but given the rapid development of OpenStack

its latest stable release should be taken from repositories provided by OpenStack com-

munity.

Mobile Cloud Lab opted to Ubuntu taking their latest long term support release

12.04 LTS. As both servers contain two disk we decided to use RAID1 for basic fault

16

4.2 A Cloud on Two Servers

tolerance.

OpenStack offers several options for database back end and messaging service. If

there is no cause to do otherwise it is advisable to stick to MySQL and RabbitMQ as

these are used in official installation manuals. For the same reason it was decided to

use Kernel-base Virtual Machine (KVM) for hypervisor.

For simplicity reasons we set Keystone up to use MySQL back-end for user au-

thentication and information storing. Theoretical option would have been connecting

Keystone to University LDAP server but this would have added unneeded complexity.

Glance needs a back-end for its images and snapshots. We have two options: either

to stores those objects as files on local file system under /var/lib/glance/images/ or

use Swift as back-end. We could need Swift for three purposes: for generic object

storage (we don’t plant to offer this service), for high availability (we are not interested

in it), or for distributing load between several servers, i.e. for performance reasons.

On current hardware and likely cloud usage pattern there would be no performance

gain on image download as all students use the same virtual machine image initially.

OpenStack Compute caches it on local file system and thus it is downloaded only once.

On saving the snapshot there would be a performance penalty as Swift would replicate

it automatically to second server. We are limited in both network and I/O bandwidth

and causing additional network traffic and disk writes is not a good idea. It makes

sense to protect Glance image store from hard disk failure, i.e. use raid1.

Virtual machine instance image type can have a large effect on both instance launch

time as well as run time I/O performance. In general the cloud administrator has

to choose between fast launch time and better run time performance. Several Nova

options allow to tune this (13) and the choice should depend on hardware. The VM

image in Glance should preferably be in qcow2 format. It support compression and

thus makes copying to the compute node light on network. By default Nova converts

the downloaded file to raw format and extends it to requested size. There is one

time performance penalty as Nova caches both the original raw image as well as the

extended version of it. After that Nova creates a qcow2 image of it for the actual

virtual machine. Qcow2 format is the default as it allows to provision VM very fast

because only changes from the original image get written to this instance image. Using

raw images for instance disks might provide better concurrency as all VMs would be

17

4.2 A Cloud on Two Servers

operating on their own copy. Still the default Qcow2 format is preferable to Mobile

Cloud Lab needs as it allows to reduce I/O operations on VM launch.

There is no other option but to store ephemeral storage on server local disk. Using

shared storage would allow virtual machine migration but would likely put a double I/O

load on the disks in our case. With NFS the server exporting NFS share would have

double load with the other server being idle. NFS could be a solution with dedicated

storage server with large disk array.

Another commonly alternative to NFS for ephemeral storage is GlusterFS. It pro-

vides fault tolerance as all locally written VM instance files would be automatically

replicated to other servers in the cluster. This works well with large number of hosts

as only 2 or 3 replicas are needed. With two servers this would double the I/O load as

all changes would need to be written on both servers. Besides disk I/O this would also

put a load on networking. With local storage with two disks there are three options:

either to use raid1, raid0 or none. From performance perspective raid1 would speed up

reads, raid0 both reads and writes. We start with raid1. In case of poor performance

we can switch to raid0.

There are several options for volume storage back-end. Most of these are related

to third party commercial storage solutions. OpenStack’s own component Cinder, for-

merly known as nove-volumes - is an iSCSI solution that uses Logical Volume Manager

(LVM) for Linux. Besides Cinder other interesting open source options are GlusterFS

and Ceph RADOS block device which both scale out, offer redundancy and high avail-

ability. For a two server cloud these are clearly an overkill to implement. That leaves

us Cinder. Due to limited hardware we can offer only data persistence and not higher

speed. We will set Cinder up on cloud controller and put the LVM volumes on raid1

as we did with Glance.

There are actually two choices with nova-network. You are to use VLAN Network

mode if you need to separate cloud projects from each other. Otherwise you can stick

to Flat DHCP Network Manager which runs dhcp server (dnsmasq) and gives virtual

machines their IP numbers from predefined subnet. Mobile Cloud Lab used the latter

option.

18

4.3 Implementation

4.3 Implementation

This chapter describes what was actually done to set up the cloud on those two servers.

This deployment was largely based on OpenStack Install and Deploy Manual Ubuntu

for the Folsom release. OpenStack setup is pretty straightforward if everything is set up

exactly the same way as in the deployment manual. Problems arise if one has different

hardware or needs to configure something differently. We will list only major choices,

configuration differences and issues that came up during setup. Detailed and repeatable

instructions answering the question how are part of Appendix A.

We chose Ubuntu 12.04 LTS server edition for the operating system. Deployment

was straightforward server base install plus ssh daemon. We partitioned two 2TB disks

manually into 128GB raid1 set for operating system and 1TB raid1 set for OpenStack.

The latter was for ephemeral storage and for Glance image store. Separate raid set

allowed us to switch to raid0 in case of performance problems without repartitioning

the drives. Third raid set (raid1) was on controller only and for 500GB Cinder persistent

storage LVM physical volume. Part of the drives was left unpartitioned for flexibility.

After reboot we updated installed software and added Ubuntu Cloud Archive repos-

itory in order to get OpenStack Folsom release packages.

Following the guide we deployed NTP, MySQL, and RabbitMQ.

Deployment guide provides a shell script for populating Keystone DB schema. The

script needed a bit of tuning and unfortunately is not safe to rerun several times. It

took some time to figure out why services did not start to work as expected. It is

not easy to adjust already set values. Manually updating a few MySQL table values

solved part of the problem but in the end recreating Keystone database in MySQL and

rerunning the script was the solution.

Next component was Glance. As said we did not deploy Swift and set Glance up

to use local file storage under /var/lib/glance.

As hinted before we created separate partitions for /var/lib/glance and /var/lib/nova.

We allocated 250GB for both and left the rest of the 1TB physical LVM volume vacant.

The cause was that we had no idea how much space would Glance and image instances

occupy.

Cinder is actually a code branch of nova-volume. It is possible to use either of

them with Folsom release. There is no functionality difference. Following the guide we

19

4.4 Software Defects

ended up using nova-volume. It has to be replaced with Cinder as nova-volume will be

deprecated in the next release.

Though most of the changes in OpenStack configuration involve passwords and IP

number changes it is a good idea to back up original files. This way it is easier to

understand what was changed in case of encountering problems. The configuration

samples in Folsom deployment guide were not all up to date. There were some depre-

cated values and some mistakes. Fortunately OpenStack log files stored in /var/log/

alerted us and allowed to sort these issues out with the help of documentation.

Major problem was with nova-networking. First, the network configuration sample

presented in deployment guide presumes that there exist separate physical networks for

cloud management and for inter-VM traffic. It is possible to join them into one physical

network but deployment guide does not hint if this is possible or how to do it. Sample

configuration with single physical network is in Appendix A. In case of networking

problems time invested in understanding Linux bridging and nova-networking is worth

it (14).

Second, nova-network was first set up on cloud controller. Later on there was need

to move it to the other node as Floating IP range got routed to its public interface.

Unfortunately nova-network did not start up on it properly and virtual machines did not

get their IP numbers. Exploring configuration, logs, and source code lead to Keystone

database tables content in the end. IP network was connected to particular nova-

network instance. OpenStack documentation is of little help if something is not done

by the book.

The last OpenStack component to deploy was Horizon (Dashboard). Besides con-

figuring virtual host in Apache the only change done was adding Mobile Cloud Lab to

the welcome text.

In addition to OpenStack components we also deployed monitoring software Munin.

4.4 Software Defects

OpenStack is still a new project and not everything is working as expected. We en-

countered at least three serious defects which we had to find a workaround.

Regular security upgrade that we installed introduced a fix to security vulnerability

adding quota to Fixed IPs. Existing project that did not have the quota set used the

20

4.4 Software Defects

default value of 10. As a result it was not possible to launch more than 10 virtual

machines per project. To make things worse it was not possible to adjust the quota in

Dashboard nor with the command line tools. This bug (15) was addressed quickly but

still we had to back-port the fix to get the cloud usable.

Other two issues came up during Cloud Computing lab sessions. First, one private

snapshot some how denied the listing of Glance images and thus launching new virtual

machines. Temporary work around was to make this snapshot public.

During heavy load nova-network failed to remove iptables chain for one virtual

machine it had terminated. This locked up related Fixed IP number in such an way

that though OpenStack could allocate it to a new virtual machine and it was possible

to access it with this IP number it denied access to this virtual machine with any

attached Floating IP. Deleting the chain resolved the issue. There are reports that

both Eucalyptus and OpenStack are affected by this issue as both use iptables and

bridging for attaching Floating IP numbers to VM (6).

21

5

Performance Tests and Results

The main goal of this work was to deliver a working cloud platform for the cloud

computing course labs. The final tests were the labs sessions of course, but before

taking the cloud into use we had to verify that the hardware and software is up to the

task. Of course we had launched a few virtual machines manually to see if the cloud

software was working at all and had tested the functionality that was supposed to work.

But a more systematic approach was needed.

Manual functionality tests passed, i.e. it was possible to do everything that the

students were supposed to do in the labs.

5.1 Synthetic Performance Tests

In order to assess the impact a full lab of students would have on the hardware we

handpicked two tasks that were supposed to stress the hardware most. These were

launching virtual machines and deploying Java software.

5.1.1 Virtual Machine Launch Time

First we measured the launch of 28 virtual machines in parallel. About 25 students

were suppose to attend the lab. 28 is a bit more but still less than 2 virtual cpus per

actual processor core. We used Ubuntu 12.4 server image and launched the virtual

machines with 1 cpu and 2GB of memory. Maximum memory consumption would have

been 28GB leaving 4GB to the operating system and cloud software. Thus swapping

was not expected.

22

5.2 Actual Performance in Labs

Measuring launch time was straightforward. We knew at what time we had started

the process. We can say that Ubuntu server is running when we can log in with ssh.

Ubuntu logs all the boot activity including launch of SSH daemon to /var/log/boot.log.

All we had to do is to log in with ssh and take the timestamp of this file. The time

difference gives us the needed launch time.

Launch of single VM took less than two minutes. Parallel tests with 28 VMs gave us

results between below 7 minutes. The differences between boot.log timestamps showed

us that first VMs game up in about 2 minutes before the last ones. These numbers are

acceptable from user experience perspective.

As part of virtual machine launch Nova had created and grown the qcow2 image

files to 203MB. This makes about 3GB of disk writes per server.

5.1.2 Java Install Time

Next we measured Java JRE install time. In order to exclude software download time

we created a snapshot of a virtual machine where we had downloaded JRE related

packages but not installed yet and used it to launch new virtual machines. On a single

host JRE install took little over 3 minutes.

We used parallel-ssh to run the deployment in parallel on all 28 virtual machines

taking the timestamp before and after the execution of the program. Of course we had

to verify that Java had actually been deployed.

Several tests run returned results around 24 minutes. Monitoring tool top reported

varying load peaking at more than a hundred. Top revealed that cpu time was spent

on iowait. JRE install grew virtual machine image files from around 300 to 670 MB.

This makes about 6 GB per server. It is not much in size but it consists of random

writes mainly. It was clear that underlying storage could not handle such disk activity

with ease.

5.2 Actual Performance in Labs

15 to 20 students attended lab sessions at a time. In general this cloud installation

was usable. Mobile Cloud Lab team member confirmed that this new cloud platform

was more stable than Eucalyptus one had been during the previous two year. Still

there were issues. Though there were less students than there were virtual machines

23

5.3 Likely Amendments to Configuration

in the synthetic test they did not start their VMs exactly at the same time. Some still

launching their VMs while others were installing Java already. Server load was less in

numbers but for a prolonged time. Munin charts later on revealed that ephemeral stor-

age average I/O write time had been 5 seconds at its maximum. With cloud controller

having high I/O writes already 20 Dashboard sessions automatically polling server list

twice a minute can put an additional load on it. Dashboard became unresponsive in the

end. Being under time pressure we started Apache to get the Dashboard working again.

Unfortunately we were not able to make sure the root cause. My personal hypothesis

is that all Apache thread were tied up waiting response from Keystone or some other

OpenStack component.

5.3 Likely Amendments to Configuration

Test results confirmed what was suspected from the beginning. Storage bandwidth is

the most likely limiting factor on this two server cloud setup. Hardware can not put

up with the load that students cause when they launch that many virtual machines at

the same time. Too many instances are starting up per each hard disk.

We had set up Ephemeral storage on software raid1. Replace mirroring with raid0

should double possible I/O bandwidth. This is the only option available with current

hardware.

If two disks in raid0 do not provide enough bandwidth adding a third and forth one

could help. An other and likely better hardware upgrading path is to add a solid state

drive (SSD) and put ephemeral storage on it . These drives are small but expensive yet

provide very good random write performance. Those 14 virtual machines per server

used up only 10GB of disk space.

We had allocated 250GB to both Glance and Nova for ephemeral storage. To our

surprise Glance had used up 62 per cent of it by the end of lab sessions. Snapshots

created in lab sessions make the most of it. In case of Nova image cache is filling the

disk. Those are these snapshots that every student created and that they used to launch

new virtual machines. On one server cache has grown to 213GB. This is a known issue

that Nova allows image cache to grow until it fills the disk. This means that we need

to enlarge these file systems or clean the cache regularly.

24

5.4 Extending Cloud to 10 Servers and up

5.4 Extending Cloud to 10 Servers and up

With one or two or three servers, all of them are likely to be used for running virtual

machines. At some point as the number goes up one server should be dedicated to

cloud controller functions. Of course larger cloud puts more load on the controller but

as we saw from our tests running virtual machines on the controller host can reduce the

responsiveness of cloud software. Load issues with Dashboard would not have happened

if virtual machines had not used up all the available I/O bandwidth.

Likely services to move out of controller node as the cloud grows are Swift or Cindel.

The latter can live on dedicated storage array until it runs out of bandwidth or space.

Logical step forward is to replace it with Ceph on three servers. By that time Swift

should run on multiple nodes as well.

Ephemeral storage can be local or shared. The latter allows to migrate instances

between servers. In a cloud like the one of Mobile Cloud Lab with heavy peak I/O

on ephemeral storage it is hard to see any benefits in having a shared storage on a

dedicated storage array. It is hard to match the total I/O of all compute node disks.

A better solution seems to be speeding up local I/O with raid0 or raid10 and use them

as building blocks for shared storage with a distributed file system like GlusterFS or

MooseFS.

25

6

Conclusions

The goal of this work was to provide Mobile Cloud Lab with working installation of

OpenStack. They had two servers dedicated to this project and wanted to use this

small cloud in the course Basics of Cloud Computing. We achieved the goal as the new

installation proved to be more stable than their former Eucalyptus platform.

We successfully predicted that this setup could have problems with storage I/O.

During lab sessions students are to start in parallel almost the maximum number of

virtual machines the cloud could run. This puts enormous load on server local storage

during VM provisioning. Tests and user experience during lab sessions confirmed this.

As a result we advised to double local storage bandwidth by switching the file system

under ephemeral storage from mirroring to raid0.

Current work showed that OpenStack is capable platform and it is possible to

create a production setup with rather limited hardware resources. It also became

clear that in this kind of setup the cloud owner should count the maximum number of

virtual machines that are likely to be launched at the same time when planning a new

installation. Storage bandwidth must match this load.

Concerning future work it might be interesting to research alternative options for

speeding up ephemeral storage in the cloud. Those 5 PCs that were part of Eucalyptus

installation still need adding to OpenStack. This would allow to test how putting

ephemeral storage onto distributed file systems like GlusterFS and MoosFS (16) would

impact virtual machine provisioning times.

26

7

Sisukokkuvõte

Teadusarvutusteks mõeldud vähese jõudlusega pilvedel loomine Open-

Stacki näitel

OpenStack on hetkel kõige kiiremin arenev vabal tarkvaral põhinev pilveplatvorm

maailmas. Juba nimi viitab sellele, et tegemist ei ole ühe programmiga. Tegemist

on pigem vabal tarkvaral põhinevate projektide kogumiga, mis koostöös võimaldavad

pakkuda riistvara infrastrukuuri ühtsa teenusena. OpenStacki komponentide arv ning

valikute hulk teeb selle seadistamise üsna tülikaks. Juhised pakuvad küll välja lihtsaid

demolahendusi ning kirjeldavad kõikvõimalikke konfiguratsioonivalikuid, kuid kõik see

on pigem suunatud suure pilve omanikule, kel on aega ja raha leidmaks üles just neile

sobiv konfiguratsioon. Käesolev töö püüab täita vahepealse tühja ala pakkudes välja

väikese pilve jaoks sobiva näidislahenduse ning kirjeldades ning põhjendades ka pilve

ülesse seadmise käigus tehtavaid valikuid.

Antud töö kasvas välja Tartu Ülikooli Mobiilipilve labori vajadusest uue pilve järele.

Varasem Eucalyptuse platvormil olnud lahendus oli liiga aeglane ega hiilanud ka stabi-

ilsusega. Valik langes OpenStackile, sest selle taga on hetkel kõige rohkem arendajaid

ning ka suurfirmade tugi.

Töö peamine eesmärk oli saada püsti uus OpenStacki tarkvaral jooksev pilv, mis

vastaks Mobiilipilve labori vajadustele. Selle jaoks oli ette nähtud kaks serverit ning

pilve plaaniti kasutada nii õppetöös kui ka teadusarvutusteks. Edu korral oleks tulnud

sellele pilvele lisada ka Eucalyptusest üle jäänud viis lauaarvutit, kuid sellega polnud

27

kuigi kiire. Edu oleks seisnenud muidu selles, et antud pilve peal oleks saanud läbi

viia pilve aluste aine praktikumid. Töö teine eesmärk seisnes pisut suuremale pilvele

tasakaalus konfiguratsiooni välja pakkumises.

Pilve tööle saamine õnnestus õigel ajal ning praktikumid sai läbi viia OpenStacki

peal. Uus pilv osutus palju staabiilsemaks, kuid esines kas probleeme. Antud pilve

eripära on see, et praktikumide käigus tõmmatakse korraga käima väga palju virtu-

aalmasinaid. Nii nagu oli ennustatud tekitasid need serveri kõvaketastele väga suure

koormuse. Virtuaalmasinad läksid vähehaaval küll käima, kuid pilve kasuajaliides Hori-

zon oli väga aeglane. Lahendusena pakub autor välja serverite ketaste ribalaiuse ka-

hekordistamise. Hetkel asuvad virtuaalmasinate failid raid1 peal, kuid need saab tõsta

ümber raid0 peale.

Antud töö näitas, et ka piiratud resurssidega on võimalik kokku panna täiesti töötav

pilv. Selgus ka, et selliste pilvede puhul, kus korraga ajatakse käima väga palju virtu-

aalmasinaid, tuleks tõsiselt arvestada kiiremate andmekandjate vajadusega.

28

Bibliography

[1] Openstack foundation (May 2013).

URL http://www.openstack.org/ 1

[2] Eucalyptus (May 2013).

URL http://http://www.eucalyptus.com/ 1

[3] Mobile cloud lab (May 2013).

URL http://mc.cs.ut.ee/ 1

[4] S. Srirama, O. Batrashev, E. Vainikko, Scicloud: Scien-

tific computing on the cloud, in: CCGRID ’10 Proceed-

ings of the 2010 10th IEEE/ACM International Con-

ference on Cluster, Cloud and Grid Computing, IEEE

Computer Society Washington, DC, USA 2010, 2010. 3

[5] Companies supporting the openstack foundation (May

2013).

URL http://www.openstack.org/foundation/companies/ 4

[6] G. von Laszewski, J. Diaz, F. Wang, G. Fox, Compari-

son of multiple cloud frameworks, in: R. Chang (Ed.),

IEEE CLOUD, IEEE, 2012, pp. 734–741. 6, 10, 21

[7] D. Steinmetz, B. W. Perrault, R. Nordeen, J. Wilson,

X. Wang, Cloud computing performance benchmarking

and virtual machine launch time, in: SIGITE Confer-

ence, 2012, pp. 89–90. 6

[8] Rados (May 2013).

URL http://ceph.com/ceph-storage/object-storage/ 14

[9] Glusterfs (May 2013).

URL http://www.gluster.org/ 14

[10] Rdb (May 2013).

URL http://ceph.com/ceph-storage/block-storage/ 14

[11] Dnsmasq (May 2013).

URL http://www.thekelleys.org.uk/dnsmasq/doc.html 15

[12] Openstack installation guide for ubuntu 12.04 (lts)

(May 2013).

URL http://docs.openstack.org/grizzly/

openstack-compute/install/apt/content/ 15

[13] Openstack libvirt images (May 2013).

URL http://www.pixelbeat.org/docs/openstack_libvirt_

images/ 17

[14] Openstack networking tutorial: Single-host flatdhcp-

manage (May 2013).

URL http://www.mirantis.com/blog/

openstack-networking-single-host-flatdhcpmanager/]

20

[15] Bug: Fixed ips quota can break upgrades (May 2013).

URL https://bugs.launchpad.net/nova/+bug/1161190 21

[16] Moosefs (May 2013).

URL http://http://www.moosefs.org/ 26

29

http://www.openstack.org/
http://www.openstack.org/
http://http://www.eucalyptus.com/
http://http://www.eucalyptus.com/
http://mc.cs.ut.ee/
http://mc.cs.ut.ee/
http://www.openstack.org/foundation/companies/
http://www.openstack.org/foundation/companies/
http://ceph.com/ceph-storage/object-storage/
http://ceph.com/ceph-storage/object-storage/
http://www.gluster.org/
http://www.gluster.org/
http://ceph.com/ceph-storage/block-storage/
http://ceph.com/ceph-storage/block-storage/
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://docs.openstack.org/grizzly/openstack-compute/install/apt/content/
http://docs.openstack.org/grizzly/openstack-compute/install/apt/content/
http://docs.openstack.org/grizzly/openstack-compute/install/apt/content/
http://www.pixelbeat.org/docs/openstack_libvirt_images/
http://www.pixelbeat.org/docs/openstack_libvirt_images/
http://www.pixelbeat.org/docs/openstack_libvirt_images/
http://www.mirantis.com/blog/openstack-networking-single-host-flatdhcpmanager/]
http://www.mirantis.com/blog/openstack-networking-single-host-flatdhcpmanager/]
http://www.mirantis.com/blog/openstack-networking-single-host-flatdhcpmanager/]
http://www.mirantis.com/blog/openstack-networking-single-host-flatdhcpmanager/]
https://bugs.launchpad.net/nova/+bug/1161190
https://bugs.launchpad.net/nova/+bug/1161190
http://http://www.moosefs.org/
http://http://www.moosefs.org/

Appendix A

Cloud Controller Installation

Notes

UBUNTU INSTALL

{

ubuntu 12.04.1 server base install + sshd

manual partition setup on 1 of 2 hard disks

{ partion table (640GB of 2TB allocated):

(parted) p

Model: HP LOGICAL VOLUME (scsi)

Disk /dev/sda: 3906963632s

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Number Start End Size File system Name Flags

1 2048s 4095s 2048s bios_grub

2 4096s 503807s 499712s ext4

3 503808s 250503167s 249999360s lvm

4 250503168s 1250502655s 999999488s lvm

}

LVM and file systems:{

/boot 250MB ext4

VG stratus 128GB:

32GB LV swap

32GB LV /root ext4

VG nova-compute 512GB:

}

no automatic updates

server name: stratus.at.mt.ut.ee

simple firewall configuration:{

ufw allow sshd

ufw enable

}

update os packages {

aptitude update

aptitude full-upgrade

reboot

aptitude purge linux-image-3.2.0-29-generic

}

}

30

FOLSOM aka 2012.2 INSTALL

ntp, MySQL, RabbitMQ, Folsom repository install

{

install ntp{

apt-get install -y ntp

sed -i ’s/server ntp.ubuntu.com/server ntp.ubuntu.com\nserver 127.127.1.0\nfudge 127.127.1.0 stratum 10/g’ /etc/ntp.configuration

service ntp restart

}

install MySQL{

apt-get install python-mysqldb mysql-server

set mysql root password to "BFtPtJxr"

sed -i ’s/127.0.0.1/0.0.0.0/g’ /etc/mysql/my.cnf

service mysql restart

sercure mysql

/usr/bin/mysql_secure_installation

}

Installing RabbitMQ{

apt-get install rabbitmq-server

}

Add Folsom repository{

echo "deb http://ubuntu-cloud.archive.canonical.com/ubuntu precise-updates/folsom main" > /etc/apt/sources.list.d/folsom.list

apt-get install ubuntu-cloud-keyring

aptitude update

}

}

Keystone Setup

{

apt-get install keystone

delete sqlite database

rm /var/lib/keystone/keystone.db

mysql -u root -p

mysql> CREATE DATABASE keystone;

mysql> GRANT ALL ON keystone.* TO ’keystone’@’%’ IDENTIFIED BY ’****’;

mysql> GRANT ALL ON keystone.* TO ’keystone’@’localhost’ IDENTIFIED BY ’****’;

mysql> FLUSH PRIVILEGES;

/etc/keystone/keystone.conf{

replace "connection" line with

connection = mysql://keystone:****@193.40.36.71/keystone

set admin_token

admin_token = ***********

}

restart keystone

service keystone restart

#initialize the new keystone database, as root

keystone-manage db_sync

download https://github.com/openstack/keystone/blob/master/tools/sample_data.sh,

rename it to populate_keystone.sh, and edit to your needs

diff sample_data.sh.orig populate_keystone.sh {

50a51,59

> CONTROLLER_PUBLIC_ADDRESS="193.40.36.71"

> CONTROLLER_ADMIN_ADDRESS="193.40.36.71"

> CONTROLLER_INTERNAL_ADDRESS="193.40.36.71"

> ADMIN_PASSWORD="****"

> DEMO_PASSWORD="****"

> SERVICE_PASSWORD="****"

31

> ENABLE_SWIFT="yes"

> ENABLE_QUANTUM="yes"

> ENABLE_ENDPOINTS="yes"

80a90,95

> DEMO_PASSWORD=${DEMO_PASSWORD:-$ADMIN_PASSWORD}

> if [["$DEMO_PASSWORD" == "$ADMIN_PASSWORD"]]; then

> echo "The default demo password has been detected. Please consider"

> echo "setting an actual password in environment variable DEMO_PASSWORD"

> fi

>

113c128

< --pass="$ADMIN_PASSWORD" \

> --pass="$DEMO_PASSWORD" \

}

run script:

bash /root/populate_keystone.sh {

+-------------+---+

| Property | Value |

+-------------+---+

| adminurl | http://193.40.36.71:$(compute_port)s/v1.1/$(tenant_id)s |

| id | 1f4c64b23e784c12b65dc5ec6c8183c3 |

| internalurl | http://193.40.36.71:$(compute_port)s/v1.1/$(tenant_id)s |

| publicurl | http://193.40.36.71:$(compute_port)s/v1.1/$(tenant_id)s |

| region | RegionOne |

| service_id | a80d2474c9ca4c78bf0ebca5fc5edded |

+-------------+---+

+-------------+---+

| Property | Value |

+-------------+---+

| adminurl | http://193.40.36.71:8773/services/Admin |

| id | f541117e371c4f18ba8d07a17f083073 |

| internalurl | http://193.40.36.71:8773/services/Cloud |

| publicurl | http://193.40.36.71:8773/services/Cloud |

| region | RegionOne |

| service_id | 1586610f130740e4823ee61be8847865 |

+-------------+---+

+-------------+----------------------------------+

| Property | Value |

+-------------+----------------------------------+

| adminurl | http://193.40.36.71:9292/v1 |

| id | ac9406541ba040adbebbd33d7a4b809c |

| internalurl | http://193.40.36.71:9292/v1 |

| publicurl | http://193.40.36.71:9292/v1 |

| region | RegionOne |

| service_id | e50d224872a54a7d97b3079558531402 |

+-------------+----------------------------------+

+-------------+--+

| Property | Value |

+-------------+--+

| adminurl | http://193.40.36.71:$(admin_port)s/v2.0 |

| id | 581b011d3e694a4689fcb5ca9a7c99dd |

| internalurl | http://193.40.36.71:$(public_port)s/v2.0 |

| publicurl | http://193.40.36.71:$(public_port)s/v2.0 |

| region | RegionOne |

| service_id | 292cf744b7f94cef9ce55a54b31ef5d1 |

+-------------+--+

+-------------+---+

| Property | Value |

+-------------+---+

| adminurl | http://193.40.36.71:8776/v1/$(tenant_id)s |

| id | e990f69421e343ddbf56c39af30bee67 |

| internalurl | http://193.40.36.71:8776/v1/$(tenant_id)s |

| publicurl | http://193.40.36.71:8776/v1/$(tenant_id)s |

| region | RegionOne |

| service_id | 1eefaea0554044349bbb30c7d06126d3 |

+-------------+---+

+-------------+----------------------------------+

| Property | Value |

+-------------+----------------------------------+

32

| description | OpenStack Dashboard |

| id | 3159bcd43f0c43569d01de98204609ad |

| name | horizon |

| type | dashboard |

+-------------+----------------------------------+

+-------------+--+

| Property | Value |

+-------------+--+

| adminurl | http://193.40.36.71:8080/v1/AUTH_$(tenant_id)s |

| id | 3998f1009629445299bc220f105d15d9 |

| internalurl | http://193.40.36.71:8080/v1/AUTH_$(tenant_id)s |

| publicurl | http://193.40.36.71:8080/v1/AUTH_$(tenant_id)s |

| region | RegionOne |

| service_id | f6bef9ed93ee4cd0b5b5d1c3e9b3fb27 |

+-------------+--+

+-------------+----------------------------------+

| Property | Value |

+-------------+----------------------------------+

| adminurl | http://193.40.36.71:9696 |

| id | 8990ebc52d0d423ab391c52af3bf7245 |

| internalurl | http://193.40.36.71:9696 |

| publicurl | http://193.40.36.71:9696 |

| region | RegionOne |

| service_id | 0a9bcf6336cd41259883bcb352912460 |

+-------------+----------------------------------+

}

add .keystonerc for convenience

cat ~/.keystonerc

export OS_USERNAME=admin

export OS_PASSWORD=****

export OS_TENANT_NAME=demo

export OS_AUTH_URL=http://localhost:35357/v2.0

source the file

valdur@stratus:~$. .keystonerc

test for isntance with

valdur@stratus:~$ keystone token-get

valdur@stratus:~$ keystone user-list

}

Compute and Image services

{

apt-get install glance

rm /var/lib/glance/glance.sqlite

????

10/10/12: When using the Ubuntu Cloud Archive, you need to re-install the python-keystoneclient after installing the glance packages listed above,

otherwise you see an error.

????

mysql -u root -p {

mysql> CREATE DATABASE glance;

mysql> GRANT ALL ON glance.* TO ’glance’@’%’ IDENTIFIED BY ’*****’;

mysql> GRANT ALL ON glance.* TO ’glance’@’localhost’ IDENTIFIED BY ’****’;

mysql> FLUSH PRIVILEGES;

mysql> quit

}

some backups before configuration:{

cd /etc/glance/

root@stratus:/etc/glance# cp -p glance-api.conf glance-api.conf.orig

root@stratus:/etc/glance# cp -p glance-api-paste.ini glance-api-paste.ini.orig

root@stratus:/etc/glance# cp -p glance-registry.conf glance-registry.conf.orig

root@stratus:/etc/glance# cp -p glance-registry-paste.ini glance-registry-paste.ini.orig

}

diff glance-api.conf.orig glance-api.conf{

49c49

< sql_connection = sqlite:////var/lib/glance/glance.sqlite

33

> sql_connection = mysql://glance:****@193.40.36.71/glance

314,316c314,316

< admin_tenant_name = %SERVICE_TENANT_NAME%

< admin_user = %SERVICE_USER%

< admin_password = %SERVICE_PASSWORD%

> admin_tenant_name = service

> admin_user = glance

> admin_password = ****

320c320

< #config_file = glance-api-paste.ini

> config_file = /etc/glance/glance-api-paste.ini

326c326

< #flavor=

> flavor=keystone

}

diff glance-api-paste.ini.orig glance-api-paste.ini{

57a58,61

> # added by Valdur

> admin_tenant_name = service

> admin_user = glance

> admin_password = ****

}

service glance-api restart

diff glance-registry.conf.orig glance-registry.conf{

28c28

< sql_connection = sqlite:////var/lib/glance/glance.sqlite

> sql_connection = mysql://glance:****@193.40.36.71/glance

74,76c74,76

< admin_tenant_name = %SERVICE_TENANT_NAME%

< admin_user = %SERVICE_USER%

< admin_password = %SERVICE_PASSWORD%

> admin_tenant_name = service

> admin_user = glance

> admin_password = ****

80c80

< #config_file = glance-registry-paste.ini

> config_file = /etc/glance/glance-registry-paste.ini

86c86

< #flavor=

> flavor=keystone

}

not 100% sure of the following need

diff glance-registry-paste.ini.orig glance-registry-paste.ini{

19a20,22

> admin_tenant_name = service

> admin_user = glance

> admin_password = ****

}

service glance-registry restart

NB! after looking at glance loggs had to set paste.ini files with full paht in conf files.

glance-manage version_control 0

glance-manage db_sync

service glance-registry restart

service glance-api restart

Note

34

This guide does not configure image caching, refer to http://docs.openstack.org/developer/glance/ for more information.

Glance verification with test image

mkdir /tmp/images

cd /tmp/images/

wget http://smoser.brickies.net/ubuntu/ttylinux-uec/ttylinux-uec-amd64-12.1_2.6.35-22_1.tar.gz

tar -zxvf ttylinux-uec-amd64-12.1_2.6.35-22_1.tar.gz

cat .ostackrc {

export OS_USERNAME=admin

export OS_TENANT_NAME=demo

export OS_PASSWORD=****

export OS_AUTH_URL=http://193.40.36.71:5000/v2.0/

export OS_REGION_NAME=RegionOne

}

. .ostackrc

verify by uploading image

{

glance image-create \

--name="tty-linux-kernel" \

--disk-format=aki \

--container-format=aki < ttylinux-uec-amd64-12.1_2.6.35-22_1-vmlinuz

glance image-create \

--name="tty-linux-ramdisk" \

--disk-format=ari \

--container-format=ari < ttylinux-uec-amd64-12.1_2.6.35-22_1-loader

take kerne_id and ramdisk_id from previous outputs

glance image-create \

--name="tty-linux" \

--disk-format=ami \

--container-format=ami \

--property kernel_id=386652ae-a92f-48fc-b3ec-84850ebf4ae1 \

--property ramdisk_id=3abc2f1f-ca96-490d-9e14-3cc5e10eb685 < ttylinux-uec-amd64-12.1_2.6.35-22_1.img

glance image-list

+--------------------------------------+-------------------+-------------+------------------+----------+--------+

| ID | Name | Disk Format | Container Format | Size | Status |

+--------------------------------------+-------------------+-------------+------------------+----------+--------+

| 386652ae-a92f-48fc-b3ec-84850ebf4ae1 | tty-linux-kernel | aki | aki | 4404752 | active |

| 3abc2f1f-ca96-490d-9e14-3cc5e10eb685 | tty-linux-ramdisk | ari | ari | 96629 | active |

| 83b2c958-1b8c-435b-8ae1-7c49e06c60a2 | tty-linux | ami | ami | 25165824 | active |

+--------------------------------------+-------------------+-------------+------------------+----------+--------+

}

KVM configuration

verify hardware support

apt-get install cpu-checker

root@stratus:~# kvm-ok {

INFO: /dev/kvm does not exist

HINT: sudo modprobe kvm_intel

INFO: Your CPU supports KVM extensions

KVM acceleration can be used}

or check output of

egrep ’(vmx|svm)’ --color=always /proc/cpuinfo

Pre-configuring the network

ip link set eth0 promisc on

add to /etc/network/interfaces {

Bridge network interface for VM networks

auto br100

iface br100 inet static

address 192.168.100.1

netmask 255.255.255.0

bridge_stp off

bridge_fd 0

35

}

apt-get install bridge-utils

sudo brctl addbr br100

/etc/init.d/networking restart

create mysql database

mysql -u root -p {

mysql> CREATE DATABASE nova;

mysql> GRANT ALL ON nova.* TO ’nova’@’%’ IDENTIFIED BY ’****’;

mysql> GRANT ALL ON nova.* TO ’nova’@’localhost’ IDENTIFIED BY ’****’;

mysql> FLUSH PRIVILEGES;

}

install nova

sudo apt-get install nova-compute nova-volume nova-novncproxy novnc nova-api nova-ajax-console-proxy nova-cert nova-consoleauth nova-doc \

nova-scheduler nova-network

backup conf files

cd /etc/nova/

cp -p api-paste.ini api-paste.ini.orig

diff api-paste.ini.orig api-paste.ini {

124,126c124,126

< admin_tenant_name = %SERVICE_TENANT_NAME%

< admin_user = %SERVICE_USER%

< admin_password = %SERVICE_PASSWORD%

> admin_tenant_name = service

> admin_user = nova

> admin_password = *****

}

replace nova.conf {

}

for service in nova-api nova-compute nova-network nova-scheduler nova-novncproxy nova-volume nova-cert nova-consoleauth

do

service $service stop

done

nova-manage db sync

for service in nova-api nova-compute nova-network nova-scheduler nova-novncproxy nova-volume nova-cert nova-consoleauth

do

service $service start

done

service libvirt-bin restart

/etc/init.d/rabbitmq-server restart

vgcreate nova-volumes /dev/sda4

service nova-volume restart

nova-manage network create private --fixed_range_v4=192.168.100.0/24 --bridge_interface=br100 --num_networks=1 --network_size=256

as root:

nova-manage service list

}

registre vm images

{

mkdir stackimages

wget -c https://launchpad.net/cirros/trunk/0.3.0/+download/cirros-0.3.0-x86_64-disk.img -O stackimages/cirros.img

glance image-create --name=cirros-0.3.0-x86_64 --disk-format=qcow2 --container-format=bare < stackimages/cirros.img

}

running VM images

nova secgroup-list

nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0

If you cannot start VMs after installation without rebooting, it’s possible the permissions are not correct. This can happen if you load the KVM

36

module before you’ve installed nova-compute. To check the permissions, run ls -l /dev/kvm to see whether the group is set to kvm.

If not, run sudo udevadm trigger.

set state to active and then delete an instance in error.

nova reset-state --active 1cd534f1-d0ea-4289-8723-87833989dfd9

nova delete 1cd534f1-d0ea-4289-8723-87833989dfd9

missing

Installing Dashboard

apt-get install -y memcached libapache2-mod-wsgi openstack-dashboard

ufw allow https/tcp

ufw allow http/tcp

for vnc console access

ufw allow 6080/tcp

ufw enable

a2enmod

ln -sf /etc/apache2/sites-available/default-ssl /etc/apache2/sites-enabled/

add

RedirectMatch ^/$ https://stratus.at.mt.ut.ee/horizon

to both

/etc/apache2/sites-available/default

/etc/apache2/sites-available/default-ssl

service apache2 restart

37

Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Valdur Kadakas (date of birth: 01/01/1978), herewith grant the University of

Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of validity

of the copyright, and

1.2. make available to the public via the web environment of the University of

Tartu, including via the DSpace digital archives until expiry of the term of validity of

the copyright,

Establishing Scientific Computing Clouds on Limited Resources using OpenStack

supervised by Pelle Jakovits and Satish Narayana Srirama,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu, 14.05.2013

38

	1 Introduction
	2 Technology Overview
	2.1 Eucalyptus
	2.2 OpenStack
	2.3 Platform Comparison

	3 Requirements, Constraints, and Design Principles
	3.1 Cloud Hardware
	3.2 Mobile Cloud Lab Requirements
	3.3 Likely Hardware Constraints
	3.4 Deployment Design and Implementation Principles

	4 Deployment Architecture and Implementation
	4.1 Technology Choices
	4.1.1 Storage
	4.1.2 Networking

	4.2 A Cloud on Two Servers
	4.3 Implementation
	4.4 Software Defects

	5 Performance Tests and Results
	5.1 Synthetic Performance Tests
	5.1.1 Virtual Machine Launch Time
	5.1.2 Java Install Time

	5.2 Actual Performance in Labs
	5.3 Likely Amendments to Configuration
	5.4 Extending Cloud to 10 Servers and up

	6 Conclusions
	7 Sisukokkuvõte
	Bibliography
	Appendices
	A Cloud Controller Installation Notes
	Licence

