
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Allan Trukits

The Cost of Virtualization

for Scientific Computing

Bachelor’s Thesis (6 ECTS)

Supervisor: Pelle Jakovits

Author: ... ".........." May 2013

Supervisor: ... ".........." May 2013

Allowed to defence:

Professor: ... ".........." May 2013

Tartu 2013

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Table of Contents

Introduction .. 3

1. State of the Art .. 5

1.1. Xen and KVM .. 5

1.2. Related Works .. 5

1.3. NAS Parallel Benchmarks ... 7

1.4. Phoronix Test Suite .. 8

1.5. Amazon Elastic Compute Cloud 2 ... 8

2. Environment Configuration .. 10

2.1. Hardware .. 10

2.2. Software ... 10

2.2.1. Networking ... 10

2.2.2. KVM ... 11

2.2.3. Xen ... 11

2.2.4. General Configuration .. 12

2.2.5. NAS Parallel Benchmarks .. 13

2.2.6. Phoronix Test Suite .. 14

3. Benchmarking ... 15

3.1. Single Hardware Object ... 15

3.1.1. Scaling the Number of Virtual Machines ... 17

3.2. Multiple Hardware Objects .. 19

3.2.1. Scaling the Number of Physical Machines ... 20

4. Amazon EC2 .. 23

4.1. Specifications ... 23

4.2. Matching Instances to the server ... 24

Conclusion .. 26

Teaduslikus arvutusprotsessis riistvara virtualiseerimise hind ... 27

Appendixes ... 29

References .. 30

3

Introduction

Virtualization is a term that refers to various techniques, methods or approaches of creating a

virtual, rather than actual, version of something [19]. In general, virtualization provides means

to deploy multiple operating systems on one physical computer. These multiple instances act

as separate computing units and are seen as physical machines to other computers in the

network. This way, virtualization provides more security and configurability. Administrators

do not have to give access to two persons on the same computer, instead they create two

virtual machines which are totally separate and these two persons might not even be aware of

one another when they connect to these virtual machines over the internet. This way, another

instance of the virtual machine is safer from the other’s doings although they share the same

physical resources.

In this paper’s context virtualization means that the operating system and the hardware

platform including the CPU, the storage device and network resources are made virtual using

different types of hypervisor. These types are full virtualization, partial virtualization and

paravirtualization [6].

Virtualization technology is widely used in cloud computing which offers virtually infinite

resources and because of that is suitable for solving resource hungry scientific computing

problems [18]. The cost of virtualization in the heading refers to performance difference

rather than monetary value. Undisputedly virtualization of hardware saves money and this is

not the question today. The question is how much CPU, network and disk input-output

performance loss is to be expected through virtualization. This question is answered by

benchmarking with the NAS Parallel Benchmarks (NPB) [7] which was developed by the

NASA and is specifically designed to test parallel computing performance. This paper focuses

on tests implemented in MPI [8] programming model and written in Fortran 77 and C

programming language. Tests are described more thoroughly later on. As this paper focuses

on the cost of virtualization for scientific computing then these tests are most suitable because

they represent a large problem which is split into large number of jobs which are then run on

all computers in the cluster. Because of that it is important to know the impact on the network

performance because in the case of scientific computing it is often necessary for jobs to

communicate with one another. This form of computing is called parallel computing. It is also

necessary to measure disk input-output performance change because it is sometimes needed to

parse large sets of data files. Last but not the least, we are interested in general impact on the

computing power thus CPU and memory tests are due. Another benchmarking tool used in

4

this thesis is Phoronix Test Suite (PTS) [11] which is designed to test the performance of a

single computing unit. This is all covered in more detail in the next chapter.

In the case of running multiple number of virtual machines on one host, results should not

come as a surprise - more virtual machines on one host concurrently trying to solve some

puzzle will take more time and vice versa. This paper also tests scalability of these systems

because sometimes it is necessary to take x number of computers any set up y number of

virtual machines on them which are then used for different jobs. It makes sense for ease of use

and security purposes to set up many virtual machines but these different jobs might not be

run concurrently. Thus this paper tests the performance of four virtual machines on one host,

four virtual machines on two hosts, four virtual machines on four hosts and some other

combinations.

In addition this thesis finds a comparable Amazon EC2 [20] instance to two servers in

university’s possession. This should provide interesting insight whether it is useful for the

University of Tartu to use Amazon services or set up its own cloud. As Amazon does not fully

reveal their hardware specifications and they also deploy multiple instances on one machine,

it is very hard to find comparable hardware but using the same testing methods as for

comparing Xen to KVM, it is possible to find close enough instance that matches by the

processing power. This info is particularly interesting to Mobile & Cloud Computing

Laboratory [16] of the University of Tartu.

The first section of this thesis brings out previously done related works and points out what

they discovered and what their results were. Also the state of the art is described in that

chapter which covers the benchmark and virtualization technologies used in this paper.

The second chapter of this thesis describes how to set up the same environment to be able to

replicate the results delivered in this thesis. That chapter also exposes which configuration

challenges and problems are to be expected.

In the third section the analysis of the benchmarks’ results is brought out and conclusions are

drawn from the analysis.

In the last section of this paper we are matching an Amazon EC2 instance to the university’s

server and analyzing benchmark data to see if it is more profitable to run scientific calculation

on Amazon instance or on the university’s server.

We are expecting Xen and KVM to be more equal in performance than in the past but the test

results will show whether expectations will meet the reality.

5

1. State of the Art

1.1. Xen and KVM

Xen [4] is freeware hypervisor software which enables us to virtualize physical resources. In

this paper’s tests Xen is used in paravirtualization mode which means that the hardware

environment is not simulated but guests are run in a modified operating system.

Another type of virtualization used in this paper’s benchmarks is full virtualization for

Kernel-based Virtual Machine (KVM) [5], also a freeware hypervisor, which means that

almost all hardware is simulated to allow software to run unmodified. In this case KVM also

uses hardware-assisted virtualization with full virtualization to enable more efficient use of

processor power.

These should be the best performing options for Xen and KVM to get the best out of the two

most popular freeware virtualization software.

1.2. Related Works

There are many previous studies related to just testing Xen or KVM separately or just

analyzing virtualization more generally but there are only a few published works which have

benchmarked both Xen and KVM and provided a clear comparison between the two

hypervisors for the scientific computing tasks.

Todd Deshane et al. [1] also used The Phoronix Test Suite to measure performance levels on a

single computing unit i.e. the host, the Xen guest or the KVM guest. They also performed

scalability tests but they did it quite differently than we. They deployed n numbers of guests

on one host and run the same tests concurrently whereas we are running specialized parallel

computing tests which are written specifically to test parallel computing performance by

splitting one job between all of the guests, not running the same job concurrently.

Nonetheless, this approach showed that KVM did not perform very well when too many

guests (with four guests, one crashed; with 16 guests, seven crashed) were running on one

host. A significant percent of guests just crashed while Xen was able to handle multiple guests

very well (with 30 guests, none crashed), only showing increase in testing time which is

expected. Overall this article concluded that Xen performed very closely to the host and that

KVM had a little more degradation on almost all of the tests performed except in the case of

read and write to disk test which may have been due to the disk caching capabilities. They

used Xen 3.2.1 and KVM 62 and this article was published in the June of 2008.

6

Andrea Chierici et al. [2] very briefly and understandably explain what Xen and KVM are

about and what types of virtualization they use. They make a good case in qualitative test for

both KVM and Xen as they switched from Xen to KVM on their own systems which were

used for real applications for many users and did not see any noticeable performance changes.

But when they carried out quantitative tests it became clear that KVM did not quite perform

as well regarding network and disk input and output performance, although CPU performance

showed similar results. For scalability they used the same approach as in the first article. It

seems that they did not observe the problem of KVM to run a multiple number of guests

which is probably due to the fact that KVM had been developed further as they used a later

version of it. They used Xen 3.2.1 and KVM 83 and this article was published in 2010. So in

two years some progress was made in the stability of KVM but some drop in disk I/O

performance was noted. As this was more than three years ago perhaps the performance of

KVM has improved by now.

Lucas Nussbaum et al. [3] start with providing an interesting point - that many processing

jobs do not fully take advantage of the multicore architecture. Nowadays I cannot imagine

processing units with just one core, even our smartphones have two and some have even four

cores. Thus deploying virtual machines per core would provide an easy way to share physical

resources among several jobs. This article also compares different types of virtualization i.e.

paravirtualization vs. full virtualization. Paravirtualization works better on all test cases and

this is the technique that this paper is covering. Similarly to the second article they show that

CPU performance is very even and that KVM did not perform as well as XEN regarding disk

I/O and networking tests. For scalability test they used the same approach as the other two

articles but also did something similar to what we are going to do. They used HPC Challenge

benchmarks which are developed to measure the performance of parallel computers. Again

Xen performed better in most cases except in the network throughput. They used Xen 3.3.1

and KVM 84 and this article was published in the October of 2009.

These articles and this thesis are very similar in nature but our approach is different as we are

testing the scalability of virtual machines as well as physical machines and we are using

different benchmarking tools and as some time has passed, all of the results above might not

be relevant anymore, so this work is necessary to stay informed of the differences and

similarities between these two freeware virtualization platforms.

7

1.3. NAS Parallel Benchmarks

NPB tests are specifically designed to test the performance of distributed computers which is

what scientific computing on many occasions rely on because of vast and cumbersome

algorithms that need a lot of computing power which regular computers cannot output.

Problem sizes in the NPB are predefined and indicated as different classes. Two of these

classes are used in this work. Two tests are of B class and one is of C class. At first we

thought all of the tests to be of class C, but class C proved to be too expensive in memory and

hard drive usage for two tests so the class was lowered for those two benchmarks.

Three tests were chosen, each representing a different problem and thus measures different

aspects of performance cost. One of them is Integer Sort (IS) Benchmark which tests a sorting

operation which is used to reassign particles to the appropriate cells. This is used in particle-

in-cell applications of physics. The implementation is based on a bucket sort [14]. The

benchmark tests integer computation speed while floating point arithmetic is not involved

thus this benchmark relies on CPU performance, but also a significant amount of data is

transferred and thus it also tests network capabilities [12]. Class B was used for this test which

means that the number of keys to generate is 2
25

while the maximum value of the key is 2
21

[13]. Keys are the elements that are going to be sorted.

Another test chosen was the Embarrassingly Parallel (EP) Benchmark which solves a problem

typical to many Monte Carlo applications that is accumulating two-dimensional statistics from

a large number of Gaussian pseudorandom numbers. This benchmark requires almost no data

transfer, except in the beginning and in the end of the test, and in some sense it provides an

estimate of the upper achievable limits for the floating-point performance [12]. The

calculation also contains a significant number of logarithm and square root operations [14].

Class C was used for this test which means that the amount of random number pairs generated

was 2
32

[13].

The third test chosen was the Block-Tri-diagonal Input Output (BT-IO) Benchmark which by

the name of it tests I/O performance. Class B was used because class C test requires writing

6.8 GB of data while the size of the virtual HDD was only 5 GB. Class B benchmark writes

1.7 GB of data onto the disk. [13, 15]

8

1.4. Phoronix Test Suite

The Phoronix Test Suite (PTS) is a freeware benchmarking package developed to test a single

hardware unit. It cannot be run like NPB to split the same job between many machines but as

NPB is designed to do just that then NPB might not show meaningful results when running on

one virtual or actual computing unit. For that reason I have chosen the PTS - to compare one

actual host machine against one virtual machine. Again three benchmarks were chosen from

the Phoronix Test Suite to test different aspects of performance.

Firstly, a test named Primesieve of version 1.1.1 was chosen to test CPU’s L1 cache

performance. Phoronix does not get into more detail about their tests but just as in the case of

NPB, the whole suite is open-source so anyone could read the source code to see what exactly

is done during testing.

Secondly, a test named Stream was chosen which was of version 1.1.0 and it is designed to

test system memory performance. This test consists of four parts: copy, scale, add and triad.

Each of them perform different tasks. Copy test just takes something that is in some memory

address and writes it into another memory address (a(i) = b(i)). Scale test takes something that

is in some memory address, multiplies it to something and then writes it into another memory

address (a(i) = q*b(i)). Test named add takes two values from memory, adds them together

and writes them to another memory address (a(i) = b(i) + c(i)). Triad test takes all three

previous tests and puts them together, it takes some value from one memory address,

multiplies it to something, then takes another values from memory and adds it to the product

and then writes the results into another memory address (a(i) = b(i) + q*c(i)). [24]

Last but not the least a test named Unpacking the Linux Kernel of version 1.0.0 was picked to

test disk input-output performance by measuring how long it takes to extract the .tar.bz2 of

the Linux kernel package.

1.5. Amazon Elastic Compute Cloud 2

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides resizable

compute capacity in the cloud. It is designed to make web-scale computing easier for

developers. [20]

Amazon is a very popular and useful service to use for scientific calculations as one could just

order exact amount of resources on-demand. For that reason this paper is trying to see if and

in which situations it would be beneficial for the Mobile & Cloud Computing Laboratory [16]

of the University of Tartu to use Amazon’s resources instead of the already existing servers in

9

the university’s possession because ordering these resources costs money and if there would

not be any substantial benefit over university’s servers then there would not be any reason to

use them.

Amazon uses Xen’s paravirtualization technology for its instances.

10

2. Environment Configuration

In this section a lot of code segments are brought out due to the lack of a single step by step

tutorial on the internet that one could follow to replicate the results of this thesis. So in a way

this thesis provides a new tutorial to set up a cluster of virtual machines for parallel

computing but unfortunately as all of the other tutorials in the internet will be outdated soon

because of the level of detail that is put into versions of different components.

2.1. Hardware

Four identical computers were used. All equipped with Intel Core 2 Quad Q9500 processors

running at 2.83 GHz. As the name would suggest these are four core processors. So in total

we had 16 cores to use. Hardware virtualization support was turned on from the BIOS.

All machines had 6.9 GiB of RAM to use but the amount of memory does not matter in these

tests as much as the speed of the memory because these tests do not consume much memory,

they only test the speed of it so 1 GiB of RAM would be sufficient enough. These were DDR2

memories with 400 MHz clock speed and 800 MT/s transfer rate.

500 GB Western Digital WD5000AAKS-0 hard drive was used for these tests. This is a 7200

RPM 16 MB cache hard drive with the 3.0 Gb/s SATA 2 interface. Operating system was

installed on the ext4 file system.

Network was built on 100 Mbit speed connections through a switch.

2.2. Software

Ubuntu 12.04.2 LTS (precise) 64 bit version with the 3.2.0-38-generic Linux kernel. Mpich2

[9], gfortran [10] and ‘make’ are required to compile and run NPB benchmarks. PHP 5.0 is

required to run the Phoronix Test Suite [11].

2.2.1. Networking

Network configurations should be done prior to KVM and Xen guests installations otherwise

there will be bridging difficulties and guests will not receive connections correctly. Also when

bridging is done forehand then creating guests is pretty much enter-one-command operation.

To create a bridge one must first configure primary Ethernet adapter to receive its IP address

manually and then create a bridge that will take an IP address from a DHCP server. The

following configuration works:

11

sudo apt-get install bridge-utils
sudo nano /etc/network/interfaces

auto eth0
iface eth0 inet manual

auto br0

iface br0 inet dhcp

bridge_ports eth0

bridge_stp off

bridge_maxwait 0

bridge_fd 0

sudo /etc/init.d/networking restart

2.2.2. KVM

The version of KVM is determined by Linux kernel which was 3.2.0-38. To get the best

results out of KVM, hardware virtualization must be enabled from the BIOS if the processor

supports it. In this case it does. To check whether the system is currently using hardware

virtualization or not, one should run the following command:

kvm-ok

The following command installs KVM:

sudo apt-get install qemu-kvm libvirt-bin ubuntu-vm-builder virt-manager

To install KVM guest run:

sudo ubuntu-vm-builder kvm precise --domain Ubuntu4 -d Ubuntu4 -a amd64 --hostname

Ubuntu4 --mem 1024 --user scicloud --pass scicloud --cpus 4 --components main,universe --

addpkg openssh-server --addpkg nano --addpkg make --addpkg wget --addpkg unzip --addpkg

mpich2 --addpkg php5 --addpkg php5-gd --addpkg gfortran --bridge br0 --libvirt

qemu:///system ;.

This results in KVM virtual machine or guest that is getting access to all four cores of the host

machine, 1024 MB of memory and a 5 GB virtual Qemu hard disk drive with the ext4 file

system. It runs the same Ubuntu 12.04 operation system with the 3.2.0-38 64 bit kernel as the

host machine.

2.2.3. Xen

The version of Xen used was 4.1.2. Installing Xen is more complicated and time consuming

than installing of KVM. Firstly, one should install Xen hypervisor and required components

using the following command:

sudo apt-get install xen-hypervisor-4.1-amd64 xen-tools

Secondly, after restarting the computer and running the Ubuntu with the Xen modified

version of the kernel one should add a symbolic link for xen-tools because the latest Ubuntu

12

release configuration file is missing and without it guests will not be built. To add a symbolic

link run:

cd /usr/lib/xen-tools
sudo ln -s karmic.d precise.d

Then it is necessary to replace all text from /etc/xen-tools/xen-tools.conf file with the

configuration in the appendix 1. Xen guest builder can also be constructed similarly to the

KVM guest builder but it is not possible to configure the number of CPUs given to the guest

with that builder so one must use this configuration file instead and when that is configured

then run:

xen-create-image -hostname=Ubuntu4

When creating a Xen guest, a password cannot be given in advance, on the contrary to the

KVM guest creation; instead it is asked during the installation interactively which is

somewhat inconvenient. But on the other hand Xen provides an option to boot guests

automatically after host system has been started, this is a very useful property to have when

administering virtual machines. Another counterclaim might be that with this installation

method it is not comfortably possible to make Xen guest use ext4 file system. Some sources

indicate that it is somehow possible to make Xen guest use ext4 file system but this option

was not further investigated in the scope of this paper.

Unfortunately Xen images come as blank as they can, meaning no SSH (on some occasions

SSH was present, but not always), no text editors that could be used through SSH connection

and on multiple occasions apt-get configuration files were messed up and even if SSH

configuration was available then it was not possible to install anything. As fixing the broken

configuration files for apt-get included using a text editor and the only one available by

default is ‘vi’ then it was not possible to fix through SSH connection since ‘vi’ commands

cannot be sent through one. So it is best to fully configure Xen guests while still using a

terminal connected directly to it. Most importantly one should use the following command to

install necessary packages to use the benchmarking software:

apt-get install mpich2 php5 php5-gd make gfortran

This build method results in a Xen guest with access to 4 CPU cores and 1024 MB of memory

and 5GB of disk space on ext3 file system where an Ubuntu 12.04 operation system is ran.

2.2.4. General Configuration

To be able to use NPB and to comfortably navigate between guests and hosts it is necessary to

generate a RSA key for the SSH and to distribute it to all hosts and guests. This can be done

by running the following commands analogously:

13

ssh-keygen -t rsa

cat /$HOME/.ssh/id_rsa.pub >> /$HOME/.ssh/authorized_keys

scp -r /$HOME/.ssh/ username@172.17.x.y:

Also it is required to make every guest’s host file point to the machine where the benchmark

will be initiated. This pointer must be by the machine’s hostname. So even if all guests share

the same hostname, this shared hostname must point to the ‘first’ computer. This is due to the

NPB sending results back to the main thread by the hostname and not by the IP address.

2.2.5. NAS Parallel Benchmarks

The version of the NPB used was 3.3.1 and as stated earlier it was a MPI package of the NPB.

Note that while NPB is a freeware, it is necessary to register yourself in NASA and state your

business to get the right to download this software.

Configuring the NPB and getting it to run is quite tricky at first because there is little to no

information on the internet about it and the provided manuals assume you are an expert.

Firstly, one should give the NPB folder full access rights as otherwise it will not build. To do

this use the following command in the NPB folder:

chmod 755 .

Then it is necessary to configure NPB to start using correct Fortran and C compilers. So one

should navigate to the ‘config’ folder and create a ‘make.def’ file out of the provided template

and change according rows into the following:

MPIF77 = mpif77
MPICC = mpicc
CONVERTFLAG = -DFORTRAN_REC_SIZE=4

Then tests used in this paper can be compiled using the following commands:

make is NPROCS=16 CLASS=B
make ep NPROCS=16 CLASS=C
make bt NPROCS=16 CLASS=B SUBTYPE=full

If successful then one should create a text file under the bin folder (NPB subfolder), where all

the compiled benchmarks are placed, named ‘machines’ for example and into that it is

necessary to write IP addresses of the computers used for the current benchmark. This file

will be in the form of IP addresses line by line followed by a colon after which one can say

how many processes should be run on that machine otherwise processes will be deployed in a

‘round robin’ fashion [17]. The format of the machine file:

172.17.x.y:4
172.17.x.z:4

14

Finally all these compiled tests must be distributed to all of the guest and hosts that are

participating in the current launch of the benchmark. And all of these files must be under the

same absolute path thus the username for all of the guests and hosts must be the same.

Only now is one ready to launch the NAS Parallel Benchmarks. And to do that the following

command can be used analogously:

mpirun -machinefile machines -np 16 ./is.B.16

Note that the dot and the slash before the file name are mandatory otherwise one would get

error messages not even remotely describing the problem.

2.2.6. Phoronix Test Suite

The version of the Phoronix Test Suite used was 4.4.0. Installation of this software is fairly

easy but it must be stated that PHP 5 must be installed beforehand otherwise Phoronix starts

generating errors that the internet has never heard of and it is not anymore possible to install

PHP and continue. To be clear, one should use the following commands before continuing:

sudo apt-get install php5
sudo apt-get install php5-gd

After that it is only a trouble of installing the benchmark suite using the following commands:

sudo dpkg -i phoronix-test-suite_4.4.0_all.deb
phoronix-test-suite
phoronix-test-suite install pts/stream
phoronix-test-suite install pts/primesieve
phoronix-test-suite install pts/unpack-linux

And to run the benchmarks use:

phoronix-test-suite benchmark pts/stream
phoronix-test-suite benchmark pts/primesieve
phoronix-test-suite benchmark pts/unpack-linux

15

3. Benchmarking

3.1. Single Hardware Object

Here we are comparing a single host machine instance to the KVM and Xen virtual machine

instances. These tests show if just by adding a virtual layer between the program and the

hardware is going to affect the performance in any way. All tests were performed three times

and an arithmetic mean was taken to eliminate possible outliers. All instances in the following

tests have access to four CPU cores.

Firstly, we are comparing CPU performance results with the Phoronix Test Suite’s Primesieve

benchmark. (Fig. 1) The results favor KVM, even to the host by showing 5.4% less time

consumption which is surprising considering that KVM and the host use the same unmodified

kernel. As KVM utilizes to its advantage the use of the hardware supported virtualization by

CPU it is a no surprise that KVM performs better than Xen. But since this feature is currently

supported only by CPUs and not hard disk drives or memories then it is not expected for

KVM to be better at those tests.

Figure 1. PTS Primesieve benchmark. Units are in seconds. Smaller value is better.

Secondly, we are comparing memory performance results with the PTS Stream test. (Fig. 2)

Results are very balanced, only one to two per cent of difference which is not enough to

conclude much. KVM seems to perform a little better than Xen but compared to the host one

cannot really tell a difference.

160,32
151,73

162,89

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

Host KVM Xen

Primesieve

16

Figure 2. PTS Stream benchmark. Units are in Mb/s. Higher value is better.

Thirdly, we are looking into hard disk drive’s input-output operation performance with the

Unpacking the Linux Kernel benchmark. (Fig. 3) Results reveal 13-16% overhead in time for

virtual machines which is a lot but also kind of expected. In comparison of KVM, Xen seems

to be able to handle HDD I/O a little better.

Figure 3. PTS Unpacking the Linux Kernel benchmark. Units are in seconds. Smaller value is better.

In terms of computing power, adding a virtualization layer does not seem to affect

performance much but when it is necessary to write or read lots of data from disc then a

significant loss in time should be taken into account.

0,00

1000,00

2000,00

3000,00

4000,00

5000,00

6000,00

Copy Scale Triad Add

Host

KVM

Xen

16,47

19,56
18,77

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

20,00

Host KVM Xen

Unpack linux

17

3.1.1. Scaling the Number of Virtual Machines

Here we are comparing one, two and four instances of KVM and Xen virtual machines to one

another. These tests show if it would be better to deploy more guests rather than using a single

host to run an application. It is now a well-established fact that running multiple virtual

machines (VM) on one host to let different people run different applications at different times,

is a very effective use of resources because there are less zero-usage hours. We are trying to

see if it is also reasonable to use the same approach to run the same application on all of those

guests. All instances in the following tests have access to four physical CPU cores which for

virtual machines means that if there are one, two or four guests running then they have four,

eight or 16 virtual cores respectively. One MPI job per virtual core for virtual machines is

deployed. There are always four MPI jobs deployed on hosts i.e. one job per actual core.

Figure 4. NPB Embarrassingly Parallel benchmark. Units are in seconds. Smaller value is better.

Firstly, results from the NPB Embarrassingly Parallel benchmark. Figure 4 indicates similar

results for all of the tests. Only a 1% drop in performance when going from host to a virtual

machine which supports the last chapter’s conclusion that CPU performance is not affected

much by virtualization. But if observed more closely then a little rise in time consumption is

already notable - a 5% rise when comparing host’s result to the four KVM instances’ result.

Heavier drop in performance should be expected when scaling the number of virtual machines

any further although based on the figure 4 results it seems that KVM and Xen are behaving

very similarly. But this is just only the CPU benchmark which is expected to do the best

because of the hardware support.

Secondly, figure 5 represents the results from the NPB Integer Sort benchmark. This is the

benchmark where networking is a large factor and it is clearly seen on the chart. Of course for

85,71 86,70
89,90 90,77 86,04 86,96 89,99

0,00

20,00

40,00

60,00

80,00

100,00

Host 1 VM 2 VMs 4 VMs

Host

KVM

Xen

18

the host and a single virtual machine there is no networking involved and they are acting as

test controls. Increasing the number of virtual machines is expected to increase the time

consumption but already when just two virtual machine instances must communicate with

each other, performance loss is staggering. It took two KVM instances 14 times longer to

complete the task and for Xen it was 29 times longer. The case for four instances is even

worse – 18 and 68 times longer respectively. I would like to remind that all results are

arithmetic means of three separate test and all of these three tests were bearing similar results.

A little rise is to be expected but this is not in a reasonable proportion. And what is more -

Xen is performing extremely badly in this situation. We are concluding that 16 MPI jobs on

four virtual machines trying to communicate with each other and to the main job launcher

thread is too much to handle for virtual network interfaces. As we scale these tests in the next

chapter, we see if the reason for it could be that virtual network interfaces emulated for virtual

machines on one host cannot somehow effectively communicate with each other or does this

problem also bear upon multiple hosts.

Figure 5. NPB Integer Sort benchmark. Units are in seconds. Smaller value is better.

Thirdly, we are comparing the results for the NPB BT-IO benchmark. Figure 6 is revealing

that on the contrary to the Phoronix’s disk benchmark’s write results, Xen seems to be

performing slower than KVM and something is seriously affecting the performance of the

Xen VM while running tests on two and four instances. Even KVM does not seem to be doing

good - taking 3.4 times more time to complete the assignment when comparing one virtual

machine to two and taking 5.4 times more time when comparing to four virtual machines.

2,16 2,19

30,04

38,84

2,33
67,66 159,42

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

Host 1 VM 2 VMs 4 VMs

Host

KVM

Xen

19

Figure 6. NPB Block Tri-diagonal Input Output benchmark. Units are in seconds. Smaller value is better.

With the previous information in mind it is safe to conclude that it is not profitable to run

multiple virtual machines on one physical machine to perform concurrent calculations but

when just running multiple virtual machines and letting different people use them on different

times of a day, thus keeping the physical machine busy at most times, is not affecting the

performance of a single virtual machine much or none at all. Xen’s virtual machines’ trouble

to cope with multiple guests communicating with each other on one host and writing data onto

the same physical hard drive concurrently is an interesting topic to look into in the future.

3.2. Multiple Hardware Objects

In this section we are comparing one host with four virtual machines to two hosts with four

virtual machines to four hosts with four virtual machines with both KVM and Xen. These test

show how previous results scale to a larger number of computers than just one. In previous

tests there were always just four physical cores available to do the calculations but here this is

first scaled to eight cores and then to 16 cores. Both KVM and Xen clusters have 16 virtual

cores in all tests, only the number of underlying physical number of cores changes, ergo 16

MPI jobs are launched for all of the following benchmarks. We are also comparing all of

these results to physical machine results. As it might be more performance-wise to just scale

the number of host machines and not use the virtualization at all. This is of course more costly

but it should give better performance results. Host tests are not run by making 16 jobs for all

tests but making four, eight and 16 jobs whether one, two or four machines are used

respectively.

152,66 152,61

519,28

826,19

158,18

945,90

2731,37

0,00

500,00

1000,00

1500,00

2000,00

2500,00

Host 1 VM 2 VMs 4 VMs

Host

KVM

Xen

20

3.2.1. Scaling the Number of Physical Machines

Firstly, the NPB EP test. Figure 7 shows how this benchmark scales very well as adding more

physical machines to the cluster improves the performance in an expected way. This CPU

performance test again confirms that Xen and KVM are very equal when just using

computing power and only marginal communication is held between virtual machines or

when no disk input is required. Looking at four machines test results where there is only a

single layer of virtualization added for the virtual machines i.e. one virtual machine per

physical machine; it is seen that performance times are very close, meaning that adding a

virtual layer will not affect the computing performance in fact we would have expected the

time for the host (23.28 sec) to be better than the time for the virtual machines (22.33 sec and

22.8 sec) but it seems to be an anomaly and should correct itself when an infinite number of

tests are run.

Figure 7. NPB Embarrassingly Parallel benchmark. Units are in seconds. Smaller value is better.

Secondly, we present the results from the NPB IS benchmark. Fig. 8 is depicting the results

which are quite conclusive - KVM is performing much better than Xen. Comparing virtual

machine results to the host result, it is apparent that networking between virtual machines is

an issue for both Xen and KVM but Xen also performs 2.45 times worse than the KVM or the

host on four machines where there is one virtual machine per physical machine which

indicates that Xen’s guests’ virtual network interfaces have serious troubles communicating

with each other.

85,71

43,68

23,28

90,77

44,69

22,33

89,99

45,16

22,80

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

1 Machine 2 Machines 4 Machines

Host

KVM

Xen

21

Figure 8. NPB Integer Sort benchmark. Units are in seconds. Smaller value is better.

Thirdly, we are comparing the results from the NPB BT-IO benchmark. Figure 9 is

representing the collected data. It is clearly seen that when more sources are trying to write

data onto the disk then the HDD cannot keep up and writing the same amount of data takes

considerably longer. KVM is doing much better in this test than Xen, just like in the previous

BT-IO test and while other benchmarks seem to support the idea that adding a virtualization

layer will not affect performance very much then this test agrees with the Phoronix’s

Unpacking The Linux Kernel benchmark that an extra layer does affect disk related

operations very badly. It took both KVM and Xen twice as much time to write 1.7 GB of data

onto the disk when comparing the four machine results.

Figure 9. NPB Block Tri-diagonal Input Output benchmark. Units are in seconds. Smaller value is better.

Again it would be interesting to research more into why Xen performs so poorly in

networking and hard drive I/O benchmarks. It would also be interesting to see the BT-IO

2,17 4,06 3,42

38,84

21,19

3,44

159,42

50,49

8,45

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

1 Machine 2 Machines 4 Machines

Host

KVM

Xen

152,66 87,56 58,29

826,19

382,99

168,19

2731,37

916,41

125,81

0,00

500,00

1000,00

1500,00

2000,00

2500,00

1 Machine 2 Machines 4 Machines

Host

KVM

Xen

22

results when HDDs would be replaced with the SSDs which do not have that large of a

problem writing data concurrently and are much faster than HDDs in general.

To conclude this chapter we have to point out that KVM seems more feasible option to

choose when going for the virtualization since almost on all cases KVM performs a little or

much better than Xen. It is also necessary to bring out that adding a virtualization layer alone

does not affect the performance at all or just a little but when there are large quantities of data

to write or send over the internet then one really needs to weight pros and cons.

23

4. Amazon EC2

In this section we are matching Amazon EC2 instances to the university’s servers. We do it by

running the Phoronix Test Suite’s Primesieve benchmark which tests CPU performance. We

believe that CPU is the property to compare by because it is nearly impossible to match all

parameters – RAM, CPU, hard drive I/O and networking and CPU is the core of the

computing power and it is what matters the most in performance. What is more, RAM can

easily be upgraded and so can be a hard drive. After we have found comparable instances by

CPU we launch the NPB Integer Sort benchmark on a single machine and in two computer

cluster to test the networking loss or gain in the Amazon cloud.

It is useful to see which is the comparable instance by CPU performance as this is what

scientific algorithms mostly require and after running cluster tests we see if it is better to

make a cluster of university’s servers or whether it is more useful to deploy algorithms on the

Amazon cloud.

4.1. Specifications

The university’s server has a Xeon E5606 CPU running at 2.13 GHz clock speed and it has

four cores but it is running on hyper threading thus making it eight cores. The operating

system is Ubuntu 12.04.1 LTS (precise) 64 bit version which is virtualized by Open Stack

cloud [21] technology using KVM virtualization. The virtual machine on that machine is

made to fully occupy the physical hardware meaning it has access to all eight cores.

For the first estimation we chose Amazon’s ‘M3 Double Extra Large Instance’ (m3.2xlarge)

which has a Xeon E5-2670 running at 2.6 GHz clock speed and it has eight cores but it is not

using hyper threading thus the number of cores is not doubled. Since amazon does not provide

this information it was gathered by running the following command in the Ubuntu 12.04.1

LTS:

cat /proc/cpuinfo

This provides accurate information about CPUs and how many we have access to. Some

knowledge and expertise from Huan Liu’s article [22] was used to determine the best

candidates to match our server.

The ‘M3 Double Extra Large Instance’ has a much better CPU than our server but as this is

instance does not take up the whole physical machine then there are probably some more

virtual machines running and taking up the processing power. Amazon itself estimates its

24

performance to be 26 EC2 Compute Units [23]. One EC2 Compute Unit is equivalent to a

1.0-1.2 GHz 2007 Opteron or Xeon processor [25].

Another instance that might fit out profile is Amazon’s ‘High I/O Quadruple Extra Large

Instance’ (hi1.4xlarge) which has a Xeon E5620 CPU running at 2.4 GHz and it has also eight

cores but it has hyper threading enabled thus making it 16 cores. Amazon estimates its

performance to be 35 EC2 Compute Units [23]. This instance is also on the Ubuntu 12.04.1

LTS.

As mentioned before under State of the Art Amazon uses Xen’s paravirtualization.

4.2. Matching Instances to the server

In this section we are running the Phoronix Test Suite’s Primesieve test on both Amazon

instances and on our server to see how much a single computing unit differs from another.

Figure 10 represents the gathered data. Our server falls perfectly between two Amazon’s

instances and as Amazon does not provide any more instance types between 26 and 35 EC2

Compute Units then this is the closest estimation we can make.

Figure 10. PTS Primesieve benchmark. On one instance. Units are in seconds. Smaller is better.

Next, we will see the results from the NPB Integer Sort benchmark. Figure 11 shows that

when scaling from one virtual machine to two virtual machines our server performs very slow

compared to the Amazon instances. This is because this test requires significant amount of

data to be transferred between guests. Amazon instances were deployed into the same

availability zone for both instance types and as Amazon has very hi-speed connections

throughout their availability zones, their instances perform extremely well. M3.2xlarge

73,19

91,58

109,42

0,00

20,00

40,00

60,00

80,00

100,00

120,00

hi1.4xlarge Our server m3.2xlarge

Primesieve

25

instance has a 1 Gbit network interface and hi1.4xlarge has a 10 Gbit network interface and

this is clearly represented on the chart.

Figure 11. NPB Integer Sort benchmark. Units are in seconds. Smaller is better.

Building a fast network is very expensive and if not yet present then upgrading to a faster

network might not be an option. Considering all of the previous information it might be

cheaper money wise and faster performance wise to deploy scientific calculation on

Amazon’s cloud. Setting up an Amazon cloud is also a lot faster but as this cluster already

exists then when not dealing with calculations which require heavy communication, then the

University of Tartu can sufficiently use these servers.

0,90

2,27

1,33

53,30

0,92

2,99

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

1 VM 2 VMs

hi1.4xlarge

Our servers

m3.2xlarge

26

Conclusion

All in all it seems that adding a virtualization layer alone does not affect the computing power

very much but a slight delay (13-16% overhead in time) in disk operations should be taken

into account when dealing with a job that requires I/O features.

When trying to scale the number of virtual machines on one physical machine performance

tends to drop, so this is not a valid technique to improve performance for scientific computing

purposes. Also a very dramatic performance loss for disk operations should be noted, up to

300% of performance loss. Communication between virtual machines in one host seems to

take a very long time and Xen is heavily troubled by this defect.

When trying to scale the number of physical machines and keeping the number of virtual ones

the same, performance of course improves to the point where the deployed problem will no

longer benefit from more computing power but rather has to deal with transportation of data

and splitting the problem into a larger number of pieces. Using four physical machines to host

four virtual machines and comparing those results to the four physical machines in a cluster

i.e. only a virtualization layer is added, results confirm that adding a virtualization layer does

not affect computing power but disk I/O operations take 100% or more time to complete.

Here, KVM handled networking very similarly to the host but Xen again had some overhead

resulting the job to take double time.

KVM is currently a much better option than Xen, at least using these virtualization techniques

described above.

All in all 144 tests were run to gather the data used for the analysis. All tests were run three

times to provide a more accurate representation and to eliminate outliers.

Tests run in Amazon reveal their superiority over university in networking speed but when

not using calculation which require heavy networking, the use of university’s servers are

plausible.

In the future we could look into the Xen anomaly and unexplainable rise in the performance

in the NPB Block Tri-diagonal Input Output benchmark and in the Integer Sort benchmark.

27

Teaduslikus arvutusprotsessis riistvara

virtualiseerimise hind

Bakalaureusetöö (6 EAP)

Allan Trukits

Resümee

Selle töö eesmärk on uurida riistvara virtualiseerimise negatiivseid aspekte, kui sooritatakse

teaduslikke arvutusprotsesse, mis nõuavad suurt arvutusjõudlust. Tihti on nii, et teaduslikud

probleemid on nii mahukad, et tulemuse arvutamiseks peab selle probleemi osadeks jaotama

ja mitmetel arvutitel samaaegselt jooksutama.

Virtualiseerimine annab mitmeid eeliseid nagu seadistamise lihtsus, riistvara ja tarkvara

lahtisidestus, väga kiire paigaldus ja konfiguratsiooni muutus ning elastsus. Kuid lisa

virtualisatsioonikiht võib endaga kaasa tuua mitmeid puuduseid, eriti ressursi nõudlikele

teaduslikele algoritmidele, mis rakendavad paralleelarvutus tehnoloogiaid.

Esimesena on välja toodud eelnevalt tehtud uurimustööd, mis on suuremal või vähemal

määral analoogilised selle tööga, kuid need uurimustööd on tehtud mitu aastat tagasi ja

vahepeal on kasutatud tarkvara edasi arendatud ning nendest on välja antud uuemad

versioonid, mis annab alust arvata, et ka nendes eelnevates uurimustöödes saadud tulemused

ei vasta enam tegelikkusele.

Teiseks on selles töös kirjeldatud kasutatud riist- ja tarkvara ning kirjeldatud iga jõudlustesti

iseärasusi ja miks iga test on valitud. Testid jooksutatati Ubuntu operatsiooni süsteemil

kasutades Xen ja KVM tarkvara virtualiseerimiseks. Testimiseks kasutatakse NASA poolt

välja töötatud spetsiaalset tarkvara paralleelsete süsteemide jõudlustestimiseks – „NAS

Parallel Benchmarking“. Samas kasutatakse ka Phoronixi poolt välja töötatud jõudlusteste

testimaks üksikute arvutusinstantside jõudlust, kuna NPB on loodud just paralleelsüsteeme

testima, siis ta ei pruugi anda adekvaatset hinnangut üksik instantside jõudlusele.

Jõudlustestidega mõõdetakse võrgulatentsuse, sisend-väljundite kiiruse ja protsessori jõudluse

muutumist erinevates keskkondades ning mõju mälukasutusele.

Kolmandaks võrreldakse tulemusi ühe, kahe ja nelja arvuti suuruses pilves koos

virtualiseerimisega ja ilma virtualiseerimiseta ning ühe füüsilise masina peal ühte, kahte ja

nelja virtuaalmasinat.

Hüpotees on, et Xen ja KVM on jõudluse osas võrdsemad kui minevikus. Eelnevates

uurimustöödest on selgunud, et Xen on edukamalt jõudlustestidega hakkama saanud kui

28

KVM. Lisaks võib arvata, et virtualiseerimine mõjub jõudlusele halvasti, kuna kasutusel on

lisaks põhioperatsiooni süsteemile veel virtualiseerimistarkvara ja lisa operatsiooni süsteem.

Samas võib võrgulatentsus ühes füüsilises masinas virtualiseeritud süsteemide pilves

väheneda kuna võrgumeediumid ei ole enam piiranguks.

Tulemused aga näitavad, et virtualiseerimiskihi lisamine ei avalda erilist mõju protsessori ja

mälu jõudlusele, küll aga mõjutab see oluliselt kõvakettale kirjutamise kiirust, isegi kuni saja

protsendilist jõudlusekadu võib oodata. Suurendades virtuaalmasinate arvu ühel füüsilisel

masinal jõudlus kahaneb nagu oli ka oodata, nii et see ei ole hea kasutusviis teaduslike

arvutuste tegemiseks. Lisaks suurenesid siis oluliselt kõvakettale kirjutamise ja lugemise

operatsioonide täitmisaeg ja ka suhtlus virtuaalmasinate vahel võrgus muutus väga aeglaseks.

Teisalt kui suurendada füüsiliste masinate arvu jättes virtuaalmasinate arvu samaks, võib

oodata jõudluse kasvamist nagu eeldatud. Füüsiliste masinate arvu suurendamist saab muidugi

jätkata kuni tuleb ette antud ülesande piir, kust maalt ei ole mõistlik seda enam rohkemateks

osadeks jaotada, sest rohkem aega kulub võrgulatentsutele ja probleemi osadeks jaotamisele.

Väga üllatav on tulemus, et KVM oli testides oluliselt edukam kui Xen, otsest põhjust sellele

on raske tuua, aga testid räägivad enda eest.

Kokkuvõttes sooritati 144 testi, et antud andmeid analüüsi tegemiseks koguda. Kõiki teste

sooritati kolm korda, et eemaldada üksikute halbade kokkusattumuste tõttu piirtulemusi ja et

anda täpsem hinnang testitulemustele. Järeldus on, et virtualiseerimist võib kasutada

teaduslikeks arvutusteks ilma olulisi jõudlus kadusid märkamata, küll aga peab arvestama

kõvakettale kirjutamise kiiruse kahanemises. Virtualiseerida tuleks aga nii, et on mitu füüsilist

arvutit, kus samal ajal on ühe ülesande jaoks virtualiseeritud füüsilised masinad üks-ühele.

Samas võib muidugi olla rohkem virtuaalseid masinaid jooksmas, aga neid ole ole mõistlik

samal ajal arvutusteks kasutada. Selline virtualiseerimine tagab selle, et on tagatud turvalisus

ja eraldatus erinevatele inimestele antud ressursside osas ja samas ei kaotata oluliselt jõudluse

arvelt, kui on teada, kunas arvutid reaalselt kasutuses on.

29

Appendixes

Appendix #1:

Xen configuration:

dir = /mnt/xen
install-method = debootstrap
size = 5Gb
memory = 1024Mb
swap = 128Mb
fs = ext3
dist = precise
image = sparse
dhcp = 1
bridge = br0
kernel = /boot/vmlinuz-`uname -r`
initrd = /boot/initrd.img-`uname -r`
arch = amd64
mirror = http://archive.ubuntu.com/ubuntu/
ext3_options = noatime,nodiratime,errors=remount-ro
ext2_options = noatime,nodiratime,errors=remount-ro
xfs_options = defaults
reiserfs_options = defaults
btrfs_options = defaults
boot = 1
passwd = 1
serial_device = hvc0
disk_device = xvda
maxvcpus = 4
vcpus = 4

http://archive.ubuntu.com/ubuntu/

30

References

[1] Todd Deshane, Zachary Shepherd, Jeanna N. Matthews, Muli Ben-Yehuda, Amit Shah,

Balaji Rao. Quantitative Comparison of Xen and KVM, http://140.110.240.196/grid/raw-

attachment/wiki/KVM_vs_Xen/Quantitative%20Comparison%20of%20Xen%20and%20

KVM.pdf, 2008. Online. URL last visited on 5
th

 of May, 2013.

[2] Andrea Chierici, Riccardo Veraldi. A Quantitative Comparison Between Xen and KVM,

http://iopscience.iop.org/1742-6596/219/4/042005/pdf/1742-6596_219_4_042005.pdf,

2010. Online. URL last visited on 5
th

 of May, 2013.

[3] Lucas Nussbaum, Olivier Mornard, Fabienne Anhalt, Jean-Patrick Gelas. Linux-based

Virtualization for HPC Clusters, http://hal.inria.fr/docs/00/42/56/08/PDF/linux-

virtualization-mls09.pdf, 2009. Online. URL last visited on 5
th

 of May, 2013.

[4] Xen, http://en.wikipedia.org/wiki/Xen. Online. URL last visited on 5
th

 of May, 2013.

[5] Kernel-based Virtual Machine, http://en.wikipedia.org/wiki/Kernel-

based_Virtual_Machine. Online. URL last visited on 5
th

 of May, 2013.

[6] Virtualization, http://en.wikipedia.org/wiki/Virtualization. Online. URL last visited on 5
th

of May, 2013.

[7] NAS Parallel Benchmarks, http://www.nas.nasa.gov/publications/npb.html. Online. URL

last visited on 5
th

 of May, 2013.

[8] Message Passing Interface, http://en.wikipedia.org/wiki/Message_Passing_Interface.

Online. URL last visited on 5
th

 of May, 2013.

[9] MPICH, http://www.mpich.org/. Online. URL last visited on 5
th

 of May, 2013.

[10] Gfortran, http://gcc.gnu.org/wiki/GFortran. Online. URL last visited on 5
th

 of May, 2013.

[11] The Phoronix Test Suite, http://www.phoronix-test-suite.com/. Online. URL last visited

on 5
th

 of May, 2013.

[12] Subhash Saini, David H. Bailey. NAS Parallel Benchmark (Version 1.0) Results 11-96,

http://www.nas.nasa.gov/assets/pdf/techreports/1996/nas-96-018.pdf, 1996. Online. URL

last visited on 5
th

 of May, 2013.

[13] Problem Sizes and Parameters in NAS Parallel Benchmarks,

http://www.nas.nasa.gov/publications/npb_problem_sizes.html. Online. URL last visited

on 5
th

 of May, 2013.

[14] William Saphi, Rob Van der Wijngaart, Alex Woo, Maurice Yarrow. New

Implementations and Results for the NAS Parallel Benchmarks 2,

http://www.nas.nasa.gov/assets/pdf/techreports/1994/npb_2.2.pdf. Online. URL last

visited on 5
th

 of May, 2013.

[15] Parkson Wong, Rob F. Van der Wijngaart. NAS Parallel Benchmarks I/O Version 2.4,

http://www.nas.nasa.gov/assets/pdf/techreports/2003/nas-03-002.pdf, 2003. Online. URL

last visited on 5
th

 of May, 2013.

[16] Mobile & Cloud Computing Laboratory, http://mc.cs.ut.ee/. Online. URL last visited on

5
th

 of May, 2013.

[17] MPI: Multicore Host Files,

http://cs.calvin.edu/curriculum/cs/374/homework/MPI/01/multicoreHostFiles.html.

Online. URL last visited on 5
th

 of May, 2013.

[18] Satish Narayana Srirama, Oleg Batrashev, Pelle Jakovits, Eero Vainikko. Scalability of

parallel scientific applications on the cloud,

http://140.110.240.196/grid/raw-attachment/wiki/KVM_vs_Xen/Quantitative%20Comparison%20of%20Xen%20and%20KVM.pdf
http://140.110.240.196/grid/raw-attachment/wiki/KVM_vs_Xen/Quantitative%20Comparison%20of%20Xen%20and%20KVM.pdf
http://140.110.240.196/grid/raw-attachment/wiki/KVM_vs_Xen/Quantitative%20Comparison%20of%20Xen%20and%20KVM.pdf
http://iopscience.iop.org/1742-6596/219/4/042005/pdf/1742-6596_219_4_042005.pdf
http://hal.inria.fr/docs/00/42/56/08/PDF/linux-virtualization-mls09.pdf
http://hal.inria.fr/docs/00/42/56/08/PDF/linux-virtualization-mls09.pdf
http://en.wikipedia.org/wiki/Xen
http://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
http://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
http://en.wikipedia.org/wiki/Virtualization
http://www.nas.nasa.gov/publications/npb.html
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.mpich.org/
http://gcc.gnu.org/wiki/GFortran
http://www.phoronix-test-suite.com/
http://www.nas.nasa.gov/assets/pdf/techreports/1996/nas-96-018.pdf
http://www.nas.nasa.gov/publications/npb_problem_sizes.html
http://www.nas.nasa.gov/assets/pdf/techreports/1994/npb_2.2.pdf
http://www.nas.nasa.gov/assets/pdf/techreports/2003/nas-03-002.pdf
http://mc.cs.ut.ee/
http://cs.calvin.edu/curriculum/cs/374/homework/MPI/01/multicoreHostFiles.html

31

http://iospress.metapress.com/content/a3r8511831505325/. Online. URL last visited on 5
th

of May, 2013.

[19] Virtualization, http://en.wikipedia.org/wiki/Virtualization. Online. URL last visited on 5
th

of May, 2013.

[20] Amazon EC2, http://aws.amazon.com/ec2/. Online. URL last visited on 5
th

 of May, 2013.

[21] OpenStack, http://en.wikipedia.org/wiki/OpenStack. Online. URL last visited on 5
th

 of

May, 2013.

[22] Huan Liu. Amazon’s Physical Hardware and EC2 Compute Unit,

http://huanliu.wordpress.com/2010/06/14/amazons-physical-hardware-and-ec2-compute-

unit/. Online. URL last visited on 5
th

 of May, 2013.

[23] Amazon instance types. http://aws.amazon.com/ec2/instance-types/. Online. URL last

visited on 5
th

 of May, 2013.

[24] Counting Bytes and FLOPS, http://www.cs.virginia.edu/stream/ref.html. Online. URL last

visited on 5
th

 of May, 2013.

[25] Amazon EC2 Compute Units, http://aws.amazon.com/ec2/faqs/. Online. URL last visited

on 5
th

 of May, 2013.

http://iospress.metapress.com/content/a3r8511831505325/
http://en.wikipedia.org/wiki/Virtualization
http://aws.amazon.com/ec2/
http://en.wikipedia.org/wiki/OpenStack
http://huanliu.wordpress.com/2010/06/14/amazons-physical-hardware-and-ec2-compute-unit/
http://huanliu.wordpress.com/2010/06/14/amazons-physical-hardware-and-ec2-compute-unit/
http://aws.amazon.com/ec2/instance-types/
http://www.cs.virginia.edu/stream/ref.html
http://aws.amazon.com/ec2/faqs/

32

Non-exclusive licence to reproduce thesis and make thesis public

I, Allan Trukits

(date of birth: 13.12.1988),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public, including

for addition to the DSpace digital archives until expiry of the term of validity of the

copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright, The Cost of Virtualization for Scientific Computing, supervised by Pelle

Jakovits,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 10.12.2013

