
University of Tartu
Faculty of mathematics and computer science

Institute of computer science
Specialty of computer science

Filipp Ivanov

Restricting Python for pedagogical use
Bachelor thesis (6 EAP)

Supervisors: Härmel Nestra, PhD
 Margus Niitsoo, PhD

Author: …..................................... …. mai 2012
Supervisor: …..................................... …. mai 2012
Supervisor: …..................................... …. mai 2012

Lubada kaitsmisele
Professor: …..................................... …. mai 2012

Tartu 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

Introduction
1. Statement of the problem

1.1 Background
1.2 Proposed solution
1.3 Related work

1.3.1 AlgJava
1.3.2 Stackless Python

2. Description of the filter
2.1 Overview of functionality
2.2 Overview of the implementation
2.3 Type checking

2.3.1 Simple typing and basic polymorphism
2.3.2 Hindley - Milner type system
2.3.3 Constrained types
2.3.4 Final type system

3. Filter Implementation
3.1 Choice of Programming Language
3.2 Lexer
3.3 Parser
3.4 Profiles
3.5 Program itself

Conclusion
4. References
5. Addendum
Pythoni kitsendatud versiooni loomine

2

Introduction
This thesis deals with application of the Python programming language to the taks of

teaching students the beginning of programming.
Chapter 1 describes the background of the work by stating the shortcomings of using

the language to teach the basic computer science courses. It then depicts the proposed
solution in general and shows how it relates to the problems. The last section surveys
related projects, similar in either goals or means.

Chapter 2 starts with a description of the program and its usage, lising the intended
use case for each profile, then proceeds to the main part - high-level overview of the
implementation. Section 2.2 defines the data structures used in the filter a describes the
role of each of data flow stages. Section 2.3 then describes the evolution of the type
system used and algorithms related to type checking stage.

Chapter 3 gives a more detailed overview of the source code, including the reasons
behind the choice of implementation technology. Each section corresponds to one of
the processing stages in the flow.

Conclusion outlines the possible directions for improvement.

1.Statement of the problem

1.1 Background
The programming language Python [1] is currently used in many universities,

including the University of Tartu, as a basis for introductory programming courses.
Primary reason for this is the high readability, achieved by using clean syntax and
forcing good coding style, the most common example of which is using indentation as a
necessary block delimiter instead of a style guideline as in C-family languages.
However, there are certain drawbacks in using a modern general-purpose language like
Python for educational purposes in comparison to those tailor-made for teaching:

1. “Syntactic sugar” i.e. convenient additional constructions: The reason for
not sticking to bare minimum of programming constructs is clear as it raises the
expressive power of the language and the level of abstraction, allowing already
trained programmers to focus on algorithms, not the underlying operations. In
order to make use of advanced constructs, however, the students need to
understand the basics first. The aim of the first programming courses is not to
teach language features, but to learn how to think logically like a programmer.

For example, Python allows easy checking if integer belongs to a given range:

3

is_single_digit_positive = 0 < n < 10. Despite being much clearer, it is not as
useful for teaching purposes as its expansion which emphasises the logic of
comparison (even though the latter is closer to familiar mathematical notation):
is_single_digit_positive = 0 < n and n < 10. The same applies to built-in
libraries, that contain a bulk of useful methods for list and string objects. For
learning purposes, it is crucial that the student will himself learn to implement at
least some of the basic algorithms: searching for an element or subsequence,
finding maximum, sorting and so on.

2. Dynamic weak typing. Shifting type checking to runtime makes quick
prototyping and scripting much easier in dynamic languages like Python, but it
comes with a couple of disadvantages. Obvious type errors like adding an integer
to a string and, more commonly, typing errors are detected only in runtime. They
might exist in a rarely-called branch and be discovered only when dealing with
corner cases. Losing the result of the run because of a small typing error in a
function name or a missing colon can be frustrating for beginners. Static type
systems are able to detect most of such simple errors during compile-time.

1.2 Proposed solution
The aim of this thesis is to create a language based on Python which addresses the

two issues mentioned above. As we still want to keep the numerous benefits of Python,
the new language will be a proper subset of it so every program will still be interpretable
by any valid Python distribution. This approach adds some constraints to the semantics,
but allows one to implement the new language as a preprocessing filter that performs
the necessary checks and then passes the code to an actual Python interpreter. This
way only code checking logic needs to be written and, more importantly, existing tools
and development environments can be used with the created language. The proposed
filter will perform two kinds of checks, dealing with the two problems outlined in Section
1.1:

1. Forbidding language constructs by constraining the grammar. Depending
on the needed features, the language can be shaped, for example, to allow only
a single return statement in a function. It can also be used to disable all for-loops
and class definitions.

2. Statically type-checking the code. According to the requirement that every
program must also be valid in Python proper, we can not add any additional
syntax rules, such as type declarations and the checker must rely solely on type
inference. Python uses so-called “duck typing” in run-time: if an object has a
method foo(), it is usable in any code, which calls foo(), even if its semantics is
completely different from intended in code. In other words, suitability of object in
expressions depends only on its interface, not the exact type. This, in general,
makes it very hard, if not impossible, to typecheck Python code. However, if we

4

use only a limited subset of constructs (see previous point), a sound type system
can be built.

In fact, multiple different profiles are defined in the filter, each containing its own rules
about grammar, types and additional constraints. As an example, there are no lists or
string mutation methods in the core imperative profile.

1.3 Related work

1.3.1 AlgJava
There is a moderately large amount of languages and environments designed for

teaching programming. One of them, AlgJava[2], is a result of work done in the
University of Tartu by Jüri Kiho. AlgJava is a development package which uses Java as
a basis language but adding macroes for simpler input/output and removing complex
object-oriented parts that are irrelevant for beginners, helping them focus on the
program logic. The primary feature of AlgJava is that the source code is not edited
directly as plain text, but in an editor showing the block structure of a program (Figure
1).

Figure 1. AlgJava editor showing the source code of Fibonacci number generator

5

Students do not write control statements directly, but use menus to add templates
and fill in the details by hand. Statements which do not open a new block come from
Java, with the addition of macros for common operations (e.g. println instead of
System.out.println in listing above). AlgJava uses the same method for simplification of
teaching as this thesis - forbidding irrelevant elements. However, it is different in the
way programming is treated - while AlgJava uses it’s own code format requiring a
special environment, we use plain text compatible with every code editor.

1.3.2 Stackless Python
Stackless Python[3] is an extension of Python, which includes primitives for

cooperative multithreading in form of efficient user-level microthreads. All language
features of Stackless are available as library elements in code. However, the difference
between the common kernel-level multithreading and microthreads is high enough that
Stackless requires its own implementation of interpreter. Despite having the same
grammar as Python, Stackless programs differ greatly from their canonical counterparts,
embracing concurrency as almost primitive lightweight element of the language, as all
scheduling is performed in userspace.

Although the aims of Stackless are orthogonal to this project, both use Python as an
underlying language, although complement it in different ways: this project builds a
preprocessor whereas Stackless has a modified runtime.

6

2.Description of the filter

2.1 Overview of functionality
The program is intended to be used in teaching basic programming and the main use

case is the homeworks. The teacher not only assigns the exercise, but also which
language elements are available, dependent on the current lecture topic. Many tasks
can be done easily using Python’s wide range of features, but this way the teacher can
be sure that students apply the knowledge used in class and not just use generic pre-
programmed library methods. On the student side, the filter checks that the solution is
relevant to the topic and prevents confusing type errors, showing what the error is and
where it did occurs before run-time execution.

The filter is transparent so the usage is almost the same as with the normal,
complete interpreter. The only thing needed is to specify the profile (sublanguage used)
using --profile=<name> argument

bpython --profile=ImperativeExtended test.py

will check that test.py conforms to the Imperative Extended profile rules and if so, pass
the code to the Python interpreter together will all parameters excluding --profile.

There are two different lines of profiles: those containing imperative elements (state
modifications, loop structures) and functional ones. Both have instances of increasing
complexity. Those are not disjoint, as the language is useless without core features,
which will be common to both directions. Even though the functional profile is outside
the scope of this work and is not subject to implementation, it is discussed in the text to
put language feature into context and give a basisy for future development of the
system.

Basic ImperativeCore profile specifies mostly used elements of the language. It is
already Turing-complete and suitable for teaching - its capabilities are those usually
used in pseudocode in textbooks:

● Literals - integers, floating point numbers, strings and Boolean values
● Arithmetic operations on numbers (+, -, *, /, //, %) and string concatenations
● Logical primitives (and, or, not) and comparison operators (<, <=, ==, =>, >)
● Input/output functions: print(), input()
● Type conversion (may be confusing for students, but needed because of the
type of input()): int(), float(), str()

● String methods without side effects: strip(), replace(), find(), count(),
endswith(), lower(), upper(), capitalize()

7

● String type predicates: isalpha(), isalnum(), isdecimal(), isdigit(), islower(),
isnumeric(), isspace(), isupper()

● Conditional statements if .. elif .. else.
● While-loop
● Variables and assignments - as there is only global scope, variable holds its
type throughout the whole code

Imperative core is sufficient enough to express most numerical algorithms which
usually serve as examples in the early programming courses: primality checks, solving
equations etc.

When the students are introduced to the array structure, the level of language needs
to be raised to an ImperativeExtended profile. In addition to previous elements, it also
supports lists, their direct indexing, and basic Python slice syntax where arr[k:l] extracts
sublist, which contains elements from index k inclusive to index l exclusive. Algorithms
on this course stage (sorting, searching etc) require additional control structures such
as break and continue. Commonly used primitives are added: functions len(), sum(),
range(), list(), list mutation methods append() and reverse()# and string methods
replace() and split().

ImperativeAdvanced is a slight extension of ImperativeExtended, which adds only the
for-loop. At this stage in learning there is not much point in forcing students to further
traverse lists on low level by manually increasing and controlling indices.

2.2 Overview of the implementation
The working principles of the filter resemble those of the front-end of most language

translators. It takes as input the program code (along with control switches) and passes
it through several stages of analysis (Figure 2)

Figure 2. Processing stages of the filter

Lexical analyzer (lexer / scanner). As the program code is externally just a plain
text file, its internal structure needs to be inferred. The task of the lexer is to separate
the text into basic lexical elements of the language, so-called tokens, such as literals

8

(strings, numbers and other constants), identifiers (names for variables, functions,
classes), keywords, delimiters and so on. Additionally, the position of tokens in the
source file is attached, to make error messages more readable. At this stage
semantically irrelevant data is removed, including comments and formatting whitespace.
Lexer can only detect the most trivial errors, such as unmatched quotes and broken
indentation.

The lexical structure of Python programs[4] is not that complex, but contains a couple
of difficult nuances. One of them is the availability of different types of string tokens,
each with its own delimiters, leading to their grammar being not regular, but context-
free, meaning that the usual way to deal with scanning - regular expressions - are not
suitable for all literals. Floating point numbers also have some nontrivial forms. The
other difficulty is the reliance of language on indentation in the source file to define
blocks. However, the Python specification contains clear rules of inferring block scopes
from indentation changes, so this was not a problem.

Lexer takes the source code and outputs the stream of tokens to the next stage. For
example, this code:

def foo(x):
return x == 0

print(foo(2)) # output

gets tokenized to the following stream:

[(Keyword "def",(1,1)), (ID "foo",(1,1)), (Delimiter "(",(1,1)), (ID "x",(1,1)), (Delimiter ")",
(1,1)), (Delimiter ":",(1,1)), (NewLine,(1,1)), (Indent,(2,2)), (Keyword "return",(2,2)),
(ID "x",(2,2)), (Operator "==",(2,2)), (IntegerLiteral "0",(2,2)), (NewLine,(2,2)),
(Dedent,(4,4)), (ID "print",(4,4)), (Delimiter "(",(4,4)), (ID "foo",(4,4)), (Delimiter "(",
(4,4)),(IntegerLiteral "2",(4,4)), (Delimiter ")",(4,4)), (Delimiter ")",(4,4)), (NewLine,
(4,4))]

Note that both the cosmetic empty third line and the comment did not influence the
stream (there is only one NewLine token between function definition and print() call).
The number pairs denote the line range where the token was detected. Almost every
token in lexer is located on a single line, but in the next stages those ranges are
combined to precisely specify where the error occurred. Literals contain their token
string, which is actually unneeded in the filter (only the type is needed), but can be
useful in the future.

Syntactic analyzer (parser). The program code is not linear, but highly structured.
The goal in this stage is to infer this structure in form of abstract syntax tree (AST).
The AST shows the role of each language element and the sub elements it is

9

constructed from. This tree is the basis for any program analysis, as it is basically a
decoded program text, available for the machine processing. As an example, the
parsing of the code above results in the AST on Figure 3:

Figure 3. Abstract syntax tree example

The parsing of token stream is done using top-down approach, where the tree is built
starting from root node. The parser tries to choose grammar productions that match the
leftmost unparsed token in the stream. The complete Python grammar[5] is quite big,
but only parts allowed in profiles are relevant, which helps to reduce the complexity.
With a couple of exceptions, only one rule can be chosen, making parser mostly
predictive, even though backtracking is still needed in some cases.

Constraint checker. Each profile contains a function that enforces grammar
constraints, forbidding constructs as stated in the Section 1.1. It walks the syntax tree,
checking whether each node is valid with respect to the profile rules. For example,
unified grammar defines the simple statement as:

simple_stmt ::= assignment_stmt | return_stmt | break_stmt | continue_stmt |
expr_stmt

However break keyword is forbidden in core profiles. Code using it will still pass the
parsing stage, but resulting AST will not satisfy constraint function. This check is not
limited to grammar contraction, but can do additional analysis on nodes, e.g. make sure
that each branch in the procedure has a return-statement.

Type checker. The main analysis performed by the filter is typechecking, which tries
to assign a type to each expression and checks whether those are consistent. Type
checker can be the same for each profile, as the type system changes only slightly
between sublanguages. For example, even though the function definition is not
available in the most basic profile, type checker can contain function-related code -
filtering definitions out will occur on parsing stage. As type checking is the main feature
of the system, we will describe it in more detail in the following section.

10

2.3 Type checking
Languages can be typed either explicitly or implicitly. In the explicit systems, element

types are assigned by the programmer in form of variable, function and other
declarations. Examples include most of currently used general-purpose compiled
languages, such as the ones belonging to C syntax family - C, C++ and Java. The
compiler then checks if the usage conforms to declarations - if a string variable is
passed into function requiring an integer, a type error is raised. However, manually
assigning a type can be cumbersome and in some cases can harm readability: for
example, prior to C++11[6], programmers were required to name full iterator types, even
though those were already completely determined by template arguments of collection
classes:

list<string> collection;
...
list<string>::iterator i = collection.begin();

In big systems with heavy use of templates declarations could become quite long.
The same problem haunts all sufficiently powerful explicit type systems. The logical step
further is to let compiler infer at least some, if not all, types from the code. That is the
basic idea of implicitly typed languages (though there is another case of dynamically
typed code, where types are checked in runtime without neither annotations nor
inference required, but this thesis is concerned with static systems for the reasons
outlined in the first part). The C++11 standard added a basic inference means to the
language, letting the programmer to write the code above as:

list<string> collection;
…
auto i = collection.begin();

This does not make C++ implicitly typed, but helps to reduce the visual noise and
demand on programmer. Some languages provide almost full support for type
inference: not only do variables not require declarations, but also the types of functions’
formal arguments are determined by the compiler. For example, Haskell can infer the
type of function

fac x = if x == 0 then 1 else x * fac (x -1)

as (Num a) => a → a, meaning “function, which takes a numerical value and returns
the value of the same type”. Even though the actual factorial function should only be

11

applied to integral arguments, this constraint is nowhere to be found in code, so the
inference engine produced the most general type for the expression.

Inference and checking are not two disjoint processes - inference algorithms depend
on type checking, using its information to guide type assignments.

The described filter implements complete type inference for restricted subsets of
Python. Next sections will describe difficulties and solutions for type systems of
increasing complexity, leading to the final algorithm used in the filter.

2.3.1 Simple typing and basic polymorphism
The easiest profile to check is the imperative core. Distinctive feature of it is the lack

of means to define functions. Programmer is left with a set of basic language elements
(literals, operator, while-loop and conditional statement) and few predefined functions
related to input/output. Each variable gets its type from the first assignment to it. The
assigned value can only be:

1. Literal - they carry their exact type as detected by lexer
2. Expression - all functions and operators are predefined and the result types of
their applications can be uniquely determined from the types of the arguments.

3. Another variable - should already carry its type, otherwise it is a checking error
So the type of each variable can be ultimately derived from literals and applications.

Type system at this point is simple:
1. Primitive types (all except PyVoid have the same semantics as respective
Python dynamic ones):

a. PyInt - Integers
b. PyFloat - Floating point numbers
c. PyString - Strings
d. PyBoolean - Boolean values
e. PyVoid - Type without values, used as the type of statements (e.g.
while-loop)

2. Compound types - only functions of the form Type* → Type - list to the left of
arrow describes the types of function arguments, the right-hand annotation is the
return type of the funcion.

Operator application rules, such as (PyInt + PyFloat → PyFloat) can be hardcoded.
In the setting of simple typing the checking algorithm is simple, defined by induction on
the AST node type (Figure 4). The only state maintained is the symbol table - dictionary
mapping variable names to their types.

1. Literal - return the literal type
2. Variable x - check whether symbol table contains the entry for x. If it does,
then return associated type. Otherwise, raise error, because the x used before
anything was assigned to it.

12

3. Assignment of expression e to variable x - compute the type t of e. If x is not
already in symbol table, add entry x = t to it. Otherwise, compare t to the known
type of x. If those two are equal, return t, if not, raise error about type mismatch,
as x has different types in different code sections. As only function and class
definitions open a new naming scope in Python, any variable must have a single
type throughout the whole code in the imperative core.

4. Function or operator application - check if the arguments have valid types and
compute the resulting type. In function case this is straightforward, as there is
only one possible type for each parameter and result type is defined. Operators
require some sort of table enumerating all possible argument type combinations.

5. If statement - check all branches, return PyVoid.
6. While-loop - check that condition has type PyBoolean, check loop body and
return PyVoid

Figure 4. Type checking algorithm in imperative core profile

However, even in this profile this is not sufficient. For example, Python output
function print() takes a value of any type as the argument. Such functions are called
polymorphic. In this simple case, the workaround used is to define additional fictive
type PyAny, which matches each of other types. So the type of print() is [PyAny] →
PyVoid.

2.3.2 Hindley-Milner type system
Even with the addition of PyAny the type system is not expressive enough. It now

allows for correct usage of functions, but is also too permissive. Consider identity
function id :: [PyAny] → PyAny. It can be applied to any value, but return type is not
specified, it will always be PyAny, when it should be PyInt for id(5) and PyBoolean for
id(True). This error even in the best case propagates further: for example, type of

5 + id(5)

will depend on implementation - as PyFloat matches PyAny, the result of id(5) can
be matched to PyFloat, adding of [PyInt, PyFloat] yields type PyFloat for the whole
expression, when the actual type should be PyInt. When we get to the actual inference,
errors become more critical.

The problem can be stated as the relation between types in function signature. The
return type of the id() is the same as the argument type, but the type system does not
allow constraining types this way. The solution for this is to introduce type variables
into signatures, which perform the same role as variables in formal logic: they can be
substituted for concrete types. The signature for id() can now be correctly expressed as
forall a : [a] → a, where forall is universal quantifier : forall a : t means that a ranges

13

over all possible types. It is now clear for type checker that argument and result types
for id() must be the same. When the function is applied, its signature is matched against
arguments, instantiating the function type. For example, some instances of id() type
are:

id :: [PyInt] → PyInt
id :: [PyFloat] → PyFloat
id :: forall a : [([a] → a)] → ([a] → a)
id :: forall a : forall b : [([a] → b)] → ([a] → b)

As seen in the example, type variables can be substituted not only with primitive
types, but with compound types as well. Last type shows that multiple variables are
possible, but we want to avoid signatures similar to this:

forall a : [forall b : ([a] → b)] → (forall b : ([a] → b)

Type systems that allows such arbitrary quantification are called System F[9].
However, the fully implicit type checking for it is undecidable, and such power is not
needed for our goals. Restricting forall to top-level, we get type system known as
Hindley-Milner Type System(HMTS)[7]. HMTS is perfectly suited for typing Python, as
it does does not require explicit type annotations and has a linear type inference
algorithm. As it is defined for lambda-calculus, some minor adaptations for this case are
needed, but they preserve all the good properties of HMTS.

Inference in HMTS is not as straightforward as in simple typing[8]. Firstly, additional
terms must be defined. As in formal logic, there is a notion of free variables, which are
those type variables in signature which are not bound by some quantifier. This is not
possible in top-level, but happens in inner expressions: forall a : [a, Int] → a has no
free variables, but [a, Int] → a contains free type variable a. Non-free (bound) variables
can be safely renamed in signature, if the new name is not used there (this can be
refined by forbidding only those names, which are free in signature, but it is easier just
to generate a new unique name).

Next, the HMTS operates in terms of type substitutions and renamings. Renaming
of type forall a : t generates new unique type variable b, replaces all free occurrences
of a in t with b, getting type t’ and yields forall b : t’. Substitution is a mapping from type
variables to types. After applying substitution {a → e} to type t we get a new type
instance t’ of t, where every occurrence of a is replaced with e (written as t’ = t[a\e]).
This operation has many subtle nuances and needs to be defined formally by induction
on type t in Figure 5.

1. Primitive type - return t
2. Type variable b - if a = b, then return e, else b

14

3. Function type [a1,a2,..,an] → b - apply inductively to arguments and return
function of the results

4. Generic type forall b : u - rename to forall c : u’, apply substitution to u’,
getting u’’ and return forall c : u’’

Figure 5. Substitution algorithm

Another crucial algorithm is Robinson’s unification, which (in this application) takes
two types and attempts to find a substitution (mgu - most general unifier), which will
make them match. For example, mgu of [a] → PyInt and [PyBoolean] → c is {c →
PyInt, a → PyBoolean}, because when applied to both terms it will yield [PyBoolean]
→ PyInt. As before, unifications is defined by structural induction of argument types in
Figure 6.

1. If both are variables, x and y - if x = y, then return empty substitution, else {x
→ y}

2. If one is variable x and other is a function f, then check whether x is a free
variable in f. It so, then raise error (occurs check excludes infinite types).
Otherwise return {x → f}

3. If one is variable x and another - primitive type t, return {x → t}
4. If both are primitive types - return empty substitution if equal, raise error
otherwise

5. If both are functions - check that argument counts are the same. If they differ,
raise error. Otherwise, try to unify arguments and result type, then unify resulting
substitutions

Figure 6. Unification algorithm

Now, the HM itself takes a type context and an expression to type as an input. Type
context is a set of assumptions about types of identifiers (both variables and functions),
the same as the symbol table in the simple typing. The algorithm returns not only the
type of the statement, but also the substitution, which needs to be applied to context to
get valid set of assumptions. For example.

infer({foo : a}, foo(5)) → (c, {a → ([PyInt] → c})

The unification algorithm detected that foo is a function, so foo :: [b] → c, where b
and c are new unique variables and changed the context to {foo : [b] → c}. Then it
unified argument type of the function with the type of the passed value, getting most
general unifier {b → PyInt}, which then was applied to the current context {foo : [b] →
c}, getting final context {foo : [PyInt] → c}. Types of foo: a and [PyInt] → c were

15

unified to get substitution {a → ([PyInt] → c)} and the type of the whole application
expression c.

The HM (Figure 7) uses structural induction on the terms to get type information
about expression e in context ctx.

1. If e is a variable x, then check whether there is an assumption x : t in ctx. If no,
then this is a free identifier, which corresponds to the uninitialized variable in the
code, therefore error is raised. If t exists, then rename t to t’ and return ({}, t)

2. If e is a constant with type t, return ({}, t)
3. If e is the definition of function named f taking arguments x1,...,xn, then generate

n+1 new type variables t1,...,tn,ret_t and recursively typecheck the body of the
function in the context ctx + {f : tf, x1 : t1,...,xn : tn} to get substitution s1. The
type of the body does not interest us, as it will always equal PyVoid - body is a
sequence of statements and does not produce a value. Instead all return
statements are treated as assignments to a fictive variable with type ret_t and
types substituted for ret_t are unified, getting mgu s2. Those substitutions are
combined, getting s = s2 . s1 and the pair (s, [s(t1),...,s(tn)] → s(ret_t)) is
returned, with the function type generalized (by binding all its free variables with
universal quantifiers, e.g. [a,PyInt] → a becomes Forall a : [a,PyInt] → a).

4. If e is the application of function f to arguments x1,...,xn, first infer type of f,
getting (sf, tf). Then infer argument types in context sf(ctx) to get (s1, t1),...,(sn,
tn). Compose s1,..,sn to get substitution s. Then create new type variable ret_t
and unify s(tf) with function type [s(t1),...,s(tn)] → ret_t, getting substitution v.
Return (v . s . sf, v(ret_t)). The substitution s here is a unifier matching function
argument to their actual types. We can not use f type directly, as it can not just
an identifier, but also an expression return function.

Figure 7. Hindley-milner type inference algorithm
HM is not directly used in the filter, but is a basis for its future extension with

functional elements (starting with procedure definitions). The rules will need to be
further adapted to allow assignments and function definitions, as the canonical
algorithm operates on lambda-expressions. However, as shown in [14] many familiar
constructs can be easily translated into lambda-calculus.

2.3.3 Constrained types
Hindley-Milner is expressive enough to type any valid expression in the language.

However, it is not sound: some code containing logical type errors can still pass checks.
Consider following function:
 def max(x, y):

16

if x > y:
return x

else:
return y

The HM will infer the type forall a : [a,a] → a. However, then those terms are
accepted by type system:
 max(‘foo’, ‘bar’)

max(max, max)

even though they have no meaning. The problem is that HM is too permissive:
variables range over all types, only constraints are between different types in the
signature. What is needed is the capability to place additional restrictions on type
variables, so that they would instantiate only to a subset of all types. In general case,
this would require types of form forany a in [t1,..,tn] : t, meaning that a can only be one
of t1,...,tn.

However, as the type system in the filter is implicit, the problem can also be solved by
defining a set of constraints and declaring which primitive types hold any of them, as in
Table 1.

Constraint Description Instances

Num Numerical types supporting addition,
subtraction, multiplication, division and
comparison.

PyInt, PyFloat

Seq Sequences: support len() and indexing PyString, PyList t
Table 1. Example of simplified bounded quantification

2.3.4 Final type system
To summarize, the type system for Python consists of following:

1. Primitives: PyInt, PyFloat, PyString, PyBool, PyVoid, PyVar(name)
2. Fictive types: PyAny, PyAnyOf Type*
3. Functions: Type* → Type
4. Homogeneous lists: ListOf Type
5. Ranges: PyRange1

6. Universally quantified types: forall x : Type
7. Boundedly quantified types: forany y in Type* : Type

1 Ranges are included as the return type of function range(), because since Python3 it stopped returning
lists, switching to the object of special class range

17

3. Filter Implementation

3.1 Choice of Programming Language
Haskell[10] is a functional programming language with a kit of distinct features:

● Referential transparency (purity): there is no state. In place of traditional
variables Haskell has bindings, which are more related to the mathematical
concept of the variable - synonym for a value. Once the value is assigned to the
binding, it can not be changed. Pure functions compute their output based solely
on input taken, without referencing any global state. At any time in the execution,
pure function will return the same output if the same input is provided. This
discards a lot of problems, including, for example, traditional complexities of
locking in concurrency. Still, many times non-pure code is needed, most
commonly related to input/output (keyboard input function can not be made pure
by definition - its result depends on the user's actions). Haskell provides means
to write it and maintains a clear separation between pure and impure code.

● Very expressive strong type system: as the language has long been a testing
ground for type-theoretic research, its type system is more sophisticated than in
most mainstream languages, allowing, for example, higher-order types (similar to
C++-type templates), variant types (tagged unions) and type classes (one of the
possibilities to incorporate bounded quantification). Additionally, there are many
extensions to the type system[11], which can be activated to further increase the
power of the system.

● Lazy evaluation: expressions in Haskell are evaluated only when their value is
actually needed. This allows to use some programming practices too costly or
even impossible in strictly evaluated languages, e.g. infinite structures. However,
lazy semantics has some pitfalls: impure code may depend on the order of
execution, which is implementation-dependent, reasoning about resource usage
is complicated in lazy programs and so on. Thus Haskell also provides primitives
to enforce evaluation.

● Clear syntax: constructs in Haskell are designed in the way that reduces the
size of boilerplate code. For example, as the most common operation is Haskell
is function application, it does not require brackets or commas: f x y is an
application of function f to value x and y. Similarly, type definitions are concise.
This encourages programmers to think in functional style and create higher-level
abstract structures without hesitation.

● Big standard library: Haskell distributions contain a lot of packages. There are
task-specific modules, like in Python or Ruby (e.g. JSON serialization, command-

18

line parsing, concurrency), but Haskell also has a lot of packages supporing
abstractions. For example, the Control.Applicative module provides functions to
operate on types with specific properties (applicative functors), without actually
doing anything practical. There is also a packet database - Hackage, similar in
functionality to repositories of Unix-family operating systems.

Haskell was chosen as the implementation language for several reasons:
1. The theory behind static analysis lends itself nicely to functional paradigm. As
described in section 2.2, the filter is essentially a series of processing stages:
lexer, parser and type checker, which serve as black boxes, calculating output
based solely on the input taken. This kind of data-flow algorithms can naturally
be modelled by the composition of pure (side-effect-less) functions representing
different stages in computation.

2. The analysis often involves structural induction (for example, see algorithms in
Section 2.3) and this kind of conditioning can be expressed in Haskell with
minimal amount of excessive code by pattern matching mechanisms. The code
written in this way is closer to the original declarative algorithm definitions that,
for exmple, the Java code with similar semantics would be. This makes it easier
to maintain. To achieve similar properties in Java, additional methods are
required, such as the Visitor design pattern[13], and it even those do not allow for
as clean a code as Haskell does.

3. Overall, Haskell provides a great range of means to increase abstraction and
modularity, e.g. higher-level functions and type classes. This huge expressive
power helps to cut down the code size, which leads to easier maintainability.

4. The author has been familiar with the language on an intermediate level for a
long time and wanted to try using Haskell (and functional programming in
general) outside of toy projects.

3.2 Lexer
The whole lexer resides in the source file Lexer.hs. It defines the key Token type,

exporting it and the main function lexer, which takes a list of source code strings and
returns a corresponding token stream.

Function processLines removes comments and adds numbers to the lines, which will
later be used to show locations in error messages. Then empty lines are removed and
consecutive lines are joined when needed (in multiline expression and lines ending with
backslashes). Its output is the list of meaningful enumerated strings. It is further
processed by the function addIndentation, which expands tabs and adds indentation
levels to each line.

After that, each line is tokenized by the function tokenize. It uses the list tokenMap
which consists of pairs of functions: detectors and extractors. Detector is a predicate on
string, which holds only if some prefix of the string is a valid token. Extractor extracts

19

this token, returning it and the rest of input string. For example, after the extractor for a
number token would return (IntegerLiteral “1”, “+ 2”), when run on the string “1+ 2”.
Using this list tokenize extracts all tokens from the code line. All this code is an example
of Haskell’s expressive capabilities mentioned above: tokenize code is just one line
long, using higher-order list generating function unfoldr for the standard library.

Next stage is specific to Python - function inferIndentationTokens processes
indentation data received from previous steps to get block starting and ending tokens
(Indent and Dedent). It also finally concatenates lines to get a uniform token stream.
The last phase unifies adjacent string literals accordingly to the Python lexing rules.

3.3 Parser
File AST.hs declares the type of Abstract Syntax Trees (AST) and defines a function

extractNodes, which returns the list of the nodes in AST which satisfy given predicate.
This generic function is primarily used to enforce syntactic constraints of the active
profile. Actually AST type is used no directly, but in conjunction with an integer pair,
which describes, on which lines the construct corresponding to the tree node resides in
the original source file.

The parser is in file GenericParser.hs. Parser is generic, because it does not use
profile data, but analyzes code according to the union of profiles’ grammars: forbidden
constructs are detected later, operating on the ready AST, not while parsing.

Parser is programmed using Parsec[12] library, which implements monadic parsing
techniques, containing basic general parsers and ways to combine them into more
specific ones. Parsec can be loosely called an embedded domain-specific language
inside Haskell programs, as it allows defining parsers declaratively, with the executable
specification in almost one-to-one correspondence with documented grammar rules:
parser for

simple_statement ::= assignment_stmt | return_stmt | expression_stmt
assignment_stmt ::= id “=” expr

is written in code as

simple_stmt = try assignment_stmt <|> return_stmt <|> expr_stmt

assignment_stmt = do
id <- identifier
delimiter "="
rvalue <- expr
returnASTLoc (AST.Assignment id rvalue) id rvalue

20

Grammar is almost directly translated to code, with some details, such as try-
combinator to support backtracking (as expression and assignment can both start with
identifier) and last line which constructs AST node and combines line ranges for
subexpressions.

3.4 Profiles
The Profile type is defined in the file Profile.hs. Each of the profiles consists of the

function, which takes an AST node and returns True, if the represented construction is
forbidden in this sublanguage, and another function, which takes an AST and checks its
types.

The file ProfileCommon.hs declares a data type for errors used in the type checkers.
CheckErrorData holds information about the nature of the error: for example
(IfNonBooleanCondtion t) means that the condition in some if-clause has a type
different from PyBool. CheckError holds this data and can additionally contain location
in code where the error was detected. There are also some helper functions related to
error handling (for example, converting errors to human-readable messages) and
collections of language primitives: groups of functions and methods, such as pure string
methods, or input\output functions) in the file.

PyType module (PyType.hs) declares all the Python types in the system, functions to
transform them into strings and equality relations between them.

The actual profile-related code is in the source file: ImperativeProfiles.hs, which uses
algorithms described in section 2.3. The implementations require ways to throw and
handle errors, and some relevant state needs to be threaded throughout the checking
function. Directly implementing those features in functional setting would lead to the
large amount of maintenance code unrelated to the logic itself. For example, there is no
state in pure functional programming, so it would be necessary to pass and return in in
any function. However, this problem is long solved in Haskell community by using
abstract types called monads. Monad represents the nature of the computation - State
monad allows to implicitly thread state while the Error monad adds exception support.
Haskell supports monadic code on the syntax level, so all the plumbing is hidden -
algorithms are still directly translated to the code.

3.5 Program itself
Entry point for the filter is the function main in the file Main.hs. It parses command

line arguments and analyses the code in the chosen profile.

21

Conclusion
As the result of the thesis, several sublanguages of Python suitable for teaching

basic programming skills were defined. The filter system created ensures that the code
conforms to the grammar of the sublanguage and checks types. Type checker uses
Hindley-Milner type system with bounded types.

There is a number of directions to develop the system further. The most promising of
them would be implementing a functional profile (by adapting the Hindley-Milner
algorithm to the Python). Currently method calls are translated on parsing stage to
functions with an explicitly passed self object. This lack of distinction between functions
and methods can lead to some invalid expressions passing the type checker. Solution
to this could be a part of a typing algorithms for an additional profile, which enables
object-oriented primitives, such as class definitions. This is not the only way to extend
the type system, though - for example, distinguishing between pure and effectful
functions could allow to statically analyse the code better.

Profiles do not support module imports. Adding this capability would require the filter
to infer the module interface from its source code. As doing this at runtime is too costly,
the feature would require some additional infrastructure.

Error messages are currently built in, so they can not be translated without rebuilding
the program. One possibility of improving the solution would to externalize them and
then allowing a choice of language as a command line argument. The same could be
done in a limited way to profile definitions by moving them to configuration files or even
by creating a domain-specific language to specify grammar constraints.

22

4. References
[1] Python programming language

http://www.python.org/
[2] Amadeus AlgJava

http://www.cs.ut.ee/~kiho/AlgJavaHome.html
[3] Stackless Python

http://www.python.org/dev/peps/pep-0219/
[4] The Python language reference - 2.Lexical analysis

http://docs.python.org/py3k/reference/lexical_analysis.html
[5] The Python language reference - 9.Full grammar specification

http://docs.python.org/py3k/reference/grammar.html
[6] Working draft, standard for programming language C++

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
[7] Luis Damas, Robin Milner - Principal type-schemes for functional programs

Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, ACM, pp. 207–212
[8] Ian Grant - The Hindley-Milner type inference algorithm

http://ian-grant.net/hm/hindley-milner.pdf
[9] Benjamin C. Pierce - Types and programming languages, second edition

ISBN 0-262-16209-1
[10] The Haskell programming language

http://www.haskell.org/haskellwiki/Haskell
[11] The Glorious Glasgow Haskell Compilation System User's Guide, version 7.4.1,
chapter 7: GHC language features http://www.haskell.org/ghc/docs/7.4-
latest/html/users_guide/ghc-language-features.html
[12] Parsec: Direct style monadic parser combinators for the real world

Daan Leijen, Erik Meijer - Technical Report UU-CS-2001-35, Departement of
Computer Science, Universiteit Utrecht, 2001
[13] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides - Design patterns:
elements of reusable object-oriented software

ISBN 0-201-63361-2
[14]Guy Lewis Steele, Jr., Gerald Jay Sussman - Lambda: The Ultimate Imperative
 MIT AI Lab. AI Lab Memo AIM-353. March 1976

Web pages and linked documents were last checked at 13.05.2012

23

5. Addendum
The source code for the system is provided on the DVD

24

Pythoni kitsendamine õpetamiseks
Bakalaureusetöö

Filipp Ivanov
Resümee

Programmeerimiskeel Python on laialt kasutatud esimese keelena informaatikaaluste
õppimiseks. Selleks on hulk põhjusi, mille seas on vajalikud loetavus ja arusaadavus.
Kahjuks on Pythonis kui üldotstarbilises keeles omadusi, mis rikkuvad tema sobivust
selle ülesande täitmiseks. Käesoleva töö tulemusena on loodud filter, mis töötab
Pythoni interpretaatori peale, et nende mõju leevendada.

Esimene probleem pärineb Pythoni süntaksi mitmekesisusest: struktuurid on
mugavad kasutamiseks ja peitvad allolevaid põhiprintsiipe. Paljude ülesannete jaoks,
mille uus programmeerija peaks ise suutma teha, leiduvad keeles kättesaadavad
primitiivid. Tudengil võib tekkida mulje, et programmerimine on peamiselt keele
elementide rakendamine. Aluskursuste eesmärk on aga õpetada mitte konkreetset
keelt, vaid loogilist mõtlemisviisi. Seega liigne süntaks ainult häirib õppimist.

Loodud süsteem lubab kitsendada keele võimaluste hulka. Enne interpretaatorile
lähtekoodi andmist kontrollib ta, kas mingid rakendatud keele elemendid on keelatud
kasutamiseks, ja kui see on nii, näitab, miles on viga. Seega õpetaja saab anda
sooritamiseks ülesandeid, mille fookuseks on mingi konkreetne idee. Näiteks tsüklite
õpetamist saab alustada üldisest while-tsüklist, et õpijad saaksid aru, kuidas täitmise
ajal indekseid muudetakse ja tingimusi kontrollitakse. Filtris on praegu olemas kolm
keeleprofiili, igaüks nendest lubab kasutada ainult teatud alamhulk Pythoni
võimalustest.

Teine probleem seisneb selles, et Python on dünaamiline keel ega analüüsi koodi
staatiliselt. See tähendab, et vigu avastatakse ainult käivitamise ajal. Iga trükkimisviga
ja väärte tüüpide kasutamine funktsiooni argumentideks lõpeb kohe programmi täitmist,
kaotades tulemusi. Baaskursustes tuleb niisuguseid olukordi vältida.

Filter loob Pythoni peale tugeva tüübisüsteemi ja kontrollib lähtekoodi tüübide
kooskõla. See võimaldab vähemalt trüükivigadest ja enamasti valedest tüüpidest
kasutajat informeerida enne täitmist.

Kui kasutatud elemendid on kõik lubatud ja tüübid langevad kokku, siis süsteem
annab programmi tavalisele Pythoni interpretaatorile ja näitab kasutajale väljundit.

25

	Contents
	Introduction
	1.Statement of the problem
	1.1 Background
	1.2 Proposed solution
	1.3 Related work
	1.3.1 AlgJava
	1.3.2 Stackless Python
	2.Description of the filter
	2.1 Overview of functionality
	2.2 Overview of the implementation
	2.3 Type checking
	2.3.1 Simple typing and basic polymorphism
	2.3.2 Hindley-Milner type system
	2.3.3 Constrained types
	2.3.4 Final type system
	3. Filter Implementation
	3.1 Choice of Programming Language
	3.2 Lexer
	3.3 Parser
	3.4 Profiles
	3.5 Program itself
	Conclusion
	4. References
	5. Addendum
	Pythoni kitsendamine õpetamiseks

