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Introduction
This thesis deals with application of the Python programming language to the taks of 

teaching students the beginning of programming.
Chapter 1 describes the background of the work by stating the shortcomings of using 

the language to teach the basic computer science courses. It then depicts the proposed 
solution in general and shows how it relates to the problems. The last section surveys 
related projects, similar in either goals or means.

Chapter 2 starts with a description of the program and its usage, lising the intended 
use case for each profile, then proceeds to the main part - high-level overview of the 
implementation. Section 2.2 defines the data structures used in the filter a describes the 
role of each of data flow stages. Section 2.3 then describes the evolution of the type 
system used and algorithms related to type checking stage.

Chapter 3 gives a more detailed overview of the source code, including the reasons 
behind the choice of implementation technology. Each section corresponds to one of 
the processing stages in the flow.

Conclusion outlines the possible directions for improvement.

1.Statement of the problem

1.1 Background
The  programming  language  Python  [1]  is  currently  used  in  many  universities,  

including  the  University  of  Tartu,  as  a  basis  for  introductory  programming  courses. 
Primary reason for  this  is  the high readability,  achieved by using clean syntax  and 
forcing good coding style, the most common example of which is using indentation as a 
necessary  block  delimiter  instead  of  a  style  guideline  as  in  C-family  languages. 
However, there are certain drawbacks in using a modern general-purpose language like 
Python for educational purposes in comparison to those tailor-made for teaching:

1. “Syntactic sugar” i.e. convenient additional constructions: The reason for 
not sticking to bare minimum of programming constructs is clear as it raises the 
expressive power of the language and the level of abstraction, allowing already 
trained programmers to focus on algorithms, not the underlying operations. In 
order  to  make  use  of  advanced  constructs,  however,  the  students  need  to 
understand the basics first. The aim of the first programming courses is not to 
teach language features, but to learn how to think logically like a programmer.  

For example, Python allows easy checking if integer belongs to a given range: 
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is_single_digit_positive = 0 < n < 10. Despite being much clearer, it is not as 
useful  for  teaching purposes as its  expansion which  emphasises the logic  of 
comparison (even though the latter is closer to familiar mathematical notation): 
is_single_digit_positive  =  0  <  n  and n  <  10.  The same applies  to  built-in 
libraries, that contain a bulk of useful  methods for list  and string objects.  For 
learning purposes, it is crucial that the student will himself learn to implement at 
least some of the basic algorithms: searching for an element or subsequence, 
finding maximum, sorting and so on.

2. Dynamic weak typing. Shifting  type  checking  to  runtime  makes  quick 
prototyping and scripting much easier in dynamic languages like Python, but it 
comes with a couple of disadvantages. Obvious type errors like adding an integer 
to a string and, more commonly, typing errors are detected only in runtime. They 
might exist in a rarely-called branch and be discovered only when dealing with 
corner cases. Losing the result of the run because of a small typing error in a 
function name or  a missing colon can be frustrating for beginners. Static type 
systems are able to detect most of such simple errors during compile-time.

1.2 Proposed solution
The aim of this thesis is to create a language based on Python which addresses the 

two issues mentioned above. As we still want to keep the numerous benefits of Python, 
the new language will be a proper subset of it so every program will still be interpretable  
by any valid Python distribution. This approach adds some constraints to the semantics, 
but allows one to implement the new language as a preprocessing filter that performs 
the necessary checks and then passes the code to an actual Python interpreter. This 
way only code checking logic needs to be written and, more importantly, existing tools 
and development environments can be used with the created language. The proposed 
filter will perform two kinds of checks, dealing with the two problems outlined in Section 
1.1:

1. Forbidding language constructs by constraining the grammar. Depending 
on the needed features, the language can be shaped, for example, to allow only 
a single return statement in a function. It can also be used to disable all for-loops 
and class definitions.

2. Statically type-checking the code. According to the requirement that every 
program must also be valid in Python proper,  we can not add any additional  
syntax rules, such as type declarations and the checker must rely solely on type 
inference. Python uses so-called “duck typing”  in run-time: if  an object  has a 
method foo(), it is usable in any code, which calls foo(), even if its semantics is 
completely different from intended in code. In other words, suitability of object in 
expressions depends only on its interface, not the exact type. This, in general,  
makes it very hard, if not impossible, to typecheck Python code. However, if we 
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use only a limited subset of constructs (see previous point), a sound type system 
can be built.

In fact, multiple different profiles are defined in the filter, each containing its own rules 
about grammar, types and additional constraints. As an example, there are no lists or 
string mutation methods in the core imperative profile.

1.3 Related work

1.3.1 AlgJava
There is a moderately large amount of languages and environments designed for 

teaching  programming.  One  of  them,  AlgJava[2],  is  a  result  of  work  done  in  the 
University of Tartu by Jüri Kiho. AlgJava is a development package which uses Java as 
a basis language but adding macroes for simpler input/output and removing complex 
object-oriented  parts  that  are  irrelevant  for  beginners,  helping  them  focus  on  the 
program logic.  The primary feature of AlgJava is that the source code is not edited 
directly as plain text, but in an editor showing the block structure of a program (Figure 
1).

Figure 1. AlgJava editor showing the source code of Fibonacci number generator
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Students do not write control statements directly, but use menus to add templates 
and fill in the details by hand. Statements which do not open a new block come from 
Java,  with  the  addition  of  macros  for  common  operations  (e.g.  println  instead  of  
System.out.println in listing above). AlgJava uses the same method for simplification of 
teaching as this thesis - forbidding irrelevant elements. However, it is different in the 
way  programming is  treated -  while  AlgJava  uses it’s  own code format  requiring  a 
special environment, we use plain text compatible with every code editor.

1.3.2 Stackless Python
Stackless  Python[3]  is  an  extension  of  Python,  which  includes  primitives  for 

cooperative  multithreading  in  form of  efficient  user-level  microthreads.  All  language 
features of Stackless are available as library elements in code. However, the difference 
between the common kernel-level multithreading and microthreads is high enough that 
Stackless  requires  its  own  implementation  of  interpreter.  Despite  having  the  same 
grammar as Python, Stackless programs differ greatly from their canonical counterparts, 
embracing concurrency as almost primitive lightweight element of the language, as all 
scheduling is performed in userspace.

Although the aims of Stackless are orthogonal to this project, both use Python as an 
underlying  language,  although complement  it  in  different  ways:  this  project  builds  a 
preprocessor whereas Stackless has a modified runtime.
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2.Description of the filter

2.1 Overview of functionality
The program is intended to be used in teaching basic programming and the main use 

case is  the homeworks.  The teacher  not  only  assigns the  exercise,  but  also  which 
language elements are available, dependent on the current lecture topic. Many tasks 
can be done easily using Python’s wide range of features, but this way the teacher can 
be sure that students apply the knowledge used in class and not just use generic pre-
programmed library methods. On the student side, the filter checks that the solution is 
relevant to the topic and prevents confusing type errors, showing what the error is and 
where it did occurs before run-time execution.

The  filter  is  transparent  so  the  usage  is  almost  the  same  as  with  the  normal, 
complete interpreter. The only thing needed is to specify the profile (sublanguage used) 
using --profile=<name> argument

bpython --profile=ImperativeExtended test.py

will check that test.py conforms to the Imperative Extended profile rules and if so, pass 
the code to the Python interpreter together will all parameters excluding --profile.

There are two different lines of profiles: those containing imperative elements (state 
modifications, loop structures) and functional ones. Both have instances of increasing 
complexity.  Those are not disjoint, as the language is useless without core features, 
which will be common to both directions.  Even though the functional profile is outside 
the scope of this work and is not subject to implementation, it is discussed in the text to 
put  language  feature  into  context  and  give  a  basisy  for  future  development  of  the 
system.

Basic  ImperativeCore profile specifies mostly used elements of the language. It is 
already Turing-complete and suitable for teaching - its capabilities are those usually 
used in pseudocode in textbooks:

● Literals - integers, floating point numbers, strings and Boolean values
● Arithmetic operations on numbers (+, -, *, /, //, %) and string concatenations
● Logical primitives (and, or, not) and comparison operators (<, <=, ==, =>, >)
● Input/output functions: print(), input()
● Type conversion (may be confusing for students, but needed because of the 
type of input()): int(), float(), str()

● String  methods  without  side  effects:  strip(),  replace(),  find(),  count(), 
endswith(), lower(), upper(), capitalize()
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● String type predicates: isalpha(),  isalnum(),  isdecimal(), isdigit(),  islower(), 
isnumeric(), isspace(), isupper()

● Conditional statements if .. elif .. else.
● While-loop
● Variables and assignments - as there is only global scope, variable holds its 
type throughout the whole code

Imperative  core  is  sufficient  enough  to  express  most  numerical  algorithms which 
usually serve as examples in the early programming courses: primality checks, solving 
equations etc.

When the students are introduced to the array structure, the level of language needs 
to be raised to an ImperativeExtended profile. In addition to previous elements, it also 
supports lists, their direct indexing, and basic Python slice syntax where arr[k:l] extracts 
sublist, which contains elements from index k inclusive to index l exclusive. Algorithms 
on this course stage (sorting, searching etc) require additional control structures such 
as break and continue. Commonly used primitives are added: functions len(), sum(), 
range(),  list(),  list  mutation  methods  append()  and  reverse()# and  string  methods 
replace() and split().

ImperativeAdvanced is a slight extension of ImperativeExtended, which adds only the 
for-loop. At this stage in learning there is not much point in forcing students to further 
traverse lists on low level by manually increasing and controlling indices.

2.2 Overview of the implementation
The working principles of the filter resemble those of the front-end of most language 

translators. It takes as input the program code (along with control switches) and passes 
it through several stages of analysis (Figure 2)

Figure 2. Processing stages of the filter

Lexical analyzer (lexer /  scanner).  As the program code is externally just a plain 
text file, its internal structure needs to be inferred. The task of the lexer is to separate 
the text into basic lexical elements of the language, so-called tokens, such as literals 
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(strings,  numbers  and  other  constants),  identifiers  (names  for  variables,  functions, 
classes),  keywords,  delimiters and so on.  Additionally,  the position of  tokens in  the 
source  file  is  attached,  to  make  error  messages  more  readable.  At  this  stage 
semantically irrelevant data is removed, including comments and formatting whitespace. 
Lexer can only detect the most trivial errors, such as unmatched quotes and broken 
indentation.

The lexical structure of Python programs[4] is not that complex, but contains a couple 
of difficult nuances. One of them is the availability of different types of string tokens,  
each with its own delimiters, leading to their grammar being not regular, but context-
free, meaning that the usual way to deal with scanning - regular expressions - are not 
suitable for all  literals.  Floating point  numbers also have some nontrivial  forms. The 
other difficulty is the reliance of language on indentation in the source file to define 
blocks. However, the Python specification contains clear rules of inferring block scopes 
from indentation changes, so this was not a problem.

Lexer takes the source code and outputs the stream of tokens to the next stage. For 
example, this code:

def foo(x):
return x == 0

print(foo(2)) # output

gets tokenized to the following stream:

[(Keyword "def",(1,1)), (ID "foo",(1,1)), (Delimiter "(",(1,1)), (ID "x",(1,1)), (Delimiter ")",
(1,1)), (Delimiter ":",(1,1)), (NewLine,(1,1)), (Indent,(2,2)), (Keyword "return",(2,2)), 
(ID "x",(2,2)), (Operator "==",(2,2)), (IntegerLiteral "0",(2,2)), (NewLine,(2,2)), 
(Dedent,(4,4)), (ID "print",(4,4)), (Delimiter "(",(4,4)), (ID "foo",(4,4)), (Delimiter "(",
(4,4)),(IntegerLiteral "2",(4,4)), (Delimiter ")",(4,4)), (Delimiter ")",(4,4)), (NewLine,
(4,4))]

Note that both the cosmetic empty third line and the comment did not influence the 
stream (there is only one NewLine token between function definition and print() call). 
The number pairs denote the line range where the token was detected. Almost every 
token in  lexer  is  located on a single  line,  but  in  the  next  stages those ranges are 
combined to  precisely  specify  where  the  error  occurred.  Literals  contain  their  token 
string, which is actually unneeded in the filter (only the type is needed), but can be 
useful in the future.

Syntactic analyzer (parser). The program code is not linear, but highly structured. 
The goal in this stage is to infer this structure in form of  abstract syntax tree (AST). 
The  AST  shows  the  role  of  each  language  element  and  the  sub  elements  it  is 
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constructed from. This tree is the basis for any program analysis, as it is basically a 
decoded  program  text,  available  for  the  machine  processing.  As  an  example,  the 
parsing of the code above results in the AST on Figure 3:

Figure 3. Abstract syntax tree example

The parsing of token stream is done using top-down approach, where the tree is built 
starting from root node. The parser tries to choose grammar productions that match the 
leftmost unparsed token in the stream. The complete Python grammar[5] is quite big,  
but only parts allowed in profiles are relevant, which helps to reduce the complexity.  
With  a  couple  of  exceptions,  only  one  rule  can  be  chosen,  making  parser  mostly 
predictive, even though backtracking is still needed in some cases.

Constraint checker.  Each  profile  contains  a  function  that  enforces  grammar 
constraints, forbidding constructs as stated in the Section 1.1. It walks the syntax tree, 
checking whether  each node is valid with  respect  to the profile rules. For example,  
unified grammar defines the simple statement as:

simple_stmt  ::=  assignment_stmt  |  return_stmt  |  break_stmt  |  continue_stmt  | 
expr_stmt

However break keyword is forbidden in core profiles. Code using it will still pass the 
parsing stage, but resulting AST will not satisfy constraint function. This check is not 
limited to grammar contraction, but can do additional analysis on nodes, e.g. make sure 
that each branch in the procedure has a return-statement.

Type checker. The main analysis performed by the filter is typechecking, which tries 
to assign a type to each expression and checks whether those are consistent. Type 
checker can be the same for each profile, as the type system changes only slightly 
between  sublanguages.  For  example,  even  though  the  function  definition  is  not 
available in the most basic profile,  type checker can contain function-related code - 
filtering definitions out will occur on parsing stage. As type checking is the main feature 
of the system, we will describe it in more detail in the following section.
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2.3 Type checking
Languages can be typed either explicitly or implicitly. In the explicit systems, element 

types  are  assigned  by  the  programmer  in  form  of  variable,  function  and  other 
declarations.  Examples  include  most  of  currently  used  general-purpose  compiled 
languages, such as the ones belonging to C syntax family - C, C++ and Java. The 
compiler  then checks if  the  usage conforms to  declarations  -  if  a  string variable  is 
passed into function requiring an integer,  a type error is raised. However,  manually 
assigning a type can be cumbersome and in  some cases can harm readability:  for  
example, prior to C++11[6], programmers were required to name full iterator types, even 
though those were already completely determined by template arguments of collection 
classes:

list<string> collection;
...
list<string>::iterator i = collection.begin();

In big systems with heavy use of templates declarations could become quite long. 
The same problem haunts all sufficiently powerful explicit type systems. The logical step 
further is to let compiler infer at least some, if not all, types from the code. That is the 
basic idea of implicitly typed languages (though there is another case of dynamically 
typed  code,  where  types  are  checked  in  runtime  without  neither  annotations  nor 
inference required,  but  this  thesis  is  concerned with  static  systems for  the reasons 
outlined in the first part). The C++11 standard added a basic inference means to the 
language, letting the programmer to write the code above as:

list<string> collection;
…
auto i = collection.begin();

This does not make C++ implicitly typed, but helps to reduce the visual noise and 
demand  on  programmer.  Some  languages  provide  almost  full  support  for  type 
inference: not only do variables not require declarations, but also the types of functions’  
formal arguments are determined by the compiler. For example, Haskell can infer the 
type of function

fac x = if x == 0 then 1 else x * fac (x -1)

as (Num a) => a → a, meaning “function, which takes a numerical value and returns 
the value of the same type”. Even though the actual factorial function should only be 
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applied to integral arguments, this constraint is nowhere to be found in code, so the 
inference engine produced the most general type for the expression.

Inference and checking are not two disjoint processes - inference algorithms depend 
on type checking, using its information to guide type assignments.

The described filter  implements  complete  type  inference for  restricted  subsets  of 
Python.  Next  sections  will  describe  difficulties  and  solutions  for  type  systems  of 
increasing complexity, leading to the final algorithm used in the filter.

2.3.1 Simple typing and basic polymorphism
The easiest profile to check is the imperative core. Distinctive feature of it is the lack 

of means to define functions. Programmer is left with a set of basic language elements  
(literals, operator, while-loop and conditional statement) and few predefined functions 
related to input/output. Each variable gets its type from the first assignment to it. The 
assigned value can only be:

1. Literal - they carry their exact type as detected by lexer
2. Expression - all functions and operators are predefined and the result types of 
their applications can be uniquely determined from the types of the arguments.

3. Another variable - should already carry its type, otherwise it is a checking error
So the type of each variable can be ultimately derived from literals and applications. 

Type system at this point is simple:
1. Primitive types (all  except  PyVoid have the same semantics as respective 
Python dynamic ones):

a. PyInt - Integers
b. PyFloat - Floating point numbers
c. PyString - Strings
d. PyBoolean - Boolean values
e. PyVoid -  Type without  values,  used as the type of  statements (e.g. 
while-loop)

2. Compound types - only functions of the form Type* → Type - list to the left of 
arrow describes the types of function arguments, the right-hand annotation is the 
return type of the funcion.

Operator application rules, such as (PyInt + PyFloat → PyFloat) can be hardcoded. 
In the setting of simple typing the checking algorithm is simple, defined by induction on  
the AST node type (Figure 4). The only state maintained is the symbol table - dictionary 
mapping variable names to their types.

1. Literal - return the literal type
2. Variable  x - check whether symbol table contains the entry for  x. If it does, 
then return associated type. Otherwise, raise error, because the  x used before 
anything was assigned to it.
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3. Assignment of expression e to variable x - compute the type t of e. If x is not 
already in symbol table, add entry x = t to it. Otherwise, compare t to the known 
type of x. If those two are equal, return t, if not, raise error about type mismatch, 
as  x has different types in different code sections. As only function and class 
definitions open a new naming scope in Python, any variable must have a single 
type throughout the whole code in the imperative core.

4. Function or operator application - check if the arguments have valid types and 
compute the resulting type. In function case this is straightforward, as there is 
only one possible type for each parameter and result type is defined. Operators 
require some sort of table enumerating all possible argument type combinations.

5. If statement - check all branches, return PyVoid.
6. While-loop - check that condition has type PyBoolean, check loop body and 
return PyVoid

Figure 4. Type checking algorithm in imperative core profile

However,  even  in  this  profile  this  is  not  sufficient.  For  example,  Python  output 
function  print() takes a value of any type as the argument. Such functions are called 
polymorphic. In this simple case, the workaround used is to define additional fictive 
type PyAny, which matches each of other types. So the type of print() is  [PyAny] → 
PyVoid.

2.3.2 Hindley-Milner type system
Even with the addition of  PyAny the type system is not expressive enough. It now 

allows  for  correct  usage  of  functions,  but  is  also  too  permissive.  Consider  identity 
function id :: [PyAny] → PyAny. It can be applied to any value, but return type is not 
specified, it will always be PyAny, when it should be PyInt for id(5) and PyBoolean for 
id(True). This error even in the best case propagates further: for example, type of

5 + id(5)

will depend on implementation - as PyFloat matches PyAny, the result of id(5) can 
be matched to  PyFloat, adding of [PyInt,  PyFloat] yields type  PyFloat for the whole 
expression, when the actual type should be PyInt. When we get to the actual inference, 
errors become more critical.

The problem can be stated as the relation between types in function signature. The 
return type of the id() is the same as the argument type, but the type system does not 
allow constraining types this way. The solution for this is to introduce  type variables 
into signatures, which perform the same role as variables in formal logic: they can be 
substituted for concrete types. The signature for id() can now be correctly expressed as 
forall a : [a] → a, where forall is universal quantifier : forall a : t means that a ranges 
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over all possible types. It is now clear for type checker that argument and result types 
for id() must be the same. When the function is applied, its signature is matched against 
arguments,  instantiating the function type. For example, some instances of  id() type 
are:

id :: [PyInt] → PyInt
id :: [PyFloat] → PyFloat
id :: forall a : [([a] → a)] → ([a] → a)
id :: forall a : forall b : [([a] → b)] → ([a] → b)

As seen in the example, type variables can be substituted not only with primitive 
types, but with compound types as well.  Last type shows that multiple variables are 
possible, but we want to avoid signatures similar to this:

forall a : [forall b : ([a] → b)] → (forall b : ([a] → b)

Type  systems  that  allows  such  arbitrary  quantification  are  called  System  F[9]. 
However, the fully implicit type checking for it is undecidable, and such power is not  
needed for  our  goals.  Restricting  forall to  top-level,  we  get  type  system known as 
Hindley-Milner Type System(HMTS)[7]. HMTS is perfectly suited for typing Python, as 
it  does  does  not  require  explicit  type  annotations  and  has  a  linear  type  inference 
algorithm. As it is defined for lambda-calculus, some minor adaptations for this case are 
needed, but they preserve all the good properties of HMTS.

Inference in HMTS is not as straightforward as in simple typing[8]. Firstly, additional 
terms must be defined. As in formal logic, there is a notion of free variables, which are 
those type variables in signature which are not bound by some quantifier. This is not 
possible in top-level, but happens in inner expressions:  forall a : [a,  Int] → a has no 
free variables, but [a, Int] → a contains free type variable a. Non-free (bound) variables 
can be safely renamed in signature, if the new name is not used there (this can be 
refined by forbidding only those names, which are free in signature, but it is easier just  
to generate a new unique name).

Next, the HMTS operates in terms of type substitutions and renamings. Renaming 
of type forall a : t generates new unique type variable b, replaces all free occurrences 
of a in t with b, getting type t’ and yields forall b : t’. Substitution is a mapping from type 
variables to types.  After applying substitution  {a →  e}  to type  t we get a new type 
instance t’  of t, where every occurrence of a is replaced with e (written as t’ = t[a\e]). 
This operation has many subtle nuances and needs to be defined formally by induction 
on type t in Figure 5.

1. Primitive type - return t
2. Type variable b - if a = b, then return e, else b
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3. Function type  [a1,a2,..,an] →  b - apply inductively to arguments and return 
function of the results

4. Generic type  forall b :  u - rename to  forall c :  u’, apply substitution to  u’, 
getting u’’ and return forall c : u’’

Figure 5. Substitution algorithm

Another crucial algorithm is Robinson’s unification, which (in this application) takes 
two types and attempts to find a substitution (mgu - most general unifier), which will 
make them match. For example, mgu of  [a] → PyInt and  [PyBoolean] → c is  {c → 
PyInt, a → PyBoolean}, because when applied to both terms it will yield [PyBoolean] 
→ PyInt. As before, unifications is defined by structural induction of argument types in 
Figure 6.

1. If both are variables, x and y - if x = y, then return empty substitution, else {x 
→ y}

2. If one is variable  x and other is a function  f, then check whether  x is a free 
variable  in  f.  It  so,  then  raise  error  (occurs  check  excludes  infinite  types). 
Otherwise return {x → f}

3. If one is variable x and another - primitive type t, return {x → t}
4. If  both  are  primitive  types  -  return  empty  substitution  if  equal,  raise  error 
otherwise

5. If both are functions - check that argument counts are the same. If they differ,  
raise error. Otherwise, try to unify arguments and result type, then unify resulting 
substitutions

Figure 6. Unification algorithm

Now, the HM itself takes a type context and an expression to type as an input. Type 
context is a set of assumptions about types of identifiers (both variables and functions),  
the same as the symbol table in the simple typing. The algorithm returns not only the 
type of the statement, but also the substitution, which needs to be applied to context to 
get valid set of assumptions. For example.

infer({foo : a}, foo(5)) → (c, {a → ([PyInt] → c})

The unification algorithm detected that foo is a function, so foo :: [b] → c, where b 
and  c are new unique variables and changed the context to  {foo : [b] → c}. Then it 
unified argument type of the function with the type of the passed value, getting most  
general unifier {b → PyInt}, which then was applied to the current context {foo : [b] → 
c}, getting final context  {foo : [PyInt] →  c}.  Types of  foo:  a and  [PyInt] →  c were 
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unified to get substitution  {a → ([PyInt] →  c)} and the type of the whole application 
expression c.

The HM (Figure 7) uses structural  induction on the terms to get type information 
about expression e in context ctx.

1. If e is a variable x, then check whether there is an assumption x : t in ctx. If no, 
then this is a free identifier, which corresponds to the uninitialized variable in the 
code, therefore error is raised. If t exists, then rename t to t’ and return ({}, t)

2. If e is a constant with type t, return ({}, t)
3. If e is the definition of function named f taking arguments x1,...,xn, then generate 

n+1 new type variables t1,...,tn,ret_t and recursively typecheck the body of the 
function in the context ctx + {f : tf, x1 : t1,...,xn : tn} to get substitution s1. The 
type of the body does not interest us, as it will always equal PyVoid - body is a 
sequence  of  statements  and  does  not  produce  a  value.  Instead  all  return 
statements are treated as assignments to a fictive variable with type  ret_t and 
types substituted for  ret_t are unified, getting mgu  s2. Those substitutions are 
combined,  getting  s =  s2 .  s1 and the  pair  (s,  [s(t1),...,s(tn)]  →  s(ret_t)) is 
returned, with the function type generalized (by binding all its free variables with 
universal quantifiers, e.g. [a,PyInt] → a becomes Forall a : [a,PyInt] → a).

4. If  e is the application of function  f to arguments  x1,...,xn,  first  infer type of  f, 
getting (sf, tf). Then infer argument types in context sf(ctx) to get (s1, t1),...,(sn, 
tn). Compose s1,..,sn to get substitution s. Then create new type variable ret_t 
and unify  s(tf) with function type  [s(t1),...,s(tn)] → ret_t, getting substitution  v. 
Return (v .  s . sf, v(ret_t)). The substitution s here is a unifier matching function 
argument to their actual types. We can not use f type directly, as it can not just 
an identifier, but also an expression return function.

Figure 7. Hindley-milner type inference algorithm
HM is  not  directly  used  in  the  filter,  but  is  a  basis  for  its  future  extension  with  

functional  elements  (starting  with  procedure  definitions).  The  rules  will  need  to  be 
further  adapted  to  allow  assignments  and  function  definitions,  as  the  canonical 
algorithm operates on lambda-expressions. However, as shown in [14] many familiar 
constructs can be easily translated into lambda-calculus.

2.3.3 Constrained types
Hindley-Milner is expressive enough to type any valid expression in the language. 

However, it is not sound: some code containing logical type errors can still pass checks. 
Consider following function:
     def max(x, y):
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if x > y:
return x

else:
return y

The HM will  infer  the  type  forall a :  [a,a]  →  a.  However,  then those terms are 
accepted by type system:
    max(‘foo’, ‘bar’)

max(max, max)

even  though  they have  no  meaning.  The  problem is  that  HM is  too  permissive: 
variables  range  over  all  types,  only  constraints  are  between  different  types  in  the 
signature.  What  is  needed  is  the  capability  to  place  additional  restrictions  on  type 
variables, so that they would instantiate only to a subset of all types. In general case,  
this would require types of form forany a in [t1,..,tn] : t, meaning that a can only be one 
of t1,...,tn. 

However, as the type system in the filter is implicit, the problem can also be solved by 
defining a set of constraints and declaring which primitive types hold any of them, as in 
Table 1.

Constraint Description Instances

Num Numerical types supporting addition, 
subtraction,  multiplication,  division and 
comparison.

PyInt, PyFloat

Seq Sequences: support len() and indexing PyString, PyList t
Table 1. Example of simplified bounded quantification

2.3.4 Final type system
To summarize, the type system for Python consists of following:

1. Primitives: PyInt, PyFloat, PyString, PyBool, PyVoid, PyVar(name)
2. Fictive types: PyAny, PyAnyOf Type*
3. Functions: Type* →  Type
4. Homogeneous lists: ListOf Type
5. Ranges: PyRange1

6. Universally quantified types: forall x : Type
7. Boundedly quantified types: forany y in Type* : Type

1 Ranges are included as the return type of function range(), because since Python3 it stopped returning 
lists, switching to the object of special class range
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3. Filter Implementation

3.1 Choice of Programming Language
Haskell[10] is a functional programming language with a kit of distinct features:

● Referential transparency (purity):  there is no state.  In place of traditional 
variables Haskell has bindings,  which are more related to the mathematical 
concept of the variable - synonym for a value. Once the value is assigned to the 
binding, it can not be changed. Pure functions compute their output based solely 
on input taken, without referencing any global state. At any time in the execution, 
pure function will return the same output if the same input is provided.  This 
discards a lot of problems,  including,  for example,  traditional complexities of 
locking in concurrency.  Still,  many times non-pure code is needed,  most 
commonly related to input/output (keyboard input function can not be made pure 
by definition - its result depends on the user's actions). Haskell provides means 
to write it and maintains a clear separation between pure and impure code.

● Very expressive strong type system: as the language has long been a testing 
ground for type-theoretic research, its type system is more sophisticated than in 
most mainstream languages, allowing, for example, higher-order types (similar to 
C++-type templates), variant types (tagged unions) and type classes (one of the 
possibilities to incorporate bounded quantification).  Additionally,  there are many 
extensions to the type system[11], which can be activated to further increase the 
power of the system.

● Lazy evaluation:  expressions in Haskell are evaluated only when their value is 
actually needed.  This allows to use some programming practices too costly or 
even impossible in strictly evaluated languages, e.g. infinite structures. However, 
lazy semantics has some pitfalls:  impure code may depend on the order of 
execution, which is implementation-dependent, reasoning about resource usage 
is complicated in lazy programs and so on. Thus Haskell also provides primitives 
to enforce evaluation.

● Clear syntax:  constructs in Haskell are designed in the way that reduces the 
size of boilerplate code. For example, as the most common operation is Haskell 
is function application,  it does not require brackets or commas:  f x y is an 
application of function f to value x and y. Similarly, type definitions are concise. 
This encourages programmers to think in functional style and create higher-level 
abstract structures without hesitation.

● Big standard library: Haskell distributions contain a lot of packages. There are 
task-specific modules, like in Python or Ruby (e.g. JSON serialization, command-
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line parsing,  concurrency),  but Haskell also has a lot of packages supporing 
abstractions.  For example,  the Control.Applicative module provides functions to 
operate on types with specific properties (applicative functors),  without actually 
doing anything practical.  There is also a packet database -  Hackage,  similar in 
functionality to repositories of Unix-family operating systems.

Haskell was chosen as the implementation language for several reasons:
1. The theory behind static analysis lends itself nicely to functional paradigm. As 
described in section 2.2,  the filter is essentially a series of processing stages: 
lexer,  parser and type checker,  which serve as black boxes,  calculating output 
based solely on the input taken.  This kind of data-flow algorithms can naturally 
be modelled by the composition of pure (side-effect-less) functions representing 
different stages in computation.

2. The analysis often involves structural induction (for example, see algorithms in 
Section 2.3)  and this kind of conditioning can be expressed in Haskell with 
minimal amount of excessive code by pattern matching mechanisms. The code 
written in this way is closer to the original declarative algorithm definitions that, 
for exmple, the Java code with similar semantics would be. This makes it easier 
to maintain.  To achieve similar properties in Java,  additional methods are 
required, such as the Visitor design pattern[13], and it even those do not allow for 
as clean a code as Haskell does.

3. Overall, Haskell provides a great range of means to increase abstraction and 
modularity,  e.g.  higher-level functions and type classes.  This huge expressive 
power helps to cut down the code size, which leads to easier maintainability.

4. The author has been familiar with the language on an intermediate level for a 
long time and wanted to try using Haskell (and functional programming in 
general) outside of toy projects.

3.2 Lexer
The whole lexer resides in the source file Lexer.hs.  It defines the key Token type, 

exporting it and the main function lexer,  which takes a list of source code strings and 
returns a corresponding token stream.

Function processLines removes comments and adds numbers to the lines, which will 
later be used to show locations in error messages. Then empty lines are removed and 
consecutive lines are joined when needed (in multiline expression and lines ending with 
backslashes).  Its output is the list of meaningful enumerated strings.  It is further 
processed by the function addIndentation,  which expands tabs and adds indentation 
levels to each line.

After that,  each line is tokenized by the function tokenize.  It uses the list tokenMap 
which consists of pairs of functions: detectors and extractors. Detector is a predicate on 
string,  which holds only if some prefix of the string is a valid token.  Extractor extracts 
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this token, returning it and the rest of input string. For example, after the extractor for a 
number token would return (IntegerLiteral “1”, “+ 2”),  when run on the string “1+ 2”. 
Using this list tokenize extracts all tokens from the code line. All this code is an example 
of Haskell’s expressive capabilities mentioned above:  tokenize code is just one line 
long, using higher-order list generating function unfoldr for the standard library.

Next stage is specific to Python -  function inferIndentationTokens processes 
indentation data received from previous steps to get block starting and ending tokens 
(Indent and Dedent).  It also finally concatenates lines to get a uniform token stream. 
The last phase unifies adjacent string literals accordingly to the Python lexing rules.

3.3 Parser
File AST.hs declares the type of Abstract Syntax Trees (AST) and defines a function 

extractNodes, which returns the list of the nodes in AST which satisfy given predicate. 
This generic function is primarily used to enforce syntactic constraints of the active 
profile.  Actually AST type is used no directly,  but in conjunction with an integer pair, 
which describes, on which lines the construct corresponding to the tree node resides in 
the original source file.

The parser is in file GenericParser.hs.  Parser is generic,  because it does not use 
profile data, but analyzes code according to the union of profiles’ grammars: forbidden 
constructs are detected later, operating on the ready AST, not while parsing.

Parser is programmed using Parsec[12]  library,  which implements monadic parsing 
techniques,  containing basic general parsers and ways to combine them into more 
specific ones.  Parsec can be loosely called an embedded domain-specific language 
inside Haskell programs, as it allows defining parsers declaratively, with the executable 
specification in almost one-to-one correspondence with documented grammar rules: 
parser for

simple_statement ::= assignment_stmt | return_stmt | expression_stmt
assignment_stmt ::= id “=” expr

is written in code as

simple_stmt =  try assignment_stmt <|> return_stmt <|> expr_stmt

assignment_stmt = do
id <- identifier
delimiter "="
rvalue <- expr
returnASTLoc (AST.Assignment id rvalue) id rvalue
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Grammar is almost directly translated to code, with some details, such as try-
combinator to support backtracking (as expression and assignment can both start with 
identifier) and last line which constructs AST node and combines line ranges for 
subexpressions.

3.4 Profiles
The Profile type is defined in the file Profile.hs.  Each of the profiles consists of the 

function, which takes an AST node and returns True, if the represented construction is 
forbidden in this sublanguage, and another function, which takes an AST and checks its 
types.

The file ProfileCommon.hs declares a data type for errors used in the type checkers. 
CheckErrorData holds information about the nature of the error:  for example 
(IfNonBooleanCondtion t)  means that the condition in some if-clause has a type 
different from PyBool. CheckError holds this data and can additionally contain location 
in code where the error was detected. There are also some helper functions related to 
error handling (for example,  converting errors to human-readable messages)  and 
collections of language primitives: groups of functions and methods, such as pure string 
methods, or input\output functions) in the file.

PyType module (PyType.hs) declares all the Python types in the system, functions to 
transform them into strings and equality relations between them.

The actual profile-related code is in the source file: ImperativeProfiles.hs, which uses 
algorithms described in section 2.3.  The implementations require ways to throw and 
handle errors,  and some relevant state needs to be threaded throughout the checking 
function.  Directly implementing those features in functional setting would lead to the 
large amount of maintenance code unrelated to the logic itself. For example, there is no 
state in pure functional programming, so it would be necessary to pass and return in in 
any function.  However,  this problem is long solved in Haskell community by using 
abstract types called monads. Monad represents the nature of the computation - State 
monad allows to implicitly thread state while the Error monad adds exception support. 
Haskell supports monadic code on the syntax level,  so all the plumbing is hidden - 
algorithms are still directly translated to the code.

3.5 Program itself
Entry point for the filter is the function main in the file Main.hs.  It parses command 

line arguments and analyses the code in the chosen profile.
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Conclusion
As the result of the thesis,  several sublanguages of Python suitable for teaching 

basic programming skills were defined. The filter system created ensures that the code 
conforms to the grammar of the sublanguage and checks types.  Type checker uses 
Hindley-Milner type system with bounded types.

There is a number of directions to develop the system further. The most promising of 
them would  be implementing a functional profile (by adapting the Hindley-Milner 
algorithm to the Python).  Currently method calls are translated on parsing stage to 
functions with an explicitly passed self object. This lack of distinction between functions 
and methods can lead to some invalid expressions passing the type checker. Solution 
to this could be a part of a typing algorithms for an additional profile,  which enables 
object-oriented primitives, such as class definitions. This is not the only way to extend 
the type system,  though -  for example,  distinguishing between pure and effectful 
functions could allow to statically analyse the code better.

Profiles do not support module imports. Adding this capability would require the filter 
to infer the module interface from its source code. As doing this at runtime is too costly, 
the feature would require some additional infrastructure.

Error messages are currently built in, so they can not be translated without rebuilding 
the program.  One possibility of improving the solution would to externalize them and 
then allowing a choice of  language as a command line argument.  The same could be 
done in a limited way to profile definitions by moving them to configuration files or even 
by creating a domain-specific language to specify grammar constraints.
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5. Addendum
The source code for the system is provided on the DVD
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Pythoni kitsendamine õpetamiseks
Bakalaureusetöö

Filipp Ivanov
Resümee

Programmeerimiskeel Python on laialt kasutatud esimese keelena informaatikaaluste 
õppimiseks. Selleks on hulk põhjusi, mille seas on vajalikud loetavus ja arusaadavus.  
Kahjuks on Pythonis kui üldotstarbilises keeles omadusi, mis rikkuvad tema sobivust  
selle  ülesande  täitmiseks.  Käesoleva  töö  tulemusena  on  loodud  filter,  mis  töötab 
Pythoni interpretaatori peale, et nende mõju leevendada.

Esimene  probleem  pärineb  Pythoni  süntaksi  mitmekesisusest:  struktuurid  on 
mugavad kasutamiseks ja peitvad allolevaid põhiprintsiipe. Paljude ülesannete jaoks, 
mille  uus  programmeerija  peaks  ise  suutma  teha,  leiduvad  keeles  kättesaadavad 
primitiivid.  Tudengil  võib  tekkida  mulje,  et  programmerimine  on  peamiselt  keele 
elementide  rakendamine.  Aluskursuste  eesmärk  on  aga  õpetada  mitte  konkreetset 
keelt, vaid loogilist mõtlemisviisi. Seega liigne süntaks ainult häirib õppimist.

Loodud  süsteem lubab  kitsendada  keele  võimaluste  hulka.  Enne  interpretaatorile 
lähtekoodi andmist kontrollib ta, kas mingid rakendatud keele elemendid on keelatud 
kasutamiseks,  ja  kui  see  on  nii,  näitab,  miles  on  viga.  Seega  õpetaja  saab  anda 
sooritamiseks ülesandeid, mille fookuseks on mingi konkreetne idee. Näiteks tsüklite 
õpetamist saab alustada üldisest while-tsüklist, et õpijad saaksid aru, kuidas täitmise 
ajal  indekseid muudetakse ja tingimusi  kontrollitakse.  Filtris  on praegu olemas kolm 
keeleprofiili,  igaüks  nendest  lubab  kasutada  ainult  teatud  alamhulk  Pythoni 
võimalustest.

Teine probleem seisneb selles, et Python on dünaamiline keel ega analüüsi koodi 
staatiliselt. See tähendab, et vigu avastatakse ainult käivitamise ajal. Iga trükkimisviga 
ja väärte tüüpide kasutamine funktsiooni argumentideks lõpeb kohe programmi täitmist, 
kaotades tulemusi. Baaskursustes tuleb niisuguseid olukordi vältida.

Filter  loob  Pythoni  peale  tugeva  tüübisüsteemi  ja  kontrollib  lähtekoodi  tüübide 
kooskõla.  See  võimaldab  vähemalt  trüükivigadest  ja  enamasti  valedest  tüüpidest 
kasutajat informeerida enne täitmist.

Kui  kasutatud elemendid  on kõik  lubatud ja  tüübid  langevad  kokku,  siis  süsteem 
annab programmi tavalisele Pythoni interpretaatorile ja näitab kasutajale väljundit.
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