
TARTU UNIVERSITY
Faculty of Mathematics and Computer Science

Institute of Computer Science
Computer Science

Ilja Kromonov

BSPlib Java Interface for Parallel
Scientific Computing Applications

B.Sc. Thesis (6 EAP)

Supervisor: Pelle Jakovits

Author: . " " may 2012

Supervisor: . " " may 2012

Approved for defence

Professor: . " " may 2012

Tartu 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

Introduction 4

1 BSP and Scientific Computing 6
1.1 Bulk Synchronous Parallel Model 7
1.2 BSPlib Standard . 8

1.2.1 Advantages Over MPI 9
1.3 State of the Art . 9

2 Interface Implementation 11
2.1 Data Types . 11
2.2 Array Access . 12

2.2.1 Multidimensional Arrays 13
2.3 Multiple Return Values . 13
2.4 API . 14

2.4.1 Structure . 16

3 Use Case Scenario 17
3.1 Heat Equation . 17
3.2 Numeric Solution to the Heat Equation 19

3.2.1 Finite Difference Approximation 19
3.3 Solving Systems of Linear Algebraic Equations 22

3.3.1 Conjugate Gradient Method 24

4 Experiment Results 28

Conclusion 31

Resümee 33

References 34

2

Abstract
This work presents a Javatm interface to a native BSPlib library for implement-

ing parallel algorithms in a structured way (as described by the BSP model), using
the Java programming language. To compare the created library to existing paral-
lel programming solutions, a typical physics simulation application is created. It
employs the parallel conjugate gradient method for solving systems of linear alge-
braic equations, a common scientific computing algorithm, which is challenging
from a parallelization standpoint. Using the results from running the test appli-
cation, the Java BSPlib interface is compared to various MPI (Message Passing
Interface) implementations.

3

Introduction

This work presents a Java interface to a native BSPlib implementation, with
the goal of showing the viability of the BSP (Bulk Synchronous Parallel) model
for HPC (high performance computing). The BSPlib standard [Jon98] is a spec-
ification for a general-purpose parallel programming library based on the BSP
model. The presented Java library can be used for implementing algorithms in
a structured way (as described by the BSP model), using the Java programming
language.

In addition to the aforementioned library, a large part of this work is finding
and implementing a practical use case scenario, that can be utilized for giving an
apt comparison of the presented BSPlib interface with existing parallel computing
solutions. To perform adequate comparison, the use case must be sufficiently
computationally intensive to require parallelization, which in turn has to be non-
trivial, requiring synchronization at multiple points in the algorithm.

Cases that fulfill such requirements are plentiful in the area of scientific com-
puting and the chosen problem for the given use case is simulation of heat con-
duction in solids. The computational bottleneck for this simulation is finding a
solution to a large system of linear algebraic equations (SLAE). These systems
are difficult to solve via direct methods (such as Gaussian elimination), so it is of-
ten more fitting to approximate1 their solution through iterative approaches. One
such approach is the conjugate gradient method [She94]. It’s main advantage is
a relatively quick convergence to the correct solution, however, parallelization is
challenging due to it’s complex structure and iterative nature, which fits the re-
quirements.

The BSP model, proposed by Valiant as "neither a hardware nor a program-
ming model but something in between" [Val90], is promoted in this work as a
viable solution to parallel programming challenges faced by today’s developers,
as it is well suited for most types of algorithms and it’s simplicity allows for easy
adaptation of sequential computation to parallel infrastructures. This is important
in light of migration of many computation work to the cloud environment. With

1Simulations do not generally require 100% accurate solutions, and approximation schemes
usually allow for any desired accuracy.

4

it’s promise of nearly infinite resources on demand, the cloud presents a lucrative
prospect for any areas that benefits from parallelism.

Certain features of the BSP model allow for fault tolerance mechanisms to be
seamlessly integrated into a parallel programming framework utilizing this model.
Providing fault tolerance is not in the scope of this work, however, other advan-
tages of the BSP model can be used by utilizing the BSPlib standard. The BSP
model, with it’s notions of supersteps and barriers, provides clear guidelines for
designing parallel versions of algorithms in a structured way and allows for dead-
lock free communication patterns through asynchronous data transmission opera-
tions, making it a good choice for implementing fine-grained parallel algorithms
and making a cloud-based ’BSP computer’ all the more viable.

Chapter one of this work provides an introduction to the BSP model and the
BSPlib standard and gives an overview of the current state of BSP in Java. Chap-
ter two describes the provided interface and outlines the differences between it’s
API and native BSPlib one. Chapter three describes in detail the use case chosen
to test the provided solution and presents a step-by-step derivation of the com-
putational SLAE problem from the notion of simulating heat diffusion. In addi-
tion, this chapter also introduces the method used to solve the SLAE problem and
describes it’s algorithm under the BSP model. The fourth chapter presents ex-
periment results of the example simulation utilizing BSPlib in Java and compares
them to ones achieved using various MPI (Message Passing Interface) solutions.

5

Chapter 1

BSP and Scientific Computing

Scientific computing is an area of high performance computing (HPC) that
deals with calculations based on models of certain phenomena. In general terms
these are numeric simulations based on specific models, their analysis and opti-
mization of the models’ derived processes. These range from weather and galaxy
formation simulations on the macro level, to processor cooling and subatomic
particle simulations on the opposite side of the scale. These are usually computa-
tionally and data intensive tasks and require a large amount of computing power
and memory capacity.

The physical limitations of current processor technology only allow so much
computing power to be gained from a single CPU. The solution is parallelization,
which in the area of HPC has been traditionally achieved by means of supercom-
puters - highly parallel systems with thousands of cores, consequently costing
millions of dollars not only to build, but also for daily use and maintenance.

With the advent of the cloud a new alternative for scientific computing
emerges. With it’s illusion of infinite resources, cloud computing allows loan-
ing of computation time on demand with a flexible pay-as-you-use billing model.
However, applications are placed in an environment associated with a high risk of
hardware failure. The cause - use of commodity equipment by most cloud service
providers, to lessen the cost of data center components. This means fault tolerance
is of utmost importance for any long-running process in this environment.

One framework, which has found widespread use in cloud-based parallel com-
puting for exactly this reason is Apachetm Hadooptm MapReduce [Apaa]. It pro-
vides fault tolerance and replication of both data and computation in attempt to
guarantee that the started task will produce a result. Originally introduced by
Googletm in 2004 [DG04], MapReduce excels at solving data-heavy embarrass-
ingly parallel problems, however has trouble with more sophisticated algorithms.
This claim is evidenced by Hadoop’s inability to cope with iterative algorithms

6

[SJV]. Furthermore, even MapReduce frameworks that are aimed at iterative com-
putation, such as Twister MapReduce [ELZ+10], have trouble with most scientific
computing problems, with one of the main reasons being that by design MapRe-
duce processes are stateless. The stateless status of a process implies, that no state
information is associated with the given process at any time, ensuring that any
part of input data is eligible for any of the available processes without affecting
the outcome. This concept ensures that failure of one of the nodes does not affect
the sequential consistency of the program and is at the core of the MapReduce
fault tolerance mechanism.

Embarrassingly parallel problems1 are more rare than one might wish for,
more so in the area of scientific computing. At the heart of many a scientific
computing problem lies the challenge of solving large systems of linear algebraic
equations (SLAE). The tried and trusted method of solving SLAE is the conju-
gate gradient algorithm - an iterative approach to approximating the solution with
whatever accuracy desired. Unfortunately due to reasons stated above it’s adapta-
tion to the MapReduce model is unfeasible at best, both due to it’s iterative nature,
as well as large quantities of state information.

In previous work [JKS11] we attempted to remedy the issue of solving SLAE
in the cloud by running an embarrassingly parallel algorithm, of the Monte Carlo
kind, with Hadoop MapReduce. However that approach turned out to have more
drawbacks than advantages and CG remains the better solution. For this work CG
and the SLAE problem symbolize scientific computing, due to being as common-
place as they are in this field (the SLAE problem is at the base of almost every
numeric simulation).

This is where the Bulk Sycnhronous Parallel model comes into play. A paral-
lel computing framework based on the BSP model has all the properties that make
it as viable for integration with the cloud environment as one based on MapRe-
duce, while providing a more traditional experience for the programmer (similar
to MPI). The majority of MapReduce frameworks employed in the cloud use the
Java technology, meaning that there is a large target audience for a BSP-based
framework on that platform. Several BSP solutions exist on the Java platform, but
none of them are general-purpose programming libraries and follow the BSPlib
standard at the same time.

1.1 Bulk Synchronous Parallel Model
In his 1990 paper [Val90] Leslie G. Valiant argued, that to properly utilize

existing computing resources for parallel computation, a bridging model between

1Those that take little to no synchronization or communication between computing nodes.

7

software and hardware has to be introduced, that would streamline the move of
sequential computation to the parallel infrastructure. BSP was his proposed can-
didate for this role, and while it may not have been widely adopted for it’s initial
purpose, it inspired new programming models and several parallel programming
libraries, the most notable being BSPlib [Jon98].

A BSP based computation procedure consists of a series of supersteps, each
divided into three stages:

• Concurrent computation - each process does it’s part of the computation
in parallel with others, using only data local to the process’ memory, com-
munication operations can be queued up but do not occur immediately.

• Communication - once a process’ computation is finished, all communi-
cation operations, queued up during the previous stage, happen en masse
(hence the bulk in the model’s name).

• Barrier synchronization - ensures that every process has completed it’s
computation and all the communication operations before continuing to the
next superstep

The advantage of this scheme is elimination of any circular data dependencies,
hence no deadlocks may happen in a BSP program. Furthermore it is easy to
adapt any algorithm to follow this mechanic and relatively easy to estimate the
effect of this parallelization on performance of said algorithm.

At a glance, the parallelization cost can be judged by looking at the prevalence
of barriers in a BSP program. The handling of communication operations of any
single superstep as a whole allows one to estimate the cost of the given superstep
separately from others. Since all processes have to complete their computation
and communication stages before reaching the barrier, the cost of said stage can
go up dramatically if any of the processes, for whatever reason, lags behind the
rest. At present, the only way to tackle this problem is to make sure processes get
roughly equivalent parts of the initial problem (which may not always be as trivial
as it sounds) and nodes are of equal computational power. The quantification of
the cost of parallel application synchronization is a large part of the BSP model
and is used for analyzing the efficiency of parallel algorithms and how well the
underlying architecture handles them [Val90], but is not discussed in this work.

1.2 BSPlib Standard
BSPlib is a programming library specification based on the BSP model. Two

of it’s major implementations are the Oxford BSP toolset [Hil] and the Pader-
born PUB library [Ola03]. They provide ’Bulk Synchronous Message Passing’

8

(BSMP) and ’Direct Remote Memory Access’ (DRMA) modules through a set
of low-level primitives of various semantics, supporting different programming
styles.

Unfortunately the most recent updates to the libraries in question have been
done in 1998 and 2002 for the Oxford BSP toolset and PUB respectively. Conse-
quently, these libraries are designed and optimized for specific (and for the most
part outdated) architectures. Regardless, these are comprehensive low-level com-
munication libraries, which still find use today, likely due to the lack of alterna-
tives more than anything.

A more recent implementation of the BSPlib standard is BSPonMPI [Sui]. It
is designed to more effectively make use of modern architectures, by using MPI
to perform communication operations. It tries to be backwards compatible with
the Oxford BSPlib toolset by using the same API (Application Programming In-
terface). MPI implementations are available on many platforms and are contin-
uously being developed, making BSPonMPI a good choice for the experiments
conducted for this work.

1.2.1 Advantages Over MPI
One of the main advantages of BSPlib over MPI is the simplicity of it’s API

- the core library consists of merely 20 primitives [Hil], compared to MPI’s 273
[mpia]. This allows for a much easier experience for programmers not familiar
with parallel computing. While MPI is more versatile and allows the creation of
virtually any communication pattern using it’s powerful API, it’s code tends to be
error prone and difficult to maintain.

Since BSPlib is based on the BSP model, the programmer does not have to
worry about ensuring his code is deadlock free, which is often the most chal-
lenging part of writing MPI programs. Another advantage is the relative ease of
providing fault tolerance to programs using it, as shown by Hill et al. [HDL97].
With the complexity and variety of MPI programs such a mechanism would be
very difficult to implement, however MPI operations can be used to provide com-
munication for parallel programming frameworks more suitable for such a goal,
such as BSPonMPI[Sui], which encapsulates communication using MPI within a
BSPlib implementation.

1.3 State of the Art
Currently there is a striking lack of general-purpose parallel programming li-

braries based on the BSP model on the Java platform. There is Google’s Pregel
[MAB+09], which is a framework inspired by the BSP model that is designed

9

strictly for graph processing problems. A similar approach is taken by the Apache
Hama project [Apac], which aims to be a common computation engine, but as it
is based on Apache Hadoop, it suffers from the same problems, one of which is
a significant overhead from object serialization, caused by encapsulation of trans-
mitted data in wrapper objects. In addition to that, the framework lacks many
features of the alternative BSPlib standard, such as ’Direct Remote Memory Ac-
cess’ (DRMA) functionality, which makes it less suitable for high performance
computation. On the other hand, it is built upon an established distributed system
framework2. The other available Java library is MulticoreBSPlib [YB11], which
follows the BSPlib specification, but is aimed strictly at shared-memory systems,
so it’s scope is limited.

In 2001 Yan Gu et al. [GsLC01] attempted to create a Java implementation of
the BSPlib standard, but due to data serialization overhead in their proposed solu-
tion, that project (JBSP) was abandoned and the software was not made available
to the general public.

2Hadoop, which includes it’s own distributed file system HDFS [Apab], that is imperative for
functionality of both Hadoop MapReduce and Hama.

10

Chapter 2

Interface Implementation

The approach taken when creating the presented BSPlib interface for Java is
to use an existing native BSPlib implementation, such as the Oxford BSP toolset,
and with the help of JNI (Java Native Interface) create a proxy library, that allows
for low-level BSPlib primitives to be used in Java code. A similar approach has
been used by ScientificPython [JOP+], to provide a BSP interface for Python, and
mpiJava [Car98] to do the same for native MPI (Message Passing Interface) and
Java.

Writing a JNI wrapper involves the creation of a proxy library in a lower level
language1, that does all the necessary work for calling native functions, such as
accessing pointers to native arrays behind Java array types. The interface has
been created to use the Oxford BSP toolset API and will work with any BSPlib
implementation, that conforms to it, such as BSPonMPI - an implementation of
BSPlib built on top of native Message Passing Interface (MPI) libraries.

There is no de facto standard Java API specification for BSPlib as there is for
MPI [Bry98], so the provided API (shown in table 2.4) mostly tries to be a one-
to-one binding of the native libraries. The interface tries to stick to the naming
convention used by the native libraries where possible, whenever new functions
had to be created the Java standard method naming convention was used.

No specific name is given to the created solution, as such it is referred to
simply as ’the BSPlib interface’ or sometimes simply ’library’.

2.1 Data Types
The operations provided by the interface can only be used with arrays of Java

primitive types, as the size of arbitrary objects cannot be effectively determined.

1There are JNI interfaces for C++ and C.

11

Technically, it is possible to send user-made objects, by converting them into se-
ries of bytes and transmitting the resulting byte arrays. The process is known
as serialization (or sometimes marshaling), and has a significant overhead, when
dealing with HPC. This overhead was one of the reasons, due to which an imple-
mentation of BSPlib for Java from as early as 2001 was abandoned [GsLC01].
The authors used Java automatic serialization mechanisms when exchanging data
between processes, which is one of the costliest means of serialization as deter-
mined by the ’Java serialization benchmark’ project [ser]. For this reason the
library does not provide any built-in way of transmitting arbitrary objects. They
can be still be manually (or using Java’s Serializable interface) converted to bytes
and transmitted as such, but this practice should not be encouraged for the pur-
poses of HPC in Java.

2.2 Array Access
To execute native communication operations data is passed as references to

Java arrays through methods provided by the interface. However, these arrays are
passed to JNI methods as objects of jarray type and data stored within cannot
be accessed directly. Instead, several methods are provided by the JNI API for
either getting a pointer to the native data or copying it into a new array. For
performance reasons it’s better to get a direct pointer to the original data, however,
Java manages it’s designated memory area by occasionally moving data around
(defragmentation) or removing it (garbage collection), which means the location
of arrays in native memory may change.

The function Get<type>ArrayElements attempts to retrieve a pointer to the
native array elements (if the JVM supports a mechanism called ’pinning’2) but is
likely to copy the array and return a pointer to this newly allocated memory. Even
if only a small section of the array is needed, a copy of the whole array is created,
which is obviously not efficient.

Since version 1.2 of Java JDK (Java 6 is the stable version at the time of
writing) a new method for retrieving the pointer to array data is available. The
function GetPrimitiveArrayCritical makes it much more likely that the data is
not copied and a pointer to original data is returned. This is achieved by placing
certain restrictions on native JNI code and temporarily disabling some features of
the JVM, while the pointer is held by native code [jni].

This function is used by the wrapper library for getting the array pointers when
creating DRMA registrations and the pointers are released when the registrations

2The JVM ’pins’ the array on the heap, so it does not get moved during garbage collection and
the pointer to it does not become invalid.

12

are removed, as such any registrations should be kept short lived as the use of this
function may disable Java’s garbage collecting mechanism among other things.

2.2.1 Multidimensional Arrays
A C/C++ multidimensional array is stored as a contiguous one-dimensional

array, which is not the case for multidimensional Java arrays. As a Java array is
essentially a Java object, a multidimensional array is an array of objects, which
are not necessarily allocated contiguously on the Java heap. This means that the
traditional pointer and offset approach would not work for such a structure and
the array element retrieval functions are almost certain to return a copy of the
elements.

Use of one-dimensional arrays is encouraged, not only due to the aforemen-
tioned reason, but also to avoid the memory and access time overhead imposed by
use of multidimensional Java arrays.

2.3 Multiple Return Values
In the C programming language multiple return values are provided through

pointers, given as arguments to the function in question. As Java does not have
pointer data types, it was decided to split such functions into separate ones for the
Java side of the API. This is preferred to using a custom tuple-like object as the
return type, for the sake of making the API more transparent. Functions that fit
into this category are bsp_get_tag and bsp_qsize.

The function bsp_get_tag provides information on the BSMP message in the
queue and is divided into three separate methods:

• BSP.getMessageLength - returns the element count of the next message

• BSP.getMessageTag - returns the 4 byte tag portion set by the user

• BSP.getMessageType - returns the type identifier of the next message

All of the aforementioned methods will throw a Java exception (BSPException)
if the queue is empty. To make sure that is not the case the native function
bsp_qsize provides the queue size in both packets and bytes, and is split into
BSP.getQueueSizePackets and BSP.getQueueSizeBytes accordingly.

The overhead of calling native functions twice, in case both results are needed,
can be avoided by storing the result and returning the appropriate part when
needed, instead of doing a second native function invocation. Results are stored
until bsp_move or bsp_sync operations occur, which change the state of the queue.

13

2.4 API
Most of the core BSPlib primitives (with a few exceptions) have been given

an equivalent in the interface’s API.

Initialization

The initialization function bsp_init, which on the native side takes a pointer to
user’s SPMD (Single Program Multiple Data) code of the parallel program, is not
applicable for implementing in a Java wrapper library. No function pointers exist
in the Java language, and while it is possible to provide such functionality through
a callback object, it’s use would be unnecessarily restricting to the programmer,
as such this approach is not supported.

The BSP.init method needs to be explicitly called by the user in order to load
the native wrapper library. It’s invocation also ensures that the native initialization
function is called. While this behavior is not mandatory for Oxford BSP toolset,
the alternative implementation (BSPonMPI) requires this in order to initialize the
underlying MPI implementation. BSPonMPI requires the user to provide a pointer
to his native SPMD code and terminates MPI processes that have completed it’s
execution. This means that using this library with the Java interface requires minor
modifications to BSPonMPI’s source code3.

BSMP (Bulk Synchronous Message Passing)

There is no bsp_set_tagsize method available, and while there is nothing ob-
structing the implementation of this function, the tag size has been fixed at 5 bytes
for the purposes of this library. This change further simplifies the API, where the
user has a 4 byte tag (that of a standard integer), to be used as one sees fit, and an
additional byte is used to store data type information for BSMP messages. This
allows for the API functions to have one argument less, as instead of explicitly giv-
ing the data type of each message it can be implicitly derived from the provided
array, where bsp_send is implemented as a separate method for each primitive
data type. On the receiving side the user can simply cast the object returned by
bsp_move into the appropriate type. Should the program be written in a way, that
makes the data type ambiguous on the receiving end, the type identifier for the
next message can be retrieved with BSP.getMessageType.

3The exit() call, which terminates processes other than the root process needs to be removed
and only the MPI initialization part should remain.

14

CLASS OPERATION MEANING JAVA API

Initialisation
bsp_begin Start of SPMD code BSP.begin
bsp_end End of SPMD code BSP.end
bsp_init Simulate dynamic processes BSP.init∗

Halt bsp_abort One process stops all BSP.abort

Enquiry
bsp_nprocs Number of processes BSP.nprocs
bsp_pid Find my process identifier BSP.pid
bsp_time Local time BSP.time

Superstep bsp_sync Barrier synchronisation BSP.sync

DRMA

bsp_push_reg Make area globally visible BSP.push_reg
bsp_pop_reg Remove global visibility BSP.pop_reg
bsp_put Copy to remote memory BSP.put
bsp_get Copy from remote memory BSP.get

BSMP

bsp_set_tagsize Choose tag size
bsp_send Send to remote queue BSP.send

bsp_qsize Number of messages in queue
BSP.getQueueSizePackets
BSP.getQueueSizeBytes

bsp_get_tag Getting the tag of a message
BSP.getMessageLength
BSP.getMessageTag
BSP.getMessageType

bsp_move Move from queue BSP.move

High
Performance

bsp_hpput
Unbuffered communications ∗∗bsp_hpget

bsp_hpmove
* not the same semantics as the native library
** not methods of their own in the Java API

Table 2.1: BSPlib core primitives [Hil] and it’s Java binding API.

15

Figure 2.1: Structure of the BSPlib Java interface.

DRMA (Direct Remote Memory Access)

The last difference from the native BSPlib API is the way ’high performance’
functions are invoked. Instead of using a method with a hp prefix for each of the
Java primitive types, a flag is used to specify which version of the native function
is to be used. This flag can be set using the BSP.setUnbuffered method. The flag
can be set at any time, meaning the high performance and the general versions
of these functions can be used interchangeably, should one have reason to do so.
Additionally, it enables the use of the unbuffered BSMP function bsp_hpmove,
which does not copy the message in the system queue, but receives a pointer to it
directly.

It has to be noted, that bsp_hpput and bsp_hpget are in violation of the BSP
model, as these communications may happen at any time during a superstep and
not in bulk with the rest of the communication operations at the barrier.

2.4.1 Structure
Figure 2.1 shows the package structure and classes of the Java side of the

BSPlib interface. All functions described in table 2.4 are accessible as static
methods from the bsp.BSP class, the bsp.BSMP and bsp.DRMA classes contain
the native methods declarations of their respective modules. Invocations of meth-
ods in these classes are declared as final, to encourage the compiler to inline them.

For each class file (except BSPException) a header file is generated for cre-
ation of the JNI proxy library and an implementation is written using the C++
programming language.

16

Chapter 3

Use Case Scenario

Testing the applicability of the created BSPlib interface (and the BSP model in
general) to scientific computing problems requires a practical use case scenario.
It’s solution has to be sufficiently computationally intensive to require paralleliza-
tion with the need of synchronization at multiple points. This chapter describes
such a use case, giving a step-by-step derivation of the computational SLAE prob-
lem from the notion of simulating heat diffusion. This provides incentive for using
the CG algorithm on a SLAE of a very specific type, as opposed to solving ran-
domly generated systems, which are not necessarily applicable to any real world
scenario.

It has to be noted that the created experimental application does not in any
shape or form resemble actual enterprise simulation software, that is applicable
to a wide range of actual processes, e.g. CPU heatsink design. Rather it solves a
general problem from the given domain with input data that is still very specific
to the problems of it’s kind. In other words, while the test case is not a real world
scenario, it has all the characteristics of one, which should satisfy the goals we
aim to accomplish.

The heat equation is used in modeling a number of different phenomena in
physics, mathematics and even finance, as such the description of the solution
method described in this chapter is specific to the problem at hand.

3.1 Heat Equation
Modeling of heat flux with the passage of time is achieved through solving

a partial differential equation known as the heat equation, which is derived from
Fourier’s law and the law of conservation of energy [ATP84]. In it’s most general

17

form the equation (also known as the diffusion-convection equation) is:

cpρ

[
∂u

∂t
+∇ · (vu)

]
= ∇ · [k∇u] + q (3.1)

where k is the thermal conductivity, cp is the specific heat capacity, ρ is the ma-
terial density, v is the velocity field, and q is the internal heat generation. The
heat equation has two parts: the diffusion part characterized by the conductiv-
ity field function and the advection part characterized by the velocity field func-
tion. The symbol u is the dependent variable, in three dimensions it is a function
u(x, y, z, t) of three spatial coordinates and time, and denotes the temperature at
position (x, y, z) at an instant in time t.

Finding the velocity field v is an integral part of simulating fluid dynamics and
requires the solution of the more complex Navier-Stokes equation, which would
increase the complexity of the test case (additional SLAEs that need solving). To
keep it simple the advection part can be safely dropped from the equation 3.1,
effectively removing the movement of material from the model, and focusing on
heat conduction. The resulting simplified equation is:

cpρ
∂u

∂t
= ∇ · [k∇u] + q (3.2)

where on the right-hand side we have the divergence (∇·) of the gradient k∇u,
which is k times the Laplacian of u. Since the Laplacian is a linear operator and
k is a scalar value, we get:

cpρ
∂u

∂t
= k∇2u+ q (3.3)

Simplifying equation 3.3 further, we assume a model without internal heat gener-
ation and divide through the equation by cpρ to get the form, which the simulation
will based on:

∂u

∂t
= α∇2u (3.4)

or the specific three dimensional case, expanding the Laplacian in Cartesian coor-
dinates:

∂u

∂t
= α

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
(3.5)

where α = k
cpρ

and is the thermal diffusivity, a material specific quantity measured

in m2

s
, which shows the speed of penetration into the body of an applied thermal

load at an object’s surface.

18

3.2 Numeric Solution to the Heat Equation
Solving partial differential equations (PDE) analytically can be difficult and

sometimes even impossible. Even if a solution can be found, it is not guaranteed to
be easy to compute for specific cases of the represented problem. One alternative
way to find the solution to a PDE is to numerically approximate it. We will use the
finite difference method, as it is easier to implement than some of the alternatives,
such as the finite element method, but has the same computational complications,
in the form of SLAE, that we aim to solve for this example simulation.

3.2.1 Finite Difference Approximation
In short, the finite difference method of solving differential equations is based

around substituting continuous derivatives with difference quotients

∂f

∂x
≈ f(xi+1)− f(xi)

∆x
(3.6)

to approximate the result of the equation on a mesh of points, obtained by dis-
cretizing the continuous solution domain Ω into a finite set of discrete points Ω∗.
Equation 3.6 is an example of a forward difference of quantity x about the point
xi, where i ∈ (0, 1, . . . , N), N = |Ω∗| and ∆x is the point difference between xi
and xi+1.

Other common difference types are the backward difference and central dif-
ference, from which finite difference based solution schemes for the heat equation
can be derived, an overview for which can be found at [Rec04]. Suffice to say,
both the forward and backward differences will provide biased approximations to
the derivatives, so we will be using the ’Centered Time, Centered Space’ (CTCS)
scheme, otherwise known as the Crank-Nicolson method.

Before we can apply any approximation method to the problem, however, we
must do the discretization step. Equation 3.5 models the whole infinity of space
and time, to obtain a sensible solution to it we must pick a finite period and volume
as the simulation domains. To obtain an approximation of the true solution in our
chosen finite domains we will dissect them into a mesh of a discrete number of
points, similarly to the example above.

Our spatial domains are X, Y and Z of length Lx, Ly and Lz accordingly, in

19

addition to the period of time T with duration tmax:

i ∈ (0, 1, . . . , Nx), Nx = |X∗|, ∆x =
Lx
Nx

j ∈ (0, 1, . . . , Ny), Ny = |Y ∗|, ∆y =
Ly
Ny

k ∈ (0, 1, . . . , Nz), Nz = |Z∗|, ∆z =
Lz
Nz

t ∈ (0, 1, . . . , Dt), Dt = |T ∗|, ∆t =
tmax
Dt

(3.7)

Following this convention, the continuous function u(x, y, z, t), that tells us the
temperature at specified coordinates (x, y, z) in an instant of time t, which in our
discretization scheme becomes u(xi, yj, zk, tm), will from now on be written as
uti,j,k.

Boundary Value Problem

To really get a unique solution to the problem we must define the behavior of
the model on the boundaries of our chosen finite domains. At t = 0 we have the
initial condition, so for all values of i, j and k, we must have a known value of
u0
i,j,k in advance.

For the spatial boundaries it is a bit more difficult, as there are a number of
conditions, that we may wish to simulate. One has to account for all the values of
uti,j,k, where either i, j or k are -1 or the number of nodes in the discrete mesh1.
The first is the Dirichlet boundary condition (or sometimes called the first-type
boundary condition), that takes the form

ut = f(t) (3.8)

where ut is the value of the solution located somewhere along the boundary of the
spatial domain at time step t, and f is a function defined by the user, that yields
the value at this time step. Effectively the Dirichlet boundary condition maintains
the temperature at a value chosen by the user, and may be used to simulate heat
sources or sinks.

The second relevant condition is the Neumann (otherwise known as second-
type) boundary condition. It specifies what values a derivative (as opposed to
the result, for the first-type condition) takes on the boundaries of the domain. A

1We’re not placing the boundary nodes in the coefficient matrix, hence their indices, but can
handle them procedurally and by altering the structure of equations corresponding to internal
points near the boundaries.

20

generalization of this boundary condition will be used to simulate an isolating
boundary. The boundary condition

∂u

∂x
= 0 (3.9)

means, that the rate of change of u on the boundary, in relation to the spatial
variable x, is equal to zero - in other words, the isolated boundary will not have
any effect on the change of temperature.

We will be using the so-called mixed boundary condition, which is just a com-
bination of the first-type and second-type boundary conditions on different regions
of the boundary.

Crank-Nicolson Method

Starting from equation 3.5 we take a backward difference approximation for
the time derivative

∂u

∂t
≈
uti,j,k − ut−1

i,j,k

∆t
(3.10)

and an average of the second order central difference approximations for the spa-
tial derivatives evaluated at the current and previous time steps.

∂2u

∂x2
≈ 1

2

(
uti−1,j,k − 2uti,j,k + uti+1,j,k

∆x2
+
ut−1
i−1,j,k − 2ut−1

i,j,k + ut−1
i+1,j,k

∆x2

)
(3.11)

∂2u

∂y2
≈ 1

2

(
uti,j−1,k − 2uti,j,k + uji,j+1,k

∆y2
+
ut−1
i,j−1,k − 2ut−1

i,j,k + ut−1
i,j+1,k

∆y2

)
(3.12)

∂2u

∂z2
≈ 1

2

(
uti,j,k−1 − 2uti,j,k + uti,j,k+1

∆z2
+
ut−1
i,j,k−1 − 2ut−1

i,j,k + ut−1
i,j,k+1

∆z2

)
(3.13)

Replacing the partial derivatives in equation 3.5 with formulae from
3.10,3.11,3.12,3.13 and, knowing that the continuous spatial domain was dis-
cretized into a cubic grid, replacing ∆y and ∆z with ∆x, we get a recurrence
equation

uti,j,k − ut−1
i,j,k

∆t
=
α

2

(
uti−1,j,k − 2uti,j,k + uti+1,j,k

∆x2
+
ut−1
i−1,j,k − 2ut−1

i,j,k + ut−1
i+1,j,k

∆x2
+

uti,j−1,k − 2uti,j,k + uti,j+1,k

∆x2
+
ut−1
i,j−1,k − 2ut−1

i,j,k + ut−1
i,j+1,k

∆x2
+

uti,j,k−1 − 2uti,j,k + uti,j,k+1

∆x2
+
ut−1
i,j,k−1 − 2ut−1

i,j,k + ut−1
i,j,k+1

∆x2

)
(3.14)

21

Since we can safely assume that the value of u at the previous time step is known,
and moving all the unknowns in equation 3.14 to the left-hand side, we can ap-
proximate the values for the current step by solving a system of linear algebraic
equations of the form:(

1 +
6µ

2

)
uti,j,k −

µ

2
U t
i,j,k =

(
1− 6µ

2

)
ut−1
i,j,k +

µ

2
U t−1
i,j,k (3.15)

where Um
x,y,z = umx−1,y,z + umx,y−1,z + umx,y,z−1 + umx+1,y,z + umx,y+1,z + umx,y,z+1 and

µ = α∆t
∆x2

. It would be wise to do one more simplification step by dividing through
the equation by µ

2
, so multipliers for the Um

x,y,z terms become -1 and 1 on the left-
and right-hand sides respectively. This step will make it easier to store the linear
system in computer memory and lower the memory footprint when dealing with
simulations of heterogeneous media.

3.3 Solving Systems of Linear Algebraic Equations
To conduct the simulation through solving a system of linear algebraic equa-

tions with the use of matrix and vector operations, we express the SLAE based on
equation 3.15 as matrix multiplication:

Aυt = υt−1 (3.16)

where A is a matrix, consisting of the coefficients of the system, υt−1 is a known
vector, consisting of terms from the right-hand side of equation 3.15, and υt is the
solution vector, made up of the unknowns of the system.

According to our discretization scheme, the number of unknowns will beN =
n3, where n is the simulation resolution (for simplicity’s sake we will consider the
case of a cube with n = Nx = Ny = Nz). The dimension of the matrixAwill then
beN×N , which can get very large for high resolution simulations. Increasing the
resolution not only serves to make the simulation look more visually appealing,
but improves the numerical accuracy of the approximation as well.

Luckily, for the chosen test case, the matrix A is sparse and for a one-
dimensional problem it is a tridiagonal matrix, but for two- and three-dimensional
problems it becomes a banded matrix as shown in figure 3.1. A is also symmetric
and positive definite2 - properties important for the method, that will be applied
to solve the linear system. The matrix is similar to an adjacency matrix, in that
location of off-diagonal elements represent nodes in the mesh. Specifically, nodes
that are adjacent to the node the matrix row in question corresponds to. For a

2One definition of positive definiteness is that all of the matrix’s eigenvalues are positive.

22

Figure 3.1: Shape of the sparse banded matrix A for a cube with n = 4. Black
and red cubes signify diagonal and off-diagonal non-zero elements respectively.

cube, each row has at least 4 and at most 7 elements. The exact off-diagonal ele-
ment count for a cube can be found, as seen from figure 3.1, using the following
equation:

2n2 (n− 1) + 2n
(
n2 − 1

)
+ 2

(
n3 − 1

)
(3.17)

According to equation 3.15, the off-diagonal elements are µ
2

and for a non-
heterogeneous material are all equal. The diagonal values are 1 + λµ

2
, note λ

2
as

a variable multiplier for µ instead of 6
2
, as given in equation 3.15 - this is due

to different behavior of the equation on the boundaries of the domain. Recall
equation 3.9 for our second-type boundary condition, that states, that the value of
the derivative on the boundaries is equal to 0. When constructing equation 3.14
for the boundary regions, some of the terms (depending on which point’s spatial
derivatives are 0) in it will not be present, producing a multiplier in it’s simplified
form, that is less than in the general case of all adjacent points of uti,j,k affecting
the heat flux. For example: when constructing equation 3.14 for u1

0,0,0 and having
a second-type boundary condition at u−1,0,0 and first-type boundary conditions at
u0,−1,0 and u0,0,−1 results in

u1
0,0,0 − u0

0,0,0

∆t
=
α

2

(
u1

0,0,0 + u1
1,0,0

∆x2
+
u0

0,0,0 + u0
1,0,0

∆x2
+

u1
0,−1,0 − 2u1

0,0,0 + u1
0,1,0

∆x2
+
u0

0,−1,0 − 2u0
0,0,0 + u0

0,1,0

∆x2
+

u1
0,0,−1 − 2u1

0,0,0 + u1
0,0,1

∆x2
+
u0

0,0,−1 − 2u0
0,0,0 + u0

0,0,1

∆x2

) (3.18)

23

Note, that in equation 3.18 terms u1
−1,0,0,−u1

0,0,0,u0
−1,0,0 and −u0

0,0,0 are missing,
since from equation 3.9 we know, that change in u is independent of the corre-
sponding spatial variable, meaning u1

−1,0,0 and u1
0,0,0 as well as u0

−1,0,0 and u0
0,0,0

are equal and cancel each other out. As for the second-order boundary condi-
tions, variables u1

0,0,−1,u0
0,0,−1,u1

0,−1,0 and u0
0,−1,0 take on values given by f(t) as

per equation 3.8, since regardless of heat diffusion occurring in these directions,
the Dirichlet condition maintains the temperature on the boundaries.

3.3.1 Conjugate Gradient Method
The conjugate gradient (CG) method [She94] is an iterative algorithm for solv-

ing systems of linear equations, whose coefficient matrix is real, symmetric and
positive definite (as is the case with coefficient matrix A). The general idea of CG
is to perform an initial inaccurate guess of the solution vector and then minimize
the difference between the approximate and the actual solution at every subse-
quent iteration.

Input: vector b and coefficient matrix A
Output: approximation for solution vector x

set error tolerance threshold and maximum number of iterations
initialize vectors x,z,r,p,q as null vectors

r = b− Ax and calculate current error from residual vector r

while tolerance threshold not reached and iterations limit not exceeded do
z = r
σold = σ
σ = z · r
p = z + σ

σold
p

q = Ap
γ = u

p·q
x += γp
r −= γq

calculate current error from residual vector r
end
return x

Algorithm 1: Conjugate gradient method of approximating solution to Ax = b.

Algorithm 1 shows the serial iterative conjugate gradient algorithm in it’s most
commonly used form. While this algorithm is fairly optimized and includes only
a single matrix vector multiplication operation, which is it’s computational bot-
tleneck, we still need to hold several vectors (of size n) in memory: the solution

24

Memory requirements (MB)
n CG Sparse matrix Total
8 0.02 0.02 0.04
16 0.19 0.12 0.31
32 1.5 0.99 2.49
64 12 7.97 19.97
128 96 63.87 159.87
256 768 511.5 1279.5
512 6144 4094 10238
1024 49152 32759.99 81911.99

Table 3.1: Memory requirements for simulation of a cube with resolution n.

vector x, an auxiliary vector z, residual vectors r and q, and search vector p. Ex-
plaining how CG works is not in the scope of this work, for that refer to [She94].

Parallel CG Algorithm

Since we are limited by computational power and memory capacity of any
single machine, performing faster and more accurate simulations requires paral-
lelization. To distribute the memory footprint of the simulation, we split both
the vectors used by the CG algorithm and the sparse coefficient matrix among
the computing nodes. This also ensures, that the computation is done on smaller
chunks of the problem concurrently, effectively speeding up the process. The ap-
proach is called ’Single Program, Multiple Data’ (SPMD) and typically involves
splitting a problem of size N into p processes, meaning all of the data structures
have to be split evenly among computing nodes.

Table 3.1 shows the growth of memory requirements as the resolution of the
simulation grows. The row labeled ’CG’ displays the memory for six double pre-
cision floating-point number vectors, utilized by the algorithm, and the ’Sparse
matrix’ one for a double precision floating-point number vector, holding the diag-
onal elements, and the integers used to keep off-diagonal element indices (counted
using equation 3.17). It has to be noted, that, while the numbers displayed in table
3.1 may seem large, CG is one of the more efficient algorithms memory-wise, as
the coefficient matrix remains sparse throughout the computation, as opposed to,
for example, matrix inversion based solution methods, which convert the prob-
lem to a dense one3. Considering the structure of the sparse matrix, the algorithm
can be implemented without storing the matrix in memory at all, however such
approach is more computationally intensive.

31073741824×1073741824 dense matrix of double precision floating-point numbers, roughly
8 exabytes for a n = 1024 cube.

25

Looking at algorithm 1 several issues can be identified, that rule it out from
belonging to the embarrassingly parallel class of algorithms. The most evident is
matrix vector multiplication, recall that for equation

Ab = c (3.19)

elements cj of vector c with length N are found as

ci =
N−1∑
j=0

Aijbj (3.20)

This would imply, that computing matrix vector multiplication partially still re-
quires vector b in it’s entirety. Consider the shape of the matrix from figure 3.1 -
we know, that on row i there can be elements at columns i + 1, i − 1, i + n, i −
n, i+ n2 and i− n2, meaning that one has to transmit at most n2 (or n for a two-
dimensional case) elements from the previous and next vector chunks to perform
the operation in parallel. This places a restriction on the number of processes, that
we may use for this operation, to n − 1. While smaller problems do not benefit
much from parallelization regardless of this restriction, larger ones may still be
sufficiently parallelized.

The second issue is less obvious - a local dot product can still be computed
from partial vectors, however, for the algorithm to maintain sequential consis-
tency, each process needs the full dot product, computed at two distinct steps
during an iteration, placing the need to transmit each local dot product to every
other process before computation can continue.

26

Input: partial vector b and coefficient matrix A
Output: part of the approximation for solution vector x

set error tolerance threshold and maximum number of iterations
initialize partial vectors x,z,r,p,q as null vectors

r = b− Ax and calculate current error from residual vector r

while tolerance threshold not reached and iterations limit not exceeded do
z = r
σold = σ
dotlocal = z · r
broadcast dotlocal as well as locally calculated error
barrier()

σ =
∑
dotlocal

p = z + σ
σold

p

send n2 elements of p to previous and next neighbors
barrier()

q = Ap (using neighbor’s p when necessary)
dotlocal = p · q
broadcast dotlocal
barrier()

γ = u∑
dotlocal

x += γp
r −= γq

calculate current error from residual vector r
end
return x

Algorithm 2: BSP conjugate gradient method of approximating solution to
Ax = b.

Algorithm 2 shows CG under the BSP model as having three barriers under
each iteration. The first and last of the three barrier synchronization points are
caused by computation of a dot product. While cheap to compute, this operation
requires two full vectors, which are distributed and are worked on locally, so to
reach a consistent state, each local result is broadcast to every other process. The
second barrier is there to synchronize data between neighboring processes, which
was established to be needed for matrix vector multiplication.

27

Chapter 4

Experiment Results

The heat diffusion simulation test case was run using three different communi-
cation libraries - MPJ Express 0.38 [SCB09], mpiJava 1.2 and the BSPlib interface
with BSPonMPI as the native library. Both mpiJava and BSPonMPI are used with
mpich2 1.4.1p1 [mpib] for MPI communications.

Table 4.1 presents results of running the application on a cluster of 4 Ama-
zon instances of type m1.xlarge (Standard Extra Large Instance), each with 15
GB of memory and 8 EC2 Compute Units (4 virtual cores). Running times were
measured for problems of increasing size to see how larger amounts of data trans-
ferred during synchronization would affect parallel slowdown, and at the same
time, whether the increasing amount of computation in relation to communication
would improve scalability.

n=100
p MPJ Express mpiJava BSPonMPI
1 3.34 3.34 3.34
2 1.89 1.87 1.89
4 1.13 1.17 1.24
8 0.88 0.91 0.78
16 1.22 1.22 0.96

n=300
p MPJ Express mpiJava BSPonMPI
1 139.57 139.57 139.57
2 72.15 83.86 70.39
4 41.13 55.31 40.15
8 26.66 34.44 26.12
16 20.91 19.72 19.78

n=200
p MPJ Express mpiJava BSPonMPI
1 31.01 31.01 31.01
2 16.80 16.27 16.02
4 9.57 8.93 8.91
8 6.06 5.50 5.88
16 5.05 4.13 4.68

n=400
p MPJ Express mpiJava BSPonMPI
1 411.47 411.47 411.47
2 216.12 285.21 212.55
4 127.80 194.29 121.30
8 80.13 122.92 76.34
16 54.36 75.85 51.28

Table 4.1: Running time (in seconds) of simulation on p processes.

28

The test case for the simulation was heat diffusion in a cube of solid material
with thermal diffusivity equal to that of air (1.9×10−5). The side of this cube was
1.75 meters and the simulated period lasted 30 seconds. The choice of parameters
was governed by the need to keep the CFL (Courant-Friedrichs-Lewy) condition
number [cfl] low, a requirement for numerical accuracy of the Crank-Nicolson
method.

The amount of CG iterations needed for achieving an error margin1 of 10−6

for the SLAE solution ranged from 2 iterations per one step of the simulation for
the smallest tested problem size (n = 100) to 8 for the largest (n = 400).

Figure 4.1: Parallel speedup of the simulations

The simulation was split into 10 steps, each step simulating 3 seconds of heat
diffusion. The simulation was kept relatively short, in terms of steps, to be able
to compare the BSPlib interface with MPJ Express. The way that library handles
buffering of data turned out to be problematic for the test application. Fairly large
messages are being exchanged between processes at relatively short intervals, but
as MPJ Express uses direct buffers [Nei], which are intended to be few and long-
lived, the continuous allocation of temporary buffers outside the Java heap, for

1Counted as the maximum norm (‖a‖max = max{|ai|}) of the residual vector r used in the CG
algorithm.

29

each communication operation, meant long simulations using MPJ Express would
eventually run out of memory.

Figure 4.1 shows the speedup of the program when run with p parallel pro-
cesses. The best speedup for the given problem sizes, using 16 processes, was
only 82, which is to be expected from an algorithm with as many synchronization
points as parallel CG. Another expected result was the performance of MPJ Ex-
press, which is a communication library written purely in Java, so little ovarhead
on the side is involved. The surprising part of the results was how well the BSPlib
interface performed, both in relation with MPJ Express, performing on par and
even pulling ahead most of the time, and compared to mpiJava, which at the low-
est level uses the same MPI communications library. As the problem size grew,
mpiJava experienced difficulties transmitting larger chunks of data as fast as the
other libraries and, eventually, started to lag behind. Most likely this was the side
effect of data buffering mechanisms it employs for data transmission operations.

2Only embarrassingly parallel algorithms would get the best possible speedup of 16.

30

Conclusion

This work presented a BSPlib binding for the Java programming language,
which was used to illustrate the suitability of the BSP model for scientific com-
puting. This was demonstrated by means of solving a typical scientific computing
problem, that of simulating heat conduction, using one of the most commonly en-
countered algorithms in scientific computing - the conjugate gradient method. The
results of running the simulation with the created BSPlib interface were compared
to ones from two alternative parallel programming libraries.

Alternative solutions chosen for comparison were two different MPI imple-
mentations - mpiJava and MPJ Express. For the native BSPlib implementation
BSPonMPI was used. This choice was interesting due to the fact, that both mpi-
Java and BSPonMPI use a native MPI implementation for low-level communica-
tion operations, but while mpiJava is a straight binding for MPI, BSPonMPI uses
MPI to perform barrier synchronization and miscellaneous communication nec-
essary for an BSPlib implementation. The comparison between two would show,
whether the additional intermediary layer in form of the BSPonMPI framework
would cause an overhead to the process.

It turned out, that while mpiJava performed well for smaller resolution sim-
ulations, as the size of the problem grew the time needed for transmitting syn-
chronization data increased, compared to the other tested libraries, suggesting
that some form of data buffering mechanism for send and receive operations may
be slowing it down. MPJ Express as a MPI library written purely in Java was
expected to outperform the other solutions, but surprisingly the created BSPlib
interface backed by BSPonMPI managed to be on par with it for all tests, even
performing marginally better most of the time.

It has to be noted, that the BSPlib interface is in very raw state and it’s error
handling is very basic. The wrapper library native code attempts to detect several
abnormal states, that may occur in case of programming errors, and throws Java
exceptions if any of those states are detected. However, should the communication
network fail or another severe anomaly occurs, it is not guaranteed to fail grace-
fully. Most likely a parallel application will simply stop execution without any

31

error messages and it will be up to the underlying native communication frame-
work to clean up the remaining processes. Luckily the Hydra process manager
(the default process manager of mpich2 since version 1.3) managed to handle this
task successfully if any errors occurred during testing.

As it stands, the created BSPlib interface seems like a good alternative to writ-
ing MPI programs, due to BSPlib’s much easier API and the ability to effortlessly
write deadlock free parallel applications, while maintaining performance level on
par with one achieved with the use of MPI. The BSP model has been shown to
allow one to implement algorithms, that the currently ubiquitous parallel com-
puting model in the cloud - MapReduce, is not capable of supporting. However,
providing fault tolerance remains a topic for future work, as placing long-running
tasks in the cloud environment with the current solution is a gamble.

32

BSPlib Java liides paralleelsete teadusarvutuse rakendustele

Bakalauruse töö (6 EAP)

Ilja Kromonov

Resümee
Töö eesmärgiks oli native3 BSPlib implementatsioonile Java liidese loomine,

mis võimaldaks BSP mudelil põhinevaid programme kirjutada Java program-
meerimiskeeles, ning loodud prototüübi võrdlemine olemasolevate paralleelpro-
grammeerimiseks mõeldud lahendustega. Sellega üritati näidata BSP mudeli so-
bivust teadusarvutuste jaoks, kus perspektiiviks on Java platvormile ehitatud ja
BSP mudelil põhineva raamistiku kasutamine teadusarvutuste läbi viimiseks pil-
vekeskkonnas.

BSP mudeli sobivuse demonstreerimiseks loodi Java programm, mis lahen-
das arvutuste ja paralleliseerimise mõttes keerulist ülesannet. Kasutusjuhtumiks
oli valitud tüüpiline füüsika valdkonnast pärit probleem - soojuse võrrandi la-
hendamine soojusjuhtivuse simulatsiooni läbi viimiseks, mille arvutuslikuks kit-
saskohaks on suurte lineaarvõrrandisüsteemide ligikaudsete lahendite välja arvu-
tamine. Lineaarvõrrandisüsteemide lahendamise algoritmiks oli valitud conjugate
gradient (CG) meetod. Seda algoritmi pole võimalik efektiivselt teostada MapRe-
duce mudeli abil, mis on hetkel pilvekeskkonnas paralleelarvutuste raamistike ehi-
tamisel kõige laiemalt kasutatav lahendus.

Antud kasutusjuhtumi abil võrreldi BSPlib Java liidese ja erinevate Mes-
sage Passing Interface (MPI) teateedastusteekide kasutamisel saavutatavat kiiruse
kasvu ning määrati kas BSPlib võib põhjustada paralleelse CG algoritmi aeglus-
tumist võrreldes teiste lahendustega.

Katsetes kasutati võrdluseks kaht MPI implementatsiooni: mpiJava ja MPJ
Express. Esimene nendest on native implementatsiooni kasutav lahendus, mille
tööprintsiip on sarnane pakutud BSPlib prototüübiga. Teine on täielikult Java
platvormil realiseeritud teateedastusteek. Loodud Java liides kasutas BSPlib
implementatsioonina BSPonMPI’d, mis oma madalaimal tasemel kasutab sama
teateedastusteeki kui mpiJava.

Tulemustest selgitati välja, et loodud BSPlib liides osutub heaks alternatiiviks
MPI abil paralleelsete programmide kirjutamisele, kuna võimaldab kirjutada um-
mikute vaba koodi samas säilitades MPI’ga võrreldavat jõudlust. Seega näidati, et
BSP mudelil saab efektiivselt realiseerida teadusarvutuste algoritme, mis ei sobi
pilvekeskkonnas üldlevinud MapReduce mudelile.

3Kompileeritud protsessori poolt loetavaks baitkoodiks.

33

Bibliography

[Apaa] Apache Software Foundation. Hadoop. URL: http://wiki.apache.org/
hadoop/.

[Apab] Apache Software Foundation. Hadoop distributed file system. URL:
http://hadoop.apache.org/hdfs/.

[Apac] Apache Software Foundation. Hama. URL: http://wiki.apache.org/
hama/.

[ATP84] D.A. Anderson, J.C. Tannehill, and R.H. Pletcher. Computational
fluid mechanics and heat transfer. Series in computational methods
in mechanics and thermal sciences. Taylor & Francis, 1984. URL:
http://books.google.ca/books?id=Bfk_AQAAIAAJ.

[Bry98] Bryan Carpenter, Vladimir Getov, Glenn Judd, Tony Skjellum and
Geoffrey Fox. MPI for Java - Position Document and Draft API Spec-
ification. Technical Report JGF-TR-03, Java Grande Forum, Novem-
ber 1998. URL: http://www.hpjava.org/reports/MPIposition/position.
ps.

[Car98] Bryan Carpenter. mpiJava: A Java Interface to MPI. In First UK
Workshop on Java for High Performance Network Computing, Eu-
ropar 98, 1998.

[cfl] Courant-Friedrichs-Lewy condition. URL: http://www.
encyclopediaofmath.org/index.php/Courant%E2%80%
93Friedrichs%E2%80%93Lewy_condition.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data
processing on large clusters. In Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation - Vol-
ume 6, pages 10–10, 2004.

34

[ELZ+10] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne,
Seung-Hee Bae, Judy Qiu, and Geoffrey Fox. Twister: a runtime
for iterative MapReduce. In Proceedings of the 19th ACM Inter-
national Symposium on High Performance Distributed Computing,
HPDC ’10, pages 810–818, 2010.

[GsLC01] Yan Gu, Bu sung Lee, and Wentong Cai. JBSP: A BSP Programming
Library In Java, 2001.

[HDL97] Jonathan M. D. Hill, Stephen R. Donaldson, and Tim Lanfear. Pro-
cess migration and fault tolerance of bsplib programs running on
networks of workstations. In In EuroPar’98, LNCS, pages 80–91.
Springer-Verlag, 1997.

[Hil] Jonathan Hill. The Oxford BSP toolset. URL: http://www.
bsp-worldwide.org/implmnts/oxtool/.

[JKS11] Pelle Jakovits, Ilja Kromonov, and Satish Narayana Srirama. Monte
carlo linear system solver using mapreduce. In UCC, pages 293–299,
2011.

[jni] JNI Enhancements Introduced in version 1.2 of the JavaTM 2 SDK.
URL: http://docs.oracle.com/javase/1.3/docs/guide/jni/jni-12.html.

[Jon98] Jonathan M.D. Hill, Bill McColl, Dan C. Stefanescu, Mark W.
Goudreau, Kevin Lang, Satish B. Rao, Torsten Suel , Thanasis Tsan-
tilas and Rob H. Bisseling. BSPlib: The BSP programming library.
Parallel Computing, 24(14):1947 – 1980, 1998.

[JOP+] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open
source scientific tools for Python, 2001–. URL: http://www.scipy.
org/.

[MAB+09] Grzegorz Malewicz, Matthew H. Austern, Aart J.C. Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel:
a system for large-scale graph processing - "abstract". In Proceedings
of the 28th ACM symposium on Principles of distributed computing,
PODC ’09, pages 6–6, 2009.

[mpia] MPI Routines. URL: http://www.mcs.anl.gov/research/projects/mpi/
www/www3/.

[mpib] MPICH2 - a high-performance and widely portable implementation
of the Message Passing Interface (MPI) standard. URL: http://www.
mcs.anl.gov/research/projects/mpich2/.

35

[Nei] Neil Coffey. Java direct buffers. URL: http://javamex.com/tutorials/
io/nio_buffer_direct.shtml.

[Ola03] Olaf Bonorden, Ben Juurlink, Ingo von Otte and Ingo Rieping.
The Paderborn University BSP (PUB) library. Parallel Computing,
29(2):187 – 207, 2003.

[Rec04] G. W. Recktenwald. Finite-Difference Approximations to the Heat
Equation, 2004. URL: www.f.kth.se/~jjalap/numme/FDheat.pdf.

[SCB09] Aamir Shafi, Bryan Carpenter, and Mark Baker. Nested parallelism
for multi-core hpc systems using java. J. Parallel Distrib. Comput.,
69(6):532–545, 2009.

[ser] Java Serialization Benchmark project. URL: https://github.com/
eishay/jvm-serializers/wiki/.

[She94] Jonathan R Shewchuk. An introduction to the conjugate gradient
method without the agonizing pain. Technical report, Pittsburgh, PA,
USA, 1994.

[SJV] Satish Narayana Srirama, Pelle Jakovits, and Eero Vainikko. Adapt-
ing scientific computing problems to clouds using mapreduce. Future
Generation Comp. Syst., (1):184–192.

[Sui] Wijnand J. Suijlen. BSPonMPI. URL: http://bsponmpi.sourceforge.
net/.

[Val90] Leslie G. Valiant. A bridging model for parallel computation. Com-
mun. ACM, 33:103–111, August 1990.

[YB11] A. N. Yzelman and Rob H. Bisseling. An object-oriented BSP library
for multicore programming. 2011.

36

	Introduction
	BSP and Scientific Computing
	Bulk Synchronous Parallel Model
	BSPlib Standard
	Advantages Over MPI

	State of the Art

	Interface Implementation
	Data Types
	Array Access
	Multidimensional Arrays

	Multiple Return Values
	API
	Structure

	Use Case Scenario
	Heat Equation
	Numeric Solution to the Heat Equation
	Finite Difference Approximation

	Solving Systems of Linear Algebraic Equations
	Conjugate Gradient Method

	Experiment Results
	Conclusion
	Resümee
	References

