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Introdu
tionAll living organisms on earth are believed to 
ontain geneti
 information
oded in stru
tured 
olle
tions of genes and non-
oding sequen
es that makeup the DNA. The 
oded information is used to build organisms, maintainthem and it de�nes a wide range of geneti
 features that vary from individualsto individuals and from spe
ies to spe
ies. The non-
oding parts have mu
hof the responsibility to regulate the expression of parti
ular genes. Geneswith their non-
oding regulatory areas form 
omplex signaling networks thattogether 
oordinate the life 
y
le of an organism. Contemporary methods ingeneti
s like ChIP and mi
ro-array measurements make it possible to measurefeatures of thousands of genes in one experiment, generating huge amountsof data. Therefore, the development of new algorithms and methods able toanalyze this data is 
ru
ial.Our 
ontributions in
lude the development of novel methods able to 
om-bine di�erent sour
es of experimental data. In Chapter 2, we formalize thetheory des
ribing sequen
e mining with multiple input sequen
es and mul-tiple data layers. We also des
ribe, how to determine statisti
ally signi�-
ant motifs using our theory. In Chapter 3, we develop algorithms Max-SupSear
h, SafeApproxSear
h, InfreqSear
h, GFPSear
h, thatutilize di�erent pruning strategies. For GFPSear
h, we de�ne generi
-frequent-pattern tree stru
ture that is a generalization of FP-tree [JJYR04℄.We also develop NBest, that 
ombines any previously mentioned algorithmwith binary sear
h to get �xed number of best motifs. We develop SigMo-tifs, that goes even further by distilling out statisti
ally signi�
ant motifs.Performan
e study of mentioned algorithms along with experiments on realbiologi
al data are given in Chapter 4.
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Chapter 1Preliminaries
1.1 DNACurrently s
ientists have des
ribed about 1.5 million di�erent spe
ies: about�ve thousand mammals, thirty thousand spe
ies of �sh and over nine hun-dred thousand inse
ts among others [WCU07℄. Some estimates of 
omparingsamples from various parts of the world seas suggest that in o
eans there maybe more than 100 million spe
ies of ba
teria [MHJ06℄. This vast diversity ofknown and unknown spe
ies in Earth's biosphere are believed to have onething in 
ommon: the presen
e of DNA.

minor groovemajor groove

Figure 1.1: DNA Double Helix. The distan
e between strands varies andforms major and minor grooves. 6



Chemi
ally DNA is 
onsist of two long strands of polymers, where theba
kbone of a strand 
ontains alternating phosphate and sugar residueslinked with bases. These two strands form a stru
ture known as doublehelix seen in Figure 1.1, whose stability is maintained by hydrogen bondsbetween the bases, see Figure 1.2 [RSM05℄. There are four types of basesin DNA: adenine (abbreviated A), thymine (T), guanine (G) and 
ytosine(C) that 
ombined with a sugar and one or more phosphate residues form anu
leotide. The nu
leotides are pairwise aligned, making the stru
ture antiparallel, where adenine bonds only to guanine and 
ytosine bonds only tothymine. The endpoints of the strands are 
alled 3' and 5' where the �rst isde�ned by a terminal phosphate group and the se
ond by a terminal hydroxylgroup [Coh04℄.DNA nu
leotide sequen
es are usually written only using bases from onestrand as the bases on other strand are 
omplementary. Sequen
e TATAAA is
omplementary to ATATTT for example. The order the 
hara
ters are writtendepends on the sour
e of the data � sometimes the data is written in dire
tionfrom 3' to 5' while others are vi
e versa.
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1.2 Gene expressionGene expression means the rate and amount of RNA trans
ribed from it,whi
h in turn is used to de�ne other proteins ne
essary for the 
ell andthe organism. The trans
ription pro
ess requires trans
ription fa
tors thatare spe
ial proteins able to re
ognize and atta
h to parti
ular fragments ingene promoter areas. The trans
ription fa
tors are required to re
ruit RNApolymerase that is responsible for 
arrying out the trans
ription pro
ess.In more 
omplex eukaryoti
 
ells, the promoters are rather diverse and
ompli
ated, but the 
ore elements are a trans
ription start site, whi
h to-gether with RNA polymerase and trans
ription fa
tor binding sites are essen-tial for initiating the trans
ription pro
ess. Other important binding sites aretypi
ally a little more far away in upstream dire
tion that mainly regulategene expression by enhan
ing or restri
ting re
ruitment of the main tran-s
ription fa
tors. Additionally, there may be even more distant promoterareas that have weaker in�uen
e on the gene regulation.1.3 Data miningData mining is a method in statisti
s for extra
ting interesting patterns orknowledge from large amounts of available data. This �eld is very diverseas among general data mining solutions there are many spe
i�
 pro
eduresdeveloped for business, games, so
ial networks et 
etera [DP07℄. In this work,we 
on
entrate on spe
ialized area of data mining 
alled sequen
e mining thatdeals with ordered sequen
es like nu
leotide sequen
es.The Apriori algorithm is the most general and simple way to �nd pat-terns with high support in given data. In standard sequen
e mining, thesupport is de�ned as the number of o

urren
es of a pattern in input data,whi
h is used to de
ide whether the pattern is frequent or infrequent based onsome de�ned threshold. The Apriori algorithm assumes that the support isdownward 
losed, whi
h means that for any infrequent pattern there do notexist any frequent sup-patterns. For example, a DNA motif AAATCCC 
annotbe present in data more times than sequen
es AAA and CCC, be
ause when-ever the supmotif o

urs, the two submotifs must also o

ur. Let us 
larify,that in this work by a submotif or a subpattern we mean a subsequen
e with
onse
utive elements. 8



Algorithm 1.3.1 The Apriori algorithm.1: F1 ← {Frequent one-element patterns}2: ℓ← 23: while Fℓ−1 6= ∅ do4: Cℓ ← GenerateCandidates(Fℓ−1)5: Fℓ ← {c ∈ Cℓ | supp(c) > σ} ⊲ σ is threshold6: ℓ← ℓ + 17: end whileThe Apriori algorithm uses downward 
loseness as a main pruning feature.In Algorithm 1.3.1 on line 4, the GenerateCandidates pro
edure takesthe set of frequent motifs of length ℓ − 1 as input and generates possible
andidates of length ℓ. It does not need to 
onsider any non-frequent motifsas none of their supmotifs are frequent. The algorithm stops running whenit has found all frequent motifs in the dataset.Let us demonstrate Apriori by giving an example. Consider the follow-ing sequen
e: GCTTATGGTCGCTATGCTTT .Suppose we want to mine all motifs o

urring at least three times in thesequen
e. This means that we run Apriori with threshold σ = 3. The set
F1 = {T, G, C}, be
ause all nu
leotides ex
ept A are present in sequen
e morethan three times. Next, we generate 
andidate motifs of length two by usingonly frequent elements in F1.

C2 = {TT, TG, TC, GT, GG, GC, CT, CG, CC}Frequent motifs in this 
ase are
F2 = {TT, GC, CT} .Note that TT mat
hes TTT two times. The next 
andidate set is

C3 = {TTT, GTT, TTG, CTT, TTC, TGC, GCT, GGC, GCG,CGC, GCC, TCT, CTT, GCT, CTG, CCT, CTC} .This time there is only one frequent motif:
F3 = {GCT} .9



Candidate motifs of length 4:
C4 = {TGCT, GCTT, GGCT, GCTG, CGCT, GCTC} .But none of them is frequent, so F4 = ∅ and all frequent motifs in our exampleare

F = {T, G, C, TT, GC, CT, GCT} .There are also algorithms like WINEPI [MTV95℄, MINEPI [MT96℄,SPEXS [Vil02℄ that are able to mine motifs using pattern mat
hing. Still,while Apriori with other standard sequen
e mining algorithms are useful,they treat all parts of the sequen
e with equal weight. In our 
ase, we needmethods that are able to work with data that de
orates sequen
es with s
ores,making some parts of them more relevant than the rest. In Chapter 2, wereformulate standard sequen
e mining te
hniques and later devise our ownalgorithms that handle su
h requirements.
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Chapter 2Sequen
e Mining with MultipleLayers of DataIn this 
hapter, we formalize basi
 notions and 
on
epts like sequen
es, motifsand support that are needed to develop our methods. We try to developour mathemati
al approa
h su
h that it would be 
onvenient to study generegulation, when we 
onsider several promoter areas and di�erent propertiesof these sequen
es des
ribed by layers of experimental data.We also study di�erent properties and relations between these buildingblo
ks that are later used in algorithms to 
ut down the running times andimprove overall performan
e, although we do not 
over algorithmi
 detailsand other aspe
ts like data stru
tures as they are dis
ussed in later 
hapters.2.1 Sequen
es and S
oresThe most basi
 
onstru
ts we will be dealing onwards are DNA sequen
esand their fragments. In our 
ase, it will be 
onvenient to think of them asa set of nu
leotide sequen
es. Let S = {a, b, c, . . .} denote a set of promotersequen
es relevant to some gene. Single elements of a sequen
e are denotedwith subs
ripts as usual. For example, a1 means the �rst element and a2the se
ond element of a ∈ S. As there are four types of nu
leotides adenine,thymine, 
ytosine, guanine in DNA that 
orrespond to letters A, T, C, G. Wewrite a1 = A, if �rst element in the nu
leotide sequen
e is adenine and a2 = T,if the se
ond element is thymine. Let us denote the length of sequen
e a as11



|a|. It is worth to note that no promoter is with length of zero, nor thereare promoters with in�nite length in real world. However, depending onparti
ular 
ase, the lengths of the sequen
es are not usually very short orvery long.In mathemati
s, a fragment of a sequen
e is usually written as a list ofelements. In this paper, we will be using a shorter notation:
ai : j

def
= ai, ai+1, . . . , aj .where i is the beginning and j is the end of the fragment.We stated in the introdu
tion of this thesis that we are going to deal withmultiple layers of data about promoter sequen
es. For example, if we havedata 
ontaining binding and 
onservation s
ores from DNA mi
ro-array andsequen
ing experiments that asso
iate with promoters we are interested in,we 
an portray them as data tra
ks over the nu
leotide sequen
e as illustratedin Figure 2.1.

value

pos
... A  T  G  C  C  C  A  T  T  G  C  T  A  G  G  C  ... 

0.5

1.0

conservation

binding

Figure 2.1: An example subsequen
e having 
onservation and binding datatra
ks atta
hed. The s
ores are variable and may not dire
tly depend onea
h other.From theoreti
al point of view, it is not important exa
tly what kind of datawe have, as long we 
an represent it as numeri
 values linked to positionsin promoter sequen
es. However, it is important that these values expresssome property that makes some regions of the nu
leotide sequen
e morerelevant than other regions, thus de�ning important regions in respe
t toea
h data tra
k. If we have n data sets 
ontaining various s
ores and mpromoters, then we need n×m mappings that asso
iate relevant s
ores from12



a data set to all positions in nu
leotide sequen
es. Also, it is 
onvenientto normalize all data su
h that all s
ores fall into range [0, 1] like shownon Figure 2.1. It simpli�es writing some formulas, be
ause we know themaximum possible value of any type of s
ore linked to any position of anu
leotide sequen
e. Let ϕ : N −→ R be a mapping that asso
iates numeri
s
ores to all positions of a nu
leotide sequen
e. To make this notation moreuseful, let us agree that by writing ϕ(ai) we mean the s
ore that ϕ maps toposition i of sequen
e a and by writing ϕ(ai : j), we mean a sequen
e of s
ores
ϕ(ai : j)

def
= ϕ(ai), ϕ(ai+1), . . . , ϕ(aj). By writing ϕ(ai : j) we mean the averages
ore

ϕ(ai : j)
def
=

1

j − i + 1
·

j
∑

k=i

ϕ(ak) .2.2 Motifs and Mat
hingIn this se
tion, we introdu
e motifs, whi
h 
an be thought of as possiblesubsequen
es in sequen
e set. Motifs do not dire
tly asso
iate to any datatra
k, but there are several other metri
s like support, frequen
y, signi�
an
eof a motif in a parti
ular set of promoter sequen
es. In addition to nu
leotideletters A, T, G, C, motifs may also 
ontain spe
ial wild 
ard 
hara
ters thathave spe
ial meaning and usage. In this work, we will be using only onesu
h symbol * that represents any possible nu
leotide in one position. Notethat this is di�erent from standard usage of this symbol in bat
h-pro
essingor regular-expression appli
ations where it usually stands for zero or moresymbols. In our 
ase, if we have a motif G**A, then by that we mean anymotif with length of four that starts with letter G and ends with letter A.We will be dealing a lot with �xed-length motifs in later se
tions, so itis ne
essary to introdu
e notation that we 
an use to refer to all motifs witha �xed length ℓ. Let Mℓ represent a set of all motifs with length ℓ where
ℓ ∈ N. We agreed before, that all motifs are 
onsist of �ve di�erent letters:the nu
leotides and the wild 
ard 
hara
ter. This means that the 
ardinalityof the setMℓ is equal to |Mℓ| = 5ℓ as there are �ve di�erent possible elementsper position in a motif.Often it is ne
essary, that we 
ould refer to single elements of a motif thesame way we do for sequen
es, so given any motif m ∈ Mℓ, let m1 denotethe �rst element of the motif, m2 the se
ond element of the motif et 
etera.In addition to that, it is 
onvenient to des
ribe motifs as 
on
atenation of13



shorter motifs. In our 
ase, it is useful to think of a motif as a 
on
atenation ofonly a pre�x and su�x part. Let || be an 
on
atenation operator. If mp ∈Mpand ms ∈ Ms then motif m = mp || ms, where m ∈ Mℓ and ℓ = p + s. Letus illustrate this with an example. If mp = AAAT and ms = GCCGT, then the
on
atenation mp || ms is AAATGCCGT.Another very useful notion is a wild 
ard extension of some motif. Namely,if we have some �xed motif length ℓ and a motif m ∈ Mk, su
h that k 6 ℓ,we may pad the motif with wild 
ard 
hara
ters until it is ℓ elements long.This enables to easily express motifs we know to have a 
ertain pre�x. Let
m∗ ∈ Mℓ denote a wild 
ard 
hara
ter extension of motif m ∈ Mk where
k 6 ℓ su
h that the pre�x m∗

1 : k = m and su�x m∗
k+1 : ℓ = *...*. Forinstan
e, if m = AATA and we have �xed motif length ℓ = 10, then the wild
hara
ter extension m∗ = AATA******. This notion 
omes handy when wedes
ribe SafeApproxSear
h algorithm in Chapter 3. Let us agree thatany motif gained from another motif by repla
ing one or more nu
leotideswith wild 
ards is 
onsidered a submotif of the original motif.In standard sequen
e mining, the support of some motif is usually mea-sured by how many mat
hes it has in data [DP07℄. The number of mat
hesof a motif 
ontaining no wild 
ard 
hara
ters is simply the number of timesthe motif 
an be viewed as a subsequen
e of given data sequen
e. With wild
ard 
hara
ters this works di�erent as a wild 
ard 
hara
ter mat
hes anynu
leotide. See Figure 2.2 for an illustration.

Figure 2.2: Three mathes of motif ATA*A in a subsequen
e.De�nition 2.2.1 A motif m ∈ Mℓ mat
hes some fragment ai : i+ℓ−1 of se-quen
e a, if
mk = * ∨ mk = ai+k−1 for all k = 1, . . . , ℓ .14



Let us denote it as following:
match(a, m, i) =

{

1, if m mat
hes ai : i+ℓ−1

0, otherwise.We 
an extend the number of mat
hes in the sequen
e a over a set of se-quen
es S by simply adding all the individual 
ounts together:
mcount(a, m)

def
=
∑|a|−ℓ+1

i=1
match(m, ai)

mcount(S, m)
def
=
∑

s ∈ S mcount(m, s) .2.3 Support Metri
sStandard sequen
e mining treats all parts of the input sequen
e with equalvalue of importan
e [DP07℄. In our 
ase, we have possibly more than onedata tra
ks 
ontaining variable s
ores. Therefore, we need to de�ne supportin a di�erent way. We base our approa
h on a formulation given by SvenLaur [Lau09℄.The �rst thing is to extend the notion of support of one single mat
h.Standard way was summing up all mat
hes of a motif in a sequen
e, su
hthat ea
h mat
h had equal value of importan
e. But as we have a
tual s
oreslinked to positions, we extend the original method by taking an average s
oreof mat
hing positions of a single mat
h.De�nition 2.3.1 The support of an individual motif m ∈ Mℓ with respe
tto some fragment in sequen
e a starting from position i:
supp(a, m, i) =

{

ϕ(ai : i+ℓ−1) if match(a, m, i) = 1

0 otherwise .To extend the support of a motif over a sequen
e, we have several options.The �rst idea is to add up all the single supports of the motif. This is thesimplest way to go and we refer to this method as additive support onwards.Let us 
onsider another option: instead of adding up the s
ores, we 
an takeonly the maximal s
ore and be �ne with it. The plus side of this methodis that it promotes motifs that a
tually have high s
ores. Additive support
an be high even if all the s
ores of the single mat
hes are low. So, we also
onsider this method and we will be referring to it as maximal support.15



Of 
ourse, there are more ways to express the support of some motifin a sequen
e. We might 
onsider average support that works like additivesupport, but we divide the result by number of mat
hes of that motif in thesequen
e. We 
ould also de�ne supports like weighted additive or weightedaverage support, that 
onsiders some regions of the promoter to be moresigni�
ant than others. The last two are a
tually not very reasonable, be
ausewe express signi�
an
e of promoter areas through data tra
ks anyway.The average support is a
tually more relevant, but as it seems to have amixed properties of additive and maximal support, we do not 
over this typeof support in this work and 
on
entrate on studying only the two mentionedsupport types.De�nition 2.3.2 Additive support of a motif m ∈Mℓ in sequen
e a is
asupp(a, m) =

|a|−ℓ+1
∑

i=1

supp(a, m, i) .De�nition 2.3.3 Maximal support of a motif m ∈ Mℓ in sequen
e a is
msupp(a, m) = max { supp(a, m, i) | i = 1, . . . , |a| − ℓ + 1} .By writing supp(a, m), we do not refer dire
tly to neither of the supporttypes in 
ases we are dis
ussing properties that apply to both of them.Therefore, De�nitions 2.3.2 and 2.3.3 are only two possible ways of ex-pressing the support of a motif in one sequen
e. Biologi
al importan
e ofthe two depends mostly on the a
tual data used. For example, if we 
onsider
onservation, then additive support 
an reveal motifs that 
oexist in severalgeneti
ally 
lose spe
ies having great stru
tural importan
e, maximal sup-port takes into a

ount only one o

urren
e of a motif in a promoter, thusignoring larger s
ale stru
tural e�e
ts. On the other hand, maximal sup-port 
an bring up motifs that are re
ognized most probably by trans
riptionfa
tors as these enzymes require proper lo
ations to enable mounting RNApolymerase and initiate trans
ription. Thus, the de
ision about what sup-port type should be used with a parti
ular data tra
k, depends on biologi
alproperties the data.To extend notion of support over a set of sequen
es, we have severaloptions. The �rst approa
h is to 
onsider all promoter sequen
es having16



equal impa
t on the importan
e of a motif. We 
an a
hieve this by takingan average of support of a motif in all sequen
es.De�nition 2.3.4 Additive and maximal support of motif m ∈ Mℓ in a listof sequen
es S are
asupp(S, m) =

1

|S|
·
∑

a∈S

asupp(a, m) (2.1)
msupp(S, m) =

1

|S|
·
∑

a∈S

msupp(a, m) . (2.2)The se
ond approa
h is to 
onsider promoters further away from the genethey regulate having less impa
t than the ones 
loser to it. Therefore, we needto give promoter sequen
es meaningful weights, when 
al
ulating support.We 
ould propagate these weights dire
tly into the datasets, enabling thedire
t use of Equations (2.1) and (2.2). Let us also agree that by writing
supp(S, m), we do not refer dire
tly to additive, nor maximal support if weare dis
ussing properties that apply to both of them.In Chapter 3, we dis
uss algorithms and data stru
tures and usually needsupport in respe
t to all data tra
ks. Also, let us agree that we have �xedthe support type for every data tra
k to make semanti
s easier. In 
ases weneed to use both support types, we 
an view original tra
k as two dupli
ateswith di�erent support types.De�nition 2.3.5 Given mappings ϕ1, . . . , ϕn, the support of motif m in se-quen
es S in respe
t to all n data tra
ks is

−−→supp(S, m) = (s1, . . . , sn)where
si =

{

asupp(S, m, ϕi) for additive type of support
msupp(S, m, ϕi) for maximal type of support.Mappings ϕ1, . . . , ϕn given as extra arguments to support operators will beused as the mapping ϕ in De�nition 2.3.1.17



2.4 Properties of Support Metri
sIn previous se
tion, we de�ned basi
 building blo
ks like sequen
es, motifsand mappings that gave ea
h position in a promoter sequen
e one or moreweights in regard to available data sets. In this se
tion, we study variousproperties of newly de�ned support measures and notions.When we 
ompare additive and maximal support, it is rather easy to seethat additive support is always as big as maximal support, be
ause additivesupport 
onsiders all o

urren
es of a motif in a sequen
e where maximalsupport only 
onsiders the o

urren
e with maximal support.Proposition 2.4.1 For any motif m ∈Mℓ and a set of sequen
es S
msupp(S, m) 6 asupp(S, m) .We have not mentioned that there is a problem with the way we de�nedour support of some motif. Namely, the de�nition breaks the standard se-quen
e mining prin
iple of being downward 
losed as any non-frequent motifmay have frequent supmotifs.Claim 2.4.2 Let σ ∈ R be the threshold. For any motif m ∈ Mℓ, su
hthat support supp(S, m) < σ, may exist a supmotif m′ ∈ Mℓ+k, su
h that

supp(S, m′) > σ, whether we 
onsider additive or maximal support.Proof. For simpli
ity, let us assume that there is only one single mat
h ofmotif m′ in positions i to i + ℓ − 1 in sequen
e a. Sin
e the s
ores of allpositions are in range [0, 1], the supp(a, m, i) ∈ [0, 1]. Now, let us 
onsidera situation where support of the pre�x supp(a, m, i) = ϕ(ai : i+ℓ−1) < 1 andsupport of the su�x ϕ(aℓ : ℓ+k−1) = 1. From here we 
an 
on
lude that
supp(S, m′) =

1

|S|
·
ϕ(ai) + . . . + ϕ(ai+ℓ−1) + k

ℓ + k
> supp(S, m) . (2.3)If we take σ = supp(S, m′), then m is infrequent and m′ is frequent.

2Above proof raises another question: if we know the support of a motif,then what is the maximal possible support of any supmotif? We 
an approa
hthe answer same way proved above 
laim. Namely, if we 
onsider the supportof the su�x of a possible supmotif to have maximal possible value, then we
an 
al
ulate the maximal possible support of the supmotif.18



Proposition 2.4.3 For any motif m′ ∈ Mℓ+k and its submotif m ∈ Mℓ ina set of sequen
es S
msupp(S, m′) 6

ℓ ·msupp(S, m) + |S| · k

ℓ + k

asupp(S, m′) 6
ℓ · asupp(S, m) + mcount(S, m) · k

ℓ + k
.Proof. Let us 
onsider a set of fragments {ap : q, br : s, . . . zt : u} that representpositions on every promoter where motif m has highest support. In that 
ase

msupp(S, m) = |S|−1 (ϕ(ap : q) + ϕ(br : s) + . . . + ϕ(zt : u)) .If we now 
onsider m as pre�x of m′, then analogous way to Equation (2.3)we 
an estimate that support of m′ 
annot be larger than
msupp(S, m′) 6

1

|S|

(

ϕ(ap : q) + k

ℓ + k
+

ϕ(br : s) + k

ℓ + k
+ . . . +

ϕ(zt : u) + k

ℓ + k

)

=

=
1

|S|
·
ϕ(ap : q) + ϕ(br : s) + . . . + ϕ(zt : u) + |S| · k

ℓ + kthat 
ombined with Equation (2.2) be
omes
msupp(S, m′) 6

ℓ ·msupp(S, m) + |S| · k

ℓ + k
. (2.4)Additive support takes into a

ount all o

urren
es of m, thus repla
ing therelevant parts in Equation (2.4), we get

asupp(S, m′) 6
ℓ · asupp(S, m) + mcount(S, m) · k

ℓ + k
.

2Claim 2.4.2 implies that frequent motifs may have infrequent submotifs.However, it is important to note that any frequent motif also must have atleast one frequent submotif with either additive or maximal type of support.
19



Lemma 2.4.4 For all positions i < j 6 k in sequen
e a
ϕ(ai : k) 6 max{ ϕ(ai : j−1), ϕ(aj : k) } .Proof. The �rst possibility is that ϕ(ai : j−1) > ϕ(aj : k) or ϕ(ai : j−1) <

ϕ(aj : k). In that 
ase ϕ(ai : k) < max{ ϕ(ai : j−1), ϕ(aj : k)} as the averages
ore of the supsequen
e must be lower than the subsequen
e with maxi-mal average s
ore. The se
ond possibility is that ϕ(ai : j−1) = ϕ(aj : k), thus
ϕ(ai : k) = ϕ(ai : j−1) = ϕ(aj : k).

2Theorem 2.4.5 Any frequent motif m ∈ Mp+s 
an be partitioned into twosubmotifs mp ∈ Mp and ms ∈ Ms, su
h that m = mp || ms and either thepre�x mp or su�x ms is frequent.Proof. If we have only a single mat
h of the motif m in sequen
e a, thena

ording to Lemma 2.4.4
supp(a, m, i) 6 max{supp(a, mp, i), supp(a, ms, i + p)} .Now, suppose we have more mat
hes of m in one single sequen
e a. As max-imal support only 
onsiders one o

urren
e of m, then a

ording to Lemma2.4.4 the theorem holds. By De�nition 2.3.2, the additive support is thesum of supports of all single mat
hes. Let asupp(a, m) = ϕ(ai1 : j1) + . . . +

ϕ(ain : jn
), where n = mcount(a, m) and in, jn denote start and end lo
ationsof the o

urren
e. Let ϕ(mi)

def
= (ϕ(ai1+i−1) + . . . + ϕ(ain+i−1)) (p + s)−1 and

ϕ(mi : j)
def
= (ϕ(mi) + ϕ(mi+1) + . . . + ϕ(mj))(p + s)−1. Similarly to Lemma2.4.4, we 
ould show that

ϕ(m1 : p+s) 6 max{ ϕ(ai : p−1), ϕ(ap : p+s)) } (2.5)whi
h means that asupp(a, m) 6 max{asupp(a, mp), asupp(a, ms)}. Notethat any extra o

urren
es of pre�x or su�x motifs in input sequen
es donot invalidate Equation (2.5).For either additive or maximal support over a set of sequen
es S, every-thing works similarly to above steps, but we have to take into a

ount the
onstant |S|−1.
220



It is easy to see that we 
an partition a frequent motif into any number ofpie
es su
h that at least one of them is frequent. We know that partitioningworks for two submotifs, thus we 
an iteratevly 
ontinue and 
reate as manypartitions of the original motif as ne
essary, be
ause always at least onepartition has to be frequent.Corollary 2.4.6 Given motif m ∈ Mℓ and submotifs m1, m2, . . . , mn, thatpartition m into n pie
es, then at least one of the submotifs must be frequent.So far we have des
ribed the properties of additive and maximal supportwithout 
on
entrating too mu
h on the a
tual 
ontents of the motifs. How-ever, we used motif lengths in Proposition 2.4.3 to estimate maximal possiblesupport of a supmotif. While this is useful knowledge, most of the time theseestimations do not work best, be
ause they make their estimations solely onthe motif support, length and possible supmotif length. We 
an improve thissituation by introdu
ing wild 
ard 
hara
ters.Proposition 2.4.7 Given motifs m ∈ Mℓ and m′ ∈Mℓ, that is 
onstru
tedfrom motif m su
h way, that one nu
leotide in m is repla
ed by a wild 
ard
hara
ter *, the additive or maximal support
supp(S, m) 6 supp(S, m′) .For example, 
onsider a motif mp = GCT as a pre�x of a longer supmotif

m ∈ M10. If we want to know the maximal support of any su
h supmotif,we 
an 
al
ulate supp(S, GCT*******). It 
ertainly does not give higherestimation than former des
ribed method. On the other hand, it requiresa query on the database, whi
h depending on situation 
an be 
ostly. Wedes
ribe both approa
hes more thoroughly in Chapter 3.2.5 Statisti
ally Relevant MotifsIn previous se
tions, we dis
ussed how to determine if a motif is frequent.In this se
tion, we des
ribe how to go even further by de
iding, whi
h fre-quent motifs are statisti
ally more signi�
ant. By this, we a
tually want tomeasure the amount of surprise for every frequent motif. In our 
ase, wemay measure surprise individually even for every data tra
k and we have21



several options for doing that. The simplest idea is to permute the letters ofthe promoter sequen
es. Then we 
an 
ompare the support measures of thepermuted dataset against the original one. If motifs in original data havehigher supports, then they are surprising in that sense. To be more spe
i�
,we may generate a large amount of datasets by permuting randomly theoriginal sequen
es. If we 
onsider only one data tra
k, then we 
an sort themotifs de
reasingly by their support su
h that motif with highest support isthe �rst in the resulting list. Then, for every motif at position i in the list,we 
an 
al
ulate how many motifs at i'th position in generated datasets hadsupport as high as the original motif. We 
an write it down as
p = Pr[supp(S ′, m′) > supp(S, m)]where S is the original dataset, S ′ is the permuted dataset, m is the originalmotif at i'th position and m′ is the motif in S ′ at same position. The value

p is 
alled p-value in statisti
s and in our 
ase, represents the probability ofhaving the support in a random dataset at least as extreme as in the originalone. Therefore, the smaller the p, the more surprising is the motif m.We 
an 
al
ulate p-value for every frequent motif and for every data tra
k.Of 
ourse, we might want to 
al
ulate only a single p-value for every motif,but the problem is with sorting frequent motifs. This a
tually 
an be done,as dis
ussed in Chapter 3, but having a p-value in respe
t to ea
h data tra
kmay reveal interesting properties of the motifs. We will omit exa
t algorithmfor 
al
ulating p-values, but brie�y dis
uss it later in Se
tion 3.5. Let usrefer to this algorithm as SigMotifs onwards.
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Chapter 3Algorithms and Data Stru
turesIn this 
hapter, we will devise algorithms based on formalization and otherideas des
ribed in Chapter 2. We start o� by des
ribing 
ompa
t en
odingof motifs and 
ontinue developing algorithms with di�erent pruning methodsand 
apabilities.3.1 Compa
t En
oding of MotifsIt turns out, that there is a rather straightforward way to en
ode �xed-length motifs as unique integers. If we 
onsider nu
lotides and wild 
ard
hara
ter as a set X = {A, T, G, C, *} and have another set with same size
Y = {0, 1, 2, 3, 4}, then we 
an de�ne a mapping π : X −→ Y , su
h that
π(A) = 0, π(T) = 1, π(G) = 2, π(C) = 3, π(*) = 4, that would enable us torepresent a motif m ∈Mℓ as an integer

50π(m1) + 51π(m2) + . . . + 5ℓ−1π(mℓ) . (3.1)For our 
onvenien
e, let us agree that by writing π(m), where m ∈ Mℓ, wemean the integral representation of motif given in Equation (3.1).This representation makes it easy to hash any motif of length ℓ and storeit in a hash-table as for every �xed length motif the integral representationis unique.If the motif length ℓ is small enough, then we 
ould use a hash-map ofsize 5ℓ. This way we 
ould dire
tly use the value π(m) as a key to storemotif's support metri
s and this guarantees 
onstant time O(1) a

ess asthere would be no 
ollisions. 23



In normal 
ir
umstan
es, we do not need to store support for all possiblemotifs. For example, there are 58 = 390625 possible motifs of length 8in
luding wild 
ard 
hara
ters. For a yeast S.Cerevisiae, the promoter lengthsare not usually longer than a few thousand base pairs. Therefore, if we haveone promoter with length of 3000 base pairs, we 
an a
tually have maximalof 3000− 8 = 2992 di�erent non wild 
ard 
hara
ter motifs of length eight.3.2 Hash-map of Support Metri
sThe integral representation of motifs allows us to e�e
tively build a hash-map 
ontaining support metri
s of all motifs found in promoter sequen
es.Consider a sequen
e a = ATCCGTCCG. If we are interested in motifs of length4, then motif m1 = ATCC mat
hes the �rst position of a and motif m2 = TCCGmat
hes the se
ond position of a. The integral representations are following:
π(m1) = 1 · 0 + 5 · 1 + 25 · 3 + 125 · 3 = 455

π(m2) = 1 · 1 + 5 · 3 + 25 · 3 + 125 · 2 = 341 .It turns out, that we 
an update the integral representation of m1 to m2 in
onstant time. By Equation (3.1), the integral representation of motif m1 is
π(m1) = 50 · π(a1) + 51 · π(a2) + 52 · π(a3) + 53 · π(a4). By subtra
ting the�rst element 50 · π(a1), dividing the result by �ve and adding 53 · π(a5), weget
π(m1)− 50 · π(a1)

5
+ 53 · π(a5) = 50 · π(a2) + 51 · π(a3) + 52 · π(a4) + 53 · π(a5)whi
h is equal to π(m2). So in our example, where π(m1) = 455, we 
an
al
ulate

π(m2) =
π(m1)− 50 · π(a1)

5
+ 53 · π(a5) =

455− 0

5
+ 125 · 2 = 341 .Analogously, we 
an do this with support of single mat
hes for all tra
ks.Why this is important, is that we 
an 
al
ulate all support metri
s of allmotifs present in data in one pass. The negative side e�e
t of this approa
hwith s
ores are possibly greater �oating-point rounding errors. But we 
anredu
e them e�e
tively by re
al
ulating them from data tra
ks after every 100or 1000 steps. This of 
ourse is not the issue with the integral representation.24



Let us give an in-depth example. Consider two sequen
es a = ATCCGTCCG,
b = TTCCG and two mappings ϕ1, ϕ2 representing two data ta
ks su
h that

ϕ1(a1 : 9) = 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.5, 0.5, 0.5
ϕ2(a1 : 9) = 0.5, 0.5, 0.5, 0.5, 0.5, 1.0, 1.0, 1.0, 1.0
ϕ1(b1 : 5) = 1.0, 1.0, 1.0, 1.0, 1.0
ϕ2(b1 : 5) = 0.5, 0.5, 0.5, 0.5, 0.5 .We 
an traverse the promoters step-by-step, su
h that after every 
y
le thehash-map 
ontains up-to-date support metri
s based on seen o

urren
es ofmotifs. All unseen o

urren
es are regarded as having single supports equalto zero. In our example, details of traversing a and b are given in table below.Step m ϕ1(m) ϕ2(m) Comment1 ATCC 1.0 0.5 Add ATCC to hash-map.2 TCCG 1.0 0.5 Do same with TCCG.3 CCGT 0.875 0.625 Keep adding unseen motifs into4 CGTC 0.75 0.75 hash-map with their support5 GTCC 0.625 0.875 metri
s.6 TCCG 0.5 1.0 Update support metri
s of TCCG.7 TTCC 1.0 0.5 We are pro
essing b now.8 TCCG 1.0 0.5 Update support metri
s of TCCG.For example, 
onsider motif TCCG. For additive support over all sequen
es wesum 1.0/2+0.5/2+1.0/2 for ϕ1 and 0.5/2+1.0/2+0.5/2 for ϕ2. We dividethe s
ores by two, due to De�nition 2.3.4. After every update, the additivesupports are up-to-date based on data seen so far. For maximal support, weneed to do more book-keeping, be
ause when we �nd an o

urren
e with big-ger maximal s
ore in a sequen
e, we have to 
an
el the e�e
t of the previouso

urren
e. For example, the maximal support after step two is 0.5/2 for ϕ2.At step 6, we dis
over that it should be 1.0/2 instead, therefore we subtra
t

0.5/2 from the variable 
ontaining the support and add 1.0/2.With this kind of hash-map 
onstru
tion we 
al
ulate all the metri
s onthe �y. Therefore, we avoid any post-pro
essing, be
ause 
al
ulating thesupport measures over all sequen
es would otherwise require intermediatelists 
ontaining s
ores of single supports. With motifs without wild 
ard
hara
ters, this would not be very big memory overhead, but otherwise it25




ould be
ome an issue. Total runtime 
omplexity of this method is
O

(

n · c ·
∑

s∈S

|s|

)where n is the number of data tra
ks and c is the 
omplexity for updatingthe support of a motif in the hash-map.3.2.1 In
luding Motifs with Wild Card Chara
tersWe will dis
uss SafeApproxSear
h in Se
tion 3.4.2, where hash-maps arerequired to also 
ontain supports of all wild 
hara
ter extensions. This re-quires us to modify the method des
ribed earlier. The integral representationallows us to pre
ompute su�x parts of all extensions. Let wi be su�x partof some motif m of length ℓ, su
h that 1 6 i 6 ℓ and mi : ℓ = * . . . *. Then
π(wi) = 5i−1π(*)+ . . .+5ℓ−1π(*). If we now have the integral representationof a pre�x mp, then π(mp)+π(wi) will yield the integral representation of thewild 
ard 
hara
ter extension. In hash-map 
onstru
tion phase, it requires ℓsteps instead of one to in
lude the support metri
s of all wild 
ard 
hara
terextensions, therefore the 
omplexity is

O

(

n · c · ℓ ·
∑

s∈S

|s|

)

.3.3 Naive Sear
h based on AprioriThe simplest sear
h method is based on the Apriori prin
iple des
ribed inChapter 1. Namely, we 
an mine all motifs present in input sequen
es bysetting the threshold σ = 1 with Apriori and then 
he
k if they are frequentin our terms. This is a
tually a 
omposition of Apriori and a �lteringfun
tion. In our 
ase, it is better to implement this as a depth-�rst sear
halgorithm, be
ause breadth-�rst nature of Apriori 
auses too mu
h memoryoverhead, when mining longer motifs. The Algorithm 3.3.1 in
orporates the
omposition of Apriori and the �ltering fun
tion. On lines 10 � 12, wesee the 
andidate generation part of the algorithm. Note that we always usemotifs A, T, G, C for extension. This is due to the fa
t that there are rarely
ases, where a nu
leotide in promoter sequen
es is missing. The Apriori26



Algorithm 3.3.1 NaiveSear
h1: pro
edure NaiveSear
h(S, ~σ, m, ℓ)2: if mcount(S, m) = 0 then3: return4: else if |m| = ℓ then5: if IsFrequent (~σ, −−→supp(S, m)) then6: SaveMotif(m)7: end if8: return9: end if10: for e ∈ {A, T, G, C} do11: NaiveSear
h(S, ~σ, m || e, ℓ)12: end for13: end pro
edurepruning prin
iple is in a
tion on lines 2 � 3 and the �ltering fun
tion is givenon lines 4 � 9. Fun
tion IsFrequent 
he
ks, if all thresholds σi > si where
~s = −−→supp(S, m). Re
all, that −−→supp operator returns a ve
tor of values, whereea
h element determines the support per one data tra
k a

ording to additiveor maximal support type. Also, if implementations of −−→supp and mcountare implemented using data stru
tures like hash-map dis
ussed in previousse
tion, then these need to be 
onstru
ted before running this algorithm.As an example, 
alling NaiveSear
h(S, ~σ, θ, 8), where θ is the emptyzero-length motif, S is the set of sequen
es and ~σ is the ve
tor of thresholds,we �nd all frequent motifs of length 8. The 
omplexity of NaiveSear
h is
O(4ℓ), where ℓ is the �xed motif length.3.4 Pruning StrategiesIn this se
tion, we des
ribe di�erent pruning strategies, whi
h 
an be usedto make more e�
ient algorithms 
ompared to NaiveSear
h. All thesemethods are based on properties studied in Chapter 2.
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3.4.1 Maximal Support Estimation PruningThe simplest method is based on Proposition 2.4.3. Namely, if we are miningmotifs with length ℓ + k and we have some motif m ∈Mℓ, then the supportmeasures of any of its super motifs with length ℓ + k 
annot be greater thanmotif having m as a pre�x and hypotheti
al su�x with s
ore 1.0. Therefore,a motif m and its supmotifs 
an be pruned, if on any of the data tra
ks
ℓ ·msupp(S, m) + |S| · k

ℓ + k
< σif we are mining using maximal support or

ℓ · asupp(S, m) + mcount(S, m) · k

ℓ + k
< σif we are mining using additive support. Of 
ourse, the maximal motif length

ℓ + k must be �xed to make these formulas usable. As an example, let usanalyze Figure 3.4.1.

Figure 3.1: Support of motifs AT and AT** in a sample subsequen
e.We see thatmsupp(S, AT) = max{0.1; 0.5; 0.25; 0.5} = 0.5 and asupp(S, AT) =
0.1+0.5+0.25+0.5 = 2.25. If we were mining using maximal type of supporton this tra
k, then we 
an prune the motif with its supmotifs if

(2 ·msupp(S, AT) + 2) /4 = (2 · 0.5 + 2) /4 = 0.75 < σwhere σ is the threshold. For additive type of support this would be
(2 · asupp(S, AT) + 2 ·mcount(S, AT)) /4 = = (2 · 0.5 + 2 · 4) /4 = 2.25 < σ .In
orporating this pruning method requires only small 
hanges to Naive-Sear
h on line 2 of Algorithm 3.3.1. The result is given in Algorithm 3.4.1,where CanPrune uses method des
ribed above to determine if the motifand supmotifs 
an be pruned. 28



Algorithm 3.4.1 Sear
h Using Maximal Support Estimation for Pruning1: pro
edure MaxSupSear
h(S, ~σ, m, ℓ)2: if mcount(S, m) = 0 ∨CanPrune(~σ, −−→supp(S, m)) then3: return4: else if |m| = ℓ then5: if IsFrequent(~σ, −−→supp(S, m)) then6: SaveMotif(m)7: end if8: return9: end if10: for e ∈ {A, T, G, C} do11: MaxSupSear
h(S, ~σ, m || e, ℓ)12: end for13: end pro
edure3.4.2 Safe Over-Approximation Sear
hAnother improvement to NaiveSear
h uses slightly di�erent approa
h. Itis based on Proposition 2.4.7 that stated that support of any motif m′ gainedfrom motif m by repla
ing one or more nu
leotides with wild 
ard 
hara
ters,is greater or equal 
ompared to original motif. Also, it holds with eithermaximal or additive type of support. This allows us to de�ne a supportoperator that is guaranteed to be downward 
losed, whi
h was an issue withNaiveSear
h and MaxSupSear
h [Lau09℄. We will be referring to it assafe over-approximation type of support onwards.De�nition 3.4.1 Let supp∗(S, m) of motif m ∈ Mℓ denote the support ofits wild 
hara
ter extension m∗ ∈ Mk, where ℓ 6 k.Re
all that a wild 
ard 
hara
ter extension of m was a �xed length motifthat 
ontained m as a pre�x and rest of the elements (wild 
ard 
hara
ters)as the su�x. As an example, if we are interested in mining sequen
es oflength ℓ = 3, we �rst start by 
he
king the support of wild 
ard 
hara
terextensions of motifs inM1, namely A**, T**, G**, C** (note that we donot in
lude motif * in this list, as it is anyway the most frequent motif andwe are not interested in it). If any of these motifs is infrequent, for exampleT, then we prune all its supmotifs TAA, TAT, TAG, TAC, TTA et 
etera. But29



if T is frequent, we 
ontinue to 
he
k its submotifs TA, TT, TG, TC using
supp∗ operator. We only have to keep in mind, that it is downward 
losedonly when mining motifs with �xed length, so that Proposition 2.4.7 wouldhold.Algorithm 3.4.2 Safe Over-Approximations Sear
h1: pro
edure SafeApproxSear
h(S, ~σ, m, ℓ)2: if IsFrequent(~σ, −−→supp∗(S, m)) then3: if |m| = ℓ then4: SaveMotif(m)5: return6: end if7: else8: return9: end if10: for e ∈ {A, T, G, C} do11: SafeApproxSear
h(S, ~σ, m || e, ℓ)12: end for13: end pro
edureThe Algorithm 3.4.2 de�nes SafeApproxSear
h. Note that we use
−−→supp∗ operator instead of −−→supp and use IsFrequent to determine, whetherwe 
an prune the motif with its supmotifs. This is possible due to downward-
loseness of −−→supp∗ operator.Both MaxSupSear
h and SafeApproxSear
h have similar theoreti-
al runtime 
omplexity O(f · 4ℓ), where pruning fa
tor f ∈ (0, 1] is maximal,if no pruning o

ur and minimal, if all motifs are pruned.3.4.3 Infrequent Sub-Motifs Pruning MethodThis alternative sear
h method is dire
tly based on Theorem 2.4.5. Namely,if we are interested in motifs with length ℓ, then for any partitioning of afrequent motif m ∈Mℓ into two pie
es m1, m2, at least one of the pie
es mustbe frequent. The idea is to generate two sets F and I, where F 
ontains thefrequent motifs and I the infrequent ones of length ℓ/2. Thus, we 
ombinemotifs from F and I to enumerate �nal 
andidates. Note, that we need I,30



be
ause any frequent motif of length ℓ may have infrequent pre�x or su�x.We do not need to 
onsider 
ombinations of infrequent submotifs as due toTheorem 2.4.5 we know, that the resulting motif is also infrequent. Also,there are many ways to partition the motifs, but making them with samelength enables us to enumerate them faster. The Algorithm 3.4.3 des
ribesthis pro
ess.Algorithm 3.4.3 Infrequent Sub-Motifs Sear
h1: pro
edure InfreqSear
h(S, ~σ, m, ℓ) ⊲ ℓ must be even2: (F , I)← EnumerateMotifs(S, ~σ, ℓ/2)3: C ← {(a, b) | a ∈ F , b ∈ F ∪ I}4: for c ∈ C do5: if CanPrune(~σ, −−→supp(S, c)) then6: 
ontinue7: else if IsFrequent(~σ,−−→supp∗(S, c1 || c2)) then8: SaveMotif(c1 || c2)9: else if c1 6= c2 then10: if IsFrequent(~σ,−−→supp∗(S, c2 || c1)) then11: SaveMotif(c2 || c1)12: end if13: end if14: end for15: end pro
edureOn line 3, we enumerate all the 
andidate motifs of length ℓ. On line5, we �rst try to eliminate 
andidates by using information we know abouttheir pre�x m1 and su�x m2. We try this, be
ause querying the database,depending on data stru
tures used, 
an be more 
ostly. The CanPrunemethod 
he
ks on every tra
k if
msupp(S, m1 || m2) 6

msupp(S, m1) + msupp(S, m2)

2
< σfor maximal support type and

asupp(S, m1 || m2) 6
asupp(S, m1) + asupp(S, m2)

2
< σ31



for additive support type. These formulas are derived from equations inProposition 2.4.3. If we 
an prune m1 || m2 using above equations, then we
an also prune m2 || m1 as there is no di�eren
e, in what order we 
onsiderthe pre�x and su�x part.3.5 Mining Fixed Number of Best MotifsThe sear
h algorithms dis
ussed in earlier se
tions 
on
entrate on �nding allfrequent motifs in respe
t to some threshold ve
tor. But suppose we want tomine 100 �best� motifs. Doing this by hand using any previously mentionedsear
h algorithm would require following pro
ess. First, we determine somereasonable thresholds and support types for data tra
ks. Se
ond, we minefrequent motifs using these thresholds and de
ide, whether the number ofmotifs was too small or too large. Third, we modify the thresholds by in-
reasing or de
reasing them and mine again until we have desired number offrequent motifs.The pro
ess we just des
ribed is a
tually similar to binary sear
h knownin 
omputer s
ien
e. The Algorithm 3.5.1 implements it to automate thispro
ess. On line 3, we determine two s
alars α and β, su
h that mining with
α · ~σ returns all motifs present in data and mining with (β + ε) · ~σ returnsnone of the motifs where ε > 0. It is trivial, that α = 0, be
ause in that
ase all motifs will be frequent. Determining β is more 
ompli
ated, be
ausewe do not have any prior knowledge about maximal supports in data. Firstoption is to make a guess, but a better alternative is to �nd out the supportsby 
al
ulating ~s = −−→supp∗(S, *) and set

β = max{si/σi | i = 1, . . . , n} (3.2)where n is the number of data tra
ks and ~σ 
ontains user-de�ned thresholds.This way β · ~σ may return only minimal possible number of frequent motifs.Having these boundaries �xed, we 
an easily 
ombine any previously de�nedsear
h method with binary sear
h. In other words, we keep s
aling the orig-inal ve
tor of thresholds ~σ, until we get desired number of frequent motifs.The linearity of this approa
h may not always be the best 
hoi
e, be
ausethe relations between the reasonable thresholds depend on the nature of thedata. We do not study further possibilities in this work, but it 
ould be apossible resear
h area in the future. 32



Algorithm 3.5.1 Algorithm for Mining Fixed Number of Best Motifs1: pro
edure NBest(S, ~σ, N, ℓ)2: ~s← −−→supp∗(S, *)3: α← 0, β ← max{si/σi | i = 1, . . . , n} ⊲ n is the number of tra
ks4: C ←∞ ⊲ The 
losest number of best motifs5: δ ← 0 ⊲ S
alar to be used to mine 
losest number of best motifs6: while β − α > ε do ⊲ ε > 0 limits the re
ursion depth7: γ ← (α + β)/28: k ← NumFreqMotifs(S, γ · ~σ, θ, ℓ) ⊲ θ is the zero-length motif9: if abs(k −N) < C then10: C ← k, δ ← γ11: end if12: if k > N then13: α← γ14: else if k < N then15: β ← γ16: else if k = N then17: break18: end if19: end while20: return MineMotifs(S, δ · ~σ, θ, ℓ)21: end pro
edureFun
tion NumFreqMotifs 
an be used as a wrapper around sear
hmethods des
ribed in earlier se
tions. There are still a few things to 
onsider.First, not always there exist some �xed number of best motifs, be
ause twomotifs may have exa
tly same support measures. In that 
ase, binary sear
hgoes into in�nite loop. Same happens, when the number of desired motifs isgreater than there are motifs present in input data. In both situations, weneed to limit the maximal depth of the re
ursion. But we 
an still returnthe number of motifs, that is very 
lose to desired number of motifs. On line3, we de�ne C that will remember, what was the 
losest number of frequentmotifs to the desired �xed number of motifs. S
alar δ 
an be used to s
ale
~σ to get C frequent motifs. On line 6, we use ε > 0 to limit the re
ursiondepth. On lines 12 � 18, we see binary sear
h in a
tion. The while loop33



terminates when the re
ursion depth limit is rea
hed or s
alar, that returnsdesired number of frequent motifs, is found. After that, the MineMotifsfun
tion used as a wrapper around any previously de�ned sear
h method�nally returns the motifs.The 
omplexity of this approa
h is O(d · 4ℓ), where d is the maximalre
ursion depth of binary sear
h and 4ℓ is the worst-
ase 
omplexity ofNaiveSear
h, MaxSupSear
h and SafeApproxSear
h where ℓ is the�xed motif length.Another, rather naive, but reasonable alternative is to mine at least thedesired number of motifs from input data set and sort them. A reasonable
riteria for sorting 
an be derived from Equation (3.2), that we used to 
al
u-late the value β. Suppose we have mined f frequent motifs m1, m2, . . . , mf .Given an ve
tor of thresholds ~σ, we 
an 
al
ulate s
alars
γj = max{si/σi | i = 1, . . . , n}where j ∈ {1, . . . , f}, n is the number of data tra
ks and ~s = −−→supp∗(S, mj).These s
alars have an interesting property. For any motif mj present ininput data, IsFrequent(~σ, γj ·−−→supp∗(mj)) = true, where γj is minimal su
hs
alar for mj . If we sort motifs m1, . . . , mf de
reasingly using γj as the keyfor motif mj , then we get a list where �rst N motifs are the �best� minedmotifs. The 
omplexity of sorting is O(f · log2f). Also, if we do not want toguess thresholds and mine frequent motifs before sorting, then we 
an get alist of present motifs in the data along with hash-map 
onstru
tion in lineartime to the total length of input sequen
es, be
ause we need the supportmetri
s of the motifs anyway. Therefore, if the number of present motifs issmall, then sorting de�nitely has the advantage. On the other hand, we arenot usually interested in more than 100 frequent motifs. Therefore, in a largeset of promoter sequen
es, NBest 
ould work faster.Another thing to be 
onsidered is the NumFrequentMotifs fun
tionused in Algorithm 3.5.1. It only needs to know the number of frequentmotifs not the a
tual motifs themselves. This allows us to prune the sear
heven better than MaxSupSear
h and SafeApproxSear
h do. We willdes
ribe this in the next se
tion.Also, both NBest and sorting approa
hes 
an be used as a 
entral partin mining statisti
ally signi�
ant motifs with SigMotifs des
ribed in Se
-tion 2.5, be
ause SigMotifs requires lists of �best� mined motifs from per-muted datasets to determine the p-values of original motifs. We won't dis
uss34



SigMotifs any further here, but we use it to mine signi�
ant motifs in aexperiment dis
ussed in Chapter 4.3.6 Generalized FP-TreeIn this se
tion, we des
ribe a data stru
ture that is optimized to tell us howmany motifs in input data are frequent, given some ve
tor of thresholds.We will use a generalization of FP-Tree [JJYR04℄ that is widely used instandard data mining appli
ations. The general idea is simple: the tree
ontains support of all �xed-length motifs in promoter data and maintainsrelationships between sub and supmotifs, su
h that given a motif we 
an tellhow many supmotifs there are and what are the minimum and maximumvalues of s
ores per ea
h data tra
k. This way it is easy to determine thenumber of frequent motifs in the tree given the ve
tor of thresholds ~σ.

Figure 3.2: Generalized FP-Tree of Sequen
e ATGAC of motifs with length oftwo.Consider sequen
e ATGAC given in Figure 3.2. If we were to mine motifs oflength two, then the we would build the tree shown in the �gure. Note thatevery leaf of the tree represents one motif present in data and 
ontains the35



support metri
s of that motif. Every intermediate node 
ontains informationabout how many leaves it has and what are the minimal and maximal supportmeasures of them.For example, if thresholds were ~σ = (0.5, 0.5), then already at root nodewe know, that all the motifs in the tree are frequent. Thus, we do not needto look any further, but just return the number of motifs. If ~σ = (0.5, 1.0),then we have to re
urse from the root node to make any de
isions. Atintermediate node A, we see that all submotifs are frequent in respe
t tothreshold of �rst tra
k, but they are all infrequent against the threshold ofthe se
ond tra
k. Thus, the intermediate node has no frequent submotifs.At intermediate node T, exa
tly same applies. At intermediate node G, wesee that all submotifs are frequent regarding the thresholds, thus at rootnode we 
ompute that the number of frequent submotifs is 0 + 0 + 1 = 1.This example demonstrated the pruning 
apabilities with GFP-Tree fromabove and below, therefore making this stru
ture optimized for returning thenumber of frequent motifs regarding some thresholds. Also, using this treestru
ture for support metri
s retrieval in SafeApproxSear
h instead of ahash-map with additive support type, pruning infrequent motifs is possiblemu
h earlier in the sear
h pro
ess. This is due to fa
t that GFP-Tree is
apable of returning the a
tual maximum support among supmotifs, whereashash-map sums the supports of the supmotifs.We will refer to this sear
h method as GFPSear
h onwards, but weomit exa
t algorithm for the sake of spa
e. Still, let us on
e more 
larify thepruning step part of the algorithm. Suppose we have two data tra
ks and weare in an intermediate node, trying to de
ide, what is the number of frequentsubmotifs in this subtree. We 
an 
ompose a table 
ontaining subnodes asrow headers and data tra
ks as 
olumn headers. For every data tra
k, we 
anwrite if relevant threshold is equal or below of the minimal support of thesubnode, above the maximal support or between the minimal (not in
luded)and maximal (in
luded).Subnode track1 track2 CommentA above above No motifs are frequent in this subtreeT middle above No motifs are frequent in this subtreeG below middle We have to look further to de
ideC below below All motifs are frequent in this subtreeIf a row 
ontains value above, then there are no frequent motifs in that36



subtree. If all values are below, then all submotifs in the subtree are frequent.In 
ase the values are a mix of below and middle, we have to re
urse to thesubtree to de
ide the number of frequent submotifs. After that, we sum upthe total number of frequent submotifs at this intermediate node and returnthe result to parent that deals with it onwards.The 
omplexity of telling how many motifs are frequent, given a thresholdve
tor, is with similar 
omplexity to SafeApproxSear
h, but in additionto that, we 
an prune the sear
h from below as we only want to know thenumber of motifs. Composing this fun
tionality with binary sear
h 
an ef-fe
tively �nd thresholds that yield desired number of frequent motifs or atleast the number of results that are 
losest to them. Constru
ting su
h atree takes O(n · ℓ) time, where n is the total length of sequen
es and ℓ is the�xed motif length.Of 
ourse, GFP-Tree 
an be also used to a
tually fet
h the frequent mo-tifs, but this eliminates the pruning possibility from below, as we a
tuallyhave to re
urse to the leaves to rea
h the motifs. In that 
ase, the theoreti
alruntime 
omplexity is exa
tly the same as with SafeApproxSear
h.

37



Chapter 4Experimental ResultsIn this 
hapter, we des
ribe several experiments we have performed to furtherstudy and 
ompare di�erent algorithmi
 
apabilities of methods studied inprevious 
hapters. In Se
tion 4.1, we will dis
uss run-time performan
e ofsear
h algorithms and in Se
tion 4.2, we dis
uss the biologi
al signi�
an
e ofmined motifs. For these purposes, we have written a C++ appli
ation thatimplements all sear
h algorithms des
ribed in this work, see Appendix A.The 
omputer we used to run the tests had following spe
s: Intel PentiumM CPU 1.73 GHz with 2MB of L2 
a
he, 1GB of DDR2 RAM, Fedora 12(kernel version 2.6.31.5) operating system.4.1 Runtime Performan
e of Sear
h AlgorithmsIn this se
tion, we run two types of tests. First, we 
ompare the run-time per-forman
e of algorithms NaiveSear
h, MaxSupSear
h, SafeApprox-Sear
h, InfreqSear
h and GFPSear
h by mining motifs from datasets with given thresholds. Se
ondly, we 
ompare NBest 
ombined withGFPSear
h against MergeSort and test, how fast they manage to re-trieve �xed number of frequent motifs from input data.4.1.1 Mining Frequent MotifsFor testing all sear
h methods with given thresholds, we need to also 
on-sider one other aspe
t. Namely,NaiveSear
h,MaxSupSear
h, SafeAp-proxSear
h, InfreqSear
h all need hash-maps dis
ussed in Se
tion 3.238



for support retrieval. What is more, SafeApproxSear
h needs hash-map,that 
ontains also wild 
ard 
hara
ter extensions. NaiveSear
h and Max-SupSear
h do not need wild 
ard 
hara
ters, but they need hash-maps forall motif lengths up to ℓ, if we are mining motifs of length ℓ. InfreqSear
hneeds two hash-maps without wild 
ard 
hara
ters: one, that 
ontains sup-port metri
s for motifs of length ℓ and another, that 
ontains metri
s formotifs of length ℓ/2. And �nally, GFPSear
h requires GFPTree for be-ing able to perform at all. As we are interested in pra
ti
al value of thealgorithms, we also studied the time required to build ne
essary data stru
-tures.For ben
hmarking, we de
ided to mine motifs of length 8 and use au-tomati
ally generated datasets with total length of the promoters from 500up to 25000, where the length of one promoter was exa
tly 500 nu
leotideslong. We generated ten datasets with given number of promoters for everysear
h method and measured the average running time of the sear
h algo-rithm. Also, total working time in
luding data stru
ture 
onstru
tion wasmeasured and we 
al
ulated, how many motifs were pro
essed. We generatedfour data tra
ks for ea
h promoter where the s
ores of the data tra
ks weregenerated randomly. Ea
h promoter sequen
e was generated using a Markov
hain, but with di�erent 
hara
teristi
s. We mined the datasets using threetypes of thresholds: low, medium and high. Low setting means, that thresh-olds are equal to 0.05 for all data tra
ks, not depending whether we mineusing maximal or additive support. Medium settings means, that thresholdsare equal to 0.3 and high setting means, that thresholds are equal to 0.55.Su
h settings were 
hosen without no parti
ular reason, but in hope of �nd-ing interesting patterns in behavior of the algorithms. Also, two tra
ks weremined using additive and two using maximal support type.Let us analyze the results given in Figure 4.1. When we 
ompare al-gorithm running times, then InfreqSear
h is the slowest method withlow and medium thresholds. There are two possible reasons. First, themethod has to enumerate all motifs of length four. Se
ond, pruning strat-egy of InfreqSear
h does not work well with very low thresholds. Onthe other hand, with high thresholds, it is as fast as SafeApproxSear
hand GFPSear
h. Also, running times of the MaxSupSear
h seem tobe very dependent on thresholds. With low thresholds, it performs simi-larly to NaiveSear
h, with medium thresholds it works mu
h faster andeven better with high thresholds. The fastest algorithms are SafeApprox-Sear
h and GFPSear
h and they perform similarly well. Only di�er-39
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en
e is with medium thresholds, where SafeApproxSear
h works about20 millise
onds slower on average. The observation that GFPSear
h isfaster, is due to nature of GFP-Tree and ability to help de
iding faster, whatbran
hes to prune. Other than that, we a
tually see two types of behaviorhere. First, running times of NaiveSear
h and MaxSupSear
h grow
onstantly when the number of promoters is in
reased. This happens, be-
ause the number of motifs present in input data grow, but pruning strategyof MaxSupSear
h is looser than strategies of SafeApproxSear
h, GF-PSear
h and NaiveSear
h. Se
ond, running times of InfreqSear
h,SafeApproxSear
h and GFPSear
h seem to de
rease or be 
onstant,when the number of promoters is in
reased. This implies that the e�
ien
yof their pruning strategies grow with the number of infrequent motifs presentin data.If we now 
onsider also the time needed to build ne
essary data stru
tures,then �rst thing we noti
e, is that InfreqSear
h performs rather well 
om-pared to other sear
h algorithms using hash-maps for support retrieval. Thisis due to fa
t that InfreqSear
h needs support only for motifs of lengtheight and four, where NaiveSear
h and MaxSupSear
h require that wehave information about all motifs present in datasets up to length of eight.Re
all that SafeApproxSear
h required hash-maps to 
ontain wild 
ard
hara
ter extensions. This requirement seems to put SafeApproxSear
halmost on the same bar with NaiveSear
h and MaxSupSear
h. Sur-prisingly, GFPSear
h outperforms all other sear
h methods, ex
ept withhigh thresholds InfreqSear
h is faster. On all three plots we see that the
onstru
tion time of the data stru
tures seem to be more or less linear to thetotal length of input sequen
es. One other observation is that if we modi�edNaiveSear
h to be even more naive, su
h that it does not do Aprioripruning 
he
k, then it 
ould work with a hash-map 
ontaining only �xed-length motifs. Therefore, the total running times 
ould easily 
ompete withGFPSear
h, be
ause the time needed to 
onstru
t the hash-map would beroughly half the time ne
essary for the InfreqSear
h.If we now analyze the number of motifs that were not pruned, thenInfreqSear
h really seems to have the pruning strategy, that is very ef-fe
tive with high thresholds, but bad with low and medium thresholds. Thisalso suggests that support of motifs goes really low in the generated data ifthe number of promoters goes higher than ten. Again, we see that Max-SupSear
h is very dependent on the thresholds and pruning strategies ofSafeApproxSear
h and GFPSear
h work very well with low, medium41



and high thresholds.To sum these results up, then the results would have di�ered quite abit,if we used data with other 
hara
teristi
s. But 
lear 
on
lusions are,that SafeApproxSear
h and GFPSear
h are superior to others sear
hmethods. Let us also remind, that the reason, why GFPSear
h was faster inour tests, was due to di�erent data stru
tures used to retrieve support. Hash-map used by SafeApproxSear
h was designed to be more modular toenable working with di�erent algorithms. But GFP-Tree and GFPSear
hwere designed to work only with ea
h other.4.1.2 Mining Fixed Number of Frequent MotifsIn this experiment, we were interested if NBest with its binary sear
h ap-proa
h 
an outperform MergeSort, when mining �xed number of motifsfrom datasets. For that purpose, we generated datasets exa
tly with same
hara
teristi
s as we did in last se
tion. Again, we took average runningtimes from 10 runs, where the total length of input sequen
es were between500 and 25000 nu
leotides, where we were mining 100 �best� motifs. Basedon the results of last experiment, we de
ided to use NBest in 
onjun
tionwith GFP-Tree and GFPSear
h. We enabled all pruning 
apabilities ofGFPSear
h here, as we only need to know the number of motifs instead offet
hing the a
tual motifs, given some thresholds. We 
ompared it againstMergeSort, where we enumerated all motifs by �rst building a hash-map
ontaining the support metri
s and then fet
hing the motifs present in datainto a sortable ve
tor. The results are given in Figure 4.2.We see that growth of both methods is roughly linear to the number of in-put sequen
es, where NBest seems to perform slightly faster where numberof promoters is less than 18 and slightly slower afterwards. The reason hereis that the running times of 
onstru
ting a GFP-Tree in
rease faster thanbuilding a hash-map for �xed length motifs. A
tually, based on observationsin the previous se
tion, we 
an say that the running times of GFPSear
hand MergeSort make up only a fra
tion of the total due to time requiredby 
al
ulating the support metri
s. Also, the results given here 
an di�eron multipro
essor systems due to divide and 
onquer nature of MergeSortand possibility to 
onstru
t the hash-map with several threads traversingdi�erent promoters simultaneously. In a similar fashion, it is possible withGFPSear
h and GFP-Tree 
onstru
tion. In that 
ase, both approa
hes
ould work a few times faster. Still, 
omplexity of GFP-Tree 
onstru
tion42
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Figure 4.2: Comparison of runtime speed of NBest and MergeSort, �nd-ing 100 best motifs in datasets.is slightly higher, therefore it is probable that sorting method 
ould outper-form binary sear
h approa
h signi�
antly on multipro
essor ma
hines. Onthe other hand, MergeSort 
an work only if 
omparing supports of twomotifs is possible. Re
all, that in Se
tion 3.5 we 
on
luded that modifyingthresholds by s
aling them linearly may not be the best possible method to�nd �best� motifs. An ad-ho
 approa
h might suggest 
ompletely di�erents
hemes for doing that. In that 
ase, using MergeSort may be impossible,but NBest stays a viable alternative, be
ause it 
an be easily modi�ed tohandle more 
omplex threshold 
hanging s
hemes.4.2 Mining Biologi
ally Signi�
ant Motifs4.2.1 Data PreparationFor this experiment, we de
ided to use data of yeast S.Cerevisiae, that we
olle
ted from several online databases and 
ompiled them into individualtra
ks and sequen
es usable by our 
omputer program. Exa
t pie
es that we43




olle
ted were promoter sequen
es with their 
oordinates and dire
tion onthe DNA strand [MOJ+08℄, phastCons 
onservation data of all 
hromosomes[KSF+02℄, binding enri
hment s
ores for trans
ription fa
tors [NB08℄ andinvivo nu
leosome o

upan
y data [NIY+09℄.The next step was to put all promoter sequen
es on one strand, thereforewe had to reverse the sequen
es and get the 
omplementary reverses wherene
essary. Next, we normalized all 
onservation and nu
leosome data, su
hthat all values fell in range between zero and one. From invivo nu
leosomeo

upan
y s
ores we 
al
ulated nu
leosome freeness s
ores, so higher s
oreswould mean higher 
han
e for a trans
ription fa
tor binding site. Last stepwas to 
ut all data from relevant positions in the datasets and 
onne
t themwith the promoter sequen
es. For binding s
ores, though, we need to 
al
u-late the s
ore tra
ks for every promoter sequen
e separately from enri
hments
ores, before we start mining. We do it by taking the average of all en-ri
hment motifs that mat
h the parti
ular position in the sequen
e. Thispro
ess is largely automated by helper s
ripts, that 
ome with the 
omputerprogram, see Appendix A.4.2.2 ResultsWe de
ided to use gene MCM1, that has an important role in 
ell life 
y-
le regulation of S.Cerevisiae. We used following promoter sequen
es thatare do
umented or potential trans
ription fa
tors of MCM1: FHL1, OAF1,ABF1, ADR1, ASH1, AZF1, CUP2, FKH2, GAL4, GCN4, GCR1, GIS1,GSM1, HAC1, HSF1, MSN2, MSN4, NRG1, RTG1, RPH1, RTG3, SKN7,STB5, STP1, STP2, SWI4, YER130C [MPP+06℄. We asso
iated three datata
ks with ea
h one of them: 
onservation, binding and invivo nu
leosomefreeness s
ores. The support types were additive, additive and maximal re-spe
tively and when mining 100 best motifs, we gave ea
h tra
k equal weightby setting threshold ve
tor ~σ = {1.0, 1.0, 1.0}. SigMotifs generated 10000 ba
kground datasets by permuting randomly the nu
leotide sequen
esof original data tra
k. Then, we asso
iated a p-value with ea
h mined motifand data tra
k. We also 
al
ulated test statisti
 for every motif with Fisher'smethod known from statisti
s:
(−2) ·

i=n
∑

i=1

ln(pi)44



where n is the number of data tra
ks and pi is the p-value of the motif on
i'th tra
k. Let us refer to this statisti
 as signi�
an
e onwards.In Figure 4.3, we see relations between 
onservation, binding and freenesss
ores of 100 mined motifs. We see that 
onservation and binding s
oresseem to be very 
orrelated. Most motifs have both support measures lessthan 1.5, only two motifs have support double that mu
h. The middle andbottom s
atter plots are rather similar. It is due to high 
orrelation between
onservation and binding s
ores, but there are no motifs with freeness s
oregreater than 0.5. In all three plots, signi�
an
e of motifs seem to be also
orrelated to the support measures.In Figure 4.4, we see relation between p-values of individual tra
ks. Whenwe 
ompare 
onservation and binding, then surprising motifs in terms ofbinding are CTCTTT, CTTCTT, CAAAAT. When 
omparing 
onservation andfreeness, then surprising motifs in terms of freeness are TTTACT, CAAAAT,TTTCCC, TTCCTT. When 
omparing binding and freeness, then there are nosu
h motifs, that would have too mu
h di�eren
e in p-values. Let us now listsome motifs returned by our appli
ation. The 
olumns 
ons, bind, freeare the 
onservation, binding and freeness s
ores of the motifs. Columnsp_
ons, p_bind, p_free are 
orresponding p-values.MOTIF COUNT 
ons bind free p_
ons p_bind p_free1 GAAAAA 50 1.235 1.160 0.452 0.000 0.000 0.0002 AAAAAA 137 3.289 3.351 0.446 0.000 0.000 0.0003 TTTTTT 123 2.865 3.007 0.434 0.000 0.000 0.0004 TTCTTT 30 0.665 0.662 0.413 0.032 0.000 0.0005 TTTTTC 43 0.902 0.973 0.405 0.000 0.000 0.000...93 GAAAAT 15 0.397 0.313 0.221 0.583 0.208 0.25994 ATTAAT 17 0.412 0.341 0.221 0.494 0.389 0.25595 GAGAAA 23 0.584 0.487 0.219 0.058 0.006 0.31796 AAAGTT 15 0.365 0.273 0.216 0.510 0.374 0.32197 CTTCTT 16 0.249 0.331 0.216 0.924 0.324 0.315And let us list some do
umented binding sites [MOJ+08℄: AAGAAAAA, CTTCC,AGGGG, CCAGC, TTTTCGCT, ATGGAT, CCCCT, CTCGA, GGTAC, CTCAC, CGCCTC.Although we do not see many similarities, then motifs GAAAAA and TTCTTT,whi
h is the 
omplementary of AAGAAA, seem to partially mat
h AAGAAAAA in45



the list of do
umented binding sites. Motifs, that had high p-values mostlyin respe
t to one data tra
k seen in Figure 4.4 like CTCTTT, CTTCTT, seem tobe similar to CTTCC, CCCCT. Although there are similarities, it is not possi-ble to make any strong 
on
lusions based upon these results. On the otherhand, the signi�
ant motifs suggested by our algorithm did not seem to verymisleading. The �rst motif GAAAAA mat
hed part of one longer do
umentedmotif AAGAAAAA. Of 
ourse, questionable motifs are AAAAAA and TTTTTT, be-
ause they seem to be in the top only be
ause they had most mat
hes inthe input data. This is a
tually a side-e�e
t of additive and maximal typesof support, be
ause these motifs mat
h long 
onse
utive elements with sameletters and therefore introdu
e bias in the support. Of 
ourse, this means alsothat these motifs have great stru
tural importan
e, but they are not exa
tlywhat we are looking for in gene regulation problems. Di�erent approa
hes ofdetermining signi�
an
e and mining with average type of support mentionedin Chapter 2 
ould redu
e this bias, but it is the material for further resear
hand out of the s
ope of this work.To sum it up, our tool seems to have great potential mining signi�
antmotifs from many promoter sequen
es. Still, while mu
h resear
h remains tobe done in this area, our tool 
an be helpful for s
ientists to help 
on�rmingexisting do
umented results or even suggest motifs that may need furtherattention.
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SummaryIn this work, we introdu
ed and developed novel mathemati
al formalization,algorithms and data stru
tures needed to des
ribe data mining methods usingmultiple input promoter sequen
es and several layers of data. We reformu-lated standard sequen
e mining te
hniques and studied di�erent propertiesof our new formalization in Chapter 2. We also dis
ussed brie�y a methodto de
ide the statisti
al signi�
an
e of frequent motifs.In Chapter 3, we des
ribed 
ompa
t en
oding of �xed length motifs. Wegave instru
tions, how to e�
iently 
onstru
t hash-maps 
ontaining supportmetri
s of motifs. We dis
ussed NaiveSear
h and several improvements toit likeMaxSupSear
h, SafeApproxSear
h and InfreqSear
h. Next,we introdu
ed NBest algorithm for mining �xed number of frequent motifs.We also des
ribed a data stru
ture 
alled GFP-Tree and algorithm GFP-Sear
h, that is able to mine frequent motifs, but is optimized for tellingthe number of frequent motifs in the dataset. We also dis
ussed brie�y, howSigMotifs and NBest 
an be fused together to provide information ofstatisti
al signi�
an
e of motifs.We wrote a C++ appli
ation and implemented all algorithms and datastru
tures dis
ussed in this work and ben
hmarked the runtime speed of theappli
ation and algorithms in Chapter 4, realizing that GFPSear
h seemedbe superior to other algorithms in terms of runtime speed. We also used realbiologi
al data and mined signi�
ant motifs of length 6 for gene MCM1. We
on
luded, that while mu
h more resear
h needs to be done, given properinput data, our sear
h methods 
an provide meaningful results.
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Motiivide otsimine DNAregulatiivsetest aladestBakalaureusetöö (6 EAP)Timo PetmansonResümeeKäesolev töö uurib algoritme, mille abil on võimalik uurida organismidegeeniregulatsiooni probleeme eksperimentaalsete andmete põhjal. Keskendu-takse DNA regulatiivsetest aladest oluliste motiivide ning fragmentide ot-simisele, millel võb olla kriitiline roll organismi elutalitluse reguleerimisel jakordineerimisel.Töö teoreetilises osas kirja pandud matemaatilise formalisatsiooni abil uu-ritakse ja tõestatakse mitmeid omadusi, mis panevad aluse võimalikele otsin-gualgoritmidele ja nende analüüsimisele. Töö praktiline osa käsitleb väljatöö-tatud algoritmide ajalist efektiivsust ning võimekust töötada bioloogilisteandmetega.
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Appendix AMulti-
onstraint miner tool forgene expression analysisWe needed an implementation of the studied algorithms for run time speedben
h-marking and working with biologi
al data. Thus, we de
ided to de-velop an appli
ation, that 
ould be used for su
h purposes. The sour
e 
odeof the appli
ation along with data prepro
essing s
ripts is available for down-loading at http://m
miner.sour
eforge.net.Features:1. Mine from up to 128 promoter sequen
es using up to 8 di�erent datatra
ks (these settings 
an be 
hanged by modifying the sour
e 
ode).2. Choose between di�erent sear
h algorithms: NaiveSear
h, Max-SupSear
h, SafeApproxSear
h, InfreqSear
h, GFPSear
h,NBest and SigMotifs.3. Set maximal or additive support for di�erent data tra
ks.4. Set thresholds on every data tra
k.Supported platforms: The appli
ation is written and tested only on Fe-dora 12, but it should be possible to build it on all platforms that are sup-ported by GCC 4.3 and Boost 1.39 libraries.53



Do
umentation: The do
umentation of the sour
e 
ode 
an be generatedwith Doxygen tool [Hee07℄, instru
tions for building and using the appli
a-tions, des
ription of the �le format the program uses to read promoter dataare given in README �le of the proje
t.Li
ense: The appli
ation is released under the GNU General Publi
 Li
ense(version 3).

54


