
U N I V E R S I T Y OF T A R T UFACULTY OF MATHEMATICS AND COMPUTER SCIENCEInstitute of Computer Siene
Timo PetmansonMining Motifs in DNARegulatory AreaBarhelor's Thesis (6 ECTS)

Supervisor: Sven Laur, D.S. (Teh.)Author: �......� May 2010Supervisor: �......� May 2010Chairman: �......� 2010
TARTU 2010

Contents
Introdution 51 Preliminaries 61.1 DNA . 61.2 Gene expression . 81.3 Data mining . 82 Sequene Mining with Multiple Layers of Data 112.1 Sequenes and Sores . 112.2 Motifs and Mathing . 132.3 Support Metris . 152.4 Properties of Support Metris 182.5 Statistially Relevant Motifs 213 Algorithms and Data Strutures 233.1 Compat Enoding of Motifs 233.2 Hash-map of Support Metris 243.2.1 Inluding Motifs with Wild Card Charaters 263.3 Naive Searh based on Apriori 263.4 Pruning Strategies . 273.4.1 Maximal Support Estimation Pruning 283.4.2 Safe Over-Approximation Searh 293.4.3 Infrequent Sub-Motifs Pruning Method 303.5 Mining Fixed Number of Best Motifs 323.6 Generalized FP-Tree . 354 Experimental Results 384.1 Runtime Performane of Searh Algorithms 383

4.1.1 Mining Frequent Motifs 384.1.2 Mining Fixed Number of Frequent Motifs 424.2 Mining Biologially Signi�ant Motifs 434.2.1 Data Preparation . 434.2.2 Results . 44Summary 49Resümee (eesti keeles) 50Bibliography 51A Multi-onstraint miner tool for gene expression analysis 53

4

IntrodutionAll living organisms on earth are believed to ontain geneti informationoded in strutured olletions of genes and non-oding sequenes that makeup the DNA. The oded information is used to build organisms, maintainthem and it de�nes a wide range of geneti features that vary from individualsto individuals and from speies to speies. The non-oding parts have muhof the responsibility to regulate the expression of partiular genes. Geneswith their non-oding regulatory areas form omplex signaling networks thattogether oordinate the life yle of an organism. Contemporary methods ingenetis like ChIP and miro-array measurements make it possible to measurefeatures of thousands of genes in one experiment, generating huge amountsof data. Therefore, the development of new algorithms and methods able toanalyze this data is ruial.Our ontributions inlude the development of novel methods able to om-bine di�erent soures of experimental data. In Chapter 2, we formalize thetheory desribing sequene mining with multiple input sequenes and mul-tiple data layers. We also desribe, how to determine statistially signi�-ant motifs using our theory. In Chapter 3, we develop algorithms Max-SupSearh, SafeApproxSearh, InfreqSearh, GFPSearh, thatutilize di�erent pruning strategies. For GFPSearh, we de�ne generi-frequent-pattern tree struture that is a generalization of FP-tree [JJYR04℄.We also develop NBest, that ombines any previously mentioned algorithmwith binary searh to get �xed number of best motifs. We develop SigMo-tifs, that goes even further by distilling out statistially signi�ant motifs.Performane study of mentioned algorithms along with experiments on realbiologial data are given in Chapter 4.
5

Chapter 1Preliminaries
1.1 DNACurrently sientists have desribed about 1.5 million di�erent speies: about�ve thousand mammals, thirty thousand speies of �sh and over nine hun-dred thousand insets among others [WCU07℄. Some estimates of omparingsamples from various parts of the world seas suggest that in oeans there maybe more than 100 million speies of bateria [MHJ06℄. This vast diversity ofknown and unknown speies in Earth's biosphere are believed to have onething in ommon: the presene of DNA.

minor groovemajor groove

Figure 1.1: DNA Double Helix. The distane between strands varies andforms major and minor grooves. 6

Chemially DNA is onsist of two long strands of polymers, where thebakbone of a strand ontains alternating phosphate and sugar residueslinked with bases. These two strands form a struture known as doublehelix seen in Figure 1.1, whose stability is maintained by hydrogen bondsbetween the bases, see Figure 1.2 [RSM05℄. There are four types of basesin DNA: adenine (abbreviated A), thymine (T), guanine (G) and ytosine(C) that ombined with a sugar and one or more phosphate residues form anuleotide. The nuleotides are pairwise aligned, making the struture antiparallel, where adenine bonds only to guanine and ytosine bonds only tothymine. The endpoints of the strands are alled 3' and 5' where the �rst isde�ned by a terminal phosphate group and the seond by a terminal hydroxylgroup [Coh04℄.DNA nuleotide sequenes are usually written only using bases from onestrand as the bases on other strand are omplementary. Sequene TATAAA isomplementary to ATATTT for example. The order the haraters are writtendepends on the soure of the data � sometimes the data is written in diretionfrom 3' to 5' while others are vie versa.
sugar

CH3

N

O

N

H

H

O
H

N

N

N

N

N
sugar

Adenine
Thymine

N

O
sugar

N
HO

N

H

N

H

H

H

sugarO

N

N

N

CytosineGuanine

Figure 1.2: TA and GC omplementary base pairs. Dotted lines representhydrogen bonds between bases 7

1.2 Gene expressionGene expression means the rate and amount of RNA transribed from it,whih in turn is used to de�ne other proteins neessary for the ell andthe organism. The transription proess requires transription fators thatare speial proteins able to reognize and attah to partiular fragments ingene promoter areas. The transription fators are required to reruit RNApolymerase that is responsible for arrying out the transription proess.In more omplex eukaryoti ells, the promoters are rather diverse andompliated, but the ore elements are a transription start site, whih to-gether with RNA polymerase and transription fator binding sites are essen-tial for initiating the transription proess. Other important binding sites aretypially a little more far away in upstream diretion that mainly regulategene expression by enhaning or restriting reruitment of the main tran-sription fators. Additionally, there may be even more distant promoterareas that have weaker in�uene on the gene regulation.1.3 Data miningData mining is a method in statistis for extrating interesting patterns orknowledge from large amounts of available data. This �eld is very diverseas among general data mining solutions there are many spei� proeduresdeveloped for business, games, soial networks et etera [DP07℄. In this work,we onentrate on speialized area of data mining alled sequene mining thatdeals with ordered sequenes like nuleotide sequenes.The Apriori algorithm is the most general and simple way to �nd pat-terns with high support in given data. In standard sequene mining, thesupport is de�ned as the number of ourrenes of a pattern in input data,whih is used to deide whether the pattern is frequent or infrequent based onsome de�ned threshold. The Apriori algorithm assumes that the support isdownward losed, whih means that for any infrequent pattern there do notexist any frequent sup-patterns. For example, a DNA motif AAATCCC annotbe present in data more times than sequenes AAA and CCC, beause when-ever the supmotif ours, the two submotifs must also our. Let us larify,that in this work by a submotif or a subpattern we mean a subsequene withonseutive elements. 8

Algorithm 1.3.1 The Apriori algorithm.1: F1 ← {Frequent one-element patterns}2: ℓ← 23: while Fℓ−1 6= ∅ do4: Cℓ ← GenerateCandidates(Fℓ−1)5: Fℓ ← {c ∈ Cℓ | supp(c) > σ} ⊲ σ is threshold6: ℓ← ℓ + 17: end whileThe Apriori algorithm uses downward loseness as a main pruning feature.In Algorithm 1.3.1 on line 4, the GenerateCandidates proedure takesthe set of frequent motifs of length ℓ − 1 as input and generates possibleandidates of length ℓ. It does not need to onsider any non-frequent motifsas none of their supmotifs are frequent. The algorithm stops running whenit has found all frequent motifs in the dataset.Let us demonstrate Apriori by giving an example. Consider the follow-ing sequene: GCTTATGGTCGCTATGCTTT .Suppose we want to mine all motifs ourring at least three times in thesequene. This means that we run Apriori with threshold σ = 3. The set
F1 = {T, G, C}, beause all nuleotides exept A are present in sequene morethan three times. Next, we generate andidate motifs of length two by usingonly frequent elements in F1.

C2 = {TT, TG, TC, GT, GG, GC, CT, CG, CC}Frequent motifs in this ase are
F2 = {TT, GC, CT} .Note that TT mathes TTT two times. The next andidate set is

C3 = {TTT, GTT, TTG, CTT, TTC, TGC, GCT, GGC, GCG,CGC, GCC, TCT, CTT, GCT, CTG, CCT, CTC} .This time there is only one frequent motif:
F3 = {GCT} .9

Candidate motifs of length 4:
C4 = {TGCT, GCTT, GGCT, GCTG, CGCT, GCTC} .But none of them is frequent, so F4 = ∅ and all frequent motifs in our exampleare

F = {T, G, C, TT, GC, CT, GCT} .There are also algorithms like WINEPI [MTV95℄, MINEPI [MT96℄,SPEXS [Vil02℄ that are able to mine motifs using pattern mathing. Still,while Apriori with other standard sequene mining algorithms are useful,they treat all parts of the sequene with equal weight. In our ase, we needmethods that are able to work with data that deorates sequenes with sores,making some parts of them more relevant than the rest. In Chapter 2, wereformulate standard sequene mining tehniques and later devise our ownalgorithms that handle suh requirements.

10

Chapter 2Sequene Mining with MultipleLayers of DataIn this hapter, we formalize basi notions and onepts like sequenes, motifsand support that are needed to develop our methods. We try to developour mathematial approah suh that it would be onvenient to study generegulation, when we onsider several promoter areas and di�erent propertiesof these sequenes desribed by layers of experimental data.We also study di�erent properties and relations between these buildingbloks that are later used in algorithms to ut down the running times andimprove overall performane, although we do not over algorithmi detailsand other aspets like data strutures as they are disussed in later hapters.2.1 Sequenes and SoresThe most basi onstruts we will be dealing onwards are DNA sequenesand their fragments. In our ase, it will be onvenient to think of them asa set of nuleotide sequenes. Let S = {a, b, c, . . .} denote a set of promotersequenes relevant to some gene. Single elements of a sequene are denotedwith subsripts as usual. For example, a1 means the �rst element and a2the seond element of a ∈ S. As there are four types of nuleotides adenine,thymine, ytosine, guanine in DNA that orrespond to letters A, T, C, G. Wewrite a1 = A, if �rst element in the nuleotide sequene is adenine and a2 = T,if the seond element is thymine. Let us denote the length of sequene a as11

|a|. It is worth to note that no promoter is with length of zero, nor thereare promoters with in�nite length in real world. However, depending onpartiular ase, the lengths of the sequenes are not usually very short orvery long.In mathematis, a fragment of a sequene is usually written as a list ofelements. In this paper, we will be using a shorter notation:
ai : j

def
= ai, ai+1, . . . , aj .where i is the beginning and j is the end of the fragment.We stated in the introdution of this thesis that we are going to deal withmultiple layers of data about promoter sequenes. For example, if we havedata ontaining binding and onservation sores from DNA miro-array andsequening experiments that assoiate with promoters we are interested in,we an portray them as data traks over the nuleotide sequene as illustratedin Figure 2.1.

value

pos
... A T G C C C A T T G C T A G G C ...

0.5

1.0

conservation

binding

Figure 2.1: An example subsequene having onservation and binding datatraks attahed. The sores are variable and may not diretly depend oneah other.From theoretial point of view, it is not important exatly what kind of datawe have, as long we an represent it as numeri values linked to positionsin promoter sequenes. However, it is important that these values expresssome property that makes some regions of the nuleotide sequene morerelevant than other regions, thus de�ning important regions in respet toeah data trak. If we have n data sets ontaining various sores and mpromoters, then we need n×m mappings that assoiate relevant sores from12

a data set to all positions in nuleotide sequenes. Also, it is onvenientto normalize all data suh that all sores fall into range [0, 1] like shownon Figure 2.1. It simpli�es writing some formulas, beause we know themaximum possible value of any type of sore linked to any position of anuleotide sequene. Let ϕ : N −→ R be a mapping that assoiates numerisores to all positions of a nuleotide sequene. To make this notation moreuseful, let us agree that by writing ϕ(ai) we mean the sore that ϕ maps toposition i of sequene a and by writing ϕ(ai : j), we mean a sequene of sores
ϕ(ai : j)

def
= ϕ(ai), ϕ(ai+1), . . . , ϕ(aj). By writing ϕ(ai : j) we mean the averagesore

ϕ(ai : j)
def
=

1

j − i + 1
·

j
∑

k=i

ϕ(ak) .2.2 Motifs and MathingIn this setion, we introdue motifs, whih an be thought of as possiblesubsequenes in sequene set. Motifs do not diretly assoiate to any datatrak, but there are several other metris like support, frequeny, signi�aneof a motif in a partiular set of promoter sequenes. In addition to nuleotideletters A, T, G, C, motifs may also ontain speial wild ard haraters thathave speial meaning and usage. In this work, we will be using only onesuh symbol * that represents any possible nuleotide in one position. Notethat this is di�erent from standard usage of this symbol in bath-proessingor regular-expression appliations where it usually stands for zero or moresymbols. In our ase, if we have a motif G**A, then by that we mean anymotif with length of four that starts with letter G and ends with letter A.We will be dealing a lot with �xed-length motifs in later setions, so itis neessary to introdue notation that we an use to refer to all motifs witha �xed length ℓ. Let Mℓ represent a set of all motifs with length ℓ where
ℓ ∈ N. We agreed before, that all motifs are onsist of �ve di�erent letters:the nuleotides and the wild ard harater. This means that the ardinalityof the setMℓ is equal to |Mℓ| = 5ℓ as there are �ve di�erent possible elementsper position in a motif.Often it is neessary, that we ould refer to single elements of a motif thesame way we do for sequenes, so given any motif m ∈ Mℓ, let m1 denotethe �rst element of the motif, m2 the seond element of the motif et etera.In addition to that, it is onvenient to desribe motifs as onatenation of13

shorter motifs. In our ase, it is useful to think of a motif as a onatenation ofonly a pre�x and su�x part. Let || be an onatenation operator. If mp ∈Mpand ms ∈ Ms then motif m = mp || ms, where m ∈ Mℓ and ℓ = p + s. Letus illustrate this with an example. If mp = AAAT and ms = GCCGT, then theonatenation mp || ms is AAATGCCGT.Another very useful notion is a wild ard extension of some motif. Namely,if we have some �xed motif length ℓ and a motif m ∈ Mk, suh that k 6 ℓ,we may pad the motif with wild ard haraters until it is ℓ elements long.This enables to easily express motifs we know to have a ertain pre�x. Let
m∗ ∈ Mℓ denote a wild ard harater extension of motif m ∈ Mk where
k 6 ℓ suh that the pre�x m∗

1 : k = m and su�x m∗
k+1 : ℓ = *...*. Forinstane, if m = AATA and we have �xed motif length ℓ = 10, then the wildharater extension m∗ = AATA******. This notion omes handy when wedesribe SafeApproxSearh algorithm in Chapter 3. Let us agree thatany motif gained from another motif by replaing one or more nuleotideswith wild ards is onsidered a submotif of the original motif.In standard sequene mining, the support of some motif is usually mea-sured by how many mathes it has in data [DP07℄. The number of mathesof a motif ontaining no wild ard haraters is simply the number of timesthe motif an be viewed as a subsequene of given data sequene. With wildard haraters this works di�erent as a wild ard harater mathes anynuleotide. See Figure 2.2 for an illustration.

Figure 2.2: Three mathes of motif ATA*A in a subsequene.De�nition 2.2.1 A motif m ∈ Mℓ mathes some fragment ai : i+ℓ−1 of se-quene a, if
mk = * ∨ mk = ai+k−1 for all k = 1, . . . , ℓ .14

Let us denote it as following:
match(a, m, i) =

{

1, if m mathes ai : i+ℓ−1

0, otherwise.We an extend the number of mathes in the sequene a over a set of se-quenes S by simply adding all the individual ounts together:
mcount(a, m)

def
=
∑|a|−ℓ+1

i=1
match(m, ai)

mcount(S, m)
def
=
∑

s ∈ S mcount(m, s) .2.3 Support MetrisStandard sequene mining treats all parts of the input sequene with equalvalue of importane [DP07℄. In our ase, we have possibly more than onedata traks ontaining variable sores. Therefore, we need to de�ne supportin a di�erent way. We base our approah on a formulation given by SvenLaur [Lau09℄.The �rst thing is to extend the notion of support of one single math.Standard way was summing up all mathes of a motif in a sequene, suhthat eah math had equal value of importane. But as we have atual soreslinked to positions, we extend the original method by taking an average soreof mathing positions of a single math.De�nition 2.3.1 The support of an individual motif m ∈ Mℓ with respetto some fragment in sequene a starting from position i:
supp(a, m, i) =

{

ϕ(ai : i+ℓ−1) if match(a, m, i) = 1

0 otherwise .To extend the support of a motif over a sequene, we have several options.The �rst idea is to add up all the single supports of the motif. This is thesimplest way to go and we refer to this method as additive support onwards.Let us onsider another option: instead of adding up the sores, we an takeonly the maximal sore and be �ne with it. The plus side of this methodis that it promotes motifs that atually have high sores. Additive supportan be high even if all the sores of the single mathes are low. So, we alsoonsider this method and we will be referring to it as maximal support.15

Of ourse, there are more ways to express the support of some motifin a sequene. We might onsider average support that works like additivesupport, but we divide the result by number of mathes of that motif in thesequene. We ould also de�ne supports like weighted additive or weightedaverage support, that onsiders some regions of the promoter to be moresigni�ant than others. The last two are atually not very reasonable, beausewe express signi�ane of promoter areas through data traks anyway.The average support is atually more relevant, but as it seems to have amixed properties of additive and maximal support, we do not over this typeof support in this work and onentrate on studying only the two mentionedsupport types.De�nition 2.3.2 Additive support of a motif m ∈Mℓ in sequene a is
asupp(a, m) =

|a|−ℓ+1
∑

i=1

supp(a, m, i) .De�nition 2.3.3 Maximal support of a motif m ∈ Mℓ in sequene a is
msupp(a, m) = max { supp(a, m, i) | i = 1, . . . , |a| − ℓ + 1} .By writing supp(a, m), we do not refer diretly to neither of the supporttypes in ases we are disussing properties that apply to both of them.Therefore, De�nitions 2.3.2 and 2.3.3 are only two possible ways of ex-pressing the support of a motif in one sequene. Biologial importane ofthe two depends mostly on the atual data used. For example, if we onsideronservation, then additive support an reveal motifs that oexist in severalgenetially lose speies having great strutural importane, maximal sup-port takes into aount only one ourrene of a motif in a promoter, thusignoring larger sale strutural e�ets. On the other hand, maximal sup-port an bring up motifs that are reognized most probably by transriptionfators as these enzymes require proper loations to enable mounting RNApolymerase and initiate transription. Thus, the deision about what sup-port type should be used with a partiular data trak, depends on biologialproperties the data.To extend notion of support over a set of sequenes, we have severaloptions. The �rst approah is to onsider all promoter sequenes having16

equal impat on the importane of a motif. We an ahieve this by takingan average of support of a motif in all sequenes.De�nition 2.3.4 Additive and maximal support of motif m ∈ Mℓ in a listof sequenes S are
asupp(S, m) =

1

|S|
·
∑

a∈S

asupp(a, m) (2.1)
msupp(S, m) =

1

|S|
·
∑

a∈S

msupp(a, m) . (2.2)The seond approah is to onsider promoters further away from the genethey regulate having less impat than the ones loser to it. Therefore, we needto give promoter sequenes meaningful weights, when alulating support.We ould propagate these weights diretly into the datasets, enabling thediret use of Equations (2.1) and (2.2). Let us also agree that by writing
supp(S, m), we do not refer diretly to additive, nor maximal support if weare disussing properties that apply to both of them.In Chapter 3, we disuss algorithms and data strutures and usually needsupport in respet to all data traks. Also, let us agree that we have �xedthe support type for every data trak to make semantis easier. In ases weneed to use both support types, we an view original trak as two dupliateswith di�erent support types.De�nition 2.3.5 Given mappings ϕ1, . . . , ϕn, the support of motif m in se-quenes S in respet to all n data traks is

−−→supp(S, m) = (s1, . . . , sn)where
si =

{

asupp(S, m, ϕi) for additive type of support
msupp(S, m, ϕi) for maximal type of support.Mappings ϕ1, . . . , ϕn given as extra arguments to support operators will beused as the mapping ϕ in De�nition 2.3.1.17

2.4 Properties of Support MetrisIn previous setion, we de�ned basi building bloks like sequenes, motifsand mappings that gave eah position in a promoter sequene one or moreweights in regard to available data sets. In this setion, we study variousproperties of newly de�ned support measures and notions.When we ompare additive and maximal support, it is rather easy to seethat additive support is always as big as maximal support, beause additivesupport onsiders all ourrenes of a motif in a sequene where maximalsupport only onsiders the ourrene with maximal support.Proposition 2.4.1 For any motif m ∈Mℓ and a set of sequenes S
msupp(S, m) 6 asupp(S, m) .We have not mentioned that there is a problem with the way we de�nedour support of some motif. Namely, the de�nition breaks the standard se-quene mining priniple of being downward losed as any non-frequent motifmay have frequent supmotifs.Claim 2.4.2 Let σ ∈ R be the threshold. For any motif m ∈ Mℓ, suhthat support supp(S, m) < σ, may exist a supmotif m′ ∈ Mℓ+k, suh that

supp(S, m′) > σ, whether we onsider additive or maximal support.Proof. For simpliity, let us assume that there is only one single math ofmotif m′ in positions i to i + ℓ − 1 in sequene a. Sine the sores of allpositions are in range [0, 1], the supp(a, m, i) ∈ [0, 1]. Now, let us onsidera situation where support of the pre�x supp(a, m, i) = ϕ(ai : i+ℓ−1) < 1 andsupport of the su�x ϕ(aℓ : ℓ+k−1) = 1. From here we an onlude that
supp(S, m′) =

1

|S|
·
ϕ(ai) + . . . + ϕ(ai+ℓ−1) + k

ℓ + k
> supp(S, m) . (2.3)If we take σ = supp(S, m′), then m is infrequent and m′ is frequent.

2Above proof raises another question: if we know the support of a motif,then what is the maximal possible support of any supmotif? We an approahthe answer same way proved above laim. Namely, if we onsider the supportof the su�x of a possible supmotif to have maximal possible value, then wean alulate the maximal possible support of the supmotif.18

Proposition 2.4.3 For any motif m′ ∈ Mℓ+k and its submotif m ∈ Mℓ ina set of sequenes S
msupp(S, m′) 6

ℓ ·msupp(S, m) + |S| · k

ℓ + k

asupp(S, m′) 6
ℓ · asupp(S, m) + mcount(S, m) · k

ℓ + k
.Proof. Let us onsider a set of fragments {ap : q, br : s, . . . zt : u} that representpositions on every promoter where motif m has highest support. In that ase

msupp(S, m) = |S|−1 (ϕ(ap : q) + ϕ(br : s) + . . . + ϕ(zt : u)) .If we now onsider m as pre�x of m′, then analogous way to Equation (2.3)we an estimate that support of m′ annot be larger than
msupp(S, m′) 6

1

|S|

(

ϕ(ap : q) + k

ℓ + k
+

ϕ(br : s) + k

ℓ + k
+ . . . +

ϕ(zt : u) + k

ℓ + k

)

=

=
1

|S|
·
ϕ(ap : q) + ϕ(br : s) + . . . + ϕ(zt : u) + |S| · k

ℓ + kthat ombined with Equation (2.2) beomes
msupp(S, m′) 6

ℓ ·msupp(S, m) + |S| · k

ℓ + k
. (2.4)Additive support takes into aount all ourrenes of m, thus replaing therelevant parts in Equation (2.4), we get

asupp(S, m′) 6
ℓ · asupp(S, m) + mcount(S, m) · k

ℓ + k
.

2Claim 2.4.2 implies that frequent motifs may have infrequent submotifs.However, it is important to note that any frequent motif also must have atleast one frequent submotif with either additive or maximal type of support.
19

Lemma 2.4.4 For all positions i < j 6 k in sequene a
ϕ(ai : k) 6 max{ ϕ(ai : j−1), ϕ(aj : k) } .Proof. The �rst possibility is that ϕ(ai : j−1) > ϕ(aj : k) or ϕ(ai : j−1) <

ϕ(aj : k). In that ase ϕ(ai : k) < max{ ϕ(ai : j−1), ϕ(aj : k)} as the averagesore of the supsequene must be lower than the subsequene with maxi-mal average sore. The seond possibility is that ϕ(ai : j−1) = ϕ(aj : k), thus
ϕ(ai : k) = ϕ(ai : j−1) = ϕ(aj : k).

2Theorem 2.4.5 Any frequent motif m ∈ Mp+s an be partitioned into twosubmotifs mp ∈ Mp and ms ∈ Ms, suh that m = mp || ms and either thepre�x mp or su�x ms is frequent.Proof. If we have only a single math of the motif m in sequene a, thenaording to Lemma 2.4.4
supp(a, m, i) 6 max{supp(a, mp, i), supp(a, ms, i + p)} .Now, suppose we have more mathes of m in one single sequene a. As max-imal support only onsiders one ourrene of m, then aording to Lemma2.4.4 the theorem holds. By De�nition 2.3.2, the additive support is thesum of supports of all single mathes. Let asupp(a, m) = ϕ(ai1 : j1) + . . . +

ϕ(ain : jn
), where n = mcount(a, m) and in, jn denote start and end loationsof the ourrene. Let ϕ(mi)

def
= (ϕ(ai1+i−1) + . . . + ϕ(ain+i−1)) (p + s)−1 and

ϕ(mi : j)
def
= (ϕ(mi) + ϕ(mi+1) + . . . + ϕ(mj))(p + s)−1. Similarly to Lemma2.4.4, we ould show that

ϕ(m1 : p+s) 6 max{ ϕ(ai : p−1), ϕ(ap : p+s)) } (2.5)whih means that asupp(a, m) 6 max{asupp(a, mp), asupp(a, ms)}. Notethat any extra ourrenes of pre�x or su�x motifs in input sequenes donot invalidate Equation (2.5).For either additive or maximal support over a set of sequenes S, every-thing works similarly to above steps, but we have to take into aount theonstant |S|−1.
220

It is easy to see that we an partition a frequent motif into any number ofpiees suh that at least one of them is frequent. We know that partitioningworks for two submotifs, thus we an iteratevly ontinue and reate as manypartitions of the original motif as neessary, beause always at least onepartition has to be frequent.Corollary 2.4.6 Given motif m ∈ Mℓ and submotifs m1, m2, . . . , mn, thatpartition m into n piees, then at least one of the submotifs must be frequent.So far we have desribed the properties of additive and maximal supportwithout onentrating too muh on the atual ontents of the motifs. How-ever, we used motif lengths in Proposition 2.4.3 to estimate maximal possiblesupport of a supmotif. While this is useful knowledge, most of the time theseestimations do not work best, beause they make their estimations solely onthe motif support, length and possible supmotif length. We an improve thissituation by introduing wild ard haraters.Proposition 2.4.7 Given motifs m ∈ Mℓ and m′ ∈Mℓ, that is onstrutedfrom motif m suh way, that one nuleotide in m is replaed by a wild ardharater *, the additive or maximal support
supp(S, m) 6 supp(S, m′) .For example, onsider a motif mp = GCT as a pre�x of a longer supmotif

m ∈ M10. If we want to know the maximal support of any suh supmotif,we an alulate supp(S, GCT*******). It ertainly does not give higherestimation than former desribed method. On the other hand, it requiresa query on the database, whih depending on situation an be ostly. Wedesribe both approahes more thoroughly in Chapter 3.2.5 Statistially Relevant MotifsIn previous setions, we disussed how to determine if a motif is frequent.In this setion, we desribe how to go even further by deiding, whih fre-quent motifs are statistially more signi�ant. By this, we atually want tomeasure the amount of surprise for every frequent motif. In our ase, wemay measure surprise individually even for every data trak and we have21

several options for doing that. The simplest idea is to permute the letters ofthe promoter sequenes. Then we an ompare the support measures of thepermuted dataset against the original one. If motifs in original data havehigher supports, then they are surprising in that sense. To be more spei�,we may generate a large amount of datasets by permuting randomly theoriginal sequenes. If we onsider only one data trak, then we an sort themotifs dereasingly by their support suh that motif with highest support isthe �rst in the resulting list. Then, for every motif at position i in the list,we an alulate how many motifs at i'th position in generated datasets hadsupport as high as the original motif. We an write it down as
p = Pr[supp(S ′, m′) > supp(S, m)]where S is the original dataset, S ′ is the permuted dataset, m is the originalmotif at i'th position and m′ is the motif in S ′ at same position. The value

p is alled p-value in statistis and in our ase, represents the probability ofhaving the support in a random dataset at least as extreme as in the originalone. Therefore, the smaller the p, the more surprising is the motif m.We an alulate p-value for every frequent motif and for every data trak.Of ourse, we might want to alulate only a single p-value for every motif,but the problem is with sorting frequent motifs. This atually an be done,as disussed in Chapter 3, but having a p-value in respet to eah data trakmay reveal interesting properties of the motifs. We will omit exat algorithmfor alulating p-values, but brie�y disuss it later in Setion 3.5. Let usrefer to this algorithm as SigMotifs onwards.

22

Chapter 3Algorithms and Data StruturesIn this hapter, we will devise algorithms based on formalization and otherideas desribed in Chapter 2. We start o� by desribing ompat enodingof motifs and ontinue developing algorithms with di�erent pruning methodsand apabilities.3.1 Compat Enoding of MotifsIt turns out, that there is a rather straightforward way to enode �xed-length motifs as unique integers. If we onsider nulotides and wild ardharater as a set X = {A, T, G, C, *} and have another set with same size
Y = {0, 1, 2, 3, 4}, then we an de�ne a mapping π : X −→ Y , suh that
π(A) = 0, π(T) = 1, π(G) = 2, π(C) = 3, π(*) = 4, that would enable us torepresent a motif m ∈Mℓ as an integer

50π(m1) + 51π(m2) + . . . + 5ℓ−1π(mℓ) . (3.1)For our onveniene, let us agree that by writing π(m), where m ∈ Mℓ, wemean the integral representation of motif given in Equation (3.1).This representation makes it easy to hash any motif of length ℓ and storeit in a hash-table as for every �xed length motif the integral representationis unique.If the motif length ℓ is small enough, then we ould use a hash-map ofsize 5ℓ. This way we ould diretly use the value π(m) as a key to storemotif's support metris and this guarantees onstant time O(1) aess asthere would be no ollisions. 23

In normal irumstanes, we do not need to store support for all possiblemotifs. For example, there are 58 = 390625 possible motifs of length 8inluding wild ard haraters. For a yeast S.Cerevisiae, the promoter lengthsare not usually longer than a few thousand base pairs. Therefore, if we haveone promoter with length of 3000 base pairs, we an atually have maximalof 3000− 8 = 2992 di�erent non wild ard harater motifs of length eight.3.2 Hash-map of Support MetrisThe integral representation of motifs allows us to e�etively build a hash-map ontaining support metris of all motifs found in promoter sequenes.Consider a sequene a = ATCCGTCCG. If we are interested in motifs of length4, then motif m1 = ATCC mathes the �rst position of a and motif m2 = TCCGmathes the seond position of a. The integral representations are following:
π(m1) = 1 · 0 + 5 · 1 + 25 · 3 + 125 · 3 = 455

π(m2) = 1 · 1 + 5 · 3 + 25 · 3 + 125 · 2 = 341 .It turns out, that we an update the integral representation of m1 to m2 inonstant time. By Equation (3.1), the integral representation of motif m1 is
π(m1) = 50 · π(a1) + 51 · π(a2) + 52 · π(a3) + 53 · π(a4). By subtrating the�rst element 50 · π(a1), dividing the result by �ve and adding 53 · π(a5), weget
π(m1)− 50 · π(a1)

5
+ 53 · π(a5) = 50 · π(a2) + 51 · π(a3) + 52 · π(a4) + 53 · π(a5)whih is equal to π(m2). So in our example, where π(m1) = 455, we analulate

π(m2) =
π(m1)− 50 · π(a1)

5
+ 53 · π(a5) =

455− 0

5
+ 125 · 2 = 341 .Analogously, we an do this with support of single mathes for all traks.Why this is important, is that we an alulate all support metris of allmotifs present in data in one pass. The negative side e�et of this approahwith sores are possibly greater �oating-point rounding errors. But we anredue them e�etively by realulating them from data traks after every 100or 1000 steps. This of ourse is not the issue with the integral representation.24

Let us give an in-depth example. Consider two sequenes a = ATCCGTCCG,
b = TTCCG and two mappings ϕ1, ϕ2 representing two data taks suh that

ϕ1(a1 : 9) = 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.5, 0.5, 0.5
ϕ2(a1 : 9) = 0.5, 0.5, 0.5, 0.5, 0.5, 1.0, 1.0, 1.0, 1.0
ϕ1(b1 : 5) = 1.0, 1.0, 1.0, 1.0, 1.0
ϕ2(b1 : 5) = 0.5, 0.5, 0.5, 0.5, 0.5 .We an traverse the promoters step-by-step, suh that after every yle thehash-map ontains up-to-date support metris based on seen ourrenes ofmotifs. All unseen ourrenes are regarded as having single supports equalto zero. In our example, details of traversing a and b are given in table below.Step m ϕ1(m) ϕ2(m) Comment1 ATCC 1.0 0.5 Add ATCC to hash-map.2 TCCG 1.0 0.5 Do same with TCCG.3 CCGT 0.875 0.625 Keep adding unseen motifs into4 CGTC 0.75 0.75 hash-map with their support5 GTCC 0.625 0.875 metris.6 TCCG 0.5 1.0 Update support metris of TCCG.7 TTCC 1.0 0.5 We are proessing b now.8 TCCG 1.0 0.5 Update support metris of TCCG.For example, onsider motif TCCG. For additive support over all sequenes wesum 1.0/2+0.5/2+1.0/2 for ϕ1 and 0.5/2+1.0/2+0.5/2 for ϕ2. We dividethe sores by two, due to De�nition 2.3.4. After every update, the additivesupports are up-to-date based on data seen so far. For maximal support, weneed to do more book-keeping, beause when we �nd an ourrene with big-ger maximal sore in a sequene, we have to anel the e�et of the previousourrene. For example, the maximal support after step two is 0.5/2 for ϕ2.At step 6, we disover that it should be 1.0/2 instead, therefore we subtrat

0.5/2 from the variable ontaining the support and add 1.0/2.With this kind of hash-map onstrution we alulate all the metris onthe �y. Therefore, we avoid any post-proessing, beause alulating thesupport measures over all sequenes would otherwise require intermediatelists ontaining sores of single supports. With motifs without wild ardharaters, this would not be very big memory overhead, but otherwise it25

ould beome an issue. Total runtime omplexity of this method is
O

(

n · c ·
∑

s∈S

|s|

)where n is the number of data traks and c is the omplexity for updatingthe support of a motif in the hash-map.3.2.1 Inluding Motifs with Wild Card CharatersWe will disuss SafeApproxSearh in Setion 3.4.2, where hash-maps arerequired to also ontain supports of all wild harater extensions. This re-quires us to modify the method desribed earlier. The integral representationallows us to preompute su�x parts of all extensions. Let wi be su�x partof some motif m of length ℓ, suh that 1 6 i 6 ℓ and mi : ℓ = * . . . *. Then
π(wi) = 5i−1π(*)+ . . .+5ℓ−1π(*). If we now have the integral representationof a pre�x mp, then π(mp)+π(wi) will yield the integral representation of thewild ard harater extension. In hash-map onstrution phase, it requires ℓsteps instead of one to inlude the support metris of all wild ard haraterextensions, therefore the omplexity is

O

(

n · c · ℓ ·
∑

s∈S

|s|

)

.3.3 Naive Searh based on AprioriThe simplest searh method is based on the Apriori priniple desribed inChapter 1. Namely, we an mine all motifs present in input sequenes bysetting the threshold σ = 1 with Apriori and then hek if they are frequentin our terms. This is atually a omposition of Apriori and a �lteringfuntion. In our ase, it is better to implement this as a depth-�rst searhalgorithm, beause breadth-�rst nature of Apriori auses too muh memoryoverhead, when mining longer motifs. The Algorithm 3.3.1 inorporates theomposition of Apriori and the �ltering funtion. On lines 10 � 12, wesee the andidate generation part of the algorithm. Note that we always usemotifs A, T, G, C for extension. This is due to the fat that there are rarelyases, where a nuleotide in promoter sequenes is missing. The Apriori26

Algorithm 3.3.1 NaiveSearh1: proedure NaiveSearh(S, ~σ, m, ℓ)2: if mcount(S, m) = 0 then3: return4: else if |m| = ℓ then5: if IsFrequent (~σ, −−→supp(S, m)) then6: SaveMotif(m)7: end if8: return9: end if10: for e ∈ {A, T, G, C} do11: NaiveSearh(S, ~σ, m || e, ℓ)12: end for13: end proedurepruning priniple is in ation on lines 2 � 3 and the �ltering funtion is givenon lines 4 � 9. Funtion IsFrequent heks, if all thresholds σi > si where
~s = −−→supp(S, m). Reall, that −−→supp operator returns a vetor of values, whereeah element determines the support per one data trak aording to additiveor maximal support type. Also, if implementations of −−→supp and mcountare implemented using data strutures like hash-map disussed in previoussetion, then these need to be onstruted before running this algorithm.As an example, alling NaiveSearh(S, ~σ, θ, 8), where θ is the emptyzero-length motif, S is the set of sequenes and ~σ is the vetor of thresholds,we �nd all frequent motifs of length 8. The omplexity of NaiveSearh is
O(4ℓ), where ℓ is the �xed motif length.3.4 Pruning StrategiesIn this setion, we desribe di�erent pruning strategies, whih an be usedto make more e�ient algorithms ompared to NaiveSearh. All thesemethods are based on properties studied in Chapter 2.

27

3.4.1 Maximal Support Estimation PruningThe simplest method is based on Proposition 2.4.3. Namely, if we are miningmotifs with length ℓ + k and we have some motif m ∈Mℓ, then the supportmeasures of any of its super motifs with length ℓ + k annot be greater thanmotif having m as a pre�x and hypothetial su�x with sore 1.0. Therefore,a motif m and its supmotifs an be pruned, if on any of the data traks
ℓ ·msupp(S, m) + |S| · k

ℓ + k
< σif we are mining using maximal support or

ℓ · asupp(S, m) + mcount(S, m) · k

ℓ + k
< σif we are mining using additive support. Of ourse, the maximal motif length

ℓ + k must be �xed to make these formulas usable. As an example, let usanalyze Figure 3.4.1.

Figure 3.1: Support of motifs AT and AT** in a sample subsequene.We see thatmsupp(S, AT) = max{0.1; 0.5; 0.25; 0.5} = 0.5 and asupp(S, AT) =
0.1+0.5+0.25+0.5 = 2.25. If we were mining using maximal type of supporton this trak, then we an prune the motif with its supmotifs if

(2 ·msupp(S, AT) + 2) /4 = (2 · 0.5 + 2) /4 = 0.75 < σwhere σ is the threshold. For additive type of support this would be
(2 · asupp(S, AT) + 2 ·mcount(S, AT)) /4 = = (2 · 0.5 + 2 · 4) /4 = 2.25 < σ .Inorporating this pruning method requires only small hanges to Naive-Searh on line 2 of Algorithm 3.3.1. The result is given in Algorithm 3.4.1,where CanPrune uses method desribed above to determine if the motifand supmotifs an be pruned. 28

Algorithm 3.4.1 Searh Using Maximal Support Estimation for Pruning1: proedure MaxSupSearh(S, ~σ, m, ℓ)2: if mcount(S, m) = 0 ∨CanPrune(~σ, −−→supp(S, m)) then3: return4: else if |m| = ℓ then5: if IsFrequent(~σ, −−→supp(S, m)) then6: SaveMotif(m)7: end if8: return9: end if10: for e ∈ {A, T, G, C} do11: MaxSupSearh(S, ~σ, m || e, ℓ)12: end for13: end proedure3.4.2 Safe Over-Approximation SearhAnother improvement to NaiveSearh uses slightly di�erent approah. Itis based on Proposition 2.4.7 that stated that support of any motif m′ gainedfrom motif m by replaing one or more nuleotides with wild ard haraters,is greater or equal ompared to original motif. Also, it holds with eithermaximal or additive type of support. This allows us to de�ne a supportoperator that is guaranteed to be downward losed, whih was an issue withNaiveSearh and MaxSupSearh [Lau09℄. We will be referring to it assafe over-approximation type of support onwards.De�nition 3.4.1 Let supp∗(S, m) of motif m ∈ Mℓ denote the support ofits wild harater extension m∗ ∈ Mk, where ℓ 6 k.Reall that a wild ard harater extension of m was a �xed length motifthat ontained m as a pre�x and rest of the elements (wild ard haraters)as the su�x. As an example, if we are interested in mining sequenes oflength ℓ = 3, we �rst start by heking the support of wild ard haraterextensions of motifs inM1, namely A**, T**, G**, C** (note that we donot inlude motif * in this list, as it is anyway the most frequent motif andwe are not interested in it). If any of these motifs is infrequent, for exampleT, then we prune all its supmotifs TAA, TAT, TAG, TAC, TTA et etera. But29

if T is frequent, we ontinue to hek its submotifs TA, TT, TG, TC using
supp∗ operator. We only have to keep in mind, that it is downward losedonly when mining motifs with �xed length, so that Proposition 2.4.7 wouldhold.Algorithm 3.4.2 Safe Over-Approximations Searh1: proedure SafeApproxSearh(S, ~σ, m, ℓ)2: if IsFrequent(~σ, −−→supp∗(S, m)) then3: if |m| = ℓ then4: SaveMotif(m)5: return6: end if7: else8: return9: end if10: for e ∈ {A, T, G, C} do11: SafeApproxSearh(S, ~σ, m || e, ℓ)12: end for13: end proedureThe Algorithm 3.4.2 de�nes SafeApproxSearh. Note that we use
−−→supp∗ operator instead of −−→supp and use IsFrequent to determine, whetherwe an prune the motif with its supmotifs. This is possible due to downward-loseness of −−→supp∗ operator.Both MaxSupSearh and SafeApproxSearh have similar theoreti-al runtime omplexity O(f · 4ℓ), where pruning fator f ∈ (0, 1] is maximal,if no pruning our and minimal, if all motifs are pruned.3.4.3 Infrequent Sub-Motifs Pruning MethodThis alternative searh method is diretly based on Theorem 2.4.5. Namely,if we are interested in motifs with length ℓ, then for any partitioning of afrequent motif m ∈Mℓ into two piees m1, m2, at least one of the piees mustbe frequent. The idea is to generate two sets F and I, where F ontains thefrequent motifs and I the infrequent ones of length ℓ/2. Thus, we ombinemotifs from F and I to enumerate �nal andidates. Note, that we need I,30

beause any frequent motif of length ℓ may have infrequent pre�x or su�x.We do not need to onsider ombinations of infrequent submotifs as due toTheorem 2.4.5 we know, that the resulting motif is also infrequent. Also,there are many ways to partition the motifs, but making them with samelength enables us to enumerate them faster. The Algorithm 3.4.3 desribesthis proess.Algorithm 3.4.3 Infrequent Sub-Motifs Searh1: proedure InfreqSearh(S, ~σ, m, ℓ) ⊲ ℓ must be even2: (F , I)← EnumerateMotifs(S, ~σ, ℓ/2)3: C ← {(a, b) | a ∈ F , b ∈ F ∪ I}4: for c ∈ C do5: if CanPrune(~σ, −−→supp(S, c)) then6: ontinue7: else if IsFrequent(~σ,−−→supp∗(S, c1 || c2)) then8: SaveMotif(c1 || c2)9: else if c1 6= c2 then10: if IsFrequent(~σ,−−→supp∗(S, c2 || c1)) then11: SaveMotif(c2 || c1)12: end if13: end if14: end for15: end proedureOn line 3, we enumerate all the andidate motifs of length ℓ. On line5, we �rst try to eliminate andidates by using information we know abouttheir pre�x m1 and su�x m2. We try this, beause querying the database,depending on data strutures used, an be more ostly. The CanPrunemethod heks on every trak if
msupp(S, m1 || m2) 6

msupp(S, m1) + msupp(S, m2)

2
< σfor maximal support type and

asupp(S, m1 || m2) 6
asupp(S, m1) + asupp(S, m2)

2
< σ31

for additive support type. These formulas are derived from equations inProposition 2.4.3. If we an prune m1 || m2 using above equations, then wean also prune m2 || m1 as there is no di�erene, in what order we onsiderthe pre�x and su�x part.3.5 Mining Fixed Number of Best MotifsThe searh algorithms disussed in earlier setions onentrate on �nding allfrequent motifs in respet to some threshold vetor. But suppose we want tomine 100 �best� motifs. Doing this by hand using any previously mentionedsearh algorithm would require following proess. First, we determine somereasonable thresholds and support types for data traks. Seond, we minefrequent motifs using these thresholds and deide, whether the number ofmotifs was too small or too large. Third, we modify the thresholds by in-reasing or dereasing them and mine again until we have desired number offrequent motifs.The proess we just desribed is atually similar to binary searh knownin omputer siene. The Algorithm 3.5.1 implements it to automate thisproess. On line 3, we determine two salars α and β, suh that mining with
α · ~σ returns all motifs present in data and mining with (β + ε) · ~σ returnsnone of the motifs where ε > 0. It is trivial, that α = 0, beause in thatase all motifs will be frequent. Determining β is more ompliated, beausewe do not have any prior knowledge about maximal supports in data. Firstoption is to make a guess, but a better alternative is to �nd out the supportsby alulating ~s = −−→supp∗(S, *) and set

β = max{si/σi | i = 1, . . . , n} (3.2)where n is the number of data traks and ~σ ontains user-de�ned thresholds.This way β · ~σ may return only minimal possible number of frequent motifs.Having these boundaries �xed, we an easily ombine any previously de�nedsearh method with binary searh. In other words, we keep saling the orig-inal vetor of thresholds ~σ, until we get desired number of frequent motifs.The linearity of this approah may not always be the best hoie, beausethe relations between the reasonable thresholds depend on the nature of thedata. We do not study further possibilities in this work, but it ould be apossible researh area in the future. 32

Algorithm 3.5.1 Algorithm for Mining Fixed Number of Best Motifs1: proedure NBest(S, ~σ, N, ℓ)2: ~s← −−→supp∗(S, *)3: α← 0, β ← max{si/σi | i = 1, . . . , n} ⊲ n is the number of traks4: C ←∞ ⊲ The losest number of best motifs5: δ ← 0 ⊲ Salar to be used to mine losest number of best motifs6: while β − α > ε do ⊲ ε > 0 limits the reursion depth7: γ ← (α + β)/28: k ← NumFreqMotifs(S, γ · ~σ, θ, ℓ) ⊲ θ is the zero-length motif9: if abs(k −N) < C then10: C ← k, δ ← γ11: end if12: if k > N then13: α← γ14: else if k < N then15: β ← γ16: else if k = N then17: break18: end if19: end while20: return MineMotifs(S, δ · ~σ, θ, ℓ)21: end proedureFuntion NumFreqMotifs an be used as a wrapper around searhmethods desribed in earlier setions. There are still a few things to onsider.First, not always there exist some �xed number of best motifs, beause twomotifs may have exatly same support measures. In that ase, binary searhgoes into in�nite loop. Same happens, when the number of desired motifs isgreater than there are motifs present in input data. In both situations, weneed to limit the maximal depth of the reursion. But we an still returnthe number of motifs, that is very lose to desired number of motifs. On line3, we de�ne C that will remember, what was the losest number of frequentmotifs to the desired �xed number of motifs. Salar δ an be used to sale
~σ to get C frequent motifs. On line 6, we use ε > 0 to limit the reursiondepth. On lines 12 � 18, we see binary searh in ation. The while loop33

terminates when the reursion depth limit is reahed or salar, that returnsdesired number of frequent motifs, is found. After that, the MineMotifsfuntion used as a wrapper around any previously de�ned searh method�nally returns the motifs.The omplexity of this approah is O(d · 4ℓ), where d is the maximalreursion depth of binary searh and 4ℓ is the worst-ase omplexity ofNaiveSearh, MaxSupSearh and SafeApproxSearh where ℓ is the�xed motif length.Another, rather naive, but reasonable alternative is to mine at least thedesired number of motifs from input data set and sort them. A reasonableriteria for sorting an be derived from Equation (3.2), that we used to alu-late the value β. Suppose we have mined f frequent motifs m1, m2, . . . , mf .Given an vetor of thresholds ~σ, we an alulate salars
γj = max{si/σi | i = 1, . . . , n}where j ∈ {1, . . . , f}, n is the number of data traks and ~s = −−→supp∗(S, mj).These salars have an interesting property. For any motif mj present ininput data, IsFrequent(~σ, γj ·−−→supp∗(mj)) = true, where γj is minimal suhsalar for mj . If we sort motifs m1, . . . , mf dereasingly using γj as the keyfor motif mj , then we get a list where �rst N motifs are the �best� minedmotifs. The omplexity of sorting is O(f · log2f). Also, if we do not want toguess thresholds and mine frequent motifs before sorting, then we an get alist of present motifs in the data along with hash-map onstrution in lineartime to the total length of input sequenes, beause we need the supportmetris of the motifs anyway. Therefore, if the number of present motifs issmall, then sorting de�nitely has the advantage. On the other hand, we arenot usually interested in more than 100 frequent motifs. Therefore, in a largeset of promoter sequenes, NBest ould work faster.Another thing to be onsidered is the NumFrequentMotifs funtionused in Algorithm 3.5.1. It only needs to know the number of frequentmotifs not the atual motifs themselves. This allows us to prune the searheven better than MaxSupSearh and SafeApproxSearh do. We willdesribe this in the next setion.Also, both NBest and sorting approahes an be used as a entral partin mining statistially signi�ant motifs with SigMotifs desribed in Se-tion 2.5, beause SigMotifs requires lists of �best� mined motifs from per-muted datasets to determine the p-values of original motifs. We won't disuss34

SigMotifs any further here, but we use it to mine signi�ant motifs in aexperiment disussed in Chapter 4.3.6 Generalized FP-TreeIn this setion, we desribe a data struture that is optimized to tell us howmany motifs in input data are frequent, given some vetor of thresholds.We will use a generalization of FP-Tree [JJYR04℄ that is widely used instandard data mining appliations. The general idea is simple: the treeontains support of all �xed-length motifs in promoter data and maintainsrelationships between sub and supmotifs, suh that given a motif we an tellhow many supmotifs there are and what are the minimum and maximumvalues of sores per eah data trak. This way it is easy to determine thenumber of frequent motifs in the tree given the vetor of thresholds ~σ.

Figure 3.2: Generalized FP-Tree of Sequene ATGAC of motifs with length oftwo.Consider sequene ATGAC given in Figure 3.2. If we were to mine motifs oflength two, then the we would build the tree shown in the �gure. Note thatevery leaf of the tree represents one motif present in data and ontains the35

support metris of that motif. Every intermediate node ontains informationabout how many leaves it has and what are the minimal and maximal supportmeasures of them.For example, if thresholds were ~σ = (0.5, 0.5), then already at root nodewe know, that all the motifs in the tree are frequent. Thus, we do not needto look any further, but just return the number of motifs. If ~σ = (0.5, 1.0),then we have to reurse from the root node to make any deisions. Atintermediate node A, we see that all submotifs are frequent in respet tothreshold of �rst trak, but they are all infrequent against the threshold ofthe seond trak. Thus, the intermediate node has no frequent submotifs.At intermediate node T, exatly same applies. At intermediate node G, wesee that all submotifs are frequent regarding the thresholds, thus at rootnode we ompute that the number of frequent submotifs is 0 + 0 + 1 = 1.This example demonstrated the pruning apabilities with GFP-Tree fromabove and below, therefore making this struture optimized for returning thenumber of frequent motifs regarding some thresholds. Also, using this treestruture for support metris retrieval in SafeApproxSearh instead of ahash-map with additive support type, pruning infrequent motifs is possiblemuh earlier in the searh proess. This is due to fat that GFP-Tree isapable of returning the atual maximum support among supmotifs, whereashash-map sums the supports of the supmotifs.We will refer to this searh method as GFPSearh onwards, but weomit exat algorithm for the sake of spae. Still, let us one more larify thepruning step part of the algorithm. Suppose we have two data traks and weare in an intermediate node, trying to deide, what is the number of frequentsubmotifs in this subtree. We an ompose a table ontaining subnodes asrow headers and data traks as olumn headers. For every data trak, we anwrite if relevant threshold is equal or below of the minimal support of thesubnode, above the maximal support or between the minimal (not inluded)and maximal (inluded).Subnode track1 track2 CommentA above above No motifs are frequent in this subtreeT middle above No motifs are frequent in this subtreeG below middle We have to look further to deideC below below All motifs are frequent in this subtreeIf a row ontains value above, then there are no frequent motifs in that36

subtree. If all values are below, then all submotifs in the subtree are frequent.In ase the values are a mix of below and middle, we have to reurse to thesubtree to deide the number of frequent submotifs. After that, we sum upthe total number of frequent submotifs at this intermediate node and returnthe result to parent that deals with it onwards.The omplexity of telling how many motifs are frequent, given a thresholdvetor, is with similar omplexity to SafeApproxSearh, but in additionto that, we an prune the searh from below as we only want to know thenumber of motifs. Composing this funtionality with binary searh an ef-fetively �nd thresholds that yield desired number of frequent motifs or atleast the number of results that are losest to them. Construting suh atree takes O(n · ℓ) time, where n is the total length of sequenes and ℓ is the�xed motif length.Of ourse, GFP-Tree an be also used to atually feth the frequent mo-tifs, but this eliminates the pruning possibility from below, as we atuallyhave to reurse to the leaves to reah the motifs. In that ase, the theoretialruntime omplexity is exatly the same as with SafeApproxSearh.

37

Chapter 4Experimental ResultsIn this hapter, we desribe several experiments we have performed to furtherstudy and ompare di�erent algorithmi apabilities of methods studied inprevious hapters. In Setion 4.1, we will disuss run-time performane ofsearh algorithms and in Setion 4.2, we disuss the biologial signi�ane ofmined motifs. For these purposes, we have written a C++ appliation thatimplements all searh algorithms desribed in this work, see Appendix A.The omputer we used to run the tests had following spes: Intel PentiumM CPU 1.73 GHz with 2MB of L2 ahe, 1GB of DDR2 RAM, Fedora 12(kernel version 2.6.31.5) operating system.4.1 Runtime Performane of Searh AlgorithmsIn this setion, we run two types of tests. First, we ompare the run-time per-formane of algorithms NaiveSearh, MaxSupSearh, SafeApprox-Searh, InfreqSearh and GFPSearh by mining motifs from datasets with given thresholds. Seondly, we ompare NBest ombined withGFPSearh against MergeSort and test, how fast they manage to re-trieve �xed number of frequent motifs from input data.4.1.1 Mining Frequent MotifsFor testing all searh methods with given thresholds, we need to also on-sider one other aspet. Namely,NaiveSearh,MaxSupSearh, SafeAp-proxSearh, InfreqSearh all need hash-maps disussed in Setion 3.238

for support retrieval. What is more, SafeApproxSearh needs hash-map,that ontains also wild ard harater extensions. NaiveSearh and Max-SupSearh do not need wild ard haraters, but they need hash-maps forall motif lengths up to ℓ, if we are mining motifs of length ℓ. InfreqSearhneeds two hash-maps without wild ard haraters: one, that ontains sup-port metris for motifs of length ℓ and another, that ontains metris formotifs of length ℓ/2. And �nally, GFPSearh requires GFPTree for be-ing able to perform at all. As we are interested in pratial value of thealgorithms, we also studied the time required to build neessary data stru-tures.For benhmarking, we deided to mine motifs of length 8 and use au-tomatially generated datasets with total length of the promoters from 500up to 25000, where the length of one promoter was exatly 500 nuleotideslong. We generated ten datasets with given number of promoters for everysearh method and measured the average running time of the searh algo-rithm. Also, total working time inluding data struture onstrution wasmeasured and we alulated, how many motifs were proessed. We generatedfour data traks for eah promoter where the sores of the data traks weregenerated randomly. Eah promoter sequene was generated using a Markovhain, but with di�erent harateristis. We mined the datasets using threetypes of thresholds: low, medium and high. Low setting means, that thresh-olds are equal to 0.05 for all data traks, not depending whether we mineusing maximal or additive support. Medium settings means, that thresholdsare equal to 0.3 and high setting means, that thresholds are equal to 0.55.Suh settings were hosen without no partiular reason, but in hope of �nd-ing interesting patterns in behavior of the algorithms. Also, two traks weremined using additive and two using maximal support type.Let us analyze the results given in Figure 4.1. When we ompare al-gorithm running times, then InfreqSearh is the slowest method withlow and medium thresholds. There are two possible reasons. First, themethod has to enumerate all motifs of length four. Seond, pruning strat-egy of InfreqSearh does not work well with very low thresholds. Onthe other hand, with high thresholds, it is as fast as SafeApproxSearhand GFPSearh. Also, running times of the MaxSupSearh seem tobe very dependent on thresholds. With low thresholds, it performs simi-larly to NaiveSearh, with medium thresholds it works muh faster andeven better with high thresholds. The fastest algorithms are SafeApprox-Searh and GFPSearh and they perform similarly well. Only di�er-39

Number of promoters

A
lg

or
ith

m
 w

or
ki

ng
 ti

m
e

(s
ec

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

High

10 20 30 40 50

Low

10 20 30 40 50

Medium

10 20 30 40 50

Algorithm

NaiveSearch

MaxSupSearch

SafeApproxSearch

InfreqSearch

GFPSearch

Number of promoters

To
ta

l w
or

ki
ng

 ti
m

e
(s

ec
)

0.1

0.2

0.3

0.4

0.5

High

10 20 30 40 50

Low

10 20 30 40 50

Medium

10 20 30 40 50

Algorithm

NaiveSearch

MaxSupSearch

SafeApproxSearch

InfreqSearch

GFPSearch

Number of promoters

N
um

be
r

of
 m

ot
ifs

 p
ro

ce
ss

ed

0

10000

20000

30000

40000

50000

60000

High

10 20 30 40 50

Low

10 20 30 40 50

Medium

10 20 30 40 50

Algorithm

NaiveSearch

MaxSupSearch

SafeApproxSearch

InfreqSearch

GFPSearch

Figure 4.1: Comparison of algorithm running time (top), total running time(middle) and number of motifs not pruned(bottom) of the searh algorithms,when mining motifs of length eight with either low, medium or high supports.40

ene is with medium thresholds, where SafeApproxSearh works about20 milliseonds slower on average. The observation that GFPSearh isfaster, is due to nature of GFP-Tree and ability to help deiding faster, whatbranhes to prune. Other than that, we atually see two types of behaviorhere. First, running times of NaiveSearh and MaxSupSearh growonstantly when the number of promoters is inreased. This happens, be-ause the number of motifs present in input data grow, but pruning strategyof MaxSupSearh is looser than strategies of SafeApproxSearh, GF-PSearh and NaiveSearh. Seond, running times of InfreqSearh,SafeApproxSearh and GFPSearh seem to derease or be onstant,when the number of promoters is inreased. This implies that the e�ienyof their pruning strategies grow with the number of infrequent motifs presentin data.If we now onsider also the time needed to build neessary data strutures,then �rst thing we notie, is that InfreqSearh performs rather well om-pared to other searh algorithms using hash-maps for support retrieval. Thisis due to fat that InfreqSearh needs support only for motifs of lengtheight and four, where NaiveSearh and MaxSupSearh require that wehave information about all motifs present in datasets up to length of eight.Reall that SafeApproxSearh required hash-maps to ontain wild ardharater extensions. This requirement seems to put SafeApproxSearhalmost on the same bar with NaiveSearh and MaxSupSearh. Sur-prisingly, GFPSearh outperforms all other searh methods, exept withhigh thresholds InfreqSearh is faster. On all three plots we see that theonstrution time of the data strutures seem to be more or less linear to thetotal length of input sequenes. One other observation is that if we modi�edNaiveSearh to be even more naive, suh that it does not do Aprioripruning hek, then it ould work with a hash-map ontaining only �xed-length motifs. Therefore, the total running times ould easily ompete withGFPSearh, beause the time needed to onstrut the hash-map would beroughly half the time neessary for the InfreqSearh.If we now analyze the number of motifs that were not pruned, thenInfreqSearh really seems to have the pruning strategy, that is very ef-fetive with high thresholds, but bad with low and medium thresholds. Thisalso suggests that support of motifs goes really low in the generated data ifthe number of promoters goes higher than ten. Again, we see that Max-SupSearh is very dependent on the thresholds and pruning strategies ofSafeApproxSearh and GFPSearh work very well with low, medium41

and high thresholds.To sum these results up, then the results would have di�ered quite abit,if we used data with other harateristis. But lear onlusions are,that SafeApproxSearh and GFPSearh are superior to others searhmethods. Let us also remind, that the reason, why GFPSearh was faster inour tests, was due to di�erent data strutures used to retrieve support. Hash-map used by SafeApproxSearh was designed to be more modular toenable working with di�erent algorithms. But GFP-Tree and GFPSearhwere designed to work only with eah other.4.1.2 Mining Fixed Number of Frequent MotifsIn this experiment, we were interested if NBest with its binary searh ap-proah an outperform MergeSort, when mining �xed number of motifsfrom datasets. For that purpose, we generated datasets exatly with sameharateristis as we did in last setion. Again, we took average runningtimes from 10 runs, where the total length of input sequenes were between500 and 25000 nuleotides, where we were mining 100 �best� motifs. Basedon the results of last experiment, we deided to use NBest in onjuntionwith GFP-Tree and GFPSearh. We enabled all pruning apabilities ofGFPSearh here, as we only need to know the number of motifs instead offething the atual motifs, given some thresholds. We ompared it againstMergeSort, where we enumerated all motifs by �rst building a hash-mapontaining the support metris and then fething the motifs present in datainto a sortable vetor. The results are given in Figure 4.2.We see that growth of both methods is roughly linear to the number of in-put sequenes, where NBest seems to perform slightly faster where numberof promoters is less than 18 and slightly slower afterwards. The reason hereis that the running times of onstruting a GFP-Tree inrease faster thanbuilding a hash-map for �xed length motifs. Atually, based on observationsin the previous setion, we an say that the running times of GFPSearhand MergeSort make up only a fration of the total due to time requiredby alulating the support metris. Also, the results given here an di�eron multiproessor systems due to divide and onquer nature of MergeSortand possibility to onstrut the hash-map with several threads traversingdi�erent promoters simultaneously. In a similar fashion, it is possible withGFPSearh and GFP-Tree onstrution. In that ase, both approahesould work a few times faster. Still, omplexity of GFP-Tree onstrution42

Number of promoters

R
un

ni
ng

 ti
m

e
(s

ec
)

0.05

0.10

0.15

0.20

0.25

0.30

10 20 30 40 50

Algorithm

NBest + GFPTree

NaiveSearch + mergesort

Figure 4.2: Comparison of runtime speed of NBest and MergeSort, �nd-ing 100 best motifs in datasets.is slightly higher, therefore it is probable that sorting method ould outper-form binary searh approah signi�antly on multiproessor mahines. Onthe other hand, MergeSort an work only if omparing supports of twomotifs is possible. Reall, that in Setion 3.5 we onluded that modifyingthresholds by saling them linearly may not be the best possible method to�nd �best� motifs. An ad-ho approah might suggest ompletely di�erentshemes for doing that. In that ase, using MergeSort may be impossible,but NBest stays a viable alternative, beause it an be easily modi�ed tohandle more omplex threshold hanging shemes.4.2 Mining Biologially Signi�ant Motifs4.2.1 Data PreparationFor this experiment, we deided to use data of yeast S.Cerevisiae, that weolleted from several online databases and ompiled them into individualtraks and sequenes usable by our omputer program. Exat piees that we43

olleted were promoter sequenes with their oordinates and diretion onthe DNA strand [MOJ+08℄, phastCons onservation data of all hromosomes[KSF+02℄, binding enrihment sores for transription fators [NB08℄ andinvivo nuleosome oupany data [NIY+09℄.The next step was to put all promoter sequenes on one strand, thereforewe had to reverse the sequenes and get the omplementary reverses whereneessary. Next, we normalized all onservation and nuleosome data, suhthat all values fell in range between zero and one. From invivo nuleosomeoupany sores we alulated nuleosome freeness sores, so higher soreswould mean higher hane for a transription fator binding site. Last stepwas to ut all data from relevant positions in the datasets and onnet themwith the promoter sequenes. For binding sores, though, we need to alu-late the sore traks for every promoter sequene separately from enrihmentsores, before we start mining. We do it by taking the average of all en-rihment motifs that math the partiular position in the sequene. Thisproess is largely automated by helper sripts, that ome with the omputerprogram, see Appendix A.4.2.2 ResultsWe deided to use gene MCM1, that has an important role in ell life y-le regulation of S.Cerevisiae. We used following promoter sequenes thatare doumented or potential transription fators of MCM1: FHL1, OAF1,ABF1, ADR1, ASH1, AZF1, CUP2, FKH2, GAL4, GCN4, GCR1, GIS1,GSM1, HAC1, HSF1, MSN2, MSN4, NRG1, RTG1, RPH1, RTG3, SKN7,STB5, STP1, STP2, SWI4, YER130C [MPP+06℄. We assoiated three datataks with eah one of them: onservation, binding and invivo nuleosomefreeness sores. The support types were additive, additive and maximal re-spetively and when mining 100 best motifs, we gave eah trak equal weightby setting threshold vetor ~σ = {1.0, 1.0, 1.0}. SigMotifs generated 10000 bakground datasets by permuting randomly the nuleotide sequenesof original data trak. Then, we assoiated a p-value with eah mined motifand data trak. We also alulated test statisti for every motif with Fisher'smethod known from statistis:
(−2) ·

i=n
∑

i=1

ln(pi)44

where n is the number of data traks and pi is the p-value of the motif on
i'th trak. Let us refer to this statisti as signi�ane onwards.In Figure 4.3, we see relations between onservation, binding and freenesssores of 100 mined motifs. We see that onservation and binding soresseem to be very orrelated. Most motifs have both support measures lessthan 1.5, only two motifs have support double that muh. The middle andbottom satter plots are rather similar. It is due to high orrelation betweenonservation and binding sores, but there are no motifs with freeness soregreater than 0.5. In all three plots, signi�ane of motifs seem to be alsoorrelated to the support measures.In Figure 4.4, we see relation between p-values of individual traks. Whenwe ompare onservation and binding, then surprising motifs in terms ofbinding are CTCTTT, CTTCTT, CAAAAT. When omparing onservation andfreeness, then surprising motifs in terms of freeness are TTTACT, CAAAAT,TTTCCC, TTCCTT. When omparing binding and freeness, then there are nosuh motifs, that would have too muh di�erene in p-values. Let us now listsome motifs returned by our appliation. The olumns ons, bind, freeare the onservation, binding and freeness sores of the motifs. Columnsp_ons, p_bind, p_free are orresponding p-values.MOTIF COUNT ons bind free p_ons p_bind p_free1 GAAAAA 50 1.235 1.160 0.452 0.000 0.000 0.0002 AAAAAA 137 3.289 3.351 0.446 0.000 0.000 0.0003 TTTTTT 123 2.865 3.007 0.434 0.000 0.000 0.0004 TTCTTT 30 0.665 0.662 0.413 0.032 0.000 0.0005 TTTTTC 43 0.902 0.973 0.405 0.000 0.000 0.000...93 GAAAAT 15 0.397 0.313 0.221 0.583 0.208 0.25994 ATTAAT 17 0.412 0.341 0.221 0.494 0.389 0.25595 GAGAAA 23 0.584 0.487 0.219 0.058 0.006 0.31796 AAAGTT 15 0.365 0.273 0.216 0.510 0.374 0.32197 CTTCTT 16 0.249 0.331 0.216 0.924 0.324 0.315And let us list some doumented binding sites [MOJ+08℄: AAGAAAAA, CTTCC,AGGGG, CCAGC, TTTTCGCT, ATGGAT, CCCCT, CTCGA, GGTAC, CTCAC, CGCCTC.Although we do not see many similarities, then motifs GAAAAA and TTCTTT,whih is the omplementary of AAGAAA, seem to partially math AAGAAAAA in45

the list of doumented binding sites. Motifs, that had high p-values mostlyin respet to one data trak seen in Figure 4.4 like CTCTTT, CTTCTT, seem tobe similar to CTTCC, CCCCT. Although there are similarities, it is not possi-ble to make any strong onlusions based upon these results. On the otherhand, the signi�ant motifs suggested by our algorithm did not seem to verymisleading. The �rst motif GAAAAA mathed part of one longer doumentedmotif AAGAAAAA. Of ourse, questionable motifs are AAAAAA and TTTTTT, be-ause they seem to be in the top only beause they had most mathes inthe input data. This is atually a side-e�et of additive and maximal typesof support, beause these motifs math long onseutive elements with sameletters and therefore introdue bias in the support. Of ourse, this means alsothat these motifs have great strutural importane, but they are not exatlywhat we are looking for in gene regulation problems. Di�erent approahes ofdetermining signi�ane and mining with average type of support mentionedin Chapter 2 ould redue this bias, but it is the material for further researhand out of the sope of this work.To sum it up, our tool seems to have great potential mining signi�antmotifs from many promoter sequenes. Still, while muh researh remains tobe done in this area, our tool an be helpful for sientists to help on�rmingexisting doumented results or even suggest motifs that may need furtherattention.

46

Conservation score

B
in

di
ng

 s
co

re

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1.0 1.5 2.0 2.5 3.0

Significance

20

40

60

80

100

120

Conservation score

F
re

en
es

s
sc

or
e

0.25

0.30

0.35

0.40

0.45

0.50

0.5 1.0 1.5 2.0 2.5 3.0

Significance

20

40

60

80

100

120

Binding score

F
re

en
es

s
sc

or
e

0.25

0.30

0.35

0.40

0.45

0.50

0.5 1.0 1.5 2.0 2.5 3.0

Significance

20

40

60

80

100

120

Figure 4.3: Relations between onservation, binding and freeness soresamong 100 most frequent motifs. The larger dots have higher Fisher statisti,being more signi�ant. 47

Conservation p−value

B
in

di
ng

 p
−

va
lu

e

0.0

0.1

0.2

0.3

0.4

0.5

AAATTT

AATTAA

TTATTA
AAAAGC

TTATAT

AATATT
TTTACT

TATTAT

AAATAT

ATATAA

TTTTTG

TATTTA

AATATA

AAAAGT

TTTCCC
CAAAAT

TTAAAA

TTTAAT

AAATAG

TTTTAC

TTTTGA

AGAGAA

ATAATA

TTTGAA

TTTTAT

AGAAAG

TATCTT

AAAATT

TTCCTT

TATATT

TTAATA

CATTTT

ATTAAA

GAAATT

ATTATA

TATTTC

TCAAAA

ATTTATTAATAT

CTCTTTAAAGTA

AGCAAA

TAAAAG

TTATCT

TTTCAA

TTCTAT

CTTTAA

TTTTGT

TGAAAT

GAAAAT

ATTAAT

AAAGTT

CTTCTT

TGAAAA

AAGAAG

0.0 0.2 0.4 0.6 0.8 1.0

Difference
a 0.0

a 0.1

a 0.2

a 0.3

a 0.4

a 0.5

a 0.6

Conservation p−value

F
re

en
es

s
p−

va
lu

e

0.0

0.1

0.2

0.3

0.4

0.5

TTAATT
CTTTTTAAAAAC TTTTCCAAATTT

AATTAA

TTATTA

TATTTT
ATAAAA

AAAAGC
TTATAT

AATATT

AAGAAA

TTTACT
TATTAT

AAATAT

ATATAA
AAAAGA

TTTTTG

ACAAAA
TATTTA

AATATA

TTGTTTAAAAGT

TTTCCCATTTTC

CAAAATTTAAAA

TTTAAT
AAAACA

AAATAG

TTTGTT
AAAAGG

TTTTAC
TTTTGA

AGAGAA

ATAATA

TTTGAA

TTTTAT AGAAAG

TATCTTAAAATTTTCCTTTATATT

TTAATA

CATTTT

ATTAAA
GAAATT

ATTATATATTTC

TCAAAA

TAATTT

ATTTAT
TAATAT

CTCTTTAAAGTA

AGCAAA TAAAAG

TTATCT
TTTCAA

TTCTAT

CTTTAATTTTGT

TGAAAT

GAAAAT

ATTAAT

GAGAAA
AAAGTT

CTTCTT

TTTTCA

TGAAAA

AAGAAG

0.0 0.2 0.4 0.6 0.8 1.0

Difference
a 0.0

a 0.1

a 0.2

a 0.3

a 0.4

a 0.5

a 0.6

a 0.7

Binding p−value

F
re

en
es

s
p−

va
lu

e

0.0

0.1

0.2

0.3

0.4

0.5

AAATTT

AATTAA

TTATTA

AAAAGC

TTATAT
AATATT

TTTACT

TATTAT
AAATAT

ATATAA
TTTTTG

ACAAAA
TATTTA

AATATA

AAAAGT

TTTCCC CAAAAT

TTAAAA

TTTAATAAATAG

TTTTAC

TTTTGA
AGAGAA

ATAATA

TTTGAA

TTTTAT AGAAAG
TATCTT

AAAATT
TTCCTT

TATATT

TTAATA

CATTTT

ATTAAA

GAAATT

ATTATA TATTTC

TCAAAA

ATTTAT
TAATAT

CTCTTT
AAAGTA

AGCAAA TAAAAG

TTATCT
TTTCAA TTCTAT

CTTTAA
TTTTGT

TGAAAT

GAAAAT

ATTAAT

AAAGTT

CTTCTT TGAAAA

AAGAAG

0.0 0.2 0.4 0.6 0.8 1.0

Difference
a 0.00

a 0.05

a 0.10

a 0.15

a 0.20

a 0.25

a 0.30

Figure 4.4: Relation between p-values of individual data traks. Larger dotsmean larger di�erene in p-values. 48

SummaryIn this work, we introdued and developed novel mathematial formalization,algorithms and data strutures needed to desribe data mining methods usingmultiple input promoter sequenes and several layers of data. We reformu-lated standard sequene mining tehniques and studied di�erent propertiesof our new formalization in Chapter 2. We also disussed brie�y a methodto deide the statistial signi�ane of frequent motifs.In Chapter 3, we desribed ompat enoding of �xed length motifs. Wegave instrutions, how to e�iently onstrut hash-maps ontaining supportmetris of motifs. We disussed NaiveSearh and several improvements toit likeMaxSupSearh, SafeApproxSearh and InfreqSearh. Next,we introdued NBest algorithm for mining �xed number of frequent motifs.We also desribed a data struture alled GFP-Tree and algorithm GFP-Searh, that is able to mine frequent motifs, but is optimized for tellingthe number of frequent motifs in the dataset. We also disussed brie�y, howSigMotifs and NBest an be fused together to provide information ofstatistial signi�ane of motifs.We wrote a C++ appliation and implemented all algorithms and datastrutures disussed in this work and benhmarked the runtime speed of theappliation and algorithms in Chapter 4, realizing that GFPSearh seemedbe superior to other algorithms in terms of runtime speed. We also used realbiologial data and mined signi�ant motifs of length 6 for gene MCM1. Weonluded, that while muh more researh needs to be done, given properinput data, our searh methods an provide meaningful results.
49

Motiivide otsimine DNAregulatiivsetest aladestBakalaureusetöö (6 EAP)Timo PetmansonResümeeKäesolev töö uurib algoritme, mille abil on võimalik uurida organismidegeeniregulatsiooni probleeme eksperimentaalsete andmete põhjal. Keskendu-takse DNA regulatiivsetest aladest oluliste motiivide ning fragmentide ot-simisele, millel võb olla kriitiline roll organismi elutalitluse reguleerimisel jakordineerimisel.Töö teoreetilises osas kirja pandud matemaatilise formalisatsiooni abil uu-ritakse ja tõestatakse mitmeid omadusi, mis panevad aluse võimalikele otsin-gualgoritmidele ja nende analüüsimisele. Töö praktiline osa käsitleb väljatöö-tatud algoritmide ajalist efektiivsust ning võimekust töötada bioloogilisteandmetega.

50

Bibliography[Coh04℄ J. Cohen. Bioinformatis. An introdution for omputer sien-tists. ACM Computing Surveys, 2004.[DP07℄ G. Dong and J. Pei. Sequene Data Mining. Springer, 2007.[Hee07℄ Dimitri Heesh. Doxygen - doumentation system for variousprogramming languages, 1997-2007.[JJYR04℄ J.Han, J.Pei, Y.Yin, and R.Mao. Mining frequent patterns with-out andidate generation: A frequent-pattern tree approahâ��.Data Mining and Knowledge Disovery, 8, 2004.[KSF+02℄ Kent, Sugnet, Furey, Roskin, Pringle, Zahler, and Haussler. Thehuman genome browser. Genome Res, 2002.[Lau09℄ S. Laur. Advaned sequene mining, Otober2009. Available from http://ourses.s.ut.ee/2009/fast-ounting/uploads/Main/sequene-mining-hints-ii.pdf.[MHJ06℄ M.Sogin, H.Morrison, and J.Huber. Mirobial diversity in thedeep sea and the underexplored �rare biosphere�. NationalAademy Siene USA, August, 2006.[MOJ+08℄ M.Chollier, O.Sand, J. V. Turatsinze Janky, M. Defrane,E. Vervish, S. Brohee, and J. van Helden. RSAT: regulatorysequene analysis tools. Nulei Aids Res., 2008.[MPP+06℄ M.Teixeira, P.Monteiro, P.Jain, S.Tenreiro, A.Fernandes, N.Mira,M.Alenquer, A.Freitas, A.Oliveira, and I.Correia. The yeastratdatabase: a tool for the analysis of transription regulatory asso-iations in saharomyes erevisiae. Nul. Aids Res, 2006.51

[MT96℄ H. Mannila and H. Toivonen. Disovering generalized episodesusing minimal ourrenes. In Knowledge Disovery and DataMining, pages 146 � 151, 1996.[MTV95℄ H. Mannila, H. Toivonen, and A. Verkamo. Disovering frequentepisodes in sequenes. In In First International Conferene onKnowledge Disovery and Data Mining, pages 210 � 215. AAAIPress, August 1995.[NB08℄ Newburger and Bulyk. Uniprobe: an online database of proteinbinding miroarray data on protein-DNA interations. Aids Res,2008.[NIY+09℄ N.Kaplan, I.K.Moore, Y.Mittendorf, A.Gossett, D.Tillo, Y.Field,E.LeProust, T.Hughes, J.Lieb, J.Widom, and E.Segal. The DNA-enoded nuleosome organization of a eukaryoti genome. Nature,Marh 2009.[RSM05℄ R.Deonier, S.Tavare, and M.Waterman. Computational GenomeAnalysis. An Introdution, hapter 2 and 9. Springer Siene andBusiness Media, LLC, 2005.[Vil02℄ J. Vilo. Pattern Disovery from Biosequenes. PhD thesis, Uni-versity of Helsinki, 2002. ISBN 952-10-0819-9.[WCU07℄ The World Conservation Union. Red list of threatened speies.summary statistis for globally threatened speies, 2007.

52

Appendix AMulti-onstraint miner tool forgene expression analysisWe needed an implementation of the studied algorithms for run time speedbenh-marking and working with biologial data. Thus, we deided to de-velop an appliation, that ould be used for suh purposes. The soure odeof the appliation along with data preproessing sripts is available for down-loading at http://mminer.soureforge.net.Features:1. Mine from up to 128 promoter sequenes using up to 8 di�erent datatraks (these settings an be hanged by modifying the soure ode).2. Choose between di�erent searh algorithms: NaiveSearh, Max-SupSearh, SafeApproxSearh, InfreqSearh, GFPSearh,NBest and SigMotifs.3. Set maximal or additive support for di�erent data traks.4. Set thresholds on every data trak.Supported platforms: The appliation is written and tested only on Fe-dora 12, but it should be possible to build it on all platforms that are sup-ported by GCC 4.3 and Boost 1.39 libraries.53

Doumentation: The doumentation of the soure ode an be generatedwith Doxygen tool [Hee07℄, instrutions for building and using the applia-tions, desription of the �le format the program uses to read promoter dataare given in README �le of the projet.Liense: The appliation is released under the GNU General Publi Liense(version 3).

54

