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Introduction

All living organisms on earth are believed to contain genetic information
coded in structured collections of genes and non-coding sequences that make
up the DNA. The coded information is used to build organisms, maintain
them and it defines a wide range of genetic features that vary from individuals
to individuals and from species to species. The non-coding parts have much
of the responsibility to regulate the expression of particular genes. Genes
with their non-coding regulatory areas form complex signaling networks that
together coordinate the life cycle of an organism. Contemporary methods in
genetics like ChIP and micro-array measurements make it possible to measure
features of thousands of genes in one experiment, generating huge amounts
of data. Therefore, the development of new algorithms and methods able to
analyze this data is crucial.

Our contributions include the development of novel methods able to com-
bine different sources of experimental data. In Chapter 2, we formalize the
theory describing sequence mining with multiple input sequences and mul-
tiple data layers. We also describe, how to determine statistically signifi-
cant motifs using our theory. In Chapter 3, we develop algorithms MAX-
SUPSEARCH, SAFEAPPROXSEARCH, INFREQSEARCH, GFPSEARCH, that
utilize different pruning strategies. For GFPSEARCH, we define generic-
frequent-pattern tree structure that is a generalization of FP-tree [JJYRO04].
We also develop NBEST, that combines any previously mentioned algorithm
with binary search to get fixed number of best motifs. We develop SiGMo-
TIFS, that goes even further by distilling out statistically significant motifs.
Performance study of mentioned algorithms along with experiments on real
biological data are given in Chapter 4.



Chapter 1

Preliminaries

1.1 DNA

Currently scientists have described about 1.5 million different species: about
five thousand mammals, thirty thousand species of fish and over nine hun-
dred thousand insects among others [WCU07|. Some estimates of comparing
samples from various parts of the world seas suggest that in oceans there may
be more than 100 million species of bacteria [MHJ06|. This vast diversity of
known and unknown species in Earth’s biosphere are believed to have one
thing in common: the presence of DNA.

major groove minor groove

Figure 1.1: DNA Double Helix. The distance between strands varies and
forms major and minor grooves.



Chemically DNA is consist of two long strands of polymers, where the
backbone of a strand contains alternating phosphate and sugar residues
linked with bases. These two strands form a structure known as double
helix seen in Figure 1.1, whose stability is maintained by hydrogen bonds
between the bases, see Figure 1.2 [RSMO05]. There are four types of bases
in DNA: adenine (abbreviated A), thymine (T), guanine (G) and cytosine
(C) that combined with a sugar and one or more phosphate residues form a
nucleotide. The nucleotides are pairwise aligned, making the structure anti
parallel, where adenine bonds only to guanine and cytosine bonds only to
thymine. The endpoints of the strands are called 3’ and 5’ where the first is
defined by a terminal phosphate group and the second by a terminal hydroxyl
group [Coh04].

DNA nucleotide sequences are usually written only using bases from one
strand as the bases on other strand are complementary. Sequence TATAAA is
complementary to ATATTT for example. The order the characters are written
depends on the source of the data — sometimes the data is written in direction
from 3’ to 5" while others are vice versa.

CH3

Thymine Adenine

o/

N /
Guanine — He N Cytosine
N
sugar 0 //

Heeooo 0

sugar

Figure 1.2: TA and GC complementary base pairs. Dotted lines represent
hydrogen bonds between bases



1.2 Gene expression

Gene expression means the rate and amount of RNA transcribed from it,
which in turn is used to define other proteins necessary for the cell and
the organism. The transcription process requires transcription factors that
are special proteins able to recognize and attach to particular fragments in
gene promoter areas. The transcription factors are required to recruit RNA
polymerase that is responsible for carrying out the transcription process.

In more complex eukaryotic cells, the promoters are rather diverse and
complicated, but the core elements are a transcription start site, which to-
gether with RNA polymerase and transcription factor binding sites are essen-
tial for initiating the transcription process. Other important binding sites are
typically a little more far away in upstream direction that mainly regulate
gene expression by enhancing or restricting recruitment of the main tran-
scription factors. Additionally, there may be even more distant promoter
areas that have weaker influence on the gene regulation.

1.3 Data mining

Data mining is a method in statistics for extracting interesting patterns or
knowledge from large amounts of available data. This field is very diverse
as among general data mining solutions there are many specific procedures
developed for business, games, social networks et cetera [DP07|. In this work,
we concentrate on specialized area of data mining called sequence mining that
deals with ordered sequences like nucleotide sequences.

The APRIORI algorithm is the most general and simple way to find pat-
terns with high support in given data. In standard sequence mining, the
support is defined as the number of occurrences of a pattern in input data,
which is used to decide whether the pattern is frequent or infrequent based on
some defined threshold. The APRIORI algorithm assumes that the support is
downward closed, which means that for any infrequent pattern there do not
exist any frequent sup-patterns. For example, a DNA motif AAATCCC cannot
be present in data more times than sequences AAA and CCC, because when-
ever the supmotif occurs, the two submotifs must also occur. Let us clarify,
that in this work by a submotif or a subpattern we mean a subsequence with
consecutive elements.



Algorithm 1.3.1 The Apriori algorithm.

1: F} < {Frequent one-element patterns}

2: [ — 2

3: while F,_; # () do

4: Cy «— GENERATECANDIDATES(F)_;)

5 Fy—{ceCy| supp(c) > o} > o is threshold
6 (—10+1
7: end while

The APRIORI algorithm uses downward closeness as a main pruning feature.
In Algorithm 1.3.1 on line 4, the GENERATECANDIDATES procedure takes
the set of frequent motifs of length ¢ — 1 as input and generates possible
candidates of length /. It does not need to consider any non-frequent motifs
as none of their supmotifs are frequent. The algorithm stops running when
it has found all frequent motifs in the dataset.

Let us demonstrate APRIORI by giving an example. Consider the follow-
ing sequence:

GCTTATGGTCGCTATGCTTT .

Suppose we want to mine all motifs occurring at least three times in the
sequence. This means that we run APRIORI with threshold ¢ = 3. The set
Fy = {T,G, C}, because all nucleotides except A are present in sequence more
than three times. Next, we generate candidate motifs of length two by using
only frequent elements in Fj.

C, = {IT, TG, TC, GT, GG, GC, CT, CG, CC}
Frequent motifs in this case are
F, = {TT, GC, CT} .
Note that TT matches TTT two times. The next candidate set is
C3 = {TTT, GTT, TTG, CTT, TTC, TGC, GCT, GGC, GCG,

CGC, GCC, TCT, CTT, GCT, CTG, CCT, CTC} .

This time there is only one frequent motif:

F3 = {GCT} .

9



Candidate motifs of length 4:
Cy = {TGCT, GCTT, GGCT, GCTG, CGCT, GCTC} .

But none of them is frequent, so F; = ) and all frequent motifs in our example
are
F={T, G, C, TT, GC, CT, GCT} .

There are also algorithms like WINEPI [MTV95|, MINEPI |[MT96|,
SPEXS [Vil02| that are able to mine motifs using pattern matching. Still,
while APRIORI with other standard sequence mining algorithms are useful,
they treat all parts of the sequence with equal weight. In our case, we need
methods that are able to work with data that decorates sequences with scores,
making some parts of them more relevant than the rest. In Chapter 2, we
reformulate standard sequence mining techniques and later devise our own
algorithms that handle such requirements.
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Chapter 2

Sequence Mining with Multiple
Layers of Data

In this chapter, we formalize basic notions and concepts like sequences, motifs
and support that are needed to develop our methods. We try to develop
our mathematical approach such that it would be convenient to study gene
regulation, when we consider several promoter areas and different properties
of these sequences described by layers of experimental data.

We also study different properties and relations between these building
blocks that are later used in algorithms to cut down the running times and
improve overall performance, although we do not cover algorithmic details
and other aspects like data structures as they are discussed in later chapters.

2.1 Sequences and Scores

The most basic constructs we will be dealing onwards are DNA sequences
and their fragments. In our case, it will be convenient to think of them as
a set of nucleotide sequences. Let S = {a,b,c,...} denote a set of promoter
sequences relevant to some gene. Single elements of a sequence are denoted
with subscripts as usual. For example, a; means the first element and a»
the second element of a € S. As there are four types of nucleotides adenine,
thymine, cytosine, guanine in DNA that correspond to letters A, T, C, G. We
write a; = A, if first element in the nucleotide sequence is adenine and a, = T,
if the second element is thymine. Let us denote the length of sequence a as
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la|. Tt is worth to note that no promoter is with length of zero, nor there
are promoters with infinite length in real world. However, depending on
particular case, the lengths of the sequences are not usually very short or
very long.

In mathematics, a fragment of a sequence is usually written as a list of
elements. In this paper, we will be using a shorter notation:

def
Qi:j = Qi Qjg1, -, 05 -

where 7 is the beginning and 7 is the end of the fragment.

We stated in the introduction of this thesis that we are going to deal with
multiple layers of data about promoter sequences. For example, if we have
data containing binding and conservation scores from DNA micro-array and
sequencing experiments that associate with promoters we are interested in,
we can portray them as data tracks over the nucleotide sequence as illustrated
in Figure 2.1.

binding
value .
S =~ conservation
1.0——
0.5—T—

Figure 2.1: An example subsequence having conservation and binding data
tracks attached. The scores are variable and may not directly depend on
each other.

From theoretical point of view, it is not important exactly what kind of data
we have, as long we can represent it as numeric values linked to positions
in promoter sequences. However, it is important that these values express
some property that makes some regions of the nucleotide sequence more
relevant than other regions, thus defining important regions in respect to
each data track. If we have n data sets containing various scores and m
promoters, then we need n x m mappings that associate relevant scores from
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a data set to all positions in nucleotide sequences. Also, it is convenient
to normalize all data such that all scores fall into range [0, 1] like shown
on Figure 2.1. It simplifies writing some formulas, because we know the
maximum possible value of any type of score linked to any position of a
nucleotide sequence. Let ¢ : N — R be a mapping that associates numeric
scores to all positions of a nucleotide sequence. To make this notation more
useful, let us agree that by writing ¢(a;) we mean the score that ¢ maps to
position i of sequence a and by writing ¢(a; . ;), we mean a sequence of scores
ola;. ;) = las), (ais1), - - ., ¢(a;). By writing B(a; . ;) we mean the average
score

1 J
— def

2.2 Motifs and Matching

In this section, we introduce motifs, which can be thought of as possible
subsequences in sequence set. Motifs do not directly associate to any data
track, but there are several other metrics like support, frequency, significance
of a motif in a particular set of promoter sequences. In addition to nucleotide
letters A, T, G, C, motifs may also contain special wild card characters that
have special meaning and usage. In this work, we will be using only one
such symbol * that represents any possible nucleotide in one position. Note
that this is different from standard usage of this symbol in batch-processing
or regular-expression applications where it usually stands for zero or more
symbols. In our case, if we have a motif Gx*A, then by that we mean any
motif with length of four that starts with letter G and ends with letter A.

We will be dealing a lot with fixed-length motifs in later sections, so it
is necessary to introduce notation that we can use to refer to all motifs with
a fixed length ¢. Let M, represent a set of all motifs with length ¢ where
¢ € N. We agreed before, that all motifs are consist of five different letters:
the nucleotides and the wild card character. This means that the cardinality
of the set M, is equal to |M,| = 5° as there are five different possible elements
per position in a motif.

Often it is necessary, that we could refer to single elements of a motif the
same way we do for sequences, so given any motif m € My, let m; denote
the first element of the motif, my the second element of the motif et cetera.
In addition to that, it is convenient to describe motifs as concatenation of
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shorter motifs. In our case, it is useful to think of a motif as a concatenation of
only a prefix and suffix part. Let || be an concatenation operator. If m¥ € M,
and m® € Mg then motif m = mP || m®, where m € My and { = p+ s. Let
us illustrate this with an example. If m? = AAAT and m® = GCCGT, then the
concatenation m” || m® is AAATGCCGT.

Another very useful notion is a wild card extension of some motif. Namely,
if we have some fixed motif length ¢ and a motif m € M, such that k < ¢,
we may pad the motif with wild card characters until it is ¢ elements long.
This enables to easily express motifs we know to have a certain prefix. Let
m* € M, denote a wild card character extension of motif m € My where
k < € such that the prefic my ., = m and suffix m%_,., = *...* For
instance, if m = AATA and we have fixed motif length ¢ = 10, then the wild
character extension m* = AATAxx**xx. This notion comes handy when we
describe SAFEAPPROXSEARCH algorithm in Chapter 3. Let us agree that
any motif gained from another motif by replacing one or more nucleotides
with wild cards is considered a submotif of the original motif.

In standard sequence mining, the support of some motif is usually mea-
sured by how many matches it has in data [DP07]. The number of matches
of a motif containing no wild card characters is simply the number of times
the motif can be viewed as a subsequence of given data sequence. With wild
card characters this works different as a wild card character matches any
nucleotide. See Figure 2.2 for an illustration.

ATA*A
ATAA  ATA*A
AATCGTTATATAGCAATGATATACAGGCCTTAA

Figure 2.2: Three mathes of motif ATA*A in a subsequence.
Definition 2.2.1 A motif m € M, matches some fragment a;.; 1 of se-
quence a, if

mg =%V Mg = Qirp—1 for all k=1,...,0 .
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Let us denote it as following:

. 1, if m matches a; . ;o
match(a, m, i) = { / Gt

0, otherwise.

We can extend the number of matches in the sequence a over a set of se-
quences S by simply adding all the individual counts together:

mcount(a, m) & ZL“:';ZH match(m, a;)

mcount(S,m) = 3", _ ¢ mcount(m, s) .

2.3 Support Metrics

Standard sequence mining treats all parts of the input sequence with equal
value of importance [DP07|. In our case, we have possibly more than one
data tracks containing variable scores. Therefore, we need to define support
in a different way. We base our approach on a formulation given by Sven
Laur [Lau09].

The first thing is to extend the notion of support of one single match.
Standard way was summing up all matches of a motif in a sequence, such
that each match had equal value of importance. But as we have actual scores
linked to positions, we extend the original method by taking an average score
of matching positions of a single match.

Definition 2.3.1 The support of an individual motif m € M, with respect
to some fragment in sequence a starting from position i:

@(ai . i+€—1) Zf match(a, m, ’L) =1

supp(a, m, i) = { 0 otherwise .

To extend the support of a motif over a sequence, we have several options.
The first idea is to add up all the single supports of the motif. This is the
simplest way to go and we refer to this method as additive support onwards.
Let us consider another option: instead of adding up the scores, we can take
only the maximal score and be fine with it. The plus side of this method
is that it promotes motifs that actually have high scores. Additive support
can be high even if all the scores of the single matches are low. So, we also
consider this method and we will be referring to it as mazimal support.

15



Of course, there are more ways to express the support of some motif
in a sequence. We might consider average support that works like additive
support, but we divide the result by number of matches of that motif in the
sequence. We could also define supports like weighted additive or weighted
average support, that considers some regions of the promoter to be more
significant than others. The last two are actually not very reasonable, because
we express significance of promoter areas through data tracks anyway.

The average support is actually more relevant, but as it seems to have a
mixed properties of additive and maximal support, we do not cover this type
of support in this work and concentrate on studying only the two mentioned
support types.

Definition 2.3.2 Additive support of a motif m € M, in sequence a is

la|—€+1

asupp(a,m) = > supp(a,m,i) .
=1

Definition 2.3.3 Mazimal support of a motif m € M, in sequence a is

msupp(a, m) = max { supp(a,m, i) [i=1,...,|a| =€ +1} .

By writing supp(a,m), we do not refer directly to neither of the support
types in cases we are discussing properties that apply to both of them.

Therefore, Definitions 2.3.2 and 2.3.3 are only two possible ways of ex-
pressing the support of a motif in one sequence. Biological importance of
the two depends mostly on the actual data used. For example, if we consider
conservation, then additive support can reveal motifs that coexist in several
genetically close species having great structural importance, mazimal sup-
port takes into account only one occurrence of a motif in a promoter, thus
ignoring larger scale structural effects. On the other hand, mazimal sup-
port can bring up motifs that are recognized most probably by transcription
factors as these enzymes require proper locations to enable mounting RNA
polymerase and initiate transcription. Thus, the decision about what sup-
port type should be used with a particular data track, depends on biological
properties the data.

To extend notion of support over a set of sequences, we have several
options. The first approach is to consider all promoter sequences having

16



equal impact on the importance of a motif. We can achieve this by taking
an average of support of a motif in all sequences.

Definition 2.3.4 Additive and mazimal support of motif m € My in a list
of sequences S are

1
asupp(S, m) = 5h Zasupp(a, m) (2.1)
acS
1
msupp(S, m) = SR Z msupp(a,m) . (2.2)
acS

The second approach is to consider promoters further away from the gene
they regulate having less impact than the ones closer to it. Therefore, we need
to give promoter sequences meaningful weights, when calculating support.
We could propagate these weights directly into the datasets, enabling the
direct use of Equations (2.1) and (2.2). Let us also agree that by writing
supp(S,m), we do not refer directly to additive, nor maximal support if we
are discussing properties that apply to both of them.

In Chapter 3, we discuss algorithms and data structures and usually need
support in respect to all data tracks. Also, let us agree that we have fixed
the support type for every data track to make semantics easier. In cases we
need to use both support types, we can view original track as two duplicates
with different support types.

Definition 2.3.5 Given mappings o', ..., ", the support of motif m in se-
quences S in respect to all n data tracks is

W(S, m) = (S1,...,5n)

where
. asupp(S,m, ¢;) for additive type of support
| msupp(S,m, ¢;) for mazximal type of support.
Mappings ¢1, ..., ¢, given as extra arguments to support operators will be

used as the mapping ¢ in Definition 2.3.1.

17



2.4 Properties of Support Metrics

In previous section, we defined basic building blocks like sequences, motifs
and mappings that gave each position in a promoter sequence one or more
weights in regard to available data sets. In this section, we study various
properties of newly defined support measures and notions.

When we compare additive and mazimal support, it is rather easy to see
that additive support is always as big as maximal support, because additive
support considers all occurrences of a motif in a sequence where maximal
support only considers the occurrence with maximal support.

Proposition 2.4.1 For any motif m € My and a set of sequences S
msupp(S,m) < asupp(S,m) .

We have not mentioned that there is a problem with the way we defined
our support of some motif. Namely, the definition breaks the standard se-
quence mining principle of being downward closed as any non-frequent motif
may have frequent supmotifs.

Claim 2.4.2 Let 0 € R be the threshold. For any motif m € My, such
that support supp(S,m) < o, may exist a supmotif m’ € My, such that
supp(S,m’) = o, whether we consider additive or mazimal support.

Proof. For simplicity, let us assume that there is only one single match of
motif m’ in positions i to i + £ — 1 in sequence a. Since the scores of all
positions are in range [0, 1], the supp(a,m,i) € [0,1]. Now, let us consider
a situation where support of the prefix supp(a, m,i) = @(a;.;4¢1) < 1 and
support of the suffix B(as. 1) = 1. From here we can conclude that

1 pla) +.. +plaipe) +k

supp(S,m’) = 5h Tk > supp(S,m) . (2.3)

If we take o = supp(S, m’), then m is infrequent and m' is frequent.
([
Above proof raises another question: if we know the support of a motif,
then what is the maximal possible support of any supmotif? We can approach
the answer same way proved above claim. Namely, if we consider the support
of the suffix of a possible supmotif to have maximal possible value, then we
can calculate the maximal possible support of the supmotif.

18



Proposition 2.4.3 For any motif m' € My and its submotif m € M, in
a set of sequences S

msupp(S, m) < SRS, ) + 15|k

(+k
¢ - asupp(S, m) + mcount(S,m) - k
S,m') < d ’ )
asupp( 7m) E + k’
Proof. Let us consider a set of fragments {a,. ,, b, .5, ... 2 ..} that represent

positions on every promoter where motif m has highest support. In that case
1, _ _
msupp(S,m) = || (@lay.q) +P0r.s) +... +D(2t: )

If we now consider m as prefix of m/, then analogous way to Equation (2.3)
we can estimate that support of m’ cannot be larger than

L (play.q) +k  olb.s) +Fk ©(2t.u) +
S / g_ pP:q R =
msupp (S, m’) |S|( g

:L. @(ap:q)“'%p(brw)+"'+90(Zt:u)+‘8|'k
|S]| C+k

that combined with Equation (2.2) becomes

¢ - msupp(S,m) + |S| - k
(+Fk '

msupp(S,m') < (2.4)

Additive support takes into account all occurrences of m, thus replacing the
relevant parts in Equation (2.4), we get

asupp(S, m') < ¢ - asupp(S, m)ﬁ—:_rr];count(S, m) -k ‘

(I

Claim 2.4.2 implies that frequent motifs may have infrequent submotifs.
However, it is important to note that any frequent motif also must have at
least one frequent submotif with either additive or maximal type of support.

19



Lemma 2.4.4 For all positions i < j < k in sequence a

?(ai.x) < max{ P(a;. 1), Plaj.x) } -

Proof. The first possibility is that @(a;.;—1) > ®(a;.x) or B(a;.j—1) <
?(aj. k). In that case P(a;.r) < max{ P(a;.;—1), P(a;.x)} as the average
score of the supsequence must be lower than the subsequence with maxi-
mal average score. The second possibility is that @(a;. ;1) = P(a;. ), thus

Plai.x) =9(ai.j-1) =Plaj . x)-
0

Theorem 2.4.5 Any frequent motif m € My can be partitioned into two
submotifs mP € M, and m* € M, such that m = mP || m® and either the
prefic mP or suffic m® is frequent.

Proof. 1f we have only a single match of the motif m in sequence a, then
according to Lemma 2.4.4

supp(a, m,i) < max{supp(a, m”, ), supp(a,m*,i+p)} .

Now, suppose we have more matches of m in one single sequence a. As max-
imal support only considers one occurrence of m, then according to Lemma
2.4.4 the theorem holds. By Definition 2.3.2, the additive support is the
sum of supports of all single matches. Let asupp(a,m) = @(a;, . j,) + ... +
?(ai, . j,), where n = mcount(a, m) and i,, j, denote start and end locations
of the occurrence. Let 5(m;) = (0(ai,1io1) + - - . + @(ai,+i-1)) (p+s)~" and
2(mi. ;) = (@(m) + B(mis1) + ... +3(m;))(p+ s)~". Similarly to Lemma
2.4.4, we could show that

@(ma:prs) < max{ B(ai:p-1), Plap: p+s)) } (2.5)

which means that asupp(a,m) < max{asupp(a, m?), asupp(a,m®)}. Note
that any extra occurrences of prefix or suffix motifs in input sequences do
not invalidate Equation (2.5).

For either additive or maximal support over a set of sequences S, every-
thing works similarly to above steps, but we have to take into account the
constant |S|™".

(I
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It is easy to see that we can partition a frequent motif into any number of
pieces such that at least one of them is frequent. We know that partitioning
works for two submotifs, thus we can iteratevly continue and create as many
partitions of the original motif as necessary, because always at least one
partition has to be frequent.

Corollary 2.4.6 Given motif m € My and submotifs my, ms, ..., my, that
partition m into n pieces, then at least one of the submotifs must be frequent.

So far we have described the properties of additive and maximal support
without concentrating too much on the actual contents of the motifs. How-
ever, we used motif lengths in Proposition 2.4.3 to estimate maximal possible
support of a supmotif. While this is useful knowledge, most of the time these
estimations do not work best, because they make their estimations solely on
the motif support, length and possible supmotif length. We can improve this
situation by introducing wild card characters.

Proposition 2.4.7 Given motifs m € My and m' € My, that is constructed
from motif m such way, that one nucleotide in m is replaced by a wild card
character *, the additive or mazximal support

supp(S, m) < supp(S,m’) .

For example, consider a motif m? = GCT as a prefix of a longer supmotif
m € Myg. If we want to know the maximal support of any such supmotif,
we can calculate supp(S,GCT**x***x). It certainly does not give higher
estimation than former described method. On the other hand, it requires
a query on the database, which depending on situation can be costly. We
describe both approaches more thoroughly in Chapter 3.

2.5 Statistically Relevant Motifs

In previous sections, we discussed how to determine if a motif is frequent.
In this section, we describe how to go even further by deciding, which fre-
quent motifs are statistically more significant. By this, we actually want to
measure the amount of surprise for every frequent motif. In our case, we
may measure surprise individually even for every data track and we have
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several options for doing that. The simplest idea is to permute the letters of
the promoter sequences. Then we can compare the support measures of the
permuted dataset against the original one. If motifs in original data have
higher supports, then they are surprising in that sense. To be more specific,
we may generate a large amount of datasets by permuting randomly the
original sequences. If we consider only one data track, then we can sort the
motifs decreasingly by their support such that motif with highest support is
the first in the resulting list. Then, for every motif at position ¢ in the list,
we can calculate how many motifs at i’th position in generated datasets had
support as high as the original motif. We can write it down as

p = Pr[supp(S’,m’) = supp(S,m)]

where S is the original dataset, S’ is the permuted dataset, m is the original
motif at 7’th position and m' is the motif in &’ at same position. The value
p is called p-value in statistics and in our case, represents the probability of
having the support in a random dataset at least as extreme as in the original
one. Therefore, the smaller the p, the more surprising is the motif m.

We can calculate p-value for every frequent motif and for every data track.
Of course, we might want to calculate only a single p-value for every motif,
but the problem is with sorting frequent motifs. This actually can be done,
as discussed in Chapter 3, but having a p-value in respect to each data track
may reveal interesting properties of the motifs. We will omit exact algorithm
for calculating p-values, but briefly discuss it later in Section 3.5. Let us
refer to this algorithm as SIGMOTIFS onwards.
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Chapter 3

Algorithms and Data Structures

In this chapter, we will devise algorithms based on formalization and other
ideas described in Chapter 2. We start off by describing compact encoding
of motifs and continue developing algorithms with different pruning methods
and capabilities.

3.1 Compact Encoding of Motifs

It turns out, that there is a rather straightforward way to encode fixed-
length motifs as unique integers. If we consider nuclotides and wild card
character as a set X = {A,T,G,C,*} and have another set with same size
Y = {0,1,2,3,4}, then we can define a mapping 7 : X — ), such that
m(A) = 0,7(T) = 1,7(G) = 2,7(C) = 3,7(*) = 4, that would enable us to
represent a motif m € M, as an integer

591 (my) + 5rw(my) + .. 4 5w (my) (3.1)

For our convenience, let us agree that by writing m(m), where m € M,, we
mean the integral representation of motif given in Equation (3.1).

This representation makes it easy to hash any motif of length ¢ and store
it in a hash-table as for every fixed length motif the integral representation
is unique.

If the motif length ¢ is small enough, then we could use a hash-map of
size 5°. This way we could directly use the value m(m) as a key to store
motif’s support metrics and this guarantees constant time O(1) access as
there would be no collisions.
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In normal circumstances, we do not need to store support for all possible
motifs. For example, there are 5% = 390625 possible motifs of length 8
including wild card characters. For a yeast S.Cerevisiae, the promoter lengths
are not usually longer than a few thousand base pairs. Therefore, if we have
one promoter with length of 3000 base pairs, we can actually have maximal
of 3000 — 8 = 2992 different non wild card character motifs of length eight.

3.2 Hash-map of Support Metrics

The integral representation of motifs allows us to effectively build a hash-
map containing support metrics of all motifs found in promoter sequences.
Consider a sequence a = ATCCGTCCG. If we are interested in motifs of length
4, then motif m! = ATCC matches the first position of @ and motif m? = TCCG
matches the second position of a. The integral representations are following:

m(m')=1-04+5-1+25-3+125-3 =455

m(m?)=1-1+5-3+25-3+125-2 =341 .

It turns out, that we can update the integral representation of m! to m? in
constant time. By Equation (3.1), the integral representation of motif m! is
7(m') = 5% 7w(ay) + 5' - w(ay) + 5% - w(az) + 5% - w(ay). By subtracting the
first element 5° - 7(ay), dividing the result by five and adding 5° - 7(as), we
get

m(m') — 5% 7(ay)
)

+ 5% 7m(as) = 5° - w(ay) +5' - 7(as) +5% - w(ay) + 5% w(as)

which is equal to m(m?). So in our example, where m(m') = 455, we can
calculate

m(m') — 5% 7(ay) 455 — 0

5 +125-2 =341 .

+ 5% w(as) =

m(m?) =

Analogously, we can do this with support of single matches for all tracks.
Why this is important, is that we can calculate all support metrics of all
motifs present in data in one pass. The negative side effect of this approach
with scores are possibly greater floating-point rounding errors. But we can
reduce them effectively by recalculating them from data tracks after every 100
or 1000 steps. This of course is not the issue with the integral representation.
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Let us give an in-depth example. Consider two sequences a = ATCCGTCCG,
b = TTCCG and two mappings (1, o representing two data tacks such that

o1(ar.9) = 1.0,1.0,1.0,1.0,1.0,0.5,0.5,0.5,0.5
@a(ar.9) = 0.5,0.5,0.5,0.5,0.5,1.0,1.0, 1.0, 1.0
o1(by:5) = 1.0,1.0,1.0,1.0,1.0
@a(by.5) = 0.5,0.5,0.5,0.5,0.5 .

We can traverse the promoters step-by-step, such that after every cycle the
hash-map contains up-to-date support metrics based on seen occurrences of
motifs. All unseen occurrences are regarded as having single supports equal
to zero. In our example, details of traversing a and b are given in table below.

Step | m ?1(m) | Py(m) | Comment

1 ATCC | 1.0 0.5 Add ATCC to hash-map.

2 TCCG | 1.0 0.5 Do same with TCCG.

3 CCGT | 0.875 | 0.625 | Keep adding unseen motifs into
4 CGTC | 0.75 0.75 hash-map with their support

5 GTCC | 0.625 | 0.875 | metrics.

6 TCCG | 0.5 1.0 Update support metrics of TCCG.
7 TTCC | 1.0 0.5 We are processing b now.

8 TCCG | 1.0 0.5 Update support metrics of TCCG.

For example, consider motif TCCG. For additive support over all sequences we
sum 1.0/2+0.5/241.0/2 for ¢y and 0.5/2+1.0/2+0.5/2 for ¢,. We divide
the scores by two, due to Definition 2.3.4. After every update, the additive
supports are up-to-date based on data seen so far. For maximal support, we
need to do more book-keeping, because when we find an occurrence with big-
ger maximal score in a sequence, we have to cancel the effect of the previous
occurrence. For example, the maximal support after step two is 0.5/2 for ps.
At step 6, we discover that it should be 1.0/2 instead, therefore we subtract
0.5/2 from the variable containing the support and add 1.0/2.

With this kind of hash-map construction we calculate all the metrics on
the fly. Therefore, we avoid any post-processing, because calculating the
support measures over all sequences would otherwise require intermediate
lists containing scores of single supports. With motifs without wild card
characters, this would not be very big memory overhead, but otherwise it
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could become an issue. Total runtime complexity of this method is

o<n-c-sezs\s\)

where n is the number of data tracks and c is the complexity for updating
the support of a motif in the hash-map.

3.2.1 Including Motifs with Wild Card Characters

We will discuss SAFEAPPROXSEARCH in Section 3.4.2, where hash-maps are
required to also contain supports of all wild character extensions. This re-
quires us to modify the method described earlier. The integral representation
allows us to precompute suffix parts of all extensions. Let w' be suffiz part
of some motif m of length ¢, such that 1 < i < ¢ and m;., = *...+* Then
m(w') =57 tr (%) +. ..+ 5 x(*). If we now have the integral representation
of a prefix m?, then 7(m?)+7(w") will yield the integral representation of the
wild card character extension. In hash-map construction phase, it requires ¢
steps instead of one to include the support metrics of all wild card character
extensions, therefore the complexity is

0<n.c.e-Zysy> .

seS

3.3 Naive Search based on APRIORI

The simplest search method is based on the APRIORI principle described in
Chapter 1. Namely, we can mine all motifs present in input sequences by
setting the threshold o = 1 with APRIORI and then check if they are frequent
in our terms. This is actually a composition of APRIORI and a filtering
function. In our case, it is better to implement this as a depth-first search
algorithm, because breadth-first nature of APRIORI causes too much memory
overhead, when mining longer motifs. The Algorithm 3.3.1 incorporates the
composition of APRIORI and the filtering function. On lines 10 — 12, we
see the candidate generation part of the algorithm. Note that we always use
motifs A, T, G, C for extension. This is due to the fact that there are rarely
cases, where a nucleotide in promoter sequences is missing. The APRIORI
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Algorithm 3.3.1 NaiveSearch

1. procedure NAIVESEARCH(S, &, m, ()
2 if mcount(S, m) = 0 then

3 return

4 else if |m| = ¢ then

5: if ISFREQUENT (&, supp(S,m)) then
6 SAVEMOTIF(m)

7 end if

8 return

9: end if

10: forec{A, T, G, C} do

11: NAIVESEARCH(S, 7, m || e, ()
12: end for

13: end procedure

pruning principle is in action on lines 2 — 3 and the filtering function is given
on lines 4 — 9. Function ISFREQUENT checks, if all thresholds o; > s; where
§ = supp(S, m). Recall, that supp operator returns a vector of values, where
each element determines the support per one data track according to additive
or maximal support type. Also, if implementations of supp and mcount
are implemented using data structures like hash-map discussed in previous
section, then these need to be constructed before running this algorithm.

As an example, calling NAIVESEARCH(S, 7, 6,8), where 6 is the empty
zero-length motif, S is the set of sequences and & is the vector of thresholds,
we find all frequent motifs of length 8. The complexity of NAIVESEARCH is
O(4%), where / is the fixed motif length.

3.4 Pruning Strategies

In this section, we describe different pruning strategies, which can be used
to make more efficient algorithms compared to NAIVESEARCH. All these
methods are based on properties studied in Chapter 2.
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3.4.1 Maximal Support Estimation Pruning

The simplest method is based on Proposition 2.4.3. Namely, if we are mining
motifs with length ¢+ k£ and we have some motif m € M, then the support
measures of any of its super motifs with length ¢ + k cannot be greater than
motif having m as a prefix and hypothetical suffix with score 1.0. Therefore,
a motif m and its supmotifs can be pruned, if on any of the data tracks

¢ - msupp(S,m) + |S| - k Y
(+k

if we are mining using maximal support or

¢ - asupp(S, m) + mcount(S,m) - k
(+k
if we are mining using additive support. Of course, the maximal motif length
¢ + k must be fixed to make these formulas usable. As an example, let us
analyze Figure 3.4.1.

<o

. supp(AT) = 0.5
i supp (AT**)= 0.25
""""" 10.10.10.10.50.50.50.20.30.50.50.50.51.01.0
LA T G G A T (A T IC G A T T T ..
Csupp(AT) =0.1 | | supp(AT) =0.25 | supp(AT) = 0.5
- supp(AT**)= 0.2 | supp(AT**)= 0.375 § supp (AT**)= 0.75

Figure 3.1: Support of motifs AT and AT** in a sample subsequence.

We see that msupp(S, AT) = max{0.1;0.5;0.25; 0.5} = 0.5 and asupp(S, AT) =
0.14+0.54+0.25+0.5 = 2.25. If we were mining using maximal type of support
on this track, then we can prune the motif with its supmotifs if

(2 - msupp(S,AT)+2)/4=(2-05+2)/4=0.75<0
where o is the threshold. For additive type of support this would be
(2 - asupp(S, AT) + 2 - mcount(S,AT)) /4= =(2-05+4+2-4)/4=225<0 .

Incorporating this pruning method requires only small changes to NAIVE-
SEARCH on line 2 of Algorithm 3.3.1. The result is given in Algorithm 3.4.1,
where CANPRUNE uses method described above to determine if the motif
and supmotifs can be pruned.
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Algorithm 3.4.1 Search Using Maximal Support Estimation for Pruning

1: procedure MAXSUPSEARCH(S, &, m, ()

2 if mcount(S, m) = 0V CANPRUNE(&, supp(S,m)) then
3 return

4 else if |m| = ¢ then

5: if ISFREQUENT(, supp(S,m)) then
6 SAVEMOTIF(m)

7 end if

8 return

9: end if

10: forec{A, T, G, C} do

11: MAXSUPSEARCH(S,d,m || e, {)

12: end for

13: end procedure

3.4.2 Safe Over-Approximation Search

Another improvement to NAIVESEARCH uses slightly different approach. It
is based on Proposition 2.4.7 that stated that support of any motif m’ gained
from motif m by replacing one or more nucleotides with wild card characters,
is greater or equal compared to original motif. Also, it holds with either
maximal or additive type of support. This allows us to define a support
operator that is guaranteed to be downward closed, which was an issue with
NAIVESEARCH and MAXSUPSEARCH |Lau09]. We will be referring to it as
safe over-approximation type of support onwards.

Definition 3.4.1 Let supp*(S,m) of motif m € M, denote the support of
its wild character extension m* € My, where £ < k.

Recall that a wild card character extension of m was a fixed length motif
that contained m as a prefix and rest of the elements (wild card characters)
as the suffix. As an example, if we are interested in mining sequences of
length ¢ = 3, we first start by checking the support of wild card character
extensions of motifs in M, namely Axx, T**, Gkx, Cx* (note that we do
not include motif * in this list, as it is anyway the most frequent motif and
we are not interested in it). If any of these motifs is infrequent, for example
T, then we prune all its supmotifs TAA, TAT, TAG, TAC, TTA et cetera. But
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if T is frequent, we continue to check its submotifs TA, TT, TG, TC using
supp* operator. We only have to keep in mind, that it is downward closed
only when mining motifs with fixed length, so that Proposition 2.4.7 would
hold.

Algorithm 3.4.2 Safe Over-Approximations Search
1. procedure SAFEAPPROXSEARCH(S, &, m, ()
2 if ISFREQUENT(, supp*(S,m)) then

3 if |m| = ¢ then

4 SAVEMOTIF(m)

5: return
6

7
8

9

end if
else
return
: end if

10: forec{A, T, G, C} do
11: SAFEAPPROXSEARCH(S,d,m || e, {)
12: end for
13: end procedure

The Algorithm 3.4.2 defines SAFEAPPROXSEARCH. Note that we use
supp* operator instead of supp and use ISFREQUENT to determine, whether
we can prune the motif with its supmotifs. This is possible due to downward-
closeness of supp* operator.

Both MAXSUPSEARCH and SAFEAPPROXSEARCH have similar theoreti-
cal runtime complexity O(f -4%), where pruning factor f € (0, 1] is maximal,
if no pruning occur and minimal, if all motifs are pruned.

3.4.3 Infrequent Sub-Motifs Pruning Method

This alternative search method is directly based on Theorem 2.4.5. Namely,
if we are interested in motifs with length ¢, then for any partitioning of a
frequent motif m € M, into two pieces m', m?, at least one of the pieces must
be frequent. The idea is to generate two sets F and Z, where F contains the
frequent motifs and Z the infrequent ones of length ¢/2. Thus, we combine
motifs from F and Z to enumerate final candidates. Note, that we need Z,
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because any frequent motif of length ¢ may have infrequent prefix or suffix.
We do not need to consider combinations of infrequent submotifs as due to
Theorem 2.4.5 we know, that the resulting motif is also infrequent. Also,
there are many ways to partition the motifs, but making them with same
length enables us to enumerate them faster. The Algorithm 3.4.3 describes
this process.

Algorithm 3.4.3 Infrequent Sub-Motifs Search
1. procedure INFREQSEARCH(S, &, m, () > ¢ must be even
2 (F,Z) «— ENUMERATEMOTIFS(S, 7, (/2)
3 C—{(a,b)|lac F,be FUTI}
4 for ce C do
5: if CANPRUNE(G, supp(S, c)) then
6
7
8
9

continue
else if ISFREQUENT(G, supp*(S, ¢ || ¢2)) then
SAVEMOTIF(¢; || ¢2)
else if ¢; # ¢, then
10: if ISFREQUENT(&,supp*(S, ¢z || ¢1)) then
11: SAVEMOTIF(cg || 1)
12: end if
13: end if
14: end for
15: end procedure

On line 3, we enumerate all the candidate motifs of length /. On line
5, we first try to eliminate candidates by using information we know about
their prefix m; and suffix my. We try this, because querying the database,
depending on data structures used, can be more costly. The CANPRUNE
method checks on every track if

msupp(S, my) + msupp(S, ms) Y
2

msupp(S, my || ma) <

for maximal support type and

S S
asupp(saml H m?) X asupp( 7m1) ;— asupp( 7m2) <o
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for additive support type. These formulas are derived from equations in
Proposition 2.4.3. If we can prune m; || my using above equations, then we
can also prune my || m; as there is no difference, in what order we consider
the prefix and suffix part.

3.5 Mining Fixed Number of Best Motifs

The search algorithms discussed in earlier sections concentrate on finding all
frequent motifs in respect to some threshold vector. But suppose we want to
mine 100 “best” motifs. Doing this by hand using any previously mentioned
search algorithm would require following process. First, we determine some
reasonable thresholds and support types for data tracks. Second, we mine
frequent motifs using these thresholds and decide, whether the number of
motifs was too small or too large. Third, we modify the thresholds by in-
creasing or decreasing them and mine again until we have desired number of
frequent motifs.

The process we just described is actually similar to binary search known
in computer science. The Algorithm 3.5.1 implements it to automate this
process. On line 3, we determine two scalars a and [, such that mining with
« - & returns all motifs present in data and mining with (5 + ¢) - & returns
none of the motifs where ¢ > 0. It is trivial, that a = 0, because in that
case all motifs will be frequent. Determining (3 is more complicated, because
we do not have any prior knowledge about maximal supports in data. First
option is to make a guess, but a better alternative is to find out the supports
by calculating 5= supp*(S, *) and set

B =max{s;/o; |1 =1,...,n} (3.2)

where n is the number of data tracks and & contains user-defined thresholds.
This way (- & may return only minimal possible number of frequent motifs.
Having these boundaries fixed, we can easily combine any previously defined
search method with binary search. In other words, we keep scaling the orig-
inal vector of thresholds &, until we get desired number of frequent motifs.
The linearity of this approach may not always be the best choice, because
the relations between the reasonable thresholds depend on the nature of the
data. We do not study further possibilities in this work, but it could be a
possible research area in the future.
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Algorithm 3.5.1 Algorithm for Mining Fixed Number of Best Motifs

1. procedure NBEST(S,d, N, /)

2§« supp*(S, *)

3 a«— 0,0« max{s;/o; |t =1,...,n} > nis the number of tracks
4 C«+— o0 > The closest number of best motifs
5: 0«0 > Scalar to be used to mine closest number of best motifs
6 while § — a > ¢ do > ¢ > 0 limits the recursion depth
7 v (a+5)/2

8 k «— NUMFREQMOTIFS(S, v - &,0,¢) > 0 is the zero-length motif
9: if abs(k — N) < C then
10: C—Fkd—rn
11: end if
12: if £ > N then
13: 7y
14: else if £ < N then
15: B —
16: else if k = N then
17: break
18: end if

19: end while
20: return MINEMOTIFS(S,0 - 7,0, ()
21: end procedure

Function NUMFREQMOTIFS can be used as a wrapper around search
methods described in earlier sections. There are still a few things to consider.
First, not always there exist some fixed number of best motifs, because two
motifs may have exactly same support measures. In that case, binary search
goes into infinite loop. Same happens, when the number of desired motifs is
greater than there are motifs present in input data. In both situations, we
need to limit the maximal depth of the recursion. But we can still return
the number of motifs, that is very close to desired number of motifs. On line
3, we define C' that will remember, what was the closest number of frequent
motifs to the desired fixed number of motifs. Scalar  can be used to scale
o to get C frequent motifs. On line 6, we use £ > 0 to limit the recursion
depth. On lines 12 — 18, we see binary search in action. The while loop

33



terminates when the recursion depth limit is reached or scalar, that returns
desired number of frequent motifs, is found. After that, the MINEMOTIFS
function used as a wrapper around any previously defined search method
finally returns the motifs.

The complexity of this approach is O(d - 4%), where d is the maximal
recursion depth of binary search and 4° is the worst-case complexity of
NAIVESEARCH, MAXSUPSEARCH and SAFEAPPROXSEARCH where / is the
fixed motif length.

Another, rather naive, but reasonable alternative is to mine at least the
desired number of motifs from input data set and sort them. A reasonable
criteria for sorting can be derived from Equation (3.2), that we used to calcu-

late the value 3. Suppose we have mined f frequent motifs m', m?,...,m/.
Given an vector of thresholds &, we can calculate scalars

v =max{s;/o; | i=1,...,n}
where j € {1,..., f}, n is the number of data tracks and § = supp*(S,m?).

These scalars have an interesting property. For any motif m’ present in
input data, ISFREQUENT(&, v/ -supp*(m?)) = true, where 47 is minimal such
scalar for m7. If we sort motifs m', ..., m’ decreasingly using 7/ as the key
for motif m?, then we get a list where first N motifs are the “best” mined
motifs. The complexity of sorting is O(f - logaf). Also, if we do not want to
guess thresholds and mine frequent motifs before sorting, then we can get a
list of present motifs in the data along with hash-map construction in linear
time to the total length of input sequences, because we need the support
metrics of the motifs anyway. Therefore, if the number of present motifs is
small, then sorting definitely has the advantage. On the other hand, we are
not usually interested in more than 100 frequent motifs. Therefore, in a large
set of promoter sequences, NBEST could work faster.

Another thing to be considered is the NUMFREQUENTMOTIFS function
used in Algorithm 3.5.1. It only needs to know the number of frequent
motifs not the actual motifs themselves. This allows us to prune the search
even better than MAXSUPSEARCH and SAFEAPPROXSEARCH do. We will
describe this in the next section.

Also, both NBEST and sorting approaches can be used as a central part
in mining statistically significant motifs with SIGMOTIFS described in Sec-
tion 2.5, because SIGMOTIFS requires lists of “best” mined motifs from per-
muted datasets to determine the p-values of original motifs. We won’t discuss
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SIGMOTIFS any further here, but we use it to mine significant motifs in a
experiment discussed in Chapter 4.

3.6 Generalized FP-Tree

In this section, we describe a data structure that is optimized to tell us how
many motifs in input data are frequent, given some vector of thresholds.
We will use a generalization of FP-Tree [JJYR04| that is widely used in
standard data mining applications. The general idea is simple: the tree
contains support of all fixed-length motifs in promoter data and maintains
relationships between sub and supmotifs, such that given a motif we can tell
how many supmotifs there are and what are the minimum and maximum
values of scores per each data track. This way it is easy to determine the
number of frequent motifs in the tree given the vector of thresholds 7.

sequence: A T G A C
trackl: 1.0 1.0 0.5 1.0 0.5
track2:  0.50.51.01.00.5 minsuppl: 0.75 [minsuppl: 0.75
minsupp2: 0.5 minsupp2: 1.0
maxsuppl: 1.0 maxsuppl: 0.75
maxsupp2: 1.0 maxsupp2: 1.0
nMotifs : 4 nMotifs : 1
minsuppl: 0.75] jminsuppl: 0.75
minsupp2: 0.5 minsupp2: 0.75
maxsuppl: 1.0 maxsuppl: 0.75
maxsupp2: 0.75] jmaxsupp2: 0.75
suppl: 1.0 suppl: 0.75 \ nMotifs : 2 nMotifs : 1
supp2: 0.5 supp2: 0.75 suppl: 0.75
suppl: 0.75 supp2: 1.0
supp2: 0.75

Figure 3.2: Generalized FP-Tree of Sequence ATGAC of motifs with length of
two.

Consider sequence ATGAC given in Figure 3.2. If we were to mine motifs of
length two, then the we would build the tree shown in the figure. Note that
every leaf of the tree represents one motif present in data and contains the
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support metrics of that motif. Every intermediate node contains information
about how many leaves it has and what are the minimal and maximal support
measures of them.

For example, if thresholds were ¢ = (0.5,0.5), then already at root node
we know, that all the motifs in the tree are frequent. Thus, we do not need
to look any further, but just return the number of motifs. If & = (0.5, 1.0),
then we have to recurse from the root node to make any decisions. At
intermediate node A, we see that all submotifs are frequent in respect to
threshold of first track, but they are all infrequent against the threshold of
the second track. Thus, the intermediate node has no frequent submotifs.
At intermediate node T, exactly same applies. At intermediate node G, we
see that all submotifs are frequent regarding the thresholds, thus at root
node we compute that the number of frequent submotifs is 0 +0+ 1 = 1.
This example demonstrated the pruning capabilities with GFP-Tree from
above and below, therefore making this structure optimized for returning the
number of frequent motifs regarding some thresholds. Also, using this tree
structure for support metrics retrieval in SAFEAPPROXSEARCH instead of a
hash-map with additive support type, pruning infrequent motifs is possible
much earlier in the search process. This is due to fact that GFP-Tree is
capable of returning the actual maximum support among supmotifs, whereas
hash-map sums the supports of the supmotifs.

We will refer to this search method as GFPSEARCH onwards, but we
omit exact algorithm for the sake of space. Still, let us once more clarify the
pruning step part of the algorithm. Suppose we have two data tracks and we
are in an intermediate node, trying to decide, what is the number of frequent
submotifs in this subtree. We can compose a table containing subnodes as
row headers and data tracks as column headers. For every data track, we can
write if relevant threshold is equal or below of the minimal support of the
subnode, above the maximal support or between the minimal (not included)
and maximal (included).

Subnode | track; | tracks | Comment

A above | above | No motifs are frequent in this subtree
T middle | above | No motifs are frequent in this subtree
G below | middle | We have to look further to decide

C below | below | All motifs are frequent in this subtree

If a row contains value above, then there are no frequent motifs in that
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subtree. If all values are below, then all submotifs in the subtree are frequent.
In case the values are a mix of below and middle, we have to recurse to the
subtree to decide the number of frequent submotifs. After that, we sum up
the total number of frequent submotifs at this intermediate node and return
the result to parent that deals with it onwards.

The complexity of telling how many motifs are frequent, given a threshold
vector, is with similar complexity to SAFEAPPROXSEARCH, but in addition
to that, we can prune the search from below as we only want to know the
number of motifs. Composing this functionality with binary search can ef-
fectively find thresholds that yield desired number of frequent motifs or at
least the number of results that are closest to them. Constructing such a
tree takes O(n - £) time, where n is the total length of sequences and ¢ is the
fixed motif length.

Of course, GFP-Tree can be also used to actually fetch the frequent mo-
tifs, but this eliminates the pruning possibility from below, as we actually
have to recurse to the leaves to reach the motifs. In that case, the theoretical
runtime complexity is exactly the same as with SAFEAPPROXSEARCH.
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Chapter 4
Experimental Results

In this chapter, we describe several experiments we have performed to further
study and compare different algorithmic capabilities of methods studied in
previous chapters. In Section 4.1, we will discuss run-time performance of
search algorithms and in Section 4.2, we discuss the biological significance of
mined motifs. For these purposes, we have written a C+-+ application that
implements all search algorithms described in this work, see Appendix A.
The computer we used to run the tests had following specs: Intel Pentium
M CPU 1.73 GHz with 2MB of L2 cache, 1GB of DDR2 RAM, Fedora 12
(kernel version 2.6.31.5) operating system.

4.1 Runtime Performance of Search Algorithms

In this section, we run two types of tests. First, we compare the run-time per-
formance of algorithms NAIVESEARCH, MAXSUPSEARCH, SAFEAPPROX-
SEARCH, INFREQSEARCH and GFPSEARCH by mining motifs from data
sets with given thresholds. Secondly, we compare NBEST combined with
GFPSEARCH against MERGESORT and test, how fast they manage to re-
trieve fixed number of frequent motifs from input data.

4.1.1 Mining Frequent Motifs

For testing all search methods with given thresholds, we need to also con-
sider one other aspect. Namely, NAIVESEARCH, MAXSUPSEARCH, SAFEAP-
PROXSEARCH, INFREQSEARCH all need hash-maps discussed in Section 3.2
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for support retrieval. What is more, SAFEAPPROXSEARCH needs hash-map,
that contains also wild card character extensions. NAIVESEARCH and MAX-
SUPSEARCH do not need wild card characters, but they need hash-maps for
all motif lengths up to ¢, if we are mining motifs of length /. INFREQSEARCH
needs two hash-maps without wild card characters: one, that contains sup-
port metrics for motifs of length ¢ and another, that contains metrics for
motifs of length ¢/2. And finally, GFPSEARCH requires GFPTREE for be-
ing able to perform at all. As we are interested in practical value of the
algorithms, we also studied the time required to build necessary data struc-
tures.

For benchmarking, we decided to mine motifs of length 8 and use au-
tomatically generated datasets with total length of the promoters from 500
up to 25000, where the length of one promoter was exactly 500 nucleotides
long. We generated ten datasets with given number of promoters for every
search method and measured the average running time of the search algo-
rithm. Also, total working time including data structure construction was
measured and we calculated, how many motifs were processed. We generated
four data tracks for each promoter where the scores of the data tracks were
generated randomly. Each promoter sequence was generated using a Markov
chain, but with different characteristics. We mined the datasets using three
types of thresholds: low, medium and high. Low setting means, that thresh-
olds are equal to 0.05 for all data tracks, not depending whether we mine
using maximal or additive support. Medium settings means, that thresholds
are equal to 0.3 and high setting means, that thresholds are equal to 0.55.
Such settings were chosen without no particular reason, but in hope of find-
ing interesting patterns in behavior of the algorithms. Also, two tracks were
mined using additive and two using maximal support type.

Let us analyze the results given in Figure 4.1. When we compare al-
gorithm running times, then INFREQSEARCH is the slowest method with
low and medium thresholds. There are two possible reasons. First, the
method has to enumerate all motifs of length four. Second, pruning strat-
egy of INFREQSEARCH does not work well with very low thresholds. On
the other hand, with high thresholds, it is as fast as SAFEAPPROXSEARCH
and GFPSEARCH. Also, running times of the MAXSUPSEARCH seem to
be very dependent on thresholds. With low thresholds, it performs simi-
larly to NAIVESEARCH, with medium thresholds it works much faster and
even better with high thresholds. The fastest algorithms are SAFEAPPROX-
SEARCH and GFPSEARCH and they perform similarly well. Only differ-
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Figure 4.1: Comparison of algorithm running time (top), total running time
(middle) and number of motifs not pruned(bottom) of the search algorithms,
when mining motifs of length eight with either low, medium or high supports.
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ence is with medium thresholds, where SAFEAPPROXSEARCH works about
20 milliseconds slower on average. The observation that GFPSEARCH is
faster, is due to nature of GFP-Tree and ability to help deciding faster, what
branches to prune. Other than that, we actually see two types of behavior
here. First, running times of NAIVESEARCH and MAXSUPSEARCH grow
constantly when the number of promoters is increased. This happens, be-
cause the number of motifs present in input data grow, but pruning strategy
of MAXSUPSEARCH is looser than strategies of SAFEAPPROXSEARCH, GF-
PSEARCH and NAIVESEARCH. Second, running times of INFREQSEARCH,
SAFEAPPROXSEARCH and GFPSEARCH seem to decrease or be constant,
when the number of promoters is increased. This implies that the efficiency
of their pruning strategies grow with the number of infrequent motifs present
in data.

If we now consider also the time needed to build necessary data structures,
then first thing we notice, is that INFREQSEARCH performs rather well com-
pared to other search algorithms using hash-maps for support retrieval. This
is due to fact that INFREQSEARCH needs support only for motifs of length
eight and four, where NAIVESEARCH and MAXSUPSEARCH require that we
have information about all motifs present in datasets up to length of eight.
Recall that SAFEAPPROXSEARCH required hash-maps to contain wild card
character extensions. This requirement seems to put SAFEAPPROXSEARCH
almost on the same bar with NAIVESEARCH and MAXSUPSEARCH. Sur-
prisingly, GFPSEARCH outperforms all other search methods, except with
high thresholds INFREQSEARCH is faster. On all three plots we see that the
construction time of the data structures seem to be more or less linear to the
total length of input sequences. One other observation is that if we modified
NAIVESEARCH to be even more naive, such that it does not do APRIORI
pruning check, then it could work with a hash-map containing only fixed-
length motifs. Therefore, the total running times could easily compete with
GFPSEARCH, because the time needed to construct the hash-map would be
roughly half the time necessary for the INFREQSEARCH.

If we now analyze the number of motifs that were not pruned, then
INFREQSEARCH really seems to have the pruning strategy, that is very ef-
fective with high thresholds, but bad with low and medium thresholds. This
also suggests that support of motifs goes really low in the generated data if
the number of promoters goes higher than ten. Again, we see that MAX-
SUPSEARCH is very dependent on the thresholds and pruning strategies of
SAFEAPPROXSEARCH and GFPSEARCH work very well with low, medium

41



and high thresholds.

To sum these results up, then the results would have differed quite a
bit,if we used data with other characteristics. But clear conclusions are,
that SAFEAPPROXSEARCH and GFPSEARCH are superior to others search
methods. Let us also remind, that the reason, why GFPSEARCH was faster in
our tests, was due to different data structures used to retrieve support. Hash-
map used by SAFEAPPROXSEARCH was designed to be more modular to
enable working with different algorithms. But GFP-Tree and GFPSEARCH
were designed to work only with each other.

4.1.2 Mining Fixed Number of Frequent Motifs

In this experiment, we were interested if NBEST with its binary search ap-
proach can outperform MERGESORT, when mining fixed number of motifs
from datasets. For that purpose, we generated datasets exactly with same
characteristics as we did in last section. Again, we took average running
times from 10 runs, where the total length of input sequences were between
500 and 25000 nucleotides, where we were mining 100 “best” motifs. Based
on the results of last experiment, we decided to use NBEST in conjunction
with GFP-Tree and GFPSEARCH. We enabled all pruning capabilities of
GFPSEARCH here, as we only need to know the number of motifs instead of
fetching the actual motifs, given some thresholds. We compared it against
MERGESORT, where we enumerated all motifs by first building a hash-map
containing the support metrics and then fetching the motifs present in data
into a sortable vector. The results are given in Figure 4.2.

We see that growth of both methods is roughly linear to the number of in-
put sequences, where NBEST seems to perform slightly faster where number
of promoters is less than 18 and slightly slower afterwards. The reason here
is that the running times of constructing a GFP-Tree increase faster than
building a hash-map for fixed length motifs. Actually, based on observations
in the previous section, we can say that the running times of GFPSEARCH
and MERGESORT make up only a fraction of the total due to time required
by calculating the support metrics. Also, the results given here can differ
on multiprocessor systems due to divide and conquer nature of MERGESORT
and possibility to construct the hash-map with several threads traversing
different promoters simultaneously. In a similar fashion, it is possible with
GFPSEARCH and GFP-Tree construction. In that case, both approaches
could work a few times faster. Still, complexity of GFP-Tree construction
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Figure 4.2: Comparison of runtime speed of NBEST and MERGESORT, find-
ing 100 best motifs in datasets.

is slightly higher, therefore it is probable that sorting method could outper-
form binary search approach significantly on multiprocessor machines. On
the other hand, MERGESORT can work only if comparing supports of two
motifs is possible. Recall, that in Section 3.5 we concluded that modifying
thresholds by scaling them linearly may not be the best possible method to
find “best” motifs. An ad-hoc approach might suggest completely different
schemes for doing that. In that case, using MERGESORT may be impossible,
but NBEST stays a viable alternative, because it can be easily modified to
handle more complex threshold changing schemes.

4.2 Mining Biologically Significant Motifs

4.2.1 Data Preparation

For this experiment, we decided to use data of yeast S.Cerevisiae, that we
collected from several online databases and compiled them into individual
tracks and sequences usable by our computer program. Exact pieces that we
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collected were promoter sequences with their coordinates and direction on
the DNA strand [MOJ*08|, phastCons conservation data of all chromosomes
[KSF*02], binding enrichment scores for transcription factors [NB08] and
invivo nucleosome occupancy data [NTYT09].

The next step was to put all promoter sequences on one strand, therefore
we had to reverse the sequences and get the complementary reverses where
necessary. Next, we normalized all conservation and nucleosome data, such
that all values fell in range between zero and one. From invivo nucleosome
occupancy scores we calculated nucleosome freeness scores, so higher scores
would mean higher chance for a transcription factor binding site. Last step
was to cut all data from relevant positions in the datasets and connect them
with the promoter sequences. For binding scores, though, we need to calcu-
late the score tracks for every promoter sequence separately from enrichment
scores, before we start mining. We do it by taking the average of all en-
richment motifs that match the particular position in the sequence. This
process is largely automated by helper scripts, that come with the computer
program, see Appendix A.

4.2.2 Results

We decided to use gene MCM1, that has an important role in cell life cy-
cle regulation of S.Cerevisiae. We used following promoter sequences that
are documented or potential transcription factors of MCM1: FHL1, OAF1,
ABF1, ADR1, ASH1, AZF1, CUP2, FKH2, GAL4, GCN4, GCR1, GIS1,
GSM1, HAC1, HSF1, MSN2, MSN4, NRG1, RTG1, RPH1, RTG3, SKN7,
STB5, STP1, STP2, SWI4, YER130C [MPP*06|. We associated three data
tacks with each one of them: conservation, binding and invivo nucleosome
freeness scores. The support types were additive, additive and maximal re-
spectively and when mining 100 best motifs, we gave each track equal weight
by setting threshold vector & = {1.0,1.0,1.0}. SIGMOTIFS generated 10
000 background datasets by permuting randomly the nucleotide sequences
of original data track. Then, we associated a p-value with each mined motif
and data track. We also calculated test statistic for every motif with Fisher’s
method known from statistics:

(~2) 3 )
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where n is the number of data tracks and p; is the p-value of the motif on
1’th track. Let us refer to this statistic as significance onwards.

In Figure 4.3, we see relations between conservation, binding and freeness
scores of 100 mined motifs. We see that conservation and binding scores
seem to be very correlated. Most motifs have both support measures less
than 1.5, only two motifs have support double that much. The middle and
bottom scatter plots are rather similar. It is due to high correlation between
conservation and binding scores, but there are no motifs with freeness score
greater than 0.5. In all three plots, significance of motifs seem to be also
correlated to the support measures.

In Figure 4.4, we see relation between p-values of individual tracks. When
we compare conservation and binding, then surprising motifs in terms of
binding are CTCTTT, CTTCTT, CAAAAT. When comparing conservation and
freeness, then surprising motifs in terms of freeness are TTTACT, CAAAAT,
TTTCCC, TTCCTT. When comparing binding and freeness, then there are no
such motifs, that would have too much difference in p-values. Let us now list
some motifs returned by our application. The columns cons, bind, free
are the conservation, binding and freeness scores of the motifs. Columns
p_cons, p_bind, p_free are corresponding p-values.

MOTIF COUNT cons bind free p_cons p_bind p_free
1 GAAAAA 50 1.235 1.160 0.452 0.000 0.000 0.000
2 AAAAAA 137 3.289 3.351 0.446 0.000 0.000 0.000
3 TTTTTT 123 2.865 3.007 0.434 0.000 0.000 0.000
4 TTCTTT 30 0.665 0.662 0.413 0.032 0.000 0.000
5 TTTTTC 43 0.902 0.973 0.405 0.000 0.000 0.000
93 GAAAAT 15 0.397 0.313 0.221 0.583 0.208 0.259
94 ATTAAT 17 0.412 0.341 0.221 0.494 0.389 0.255
95 GAGAAA 23 0.584 0.487 0.219 0.068 0.006 0.317
96 AAAGTT 15 0.365 0.273 0.216 0.510 0.374 0.321
97 CTTCTT 16 0.249 0.331 0.216 0.924 0.324 0.315

And let us list some documented binding sites [MOJT08|: AAGAAAAA, CTTCC,
AGGGG, CCAGC, TTTTCGCT, ATGGAT,CCCCT, CTCGA, GGTAC, CTCAC, CGCCTC.
Although we do not see many similarities, then motifs GAAAAA and TTCTTT,
which is the complementary of AAGAAA, seem to partially match AAGAAAAA in
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the list of documented binding sites. Motifs, that had high p-values mostly
in respect to one data track seen in Figure 4.4 like CTCTTT, CTTCTT, seem to
be similar to CTTCC, CCCCT. Although there are similarities, it is not possi-
ble to make any strong conclusions based upon these results. On the other
hand, the significant motifs suggested by our algorithm did not seem to very
misleading. The first motif GAAAAA matched part of one longer documented
motif AAGAAAAA. Of course, questionable motifs are AAAAAA and TTTTTT, be-
cause they seem to be in the top only because they had most matches in
the input data. This is actually a side-effect of additive and maximal types
of support, because these motifs match long consecutive elements with same
letters and therefore introduce bias in the support. Of course, this means also
that these motifs have great structural importance, but they are not exactly
what we are looking for in gene regulation problems. Different approaches of
determining significance and mining with average type of support mentioned
in Chapter 2 could reduce this bias, but it is the material for further research
and out of the scope of this work.

To sum it up, our tool seems to have great potential mining significant
motifs from many promoter sequences. Still, while much research remains to
be done in this area, our tool can be helpful for scientists to help confirming
existing documented results or even suggest motifs that may need further
attention.
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Summary

In this work, we introduced and developed novel mathematical formalization,
algorithms and data structures needed to describe data mining methods using
multiple input promoter sequences and several layers of data. We reformu-
lated standard sequence mining techniques and studied different properties
of our new formalization in Chapter 2. We also discussed briefly a method
to decide the statistical significance of frequent motifs.

In Chapter 3, we described compact encoding of fixed length motifs. We
gave instructions, how to efficiently construct hash-maps containing support
metrics of motifs. We discussed NAIVESEARCH and several improvements to
it like MAXSUPSEARCH, SAFEAPPROXSEARCH and INFREQSEARCH. Next,
we introduced NBEST algorithm for mining fixed number of frequent motifs.
We also described a data structure called GFP-Tree and algorithm GFP-
SEARCH, that is able to mine frequent motifs, but is optimized for telling
the number of frequent motifs in the dataset. We also discussed briefly, how
SIGMOTIFS and NBEST can be fused together to provide information of
statistical significance of motifs.

We wrote a C++ application and implemented all algorithms and data
structures discussed in this work and benchmarked the runtime speed of the
application and algorithms in Chapter 4, realizing that GFPSEARCH seemed
be superior to other algorithms in terms of runtime speed. We also used real
biological data and mined significant motifs of length 6 for gene MCM1. We
concluded, that while much more research needs to be done, given proper
input data, our search methods can provide meaningful results.
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Motiivide otsimine DNA
regulatiivsetest aladest

Bakalaureusetdo (6 EAP)
Timo Petmanson
Restimee

Kaéesolev t66 uurib algoritme, mille abil on voimalik uurida organismide
geeniregulatsiooni probleeme eksperimentaalsete andmete pohjal. Keskendu-
takse DNA regulatiivsetest aladest oluliste motiivide ning fragmentide ot-
simisele, millel vob olla kriitiline roll organismi elutalitluse reguleerimisel ja
kordineerimisel.

T66 teoreetilises osas kirja pandud matemaatilise formalisatsiooni abil uu-
ritakse ja toestatakse mitmeid omadusi, mis panevad aluse voimalikele otsin-
gualgoritmidele ja nende analiitisimisele. T606 praktiline osa kasitleb viljatoo-
tatud algoritmide ajalist efektiivsust ning voimekust tootada bioloogiliste
andmetega.
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Appendix A

Multi-constraint miner tool for
gene expression analysis

We needed an implementation of the studied algorithms for run time speed
bench-marking and working with biological data. Thus, we decided to de-
velop an application, that could be used for such purposes. The source code
of the application along with data preprocessing scripts is available for down-
loading at http://mcminer.sourceforge.net.

Features:

1. Mine from up to 128 promoter sequences using up to 8 different data
tracks (these settings can be changed by modifying the source code).

2. Choose between different search algorithms: NAIVESEARCH, MAX-
SUPSEARCH, SAFEAPPROXSEARCH, INFREQSEARCH, GFPSEARCH,
NBEST and SIGMOTIFS.

3. Set maximal or additive support for different data tracks.

4. Set thresholds on every data track.

Supported platforms: The application is written and tested only on Fe-
dora 12, but it should be possible to build it on all platforms that are sup-
ported by GCC 4.3 and Boost 1.39 libraries.
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Documentation: The documentation of the source code can be generated
with Doxygen tool [Hee07], instructions for building and using the applica-
tions, description of the file format the program uses to read promoter data
are given in README file of the project.

License: The application is released under the GNU General Public License
(version 3).
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