
U N I V E R S I T Y O F T A R T U

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Computer Science speciality

Peeter Jürviste

Email Information Concentrator

Bachelor Thesis (6 EAP)

Supervisor: Ulrich Norbisrath, PhD

Author: .. �.....� June 2010

Supervisor: ... �.....� June 2010

Allowed to defence
Professor: ... �.....� June 2010

TARTU 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

Acknowledgments 3

Introduction 4

1 Related work and theoretical background 5
1.1 The message overload problem . 5
1.2 Related and derived projects . 6
1.3 Email message format . 8
1.4 Internet Message Access Protocol . 10
1.5 Roundup . 11

2 Requirement analysis 12
2.1 Functional requirements . 12
2.2 Non-functional requirements . 13
2.3 Scenarios . 13

2.3.1 Importing a mailbox . 14
2.3.2 Generating Prolog statements 14
2.3.3 Generating an Email Graph . 14

2.4 Roundup . 15

3 The Email Information Concentrator 16
3.1 Design . 16
3.2 Implementation . 17

3.2.1 Email delivery . 17
3.2.2 Prolog parser . 18
3.2.3 Graph parser . 19
3.2.4 Line and paragraph information extraction 20

3.3 Future work . 22
3.4 Roundup . 22

4 User manual 23

Conclusion 24

Summary (in Estonian) 25

Bibliography 26

A Resources 28

2

Acknowledgments

I have come this far thanks to people around me who have helped me in di�erent ways.
First and foremost, I wish to thank Ulrich Norbisrath for his great advice on writing
the thesis, technical guidance and encouragement.

I am also very grateful to Tõnu Tamme for providing me with the needed input
to improve the Prolog Parser further and for his valuable proofreading. It has been a
great pleasure working with Dmitri Danilov on integrating my Graph Parser with his
3D graph visualization application. I thank him for reading my thesis and proposing
changes as well. I would also like to express gratitude to Georg Singer for sending me
the resources about related projects.

Lastly, I wish to thank my parents who have always supported me in what I am
doing and never lost faith in me.

3

Introduction

Email is one of the most successful and widely used computer applications yet devised.
It has been around for decades and is used by individuals as well as organizations all
over the globe. However, nowadays we are facing a growing message overload problem.
This paper is a part of the corresponding research mainly located in an area called
knowledge management with an aim to discover possibilities to handle this problem.

This �eld of research is currently very relevant because the number of emails sent
is growing every year and people not only want to receive less spam, they also want to
be able to �nd the messages they are looking for, group, categorize and sort them the
way they need. On the other hand, current message tools (web-based applications and
email clients) are not capable to deal with this increased amount of messages e�ectively.
This project supports the research undertaken here by supporting the structured input
of mailbox contents.

An electronic mail message consists of two components, the message header, and
the message body, which is the email's content. In this work, I develop an Email
Information Concentrator. The Email Information Concentrator aims to deliver emails
via IMAP and parse the relevant parts of messages to other formats, such as an Email
Graph or Prolog statements. The output of the Email Information Concentrator is
used as an input for further research.

I decided to undertake this project since it provided me with an opportunity to
combine theoretical studies with some code-writing. What is more, I do not have a
background in Python programming and it is therefore very exciting to learn a new
programming language. The third reason is probably being part of a bigger research
project in the �eld of knowledge management which could revolutionize the way elec-
tronic mails are processed.

One of the most challenging tasks ahead is presumably parsing HTML tags in-
side message body. What is more, new di�culties might emerge when composing an
Email Graph to represent a mailbox and its contents and linking it with our graph 3D
visualization software.

The thesis is divided into four chapters. After this introduction, the �rst chapter
de�nes the message overload problem and describes related work and projects. In addi-
tion, the structure of the email message format and the IMAP protocol are described.
It is followed by a requirement analysis for the Email Information Concentrator. The
design and implementation of the system are discussed in the third chapter. It also
looks at future tasks: what are the main challenges ahead as we see them now? The
fourth chapter contains instructions aimed at the end-user to get the best out of this
library.

4

Chapter 1

Related work and theoretical

background

This chapter de�nes the message overload problem as well as lists reasons why it is
necessary to do research in this �eld. There is an overview of projects related to the
Email Information Concentrator in section 1.2. In addition, I describe the structure of
the email message format and the IMAP protocol.

1.1 The message overload problem

Most people active in the digital age will have discovered how much digital information
is trying to capture their attention everyday. One type of this kind of information is
electronic mail. Starting with online email accounts, we suddenly realize, that we
actually do not have to delete any messages anymore, we can just archive them. Space,
especially hard disk space, is really cheap. The result is that we store or archive most
of our emails, creating a huge very coarsely sorted repository. Categorization like
business and private are not anymore enough. We see a number of documents that are
cutting across categories. Often we would like to categorize only certain paragraphs
of a document in a speci�c way and others di�erently.[12] Creating separate mailboxes
for every occasion is not an option because it would be virtually impossible to manage.

The amount of information (documents, web pages, emails, chats), we are working
within our professional as well as private sphere increases daily and current infor-
mation management tools are not capable to deal with this amount of information
e�ectively.[12] Even worse, despite the fact that the amount of information available
is growing on a daily basis, this does not make us more productive. It slows us down.
Consequently, it gets more complicated to �nd what we are looking for on the one hand
and valuable documents are saved in repositories without ever being touched again.

Back in 1996 Steve Whittaker and Candace Sidner looked into the email overload
problem and de�ned it as using email for tasks it has not been designed for. Originally
designed as a communications application, email is now being used for additional func-
tions, that it was not designed for, such as task management and personal archiving.[16]
They also argue that email overload creates problems for personal information manage-
ment: users often have cluttered inboxes containing hundreds of messages, including
outstanding tasks, partially read documents and conversational threads. Furthermore,
user attempts to rationalize their inboxes by archiving are often unsuccessful, with the
consequence that important messages get overlooked, or "lost" in archives.[16]

5

Ten years later (2006), members of Microsoft Research team published a paper on
the key changes in this �eld of knowledge management. They say that while inboxes are
roughly the same size as in 1996, people's email archives have grown tenfold.[9] Even
now, it seems likely that email overload will continue to grow since email programs
continue to be a catch-all storage and communication medium for many other tasks,
like document transfer and staying aware of online content using RSS feeds.[9] Fisher,
Brush and others emphasize that there remains a need for future innovations to help
people manage growing archives of email and large inboxes, i.e. we urgently need to
do extensive research in advanced information management technologies.

1.2 Related and derived projects

Quentin Jones, Gilad Ravid and Sheizaf Rafaeli have studied the impact of information
overload on human behaviour. Based on the analysis of over 2.65 million postings to 600
Usenet newsgroups over a 6-month period, they have found evidence for the assertion
that individual strategies for coping with information overload have an observable
impact on large-scale online group discourse. Their main �ndings were:

• Users are more likely to respond to simpler messages in overloaded mass interac-
tion

• Users are more likely to end active participation as the overloading of mass in-
teraction increases

• Users are more likely to generate simpler responses as the overloading of mass
interaction grows [10]

Out of all the information provided, I was particularly interested in how they identify
messages as replies or parent messages. This kind of message processing was not a
part of the Email Information Concentrator but it could give ideas for reconstructing
discussion threads.

As for identifying replies, they constructed an algorithm utilizing the degree to
which reply indicators in the subject line, the message body, and the message headers
each correctly identi�ed a message as a reply.[10] The algorithm was computed as
follows: if the subject line contained �re:� or �reply:�, it was considered a reply. If a
reply string (a line with the format similar to �Name <e-mail address of earlier poster>
wrote:�) was not found in the subject, then messages were required to have a score of
0.8 or higher to be considered as a reply. More than two lines with indenting result in a
weighting of 0.6. �In reply to:� was given a weight of 0.5. Having message content that
indicated that it was forwarded was given a weight of 0.4. Finally, a message reference
was given a weight of 0.3. The exact weights were chosen heuristically.[10]

Quentin Jones, Gilad Ravid and Sheizaf Rafaeli also claim that 16% of messages
coded as replies did not have references, which means that threading could not be re-
constructed by solely relying on the references contained in the message headers.[10] To
identify parent messages they proceeded as follows: �nd existing parent-child message
relationships by matching messages containing a �reference:� header �eld with messages
having the same �message-ID�. If this was not successful, a similar step was taken for
the �in reply to:� �eld. Third, various searches were made to match the subject line

6

after reply indicators such as �re:� had been removed. Finally, the Oracle SQL exten-
sion �connect by� command was used to construct the discussion threads for all the
newsgroups from the message-reply pairs.[10]

Lewis and Knowles from AT&T Labs pointed out even earlier (1997) that message
header referencing is not a reliable means of identifying and reconstructing discussion
threads.[11] They claim that inconsistencies between email clients, loose standards, cre-
ative user behaviour, and the subjective nature of conversation make threading systems
based on structural information only partially successful. Lewis and Knowles propose
that this situation is unlikely to change, and that threading of electronic messages be
treated as a language processing task.[11]

Figure 1.1: Coarse AIMS project architecture (taken from [12])

The Email Information Concentrator is a part of the Advanced Information Man-
agement System (AIMS) research project. The AIMS project addresses the growing
message overload caused by digital documents, web pages, blogs, emails, chat, Face-
book, and Twitter that we are experiencing. It will combine and research appropriate
technologies from text mining, graph based storage and exploration and advanced user
interfaces.[12] In Figure 1.1 is a coarse overview of the architecture of this project. It
puts the employed technologies into context: documents are delivered by the means of
asynchronous or synchronous document adapters, adapted to the AIMS and stored in
graph databases. Explorers and transformers can access this data through the AIMS.

7

Tõnu Tamme is doing knowledge extraction with Prolog out of large e-mail reposito-
ries. His main goal is to provide better tools for information and knowledge extraction
from large e-mail repositories. His application uses human language technology in or-
der to categorize and classify content of email messages. Simple frequency heuristic on
the paragraphs and semantic linguistic tools like WordNet allow to build topic-based
relations between paragraphs of messages. Using semantic relations between topics
complex search queries can be composed to �nd relevant information from emails.[15]
The Email Information Concentrator provides input for Tõnu's application as Prolog
statements.

Figure 1.2: Dmitri Danilov's graph visualization

Dmitri Danilov provides several solutions for 3D graph visualization problems in
context of exploratory search in his Master thesis. His implementation represents a
3D application that visualizes the directed graph with a 2.5D layout and provides the
possibility to explore the graph data.[8] The base of the application is a 3D game
engine Panda3D. The visualization software is compatible with my Email Information
Concentrator, thus making it a perfect tool for visualizing an Email Graph in 3D space.
A screenshot of the 3D Graph Exploration application is presented in Figure 1.2.

1.3 Email message format

The Internet e-mail message format is de�ned in RFC 5322 and a series of RFCs, RFC
2045 through RFC 2049, collectively called, Multipurpose Internet Mail Extensions, or

8

MIME.[4]
Internet email messages consist of two major sections which are separated from one

another by a blank line:

Header contains �elds such as summary, sender, receiver, and other information
about the email.

Body the message itself as unstructured text; sometimes containing a signature
block at the end. This is exactly the same as the body of a regular letter.[4]

According to RFC 5322, the only required header �elds are the origination date �eld
and the originator address �eld(s). All other header �elds are syntactically optional.
All header �elds have the same general syntactic structure: a �eld name, followed
by a colon, followed by the �eld body.[13] The most common header �elds are the
following:

Date: speci�es the date and time at which the creator of the message indicated
that the message was complete and ready to enter the mail delivery system[13]

From: speci�es the author(s) of the message, that is, the mailbox(es) of the per-
son(s) or system(s) responsible for the writing of the message[13]

Sender: speci�es the mailbox of the agent responsible for the actual transmission of
the message. For example, if a secretary were to send a message for another
person, the mailbox of the secretary would appear in the "Sender:" �eld
and the mailbox of the actual author would appear in the "From:" �eld.[13]

Reply-To: indicates the address(es) to which the author of the message suggests that
replies be sent[13]

To: contains the address(es) of the primary recipient(s) of the message[13]

Cc: contains the addresses of others who are to receive the message, though the
content of the message may not be directed at them[13]

Bcc: contains addresses of recipients of the message whose addresses are not to
be revealed to other recipients of the message[13]

Message-ID: a unique message identi�er that refers to a particular version of a par-
ticular message. The uniqueness of the message identi�er is guaranteed by
the host that generates it.[13]

In-Reply-To: contains the contents of the "Message-ID:" �eld of the message to which
this one is a reply (the "parent message")[13]

References: contains the contents of the parent's "References:" �eld followed by the
contents of the parent's "Message-ID:" �eld[13]

Subject: contains a short string identifying the topic of the message[13]

Comments: contains any additional comments on the text of the body of the message[13]

Keywords: contains a comma-separated list of important words and phrases that might
be useful for the recipient[13]

9

Most modern graphic email clients allow the use of either plain text (text/plain) or
HTML (text/html) for the message body at the option of the user. HTML email mes-
sages often include an automatically generated plain text copy as well, for compatibility
reasons.[4]

1.4 Internet Message Access Protocol

The Internet Message Access Protocol (IMAP) is one of the two most prevalent In-
ternet standard protocols for e-mail retrieval, the other being the Post O�ce Pro-
tocol (POP).[6] Version 4rev1 (IMAP4rev1) allows a client to access and manipu-
late electronic mail messages on a server. IMAP4rev1 permits manipulation of mail-
boxes (remote message folders) in a way that is functionally equivalent to local folders.
IMAP4rev1 also provides the capability for an o�ine client to resynchronize with the
server.[7]

IMAP4rev1 includes operations for creating, deleting, and renaming mailboxes,
checking for new messages, permanently removing messages, setting and clearing �ags,
Internet email message parsing, searching, and selective fetching of message attributes,
texts, and portions thereof.[7] Messages in IMAP4rev1 are accessed by the use of num-
bers. These numbers are either message sequence numbers or unique identi�ers.[7]

In the process of making the Asynchronous Delivery Agent (see Subsection 3.2.1),
I had to study various client commands of IMAP de�ned by RFC 3501. Here is a list
of some of the more common client commands:

LOGIN arguments: login, password; identi�es the client to the server and carries
the plaintext password authenticating this user[7]

SELECT arguments: mailbox name; selects a mailbox so that messages in the mail-
box can be accessed[7]

CREATE arguments: mailbox name; creates a mailbox with the given name[7]

DELETE arguments: mailbox name; permanently removes the mailbox with the
given name[7]

CLOSE permanently removes all messages that have the \Deleted �ag set from the
currently selected mailbox, and returns to the authenticated state from the
selected state[7]

SEARCH arguments: searching criteria; command searches the mailbox for messages
that match the given searching criteria. Searching criteria consist of one
or more search keys, for example NEW, SUBJECT <string> , LARGER
<n> , etc.[7]

FETCH retrieves data associated with a message in the mailbox[7]

IMAP4rev1 also speci�es server responses for the above-mentioned (and non-mentioned)
client commands.

10

1.5 Roundup

In this chapter I de�ned the message overload problem and studied related and derived
projects. The studied resources con�rm that the message overload problem is the
subject of a number of research projects. I also investigated the email message format
and the IMAP protocol.

11

Chapter 2

Requirement analysis

Before the implementation phase, requirements were collected and assessed. The fol-
lowing chapter both de�nes what the Email Information Concentrator is supposed to
do as well as outlines the qualities it will possess. Main scenarios are also listed.

2.1 Functional requirements

The Email Information Concentrator is required to ful�ll the following functional re-
quirements:

• Importing electronic mail messages using secure IMAP

This means that the user can download the contents of electronic mail messages
from an IMAP mail server over an SSL encrypted socket.

• Parsing message header and body �elds

Extract all relevant header �elds, �lenames of attachments from the message
header. In addition, the mailbox parser must output the contents of the message
body.

• Constructing email graph with NetworkX

Find a way to generate an Email Graph out of the mailbox and its messages. An
external package NetworkX can be used for adding nodes and edges to the graph.

• Producing Prolog statements out of mailbox contents

A user can generate Prolog statements that represent the content of the mailbox.
This output includes header, attachment and body information.

• Providing simple heuristics for paragraph information extraction

Devise a heuristic for detecting where one paragraph ends and another starts in
text/html as well as text/plain messages.

• Extracting relevant word, line and paragraph information from message body

Parsers output message body in a structured way: paragraphs, lines and words.

12

2.2 Non-functional requirements

Usability:

• Email delivery agents must display the progress of importing messages to the
end-user

For example, if a user imports her mailbox, she can see how many messages have
been downloaded as well as the number of total messages in the mailbox.

• Mailbox parsers must notify the user when they need additional user input or
have �nished execution

A user is noti�ed like: �Parsing complete! Press Enter to terminate.� Also, the
system asks for credentials if needed.

• It must be usable for computer science professionals with previous Python expe-
rience after reading the manual and scenarios

If somebody has a degree in computer science and has programmed in Python
before, the provided manual along with scenarios ought to enough to use the
application.

Reliability:

• The application may not contain any known critical functional errors on delivery

All known critical functional errors must be �xed before delivery. This does not
apply to non-functional nor unknown functional errors.

• The Email Information Concentrator must not crash if set up and used correctly

The Email Information Concentrator may not crash if the user follows every
instruction in the manual and in scenarios.

Performance:

• All implemented parsers must be able to parse 2500 messages in less than 10
seconds on a modern computer (dual-core CPU 2GHz or more, 2 GB RAM or
more)

If you have a modern computer that passes the given hardware requirements,
parsing 2500 messages must take less than 10 seconds in most cases (51% or
more)

Support:

• End-users will not be personally assisted

There will be no helpline, wiki, blog or any other resource in addition to the
manual and scenarios.

2.3 Scenarios

In this section I cover the most frequent scenarios in detail. These include importing
a mailbox, using the Prolog Parser and the Graph Parser.

13

2.3.1 Importing a mailbox

As a user, I can import my mailbox via secure IMAP and have it saved on my hard
drive. I open the EmailConcentrator.py �le and comment in the following lines:

async = AsynchronousDeliveryAgent.AsynchronousDeliveryAgent

('servername ', portnumber , login , password , 'outputfilename ')

async.fetchMail ()

I make sure that the server name, port number and output �le name are correct for
me. For example:

async = AsynchronousDeliveryAgent.AsynchronousDeliveryAgent

('imap.gmail.com', 993, login , password , 'test.mbox')

async.fetchMail ()

Then I save the �le, run it, type my user name and password when prompted and my
mailbox gets transferred into my computer.

2.3.2 Generating Prolog statements

As a user, I can generate Prolog statements from my mailbox which I have imported
earlier. To do that, I simply open the EmailConcentrator.py �le and comment in the
following lines:

prolog = PrologParser.PrologParser

('mailboxname ', 'outputfilename ')

prolog.displayMail ()

I verify that my mailbox is on the project root folder and specify the correct settings
like that:

prolog = PrologParser.PrologParser

('myMailbox.mbox', 'myOutput.pl')

prolog.displayMail ()

After that I save the �le, run it and the system will produce Prolog statements out of
my mailbox and save them where I wanted.

2.3.3 Generating an Email Graph

As a user, I can generate an Email Graph from my mailbox which I have imported
earlier. To do that, I simply open the EmailConcentrator.py �le and comment in the
following lines:

egraph = GraphParser.GraphParser

('mailboxname ', 'outputfilename ')

egraph.pickleGraph ()

I change the mailbox name and output �le name if necessary and make sure that I
have the mailbox �le on my project root folder along with the EmailConcentrator.py
�le and other �les.

egraph = GraphParser.GraphParser

('myMailbox.mbox', 'myGraph.txt')

egraph.pickleGraph ()

14

Upon saving and running the �le, this pickles an Email Graph object which I can later
read in my programs like:

import pickle

import networkx

graph = pickle.load(open('myGraph.txt', 'rb'))

This operation also depends on the presence of BodyParser.py, EmailGraph.py and
Beautiful Soup which can be downloaded from http://www.crummy.com/software/

BeautifulSoup/. I have successfully loaded an Email Graph.

2.4 Roundup

In this chapter I reviewed the functional and non-functional requirements for the Email
Information Concentrator. A selection of common scenarios were also listed as a refer-
ence.

15

http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/

Chapter 3

The Email Information Concentrator

In this chapter I describe the design and implementation of the library. Many code
samples as well as a class diagram are presented to give an overview of what has been
done in this project.

3.1 Design

This application consists of two abstract modules that operate separately: a mail de-
livery agent and a mailbox parser. Each abstract module has di�erent implementations
(see Figure 3.1). For instance, two di�erent parsers are implemented, one yielding a
graph representation of the mailbox and the other corresponding Prolog statements.
All current parsers use the Body Parser to parse email body. It yields a message split
into lists of paragraphs, lines and words.

Figure 3.1: Class diagram

16

The program is designed to support new implementations for these modules if the
need arises. The Email Information Concentrator is coded in Python 2.6.5. Two
external packages are also used, namely Beautiful Soup and NetworkX, for parsing
HTML contents in messages and for the creation of email graphs correspondingly.

3.2 Implementation

3.2.1 Email delivery

I have a class AbstractEmailDeliveryAgent that contains an abstract function fetch-
Mail(). All delivery agents are supposed to extend that class and implement its
abstract functions. At the moment, there is just one such implementation named
AsynchronousDeliveryAgent. Its sole purpose is to fetch email messages using the
IMAP protocol over an SSL encrypted socket. I used a class called IMAP4_SSL of
the imaplib module from the Python Standard Library. This class encapsulates a
connection to an IMAP4 server and implements a large subset of the IMAP4rev1
client protocol (see Section 1.4).[2] SynchronousDeliveryAgent was also planned in
the design of the Email Information Concentrator but was later postponed due to lack
of time. Here, the word �asynchronous� means getting all messages at once and then
transforming them. �Synchronous� can be seen as getting messages which were changed
since the last time.

def fetchMail(self):

box = mailbox.mbox(self.destination ,

factory=None , create=True)

parser = Parser ()

server = imaplib.IMAP4_SSL(self.url , self.port)

server.login(self.login , self.password)

messages = server.select ()[1][0]

print 'Importing all', messages , 'messages.'

resp , data = server.search(None , 'ALL')

for num in data [0]. split ():

resp , data = server.fetch(num , '(RFC822)')

label = num + "/" + messages + ": " + resp

print label

emailMessage = parser.parsestr(data [0][1])

box.add(emailMessage)

server.close()

server.logout ()

print 'Fetching complete.'

The code above uses a Parser object. This object takes either a string representation
of a message (for instance, a string downloaded from an email server in my case) or a
�le containing �at text of an email and turns it into the appropriate Python �Message�
object representing the email.[14] I also de�ne a secure IMAP connection, open a
new session and fetch all messages from the �Inbox� folder (server.select()[1][0]
defaults to that). A user can see the progress of the operation: how many messages in
total, how many of them already transferred.

17

3.2.2 Prolog parser

One of the implemented parsers is the Prolog Parser. All parsers extend a class
AbstractMailboxParser and implement its function displayMail(). The overall
structure of its output data is:

mbox([

message ([

{body}

{header}

{attachments}

]),

{other messages}

]).

Here is a simpli�ed (some header �elds omitted) real-life example of this output:

mbox([message ([[[['first', 'of', 'all', 'you', 'are', 'more', '

liberal ', 'than', 'Farrakhan ', 'and', 'secondly ', 'he'], ['

correct ', 'the', 'tea', 'baggers ', 'and', 'radical ', 'white',

'republicans ', 'would', 'love'], ['have', 'obama', 'killed ']],

[['On', 'Mar', '2, ', '8:27', 'pm, ', 'Dave', '<K19j ... @yahoo

.com >'], ['... Speaking ', 'to', 'an', 'estimated ', '20, 000', '

followers ', 'of', 'the', 'black'], ['movement ', 'at', 'the', '

United ', 'Center ', 'on', 'Sunday , ', 'the', '76-year -old'], ['

said , ', '"The', 'white', 'right', 'is', 'trying ', 'to', 'set'

, 'Barack ', 'up', 'to']], [['You', 'received ', 'this', '

message ', 'because ', 'you', 'are', 'subscribed ', 'to', 'the',

'Google ', 'Groups '], ['Political ', 'Forum"']], [['To', 'post',

'to', 'this', 'group , ', 'send', 'email', 'to']], [['To', '

unsubscribe ', 'from', 'this', 'group , ', 'send', 'email', 'to'

]], [['For', 'more', 'options , ', 'visit', 'this', 'group', '

at']]], ['Message -ID:', ' <02aa8aa5 -d826 -4098 -91b9 -2

fe24d742377@g7g2000yqe.googlegroups.com >'], ['In-Reply -To:', '

<4b6cafb8 -b95c -473f-aa33 -a10b2a67810e@t41g2000yqt.googlegroups

.com >'], ['References:', '<4b6cafb8 -b95c -473f-aa33 -

a10b2a67810e@t41g2000yqt.googlegroups.com >'], ['Subject:', 'Re

: Liberals like Farrakhan need racism to keep the money coming

in'], ['From:', '"mike [the proud liberal / socialist]

532!"< littlemike532@gmail.com >'], ['Sender:', '

abc_politics_forum@googlegroups.com'], ['Reply -To:', '

abc_politics_forum@googlegroups.com'], ['To:', 'Political

Forum <abc_politics_forum@googlegroups.com >'], ['Date:', 'Wed ,

3 Mar 2010 01:39:53 -0800 (PST)']])]).

The Prolog Parser uses Body Parser to get process email body which is discussed in
subsection 3.2.4 in more detail. It uses a function getHeaderInfo() to extract header
�elds such as �Subject�, �Message-ID�, �From�, etc. These are written into the given
output �le according to the required Prolog statements structure. The following code
gets a message as an input parameter and prints out all attachment names.

def getAttachments(message , fileOut):

for part in message.walk ():

filename = part.get_filename ()

18

if not filename:

filename = part.get_param

('name', None , 'content -type')

if filename != None:

fileOut.write("\t\t['Attachment:', "

+ repr(escapeHyphens(filename)) + "], \n")

3.2.3 Graph parser

The Graph Parser is an email parser with the aim of generating a NetworkX graph.
This parser was needed by our research group as an input for graph 3D visualization.
By de�nition, a graph is a collection of nodes (vertices) along with identi�ed pairs
of nodes (called edges, links, etc). I use graphs to make a complex system from the
data parts of the email messages. The idea is to keep only unique mail message data
parts and create relations for the duplicates. This technique allows to reduce the data
duplication.

Figure 3.2: Email Graph model

Every mailbox has a root node, message nodes and data nodes. A unique id was
generated for every message in mailbox and the root node as well. That way we
can link multiple mailboxes in the future should we want to analyze their contents
relative to each other. Edges were added between the mailbox root node and message
nodes (represents a message) in that mailbox with type �Message�. In order to link
messages to their data information (header �elds, attachment names, structured body
information), data nodes were created to store that information. Edges were added

19

between these message nodes and their data attributes. Every edge has a descriptive
label attached to it, such as �Attachment�, �To�, �Received�, etc. This model is shown
in Figure 3.2 and was implemented in EmailGraph.py �le.

I used the Python package NetworkX (http://networkx.lanl.gov/) to represent
a graph. NetworkX is a Python package for the creation, manipulation, and study of the
structure, dynamics, and functions of complex networks. It supports both undirected
and directed graphs and has the following classes: Graph for undirected simple graphs,
DiGraph for directed simple graphs, MultiGraph and MultiDiGraph for graphs with
parallel edges. [5] I decided to use MultiDiGraph because email messages contain
several header �elds that can have identical information, for example �Sender� and
�Reply-To�. However, there can be no self-loops in our Email Graphs.

Also, I added functions for basic lookup operations: getRoot() returns mailbox root
node's index, getNXGraph() returns the NXGraph (type MultiDiGraph), getEdge-
Type(tuple) returns the type(s) of a given edge tuple and getEdgesByType(type)

returns all edges of a given type.
Finally, it is obvious that the results of the Graph Parser need to be saved some-

how. Here I use Python object serialization module pickle. According to Python
2.6.5 documentation, the pickle module implements a fundamental, but powerful al-
gorithm for serializing and de-serializing a Python object structure. �Pickling� is the
process whereby a Python object hierarchy is converted into a byte stream, and �unpick-
ling� is the inverse operation, whereby a byte stream is converted back into an object
hierarchy.[1] Notice that one must open a �le for pickling or unpickling an Email Graph
in binary mode:

f=open(name , "wb")

or

f=open(name , "rb")

3.2.4 Line and paragraph information extraction

Line and paragraph information extraction can be considered a fundamental part of the
Email Information Concentrator. It is implemented in BodyParser.py and is currently
used both in Prolog and Graph Parser. As shown below, the Body Parser produces a
double-list. The outer list is a paragraph. It can have one or more lines. Lines are in
essence lists of words.

[['Afghanistan ', 'on', 'Monday ', 'announced ', 'a', 'ban', 'on',

'news', 'coverage ', 'showing ', 'Taliban '], ['attacks , ', '

saying ', 'such', 'images ', 'embolden ', 'the', 'Islamist ', '

militants , ', 'who', 'have'], ['launched ', 'strikes ', 'around '

, 'the', 'country ', 'as', 'NATO', 'forces ', 'seize', 'their'],

['southern ', 'strongholds.']], [['The', 'announcement ', 'came

', 'on', 'a', 'day', 'when', 'the', 'NATO -led', 'International

'], ['Security ', 'Assistance ', 'Force', '(ISAF)', 'fighting ',

'the', 'Taliban ', 'reported ', 'six', 'of'], ['its', 'service ',

'members ', 'had', 'been', 'killed ', 'in', 'various ', 'attacks

.']], [['Journalists ', 'will', 'be', 'allowed ', 'to', 'film',

'only', 'the', 'aftermath ', 'of', 'attacks , '], ['when', '

given', 'permission ', 'by', 'the', 'National ', 'Directorate ',

20

http://networkx.lanl.gov/

'of', 'Security ', '(NDS)'], ['spy', 'agency , ', 'the', 'agency

', 'said.', 'Journalists ', 'who', 'film', 'while', 'attacks ',

'are'], ['under', 'way', 'will', 'be', 'held', 'and', 'their',

'gear', 'seized.']]

The overall idea is to extract paragraphs, lines and words from a message. With
that in mind, I had to determine where one paragraph or line ends and another starts.
text/plain and text/html messages had to be treated di�erently. In the �rst place
HTML messages contained a lot of unwanted meta-information for formatting which
was often invalid HTML. Plain text was cleaner in that sense but it could still have
elements of HTML as character entities, for instance � � or �Õ�. In addition,
I decided to remove greater than (�>�) characters from line beginnings to focus on
human-generated content. However, this can only be considered a temporary solution
until we need that meta-information. Therefore, the absence of these characters will
be a serious problem later and this feature might have to be removed (see Section 3.3).
Another fundamental di�erence between these two text types is the fact that there is
no such thing as a line in text/html messages. Therefore, plain text messages have
another layer of analysis: lines.

A simple heuristics was developed to �nd where paragraphs start and end in tex-
t/plain messages. Like any heuristic, these experience-based techniques that help in
problem solving do not guarantee 100% success. However, in most cases they are
applicable. The algorithm itself is following:

1) Introduce paragraph boundaries on empty lines.

2) If there were three or less

empty lines in a message , do the following:

3) Iterate over all existing paragraphs and lines.

4)If the last word in a line ends

with full stop , comma , exclamation mark or quotes ,

mark this as the new paragraph ending.

An external module called Beautiful Soup (http://www.crummy.com/software/
BeautifulSoup/) was used for messages with content type text/html. Beautiful Soup
is a Python HTML/XML parser designed for quick turnaround projects. The way I
used it was �rst getting all textual elements (no HTML tags nor attributes) by:

soup = BeautifulSoup.BeautifulSoup(''.join(part.get_payload ()))

initialList = eval(str(soup.findAll(text=True)))

Here �part� denotes a part of a multipart message. According to Beautiful Soup
documentation, you can pass in the special value True, which matches every tag with
a name: that is, it matches every tag.[3] This code fragment produces the initial list
which was processed further by me. I replaced HTML character entities with human-
readable characters, removed some of the more common errors introduced by Beautiful
Soup and split the list on new line characters into sublists (paragraphs). Some of that
work was done by Beautiful Soup, my task was to �nd other meaningful paragraph
breakpoints. Finally, I had to make sure that both parsing methods (text/plain and
text/html) return output with the same structural patterns (words inside lines, lines
make up paragraphs).

21

http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/

3.3 Future work

Email Information Concentrator will be the base for further works in the information
management for emails. Especially the Synchronous Delivery Agent will be one of
the next steps. It could make the overall user experience much better and reduce the
network load as it will download messages which were changed since the last time
as opposed to fetching the whole mailbox. The �le SynchronousDeliveryAgent.py

already exists in the project root folder but is not implemented yet.
In addition, reconstructing discussion threads remains a challenging but required

task. This will also mean reintroducing greater than (�>�) characters to the Body
Parser output that were removed for clarity reasons. Because it is proven in existing
studies that identifying and reconstructing discussion threads cannot be done reliably
by solely applying a header analysis, it is necessary to choose something more complex
for the task.[11] The starting point could be an algorithm which searches for reply
indicators in the subject line, the message body, and the message headers each in order
to correctly identify a message as a reply or a parent.

Finally, many optimizations are still pending to speed up the handling of large-scale
mailbox tra�c. One of the very �rst steps here is a thorough performance testing to
spot possible bottlenecks in the implementation of the Email Information Concentrator.
Preparations for this have been done as well: I was subscribed to six active mailing lists
and collected nearly 50 000 messages over the period of two months. The collected data
can be a valuable input for testing the whole application's performance under heavy
load as well as measuring the detection accuracy of conversation threads.

3.4 Roundup

In this chapter I described the design and implementation of the Email Information
Concentrator. The application is currently being used by other researchers for import-
ing and parsing mailboxes. A list of tasks for the future was also given.

22

Chapter 4

User manual

This chapter explains how to set up and use the Email Information Concentrator.
In order to start using the Email Information Concentrator, you have to abide by

the following rules:

1. Download and install Python 2.6.5 (http://www.python.org/download/). It
might work on older versions of Python but there is no guarantee. This applica-
tion is not o�cially compatible with Python 3.x versions.

2. Download and install NetworkX (http://networkx.lanl.gov/download.html).

3. Download the source code from the project website (see Appendix A). Create a
folder for the Email Information Concentrator and copy all the �les there.

4. Download Beautiful Soup (http://www.crummy.com/software/BeautifulSoup/)
and extract it where the Email Information Concentrator is (only the Beauti-

fulSoup.py �le needs to be accessible).

5. Con�gure the EmailConcentrator.py �le to your needs as shown in scenarios
(section 2.3).

6. Run the EmailConcentrator.py �le by typing �python EmailConcentrator.py�
on the command line or just double-click the �le (works on Windows).

7. When it has �nished its work, you will be prompted to press Enter.

8. If you want to analyze something else, start over!

23

http://www.python.org/download/
http://networkx.lanl.gov/download.html
http://www.crummy.com/software/BeautifulSoup/

Conclusion

As the main outcome of my Bachelor thesis, an application called Email Information
Concentrator and a corresponding library were designed and developed. It consists
of two abstract modules that operate separately: a mail delivery agent and a mailbox
parser. Each abstract module has di�erent implementations. For instance, two di�erent
parsers were implemented, one yielding a graph representation of the mailbox and
the other corresponding Prolog statements. The program is designed to support new
implementations for these modules if the need arises. Two external packages are also
used, namely Beautiful Soup and NetworkX, for parsing HTML contents in messages
and for the creation of email graphs correspondingly.

My library includes tools that can extract message header �elds de�ned by RFC
5322. In addition, it can also extract relevant word, line and paragraph informa-
tion from the message body. A simple heuristic was developed for the extraction of
paragraphs from text/plain and text/html messages. Also, I developed a model for
representing an Email Graph. My idea is to keep only unique mail message data parts
and create relations for the duplicates. This technique allows to reduce the data du-
plication. The output of the Email Information Concentrator can be used as an input
for further research in related research projects.

The Email Information Concentrator will be the base for further works in the infor-
mation management for emails. Especially the Synchronous Delivery Agent will be one
of the next steps. It could make the overall user experience much better and reduce
the network load as it will download messages which were changed to since the last
time as opposed to fetching the whole mailbox. In addition, reconstructing discussion
threads remains a challenging but required task. Finally, many optimizations are still
pending to speed up the handling of large-scale mailbox tra�c.

The Email Information Concentrator has already successfully established itself as
an integral part of the knowledge managemant research. Other researchers are using
it in their branches for importing and parsing mailboxes.

24

Elektronposti informatsiooni koondaja

Peeter Jürviste

Bakalaureusetöö (6 EAP)

Sisukokkuvõte

Elektronpost on üks edukamaid ja enamlevinud rakendusi arvutile, mis kunagi leiu-
tatud. Tänapäeval seisame aga silmitsi üha suureneva info ülekoormuse probleemiga.
Käesolev töö on osa teadmushalduse vallas tehtavast uurimistööst eesmärgiga info
ülekoormuse probleemiga toime tulla. Töö tulemusena valmiski elektronposti infor-
matsiooni koondaja. Viimase eesmärgiks on elektroonilise kirjakasti sisu allalaadimine
ja kindlal viisil parsimine, luues näiteks vastava sisuga graa� või Prologi sisendlaused.

Rakendus koosneb kahest osast: meilide kättetoimetamise agent ning kirjakasti
parser. Mõlema abstraktse mooduli tarvis on loodud erinevaid teostusi. Olulisemad
neist on asünkroonne meilide kättetoimetamise agent, parser kirjakasti sisust kind-
laksmääratud omadustega graa� genereerimiseks ning parser elektroonilise postkasti
sõnumite konverteerimiseks Prologi lauseteks. Programm on disainitud pidades silmas
seda, et uusi realisatsioone oleks lihtne lisada ja liidestada olemasoleva rakendusega,
kui vastav vajadus peaks kunagi tekkima. Elektronposti informatsiooni koondaja on
kirjutatud programmeerimiskeeles Python. Lisaks kasutati ka järgmisi väliseid teeke:
1) Beautiful Soup - HTML sisu parsimiseks sõnumite sees; 2) NetworkX - emaili graa�
loomiseks.

Valminud arvutiprogramm suudab täita järgmisi ülesandeid: laadida alla elek-
trooniline kirjakast meiliserverist, kasutades turvalist IMAP protokolli (IMAP over
SSL); leida sõnumite seest emaili päise elemendid ja manuste nimed; eraldada sõnumi
sisust seal leiduvad üksikud sõnad, read ja tekstilõigud; genereerida postkasti sisu pealt
vastav graaf. Lõigupiiride kindlakstegemiseks töötati välja spetsiaalselt selleks otstar-
beks mõeldud lihtne heuristika. Mõeldi välja mudel, kuidas emaili graa�na kujutada,
püüdes vähendada seejuures andmeliiasust sõnumi osade graa�s hoidmisel.

Hetkel on rakenduse peamine kasutusala teadmushalduse alastes uurimisprojek-
tides, kus selle abil saab pakkuda teistele tööriistadele sisendinfot. Ehkki valmis
reaalselt töötav programm, saab seda oluliselt edasi arendada nii jõudluse kui ka lisavõi-
maluste poolelt. Prioriteetsemad tööd tuleviku jaoks on näiteks sünkroonse meilide
kättetoimetamise agendi loomine osana elektronposti informatsiooni koondajast ning
meilide ahelate tuvastamine ja kujutamine graa�s. Need ülesanded jäävad tulevikku.

Kokkuvõttes võib tööd pidada kordaläinuks, sest saadi valmis töötav rakendus,
mida kasutatakse juba ka reaalselt projekti teistes harudes. Näen elektronposti in-
formatsiooni koondajas suurt perspektiivi tuleviku jaoks, kui seda sihipäraselt edasi
arendada.

25

Bibliography

[1] 11.1. pickle � python object serialization � python v2.6.5 documentation. Avail-
able from: http://docs.python.org/library/pickle.html [Last visited May
26, 2010].

[2] 20.10. imaplib � IMAP4 protocol client � python v2.6.5 documentation. Avail-
able from: http://docs.python.org/library/imaplib.html [Last visited June
2, 2010].

[3] Beautiful soup documentation. Available from: http://www.crummy.com/

software/BeautifulSoup/documentation.html [Last visited May 26, 2010].

[4] e-mail - wikipedia, the free encyclopedia. Available from: http://en.wikipedia.
org/wiki/E-mail [Last visited May 30, 2010].

[5] Graph types � NetworkX v1.1 documentation. Available from: http://

networkx.lanl.gov/reference/classes.html [Last visited May 26, 2010].

[6] Internet message access protocol - wikipedia, the free encyclopedia. Available
from: http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol

[Last visited May 30, 2010].

[7] M. Crispin. RFC 3501 - internet message access protocol - version 4rev1, 2003.
Available from: http://tools.ietf.org/html/rfc3501 [Last visited May 30,
2010].

[8] Dmitri Danilov. 3D Graph Exploration. Master thesis, Tartu, 2010.

[9] D. Fisher, A. J. Brush, E. Gleave, and M. A Smith. Revisiting whittaker &
sidner's email overload ten years later. In Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work, page 312, 2006.

[10] Q. Jones, G. Ravid, and S. Rafaeli. Information overload and the message dynam-
ics of online interaction spaces: A theoretical model and empirical exploration.
Information Systems Research, 15(2):194�210, 2004.

[11] D. D Lewis and K. A Knowles. Threading electronic mail: A preliminary study.
Information Processing & Management, 33(2):209�217, 1997.

[12] Quretec Ltd. Advanced information management system (AIMS), 2009.

[13] Paul Resnick. RFC 5322 - internet message format, 2008. Available from: http:
//tools.ietf.org/html/rfc5322 [Last visited May 30, 2010].

26

http://docs.python.org/library/pickle.html
http://docs.python.org/library/imaplib.html
http://www.crummy.com/software/BeautifulSoup/documentation.html
http://www.crummy.com/software/BeautifulSoup/documentation.html
http://en.wikipedia.org/wiki/E-mail
http://en.wikipedia.org/wiki/E-mail
http://networkx.lanl.gov/reference/classes.html
http://networkx.lanl.gov/reference/classes.html
http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
http://tools.ietf.org/html/rfc3501
http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc5322

[14] Michael Swanson. Page 2 - python email libraries: SMTP and
email parsing. Available from: http://www.devshed.com/c/a/Python/

Python-Email-Libraries-SMTP-and-Email-Parsing/1/ [Last visited May 29,
2010].

[15] Tõnu Tamme, Ulrich Norbisrath, and Georg Singer. Improvement of email han-
dling through human language technology. Riga, Latvia, October 2010.

[16] S. Whittaker and C. Sidner. Email overload: exploring personal information man-
agement of email. In Proceedings of the SIGCHI conference on Human factors in
computing systems: common ground, page 276�283, 1996.

27

http://www.devshed.com/c/a/Python/Python-Email-Libraries-SMTP-and-Email-Parsing/1/
http://www.devshed.com/c/a/Python/Python-Email-Libraries-SMTP-and-Email-Parsing/1/

Appendix A

Resources

The PDF version of my Bachelor thesis along with the source code and other
resources are available at the project's web site:

http://ulno.net/projects/emailconcentrator.

28

http://ulno.net/projects/emailconcentrator

	Acknowledgments
	Introduction
	Related work and theoretical background
	The message overload problem
	Related and derived projects
	Email message format
	Internet Message Access Protocol
	Roundup

	Requirement analysis
	Functional requirements
	Non-functional requirements
	Scenarios
	Importing a mailbox
	Generating Prolog statements
	Generating an Email Graph

	Roundup

	The Email Information Concentrator
	Design
	Implementation
	Email delivery
	Prolog parser
	Graph parser
	Line and paragraph information extraction

	Future work
	Roundup

	User manual
	Conclusion
	Summary (in Estonian)
	Bibliography
	Resources

