
UNIVERSITY OF TARTU
Faculty of Mathematics and Computer Science

Institute of Computer Science
Speciality of Computer Science

Madis Kapsi

Usability Improvements for the Friend-to-Friend
Computing Pidgin Plugin

Bachelor Thesis

Supervisor: Ulrich Norbisrath
Co-supervisor: Artjom Lind

Author: .. ”......” June 2010
Supervisor: ….. “......” June 2010
Co-suprevisor: ... “......” June 2010

Allow to Defense:
Professor: .. “......” June 2010

Tartu 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 5

2 Preliminaries 6

2.1 Friend-to-Friend Computing framework 6
2.2 Friend-to-Friend Computing mobile . 6
2.3 Instant messengers . 7

2.3.1 Libpurple . 7
2.3.2 Telepathy . 7
2.3.3 Skype . 8
2.3.4 Adium . 8
2.3.5 Other messenger clients . 8
2.3.6 Roundup . 9

2.4 Peer-to-peer . 9
2.5 GTK+ . 10
2.6 Technologies in this thesis . 10

3 Plug-in usability analysis 11

3.1 Using existing system . 11
3.2 Ideas for improving chat window . 12
3.3 Con�guration . 13
3.4 User info . 14
3.5 Computing information . 14
3.6 Plug-in activities information . 15
3.7 Roundup . 16

4 Chat window and user information improvements 18

4.1 F2F menu on chat toolbar . 18
4.2 Progress bar . 19
4.3 Table of computer information . 19
4.4 Roundup . 20

5 Con�guration and debug interfaces 21

5.1 Preferences . 21
5.1.1 Plug-in preferences . 21
5.1.2 Group preferences . 22

5.2 Core debug . 23
5.3 Roundup . 24

3

6 Usage of implemented functionality 26

6.1 Progress bar . 26
6.2 Chat Debugger . 26
6.3 Con�guration . 27

6.3.1 Global preferences . 27
6.3.2 Group preferences . 27

6.4 Table of computer information . 28

Summary 29

Bibliography 33

4

Chapter 1

Introduction

The aim of this thesis is to analyze the existing user interface of the F2F Pidgin plug-
in, suggest ideas that could improve user-friendliness and implement several of them.
The more general target is making more computing power available for everyday use
through Friend-to-Friend (F2F) Computing[4]. Most people today use some kind of
an instant messenger like Pidgin. The F2F Computing Pidgin plug-in enables Pidgin
users to share computing power, run shared applications and play games with friends
and colleagues. There are several games and applications available for F2F Computing
like �Hangman�, �Bub's brothers�, Monte Carlo computations, or distributed Blender.

F2F Computing is a concept that combines ideas from peer-to-peer networking,
Cloud Computing and social networks. It o�ers a framework on top of multi-protocol
instant messengers like Pidgin[11] or SIP Communicator[12]. F2F Computing can be
used by individual researchers, small research groups or companies for combining their
computational power with friends and colleagues.

Regarding the sharing of computational power, F2F Computing has several ad-
vantages compared to other Grid systems. First, current computing Grids are fairly
complicated and always need an IT specialist to set up and run them. Furthermore,
with F2F, users do not need to make any extra expenses to start a new Grid. Just
gather a group of your contacts and start sharing computational tasks, running appli-
cations or playing games. This means that more computing power is available for users
who need it, but cannot a�ord to purchase or rent expensive systems. Also research
groups that are not computer science related, might not need an IT specialist at all to
run their own Grid with F2F Computing.

The basic Pidgin plug-in has no speci�c user interface elements and is built for
any libpurple based instant messenger. This paper concentrates on a user interface
optimized for Pidgin.

5

Chapter 2

Preliminaries

This chapter will give a short overview about papers and theses about Friend-to-
Friend Computing, a few examples of instant messenger clients and technologies used
in Friend-to-Friend Computing and in its Pidgin plug-in. The papers about F2F Com-
puting will give a good idea about its underlying principles.

2.1 Friend-to-Friend Computing framework

Friend-to-Friend Computing framework is built, so it could be used on di�erent plat-
forms with the help of using instant messaging systems. The basic concepts and the
�rst prototype of this framework, realized as a plug-in to SIP Communicator[12], are
described in Keio Kraaner's master thesis �Friend-to-Friend Computing�[19] written
in 2008 and in paper by Ulrich Norbisrath, Keio Kraaner, Eero Vainikko, Oleg Ba-
tra²ev �Friend-to-Friend Computing - Instant Messaging Based Spontaneous Desktop
Grid�[20]. The most relevant part is the chapter about the framework, as it describes
general concepts of F2F Computing. The API and programmers guide is not relevant
anymore with current system, because F2F Computing core has been re-written in C
programming language since then.

2.2 Friend-to-Friend Computing mobile

Mobile phones of today have already more computational power than PC-s from late
1990-s. Mobile users also use their phones for other purposes than making calls.

Sven Kirsimäe reviews the mobile industry in the context on software develop-
ment and creates F2F Mobile Computing framework in his master thesis �F2F Mobile
Computing�[18]. The review of the mobile industry part is not so relevant to F2F
Computing, as it is to mobile application developing in general. He reached conclusion
that the most reasonable platform choice for mobile framework was Symbian S60v3.
The following part about the F2F Mobile Computing framework describes the process
of creating the framework. The thesis also contains a F2F Mobile Computing demo �
installing and running the application on a mobile phone.

6

2.3 Instant messengers

Instant messaging is a form of real-time direct text-based communication between two
or more people. Instant messenger is a client side program that is used for the messaging
process � sending and receiving text and other data. These programs consists of two
major components - core and user interface. Core provides communication between
clients and support for di�erent protocols. User interface is front end part visible to
user.

There are several di�erent types of messengers, but the main purpose is still com-
munication with other users. Some messengers use peer-to-peer protocol others require
peers to be connected to central server. Di�erent messaging systems have created their
own protocols over time that are referred as IM protocols. The most popular IM ser-
vices according to [6] are Skype, Windows Live Messengers, Facebook chat and Tencent
QQ (majority of users are in China).

Programs to use Instant Messenger systems are called IM clients and the choice
of them is quite large at the moment[7]. Messenger clients can be divided to single-
and multiprotocol by the number of messaging systems supported. Some client side
applications are also platform dependent, because messenger client uses some system
libraries that are not available on other operating systems. Table 2.1 shows di�erent
popular messenger clients. Pidgin is a good example of multi protocol and multi
platform client, that is available for Windows and Linux.

Next I give a short overview of di�erent examples for instant messenger protocols
and clients.

2.3.1 Libpurple

Libpurple[8] is a core library for an IM program. Instant messenger programs built
on libpurple use it to connect to IM networks, manage user accounts and preferences.
At the moment libpurple without any plug-ins or modi�cations supports 15 di�erent
messaging protocols, most common of which are MSN, XMPP, Yahoo, and IRC. A few
examples of libpurple based messenger clients are Adium for OS X, Pidgin for Gtk
(Windows, Linux/Unix), Meebo web-based and Finch text-based for Linux/Unix.

Plug-ins written for libpurple, without using any platform speci�c packages, in
principle can be used with any libpurple based instant messenger client. There are
three di�erent types of libpurple plug-ins that do not contain UI code: core, loader
and protocol. First of those is for extending core functionality. Loader plug-ins are
invisible and do not appear in plug-in list (accessible from Pidgins buddy list �Tools/-
Plugins� menu). Their purpose is to enable loading plug-ins written in other languages,
for example Perl and Tcl support are provided via loader plug-ins. Protocol plug-ins
are also invisible and enable libpurple to connect to so many di�erent networks.

2.3.2 Telepathy

Telepathy[15] advertises itself as the Flexible Communications Framework. Telepathy
is, like libpurple, uni�ed for several di�erent instant messaging servers and protocols.
The aim of Telepathy is to provide a way to integrate chat or VoIP into desktop
applications (word processors, CAD programs and others). Its only current drawback
is that Telepathy is available for GNOME only, so Windows and OS X users can not

7

use it in their native operating systems and need dual boot systems or virtual machines
for using Telepathy.

At the moment most prominent Client for Telepathy is Empathy[2], as it is shipped
with Ubuntu 10.04 as a default chat client instead of the Pidgin. Empathy looks
quite similar to Pidgin in �rst glance, but there are di�erences as well. One, that is
most noticeable in everyday use, is support for chat themes via WebKitGtk, which is
something similar to Adiums �WebKit Message View�[17].

2.3.3 Skype

Skype[13] is a good example of a one protocol instant messenger that is available on
almost all operating systems, including mobile phones. However, the Linux version is
much more basic and does not support several features, in comparison to the Windows
version, for example playing a game with a contact. As Skype is entirely built for its
own protocol it works very good and the VoIP part, which made Skype so popular,
works perfect on all the platforms.

In comparison to libpurple and Pidgin, Skype is much better documented. There
is a well structured API[14] with example codes for creating a 3-rd party extension,
where libpurple and Pidgin API-s are lists of �le references.

2.3.4 Adium

Adium[1] is a Pidgin reimplementation for Mac OS X. One signi�cant user interface
di�erence to Pidgin is that Adium allows a user to modify the way messages are dis-
played via the �WebKit Message View�[17]. From the user friendliness point of view
Pidgin has fairly better choice of user interface languages, as Pidgin �speaks� more
than 80 di�erent languages, where Adium can only manage 27. This is mainly because
Pidgin has a signi�cantly larger development group.

2.3.5 Other messenger clients

As mentioned before there are many more di�erent messenger clients available. Some
of the most popular single protocol messengers are Windows Live Messenger, Yahoo!
Messenger and ICQ. First of those is also only available for Windows operating systems.
Yahoo! Messenger is supported on Windows and Mac OS X, it was also available for
Linux, but last release was 6 years ago. ICQ does not have Linux version as well, but
it has a version for mobile phones .

A few of the popular multi-protocol messenger clients are Trillian, Kopete and
eBuddy. Trillian, like several others, does not have Linux support, but it has a web-
based version, that is accessible via browser in any operating system. It is also available
on iPhone and BlackBerry. However, Kopete is one of few IM clients that is not
available for Windows and has versions for Unix-like systems and Mac OS X. Last is
the eBuddy that is a web-based IM client that is accessible on any computer that has
an Internet connection and a browser. eBuddy has also applications for mobile phones,
iPhone, iPod Touch and Android.

See also Table 2.1.

8

Messenger client Type Supported platforms

Adium Multi-protocol Mac OS X
AOL Single protocol Windows, Mac OS X, Linux

eBuddy Multi-protocol Web based/Mobile devices
ICQ Single protocol Windows, Mac OS X
Pidgin Multi-protocol Windows, Linux
Skype Single protocol Windows, Mac OS X, Linux
Trillian Multi-protocol Windows, Mac OS X, iPhone

Windows Live Messenger Dual protocol Windows
Yahoo! Messenger Dual protocol Windows, Mac OS X, Unix/Linux

Table 2.1: Instant messenger clients

2.3.6 Roundup

There is no perfect Instant Messenger client, that suits every-ones needs and require-
ments. However, there are plenty to choose from and most of these clients can be also
extended using plug-ins and extensions, so the user can �build� the perfect messenger.

2.4 Peer-to-peer

Peer-to-peer[10] (P2P) is a distributed network architecture, that makes portion of
users resources (processing power, disk storage or network bandwidth) directly available
to other network participants. Peer-to-peer is special because it does not need central
coordination(servers or stable hosts). Network participants are hosts and clients at
the same time. In comparison to traditional server-client solutions, where servers are
suppliers and clients consumers, the peers in P2P are both consumers and suppliers.

There are three main types of peer-to-peer networks. Pure P2P networks, that
consist solely of peers. Hybrid peer-to-peer has some special preferred nodes for running
infrastructure functions. Centralized peer-to-peer networks have a central server that
is used for indexing functions and to bootstrap the system.

P2P was popularized by �le sharing systems like Napster[9], which is a sample of
centralized model of peer-to-peer network. Sharing �les and real time data is common
for P2P, for example Skype calls are passed using P2P technology.

Peer-to-peer networks also divide to unstructured and structured networks, classi-
�cation is based on how the nodes are connected. Nodes are peers in overlay network
and there is a link between two nodes if a peer knows the location of another peer in
P2P network.

Structured P2P networks have globally consistent protocol, to guarantee most e�-
cient routing to a peer that has desired resource. Maintaining the mapping is respon-
sibility of nodes and is distributed in such way, that it will cause minimal disruption
in the case of change in the set of participants.

In unstructured network new peer that wants to join the network can copy a set of
existing links from another node and later form its own links over time. In unstructured
P2P networks the query, for �nding desired data, has to be �ooded through network
to as many nodes as possible. Disadvantages with this are, that queries might not be
resolved and �ooding creates high amount of signaling tra�c. Queries not being solved
is not so big problem with popular content and search for them is more likely to be

9

successful, where for rare items it is real possibility that search does not provide any
results. Typically unstructured networks have very poor search e�ciency.

2.5 GTK+

GTK+[5] is a toolkit for creating graphical user interfaces. It has cross platform
compatibility and an easy to use API. Initially GTK+ was created for and used by
GIMP. Today it is used by many applications, including GNOME desktop project.

GTK+ itself is written in C, but it supports C/C++, Perl and Python. It is
based on four libraries that are also developed by GTK+ team, these libraries are
GLib, Pango, Cairo and ATK. GLib is a low-level core library for structure handling
and portability wrappers. Pango is a layout and text rendering library. Cairo is a 2D
graphics library, supporting multiple output devices, that can use hardware graphics
acceleration when it is available. Last ATK is a library that provides accessibility sup-
port, so the application can be used with screen readers, magni�ers, and alternative
input devices.

2.6 Technologies in this thesis

In this thesis the main purpose is improving usability, so the most used is the GTK+
library. Also libpurple and F2F Computing core libraries are used for several features
implemented.

10

Chapter 3

Plug-in usability analysis

This chapter describes existing F2F Computing plug-in for Pidgin[11]. As it wasn't
speci�cally designed for Pidgin the user interface had almost no elements for using it,
as shown in Figure 3.1. That is why I would suggest some changes to chat window,
con�guration and plug-in monitoring interfaces.

The ideas for chat window would be a F2F menu on chat window toolbar(Figure
3.5) and a progress bar on info pane(Figure 3.6). For con�guration � plug-in and group
preferences dialogs. A debugger to show each groups log and �nally user information
modi�cations regarding to computer information.

3.1 Using existing system

Steps to use F2F Computing Pidgin plug-in after it is installed:

1. Log in existing messaging account(guide at [16])

2. Create new F2F protocol account

(a) Open �Accounts� menu from Buddy List and click on �Manage Accounts�

(b) List of existing accounts will open (Figure 3.2). Click �Add..�.

(c) User name should be the same as the actual accounts user name

(d) Set Local Alias to �_Me_� (see Figure 3.3).

(e) Click �Add� and F2F account is ready.

3. Add chat to Buddy list

(a) From buddy list menu �Buddies� select �Add chat..�

(b) For �Account� choose F2F account

(c) Fill in other �elds (example in Figure3.4)

(d) Click �Add� to �nish.

4. Open created chat by double-clicking on the name.

5. Invite contacts to chat � only F2F contacts can be added. They are in F2F
section in buddy list and names start with �Peer�

11

Figure 3.1: Chat before

(a) Drag and drop them from Buddy List

(b) Or �Conversation / Invite...�

6. Chat window can be used for instant messaging

7. To submit service for current group

(a) In F2F chat room: �Conversation / More / Submit Service�

(b) Browse for compatible task

(c) Submit

8. Task is completed in the background, no indication in the chat window when it's
completed

As shown the steps for submitting service to chat group aren't complicated, but
required menu item is in �More� sub menu, which doesn't indicate to F2F in any
way. Also after submitting the service user interface does not give any feedback about
progress made. Only way of receiving any information is to open Pidgin built in Debug
Window.

3.2 Ideas for improving chat window

As described in last section there are almost no user interface elements in the chat
window and its menus. The only indication of using an F2F Computing chat are the
contacts in the buddy list and in chat participants list, as their names start with �Peer�.
A few ideas for the chat window are:

12

Figure 3.2: Account list

1. The toolbar shown in Figure 3.5 could have an F2F Computing menu. From
that menu a user can access plug-in speci�c commands like submitting a service
or con�guring the plug-in. The location is chosen like this, because it is easily
noticeable and uses empty space on the toolbar.

2. An optional progress bar should exist for observing progress of the submitted
task. The location for it could be in the top right corner of the chat window.
Right from the chat name and on top of the list of contacts in chat - located on
the Infopane of Pidgin chat window structure, shown in Figure 3.6.

Proposed changes will not change the look of the chat window much, but will make
using the plug-in easier and a more pleasant experience. The chat window will look
like shown in Figure 3.7.

3.3 Con�guration

The Pidgin plug-in was in no way con�gurable, but as one of the uses is sharing
computing resources it should be. While browsing the web, working on documents or
performing any other tasks which do not require much of computers resources, user
should be able to allow a higher utilization of the computer by the F2F Computing plug-
in. However, while using more of computers resources, but not wanting to shut down
the plug-in all together, it would be useful to be able to reduce the shared computing
power or priority of the F2F Computing task. For example a user has a quad core
processor and 4GB of RAM, but is using the computer to edit text documents and
send e-mails. He could let the plug-in use 3 of 4 cores and about 2GB RAM. And later
while editing videos, photos and music, turn it down to 1 core and 512 - 1024 MB of
RAM.

User interface itself should be con�gurable as well � for example if user does not
wish to have a progress bar in the chat window, it could be disabled.

13

Figure 3.3: Add account dialog

3.4 User info

Before submitting a service, that uses a lot of computing resources, it would be good
to know, on what kind of hardware F2F Computing is ran on the contact side. For
example F2F Computing is also available for Symbian S60 smart phones and sending
taxing computational tasks there would not make sense, while playing games with that
contact is reasonable. For that purpose there should be a way for the user to set their
computer information and share it with their F2F Computing contacts.

If the user is able to change how much computing power is shared, then this infor-
mation could also be shared via user information that is visible to contacts. Accessing
this info would be just like getting any users info � right click on contacts name and
select �Get Info�. Modifying information about user is in preferences dialog, which is
available from the chat window toolbar �F2F� menu or �Conversation / More� menu.
As not all the F2F Computing is done via Pidgin plug-in, this information should be
accessible from the F2F core.

However, user might participate in di�erent groups at the same time and change
shared performance per group. This is why there should be so-called global preferences
for plug-in where user can set the maximum amount shared performance �gures at any
given moment. And for every group a separate preferences where user can set di�erent,
lower values for certain group.

Finally, there is only one alias which is the same in every group. But there could
be a system similar to IRC where user can set di�erent nicknames in every chat, so the
alias is not constant in all groups.

3.5 Computing information

For more di�cult computational tasks, groups might get quite large and viewing every
contact's computer information separately is not too user friendly. For that purpose

14

Figure 3.4: Add chat dialog

Figure 3.5: Chat toolbar

there could be a table, that shows entire groups shared computer resources. The table
should show computers processor and RAM information and shared cores and memory
amounts. For example one row might contain data like: cpu - Amd x2 250 3,6GHz,
shared cores - 1, RAM - 6GB ddr2 800MHz, shared memory - 2GB.

For some tasks Internet connection type might be also important as completing a
computational task by sending large �les over slow connection might take longer than
sending them to a bit slower computer, but over a faster connection.

3.6 Plug-in activities information

Only information about ongoing task at the moment is in Pidgin Debug window with
the rest of the Pidgins log. That means besides suggested progress bar there is no easy
access to view information about the plug-in progress or activities. That is why F2F
Computing should have an information/debug window of its own. The information
�ow should be adjustable so that a user could select how technical info is shown -
network activity, core and/or plug-in information.

15

Figure 3.6: Infopane

Proposed change Description Type of change

F2F Computing
menu

Small menu on the chat window toolbar
for accessing F2F Computing features

User interface

Progress bar On the information pane showing current
tasks progress if it can be represented in
numeric values

User interface

Con�guration
interface

User can con�gure plug-in and group level
settings for F2F computing

Con�guration

User information F2F Computing speci�c information for
�Get User info�

User information

Group information Computer information about all the F2F
chat members

User
information/user
interface

Plug in activities
information

A simple log window that shows F2F
information - network activity and core log

User interface

Table 3.1: Suggested changes

3.7 Roundup

Overall suggested changes would make using plug-in more user friendly. Program that
has really good user interface is often preferred to another that might have much better
functionality, but has not as good user interface. Nowadays, users value their time and
do not like searching through menus for desired features and this is the motivation for
these improvements.

16

Figure 3.7: Chat window with proposed changes

17

Chapter 4

Chat window and user information

improvements

In this chapter, I describe actual improvements made to the chat window, which is the
main user interface for the plug-in, and changes to user information and its represen-
tation.

4.1 F2F menu on chat toolbar

On top of the F2F Chat is a menu (see Figure 4.1). Locating the � Submit Service�-
option is not obvious, as it is located in the �Conversation / More� sub menu. Therefore,
the F2F menu on the chat window toolbar (see Figure 3.5) would simplify access to
plug-in features.

The menu contains the following elements:

� Submit Service � this menu item is for submitting a new task to the current group.
Only the group owner is allowed to submit new tasks.

� Plug-in Preferences � for opening the preferences window, the content of the pref-
erences dialog is described in Section 5.1.1.

� Group Preferences � opens the dialog where the user can adjust group speci�c
settings, described in Section 5.1.2.

� Get Group Info � opens table where all contacts are shown with their user infor-
mation, shared via F2F Computing. More details in 4.3.

The most complicated part of implementing these menus was making � Submit Service�
not available when the user is not allowed to use it and making Submit Service work
in toolbar �F2F� menu.

The user has to ful�ll several requirements to be able to submit an F2F Service.
User has to be owner of the group and no previous Service can be active, which are
easiest to check after the user has clicked on the menu item, to be able to submit a
service. Owner and participants of the chat can not be determined while loading the
user interface, therefore limiting the usage of �Submit Service� was done with checks
after clicking on the menu item. If the user has not ful�lled requirements a noti�cation
is shown and submission will be canceled.

18

Figure 4.1: Chat window menu

Submit Service from �Conversation / More.. / Submit Service� adds the current
PurpleConversation as a parameter to the target function by default, as from the � F2F�
menu on toolbar �Submit Service� did not. To pass this argument via data pointer, the
f2f_job_submit_blist_menu_item, that handles submit action, had to be modi�ed
slightly. When submitting is done from the �Conversation / More..� menu, this pointer
is NULL and when using �F2F� menu, it is a pointer to the required data. An �if�
condition checks whether this pointer is NULL, and if not, extracts the required data.

4.2 Progress bar

As there was no way to track the task progress and the easiest to understand option is
a progress bar, I chose it for the basic feedback. In Pidgin, the chat info is placed on
the Info pane(Figure 3.6). This is the part of the chat window where the chat name is
located and i.e. where in the MSN chat contact photos occur.

For the progress bar I used a GtkWidget Progress Bar. This widget takes numeric
values from 0 to 1 and represents completion level, where 0 corresponds to 0% and 1 to
100%. There is also the possibility to animate the progress bar using its pulse function,
that moves a small part, about 20% of the progress bar size, back and forth on it.

Each chat has its own progress bar, that is identi�ed by the chat id. I created a new
structure, that consists of the progress bar widget, chat id, completion level numeric
value and text shown on progress bar. These variables are required for the case that
chat window is closed while the task is in progress and they store progress bar values
in memory until chat is reopened or Pidgin is closed. A new instance of the structure is
created when chat is opened for the �rst time and default values are given to variables
� 0.0 and �No Task�. While a job is in progress text value shows percents between 1 to
99 and when it hits 100%, text will show �Complete!�. The progress bar can be updates
even if it is disabled in the preferences, so if the service is started while the progress
bar was disabled and is later enabled from preferences, it will show the progress from
the beginning of the task.

There are two functions to modify progress bar value, one is to increase it by a
value and the other sets it to the value that is passed via an argument. A guide for
using progress bar is in Chapter 6.

4.3 Table of computer information

This table is created for accessing computer information of all the group members at
once. The table contains the same info that a user can modify in the preferences dialog,
shown in Figure 5.2 and described in the next chapter. To open this window choose
�Get Group Info� from �F2F� menu.

19

Figure 4.2: Contact computer information table

The information table opens in a new window that is a Gtk Window. The table in
it is a Gtk Table, that contains 6 columns: contact, cpu info, shared cores, memory
info, shared memory and always on (Figure 4.2).

When �Get Group Info� is pressed group_info_button_callback is called, this
function will call create_info_table and pass the group information as a list (struc-
ture of it is described in 6.4). create_info_table �rst creates the window and a new
table in it, with 6 columns and number of group members plus one rows. After creating
an empty table the header of the table is attached, this is static and can be modi�ed
in the create_info_table function. Finally for each group member a data row is
inserted. If the header structure is modi�ed, adding user data should be modi�ed as
well.

4.4 Roundup

Progress bar and F2F menu are the biggest visual changes to the chat window. From
an average user's point of view, they are probably also the most important as the menu
grants easy access to plug-in features and the progress bar gives easy to understand
feedback. For implementing these changes the most important was understanding the
structure of the chat window and usage of a few GtkWidgets.

20

Chapter 5

Con�guration and debug interfaces

Before starting this thesis, the F2F Computing Pidgin plug-in had no con�guration
interface or support for it. Also all the log that was generated was sent to the Pidgin
Debug window. If a user wanted to receive it, it could be done using a �lter (�f2fprpl:�).
However if several F2F groups were open at the same time, they all will correspond to
the same �lter, so there was no way to view the log only for one group.

As it was suggested in 3 the preferences user interface and debug window for each
chat were implemented. The following chapter will describe the process.

5.1 Preferences

Con�gurability is a very important feature for any plug-in. F2F Computing is no
exception, because it has features that some users might need and some will never use.
Furthermore, it might use the user's computer for computational tasks and this should
be con�gurable. The user should be able to choose the maximum resources available
for use.

Preferences were divided into two groups � plug-in and group. Plug-in preferences
are global or default values. For example, the amount of memory to be used � global
preferences allow to use 1GB of memory, so the sum of memory used by all the groups
is limited to 1GB.

5.1.1 Plug-in preferences

Plug-in level preferences are divided into three groups: user interface settings, computer
info and shared resources like shown in Figure 5.1.

The user interface settings contain check box-type elements for enabling user inter-
face elements: F2F Computing menu on the chat toolbar, progress bar on the info pane
and debug (log) window for each chat. They can be disabled all at once by disabling
�Show user interface elements�. Each check box has its own boolean value, that is
checked each time, that chat window is re-drawn. Re-draw of a chat window is auto-
matic, when it is closed and reopened, or it can be called using redraw_ui_elements

in �f2f-ui.h�.
Gtk check buttons are used for the check boxes. They are put in a group, with

main check box �Show plug-in ui elements�, that disables all of the others. The
booleans are stored in Pidgin �prefs.xml � in the �plugins/f2f/ui/ � section, so they

21

can be restored after restarting the program. All the check boxes have their pref-
erences entry: �show_all_elements �, �show_toolbar_menu �, �show_progressbar � and
�show_debug_window �.

Computer info elements are CPU and RAM information and always on check box
(whether the computer is always running or not, for example servers are always on) -
these are global default values. Gtk entry elements are used for text input areas and
gtk check button for check box. Each of these has its own entry in preferences �le
in �plugins/f2f/info� section: �cpu�, �ram� and �alwayson�. The �rst two of them are
string values and always on is a boolean.

In the shared resources section there are two sliders that can be adjusted to de-
sired levels. The amount of maximum cores and memory are automatically detected
from the system. The minimum number of processor cores is set to 1 and is the de-
fault value as well. Minimum memory to be shared is 16 megabytes, the default value
is 256 megabytes. The sliders are Gtk adjustment objects, they require several ar-
guments like minimum, maximum, current and step increment values. For cores the
increment value is 1 and for memory 16 megabytes - these values are set in function
computer_preferences_frame. The current values are read from the preferences �le.

The most di�cult thing about the preferences was storing the settings and detecting
the number of cores and amount of memory.

Like brie�y described before, Pidgin stores its own and plug-ins preferences in
the �prefs.xml � �le. This xml �le has three main subsections � purple�, �plugins� and
�pidgin� and each has its own sub elements. For example � plugins� has subsections for
�core�, �prpl � and �gtk � plug-ins. Accessing these preferences and modifying them is
described in Chapter 6.

Detecting the number of cores and amount of memory is a more complicated mat-
ter, as each operating system has its own structure and access to system information
might be limited. At the moment automatic detection is implemented only for Linux
operating systems. This is done by using sysconf, that returns con�gurable sys-
tem variables. To use sysconf �unistd.h� is required and the syntax to use it is
sysconf(int name) and it returns value as a long. To get processor count int name is
�_SC_NPROCESSORS_ONLN �. Detecting amount of memory is done by requesting
number of physical memory pages (�_SC_PHYS_PAGES �) and size of one memory
page (�_SC_PAGESIZE �). Multiplying these values gives the amount of system mem-
ory in bytes, that can be calculated to megabytes that are shown in preferences.

5.1.2 Group preferences

Group preferences are similar to plug-in preferences however they only apply to the
group from where a user selected �Group preferences�.

Group preferences are divided into four sections: nickname, computer info, group
shared resources and user interface settings. As suggested in the analysis there is a
change of the nickname possible for each group, but the core does not support it at
the moment. The computer info is duplicated because a user might want to set more
detailed information for some groups.

Shared resources contain two sliders that get their maximum value from the plug-
in preferences value of shared cores and shared memory. For example, let us assume
that the computer of a speci�c user has 4 cores and 4 gigabytes of memory. He sets
the plug-in preferences to 2 cores and 1 gigabyte of memory to be shared. Now the

22

Figure 5.1: Plug-in preferences dialog

maximum values for each group is 2 cores and 1 gigabyte of RAM. However if several
groups are active the combined total value can not exceed the maximum values set in
plug-in preferences. Default values are set to half of the available resources.

User interface settings perform the same way as the plug-in level settings and they
inherit their default values from the global settings.

Just like the plug-in level preferences, the most di�cult part was storing the settings.
However the solution was more complex, as the group ceases to exist after participants
leave it, so the preferences should not be stored on the system. That is why I created
a new structure where I store the group settings while Pidgin is running and the group
is active. The instance of this structure is created while the chat is opened for the �rst
time. It is then associated to this group by its ID, so it can be identi�ed later.

The group preferences structure consists of char values where text values of pref-
erences are stored, booleans for check box preferences, and doubles for slider values.

5.2 Core debug

For more advanced users just a progress bar might not be enough to track the progress
of a task, the F2F core, or plug-in activity and Pidgin Debug is a bit inconvenient
for plug-in log. For that purpose, I created a new window which displays only F2F
Computing speci�c information, for example when the task �le is transmitted between
clients.

This window is completely stand-alone and is not dependent on chat window or its
parts. It is created using scrolled window and text view GTK widgets. The user can
enable or disable this window in the preferences dialog described in the last section.
Closing the window will also disable it for that group.

The core debugger is created at the �rst loading of the chat, just like group prefer-

23

Figure 5.2: Group preferences dialog

ences. It starts logging automatically to a bu�er even if the debug window is disabled
from the preferences. A separate debugger is created for each group and can be disabled
for one group and enabled for another.

Core debug has its own structure that has the required graphic elements to show
the window to the user and text bu�er where all the log is appended. Also it has a
boolean value to set its window visible status. Information about usage of the debug
window is in Chapter 6.

The debug window is shown in Figure 5.3

5.3 Roundup

Although all features implemented in this chapter do not yet have support by core, like
adjusting usage of cores and memory, they were created for the future use. However, the
Core Debug window is fully functioning and can be used to output detailed information
about plug-in actions. The only required argument to do so, is the local chat id.

Implementation of these features was a bit more complex as to those in the previous
chapter. Group preferences and debugger bu�er had to be stored in the memory while
a group is active, and plug-in preferences are kept in the preferences �le of Pidgin.

24

Figure 5.3: Core Debug dialog (contains only core synchronization messages).

25

Chapter 6

Usage of implemented functionality

The user interface elements need several libraries installed and included in build scripts
before it can be ran. The list of the required libraries is: gtk-2.0, atk-1.0, cairo,
pango-1.0, pixman-1, freetype2, directfb, libpng12, pidgin, glib-2.0 and libpurple.
The last two are required by base system as well. Most libraries are included because
of the dependencies in gtk-2.0.

The source code of the implemented functionality is available at F2F Computing
Git repository[3].

6.1 Progress bar

void f2f_progress_bar_set_value(int chat_id , gdouble value) - this function
sets the progress bar completion level between 0 and 1. Argument chat_id is
local chat id and value is double value in range [0..1]. In case value is greater
than 1 it will be set to 1 and progress bar will show message �Complete!�. Example
of usage: f2f_progress_bar_set_value(634446883, 0.37); this sets progress bar
value for chat 634446883 to 37%.

void f2f_progress_bar_increase_value(int chat_id , gdouble increase) - this
function increases completion level of a chat by a value given in argument increase .
If increase or previous completion level with increase exceeds 1.0, then progress
will be set to 1.0 and text will show �Complete!�. Example of usage(previous com-
pletion level was 58% (0.58)): f2f_progress_bar_increase_value(634446883,
0.02); this will increase progress bar value from 58% to 60%.

6.2 Chat Debugger

void debugger_write(int chat_id , char* text) - this function appends text to
text bu�er of the chat First argument is chats local id, second is the text to write
to the bu�er of the debugger. Example of usage: debugger_write(634446883,
�Friend-to-Friend Computing is cool!�); it will write text given text to chats debug
bu�er and if debug window is enabled will appear.

26

6.3 Con�guration

6.3.1 Global preferences

Global preferences are accessible anywhere in code, as communication to preferences
�le is built into libpurple. There are three types of data used by global preferences in
�prefs.xml � - booleans, integers and strings.

purple_prefs_get_[string/bool/int] (const char* name) - this command will re-
turn the value of preferences entry.

purple_prefs_set_[string/bool/int] (const char* name , const char*/int/bool

value) - sets preference entry value.

Here follows the list of names of preferences and explanations what they represent:

"/plugins/f2f/ui/show_all_elements" - boolean to enable/disable all user interface
elements in chat window. Default: True;

"/plugins/f2f/ui/show_toolbar_menu" - boolean, enables/disables F2F menu on tool-
bar. Default: True;

"/plugins/f2f/ui/show_progressbar " - boolean, enables/disables progress bar on in-
fopane. Default: True;

"/plugins/f2f/ui/show_debug_window " - boolean, enables/disables core debug win-
dow. Default: False;

"/plugins/f2f/prefs/cores" - integer, number of shared cores. Default: 1;

"/plugins/f2f/prefs/ram" - integer, amount of shared memory in megabytes. Default:
256;

"/plugins/f2f/info/cpu" - string, processor information in text form - speed, model.
Default: -;

"/plugins/f2f/info/ram" - string, memory information - total amount, speed, type.
Default: -;

"/plugins/f2f/info/always_on" - boolean, if computer is never turned of, then true.
Default: False;

6.3.2 Group preferences

Group preferences consist of two custom structures - ComputerSettings and ComputerInfo.
ComputerInfo is used in ComputerSetting structure.

ComputerInfo - variables that contain important information are gdoubles cores

and memory , const chars *cpu_text and *memory_text . cores is the number
of cores allowed to use by the group, memory is the amount of memory shared to
group. cpu_text is the text form information about processor and memory_text

is the memory information.

27

ComputerSettings - contains const char* nickname , gbooleans progress_bar ,
toolbar_menu , debug_window , ComputerInfo* info_for_group . nickname is
the alias for the group (currently not supported), booleans are for user interface
elements as their names suggest.

To get these preferences for group the function to call is:

GroupSettings* get_settings_by_chat_id(int chat_id) - returns preferences for
group with given id.

6.4 Table of computer information

void create_info_table(GList *data) - displays a new window that contains a table
containing data in GList. Each GList element is a ComputerSettings instance
that holds users information for certain group.

28

Summary

Friend-to-Friend Computing is created with a principle to be easy to set up and use.
F2F Computing Pidgin plug-in is one of the possibilities to use Friend-to-Friend Com-
puting. In this thesis I analyzed the plug-in that already existed, discussed some new
features, that would make using the plug-in even more user friendly., and implemented
several of those.

The changes to the main user interface, the chat window, are quite simple, but in
my opinion make a big di�erence in terms of usability. The F2F menu on the toolbar,
makes access to other plug-in features easier. Implementation of this menu requires
understanding of of Gtk[5] widgets and Pidgin chat windows structure. This menu
can also be extended with ease if plug-in gets new features. The second user interface
change to chat window was the adding of the progress bar. The purpose of this element
is to give feedback about completion while running computational tasks in terms of a
visual progress which can be represented as a percentage. While running other types
of services, for example games, it can be disabled, as it has no purpose then.

Another implemented element is the con�guration interface of the plug-in. The
con�guration is divided into two sections � plug-in and group con�guration. In plug-in
con�guration a user can set so called global values to limit the total resources used by
plug-in. Group preferences does the same for each group, only the values must stay in
the limits of global values. However these limitations are one of the things that are not
supported by the current F2F Computing core. Con�guration interfaces also contain
user information to be shared with other contacts and controls to toggle user interface
elements. The implementation of the preferences was challenging, as the settings have
to be stored, so they can be used at request. Some of these preferences are stored in
the �le system, so that they are accessible even after restarting Pidgin, others are kept
in the memory while program is running.

A feature useful for all users is the �Core Debug window�, that is separate for each
group and contains only plug-in speci�c data. It was created to replace the Pidgins
debug interface, where all the log is shown, but if several groups are active, it is
quite di�cult to follow. The created debugger can display any data as long as it is
representable as text.

Last, I implemented the table of computer information shared by all the contacts
in a F2F group. This has the most use for computation tasks in a sense, that group
owner can check hardware used by group members before submitting service.

All these changes make a signi�cant di�erence in the user experience even at the
moment, when not all of the features are in working order and require further devel-
opment of the core. Development of the interface improvements was an interesting
experience, as Pidgin is an open source software and anyone can create plug-ins for
it. However, it is not very well documented and there is a lot of testing and guessing,
what does what. Pidgin documentation aside, it was a great hands on experience of

29

C/C++ programming and the result was a more user friendly version of the Friend to
Friend Computing Pidgin plug-in.

The source code produced during implementation is integrated into the Friend-to-
Friend Computing Git repository[3].

30

F2F Computing Pidgini laienduse

kasutamismugavuse parandamine

Bakalaureusetöö (6EAP)

Madis Kapsi

Resümee

F2F Computing ehk sõprusraalimine on loodud eesmärgiga, et hõlbustada võrkraal-
imist (Grid computing). Sõprusraalimine ühendab võrkraalimise kiirsuhtlus süsteemi-
dega. Üks selline lahendus on sõprusraalimise Pidgini laiendus, mille puhul on võrkraal-
imine ühendatud erinevaid kiirsuhtlus süsteeme (MSN, ICQ, IRC ja mitmed teised)
toetava Pidginiga.

Minu bakalaureusetöö eesmärk oli antud laienduse kasutajaliidese analüüs ja edasi-
arendus. Analüüsi ja edasiarendamise juures pidasin silmas, et tulemust saaks kasutada
igaüks, kes on oskab Pidginit kasutada ja sinna laiendusi lisada, misläbi hõlbustada
veelgi võrkraalimist kasutaja jaoks.

Esialgne rakendus oli loodud kasutades Pidgini enda sisseehitatud võimalusi ka-
sutajaliidese kuvamiseks ja eraldiseisev osa kasutajaliidesel puudus. Analüüsi käigus
pakkusin välja erinevad võimalused arendada kasutajaliidest selliselt, et see võimaldaks
ka häälestamist ja parandaks kasutajale antavat tagasisidet toimuva kohta.

Suurimad visuaalsed muudatused, mis on kohe nähtavad vestlusakna avamisel on
lisandunud F2F menüü vestluse tööriistade juures (kirjastiili ja suuruse muutmine, faili
saatmine) ja edenemisriba akna ülaservas, kus MSN-i vestluse korral asub kontakti
pilt. Loodud menüü võimaldab ligipääsu sõprusraalimise põhisele funktsionaalsusele.
Edenemisriba annab kasutajale tagasisidet käimasoleva protsessi edenemisest, kui see
on esitletav arvulisel kujul.

Kasutajaliidese uus osa on iga F2F grupi enda logi aken, mis on loodud asendamaks
Pidgini enda logi, kuhu saadetakse kogu Pidgini ja tema laienduste logi, mille tõttu on
sealt vajaliku info jälgimine raskendatud. Samuti on täiesti uus grupi teabe vaatamise
aken, kus on arvuti ja arvutusjõu jagamise põhine informatsioon grupi liikmete kohta.
Eelkõige on see loodud silmas pidades võrkraalimise arvutusjõu jagamise osa.

Kasutamismugavust silmas pidades on äärmiselt oluline ka antud laienduse häälesta-
mise võimalus, mille kasutajaliidese poolne tugi sai ka realiseeritud. Häälestusliidesest
on võimalik piirata ressursside jagamist ja kontaktidele näidatavat informatsiooni muuta.
See on kõige olulisem osa kasutajaliidese arendustest, millel puudub sõprusraalimise tu-
uma poolne tugi ja sai loodud edasiarenduste toetuse eesmärgil.

31

Oma töös arendasin kasutamismugavust silmas pidades Pidgini laienduse kasuta-
jaliidest sõprusraalimiseks. Kirjeldatud on erinevate komponentide loomist ja nende
kasutamisvõimalusi. Edasise arengu käigus vajab kindlasti Pidgini laiendus taas uusi
muudatusi, kuid praeguse rakenduse kasutajaliidese parandused on sellisel juhul heaks
alguspunktiks, millele tuginedes järjekordseid täiustusi läbi viia.

32

Bibliography

[1] Adium. http://www.adium.im/.

[2] Empathy. http://live.gnome.org/Empathy.

[3] F2f computing git repository. http://git.ulno.net/cgi-bin/gitweb.cgi?p=f2f.git.

[4] Friend-to-friend (f2f) computing. http://ulno.net/f2f/.

[5] Gtk. http://www.gtk.org/.

[6] Im user base. http://en.wikipedia.org/wiki/Instant_messaging#User_base.

[7] Instant messenger clients. http://en.wikipedia.org/wiki/Comparison_of_instant_messaging_clients/.

[8] Libpurple. http://developer.pidgin.im/wiki/WhatIsLibpurple.

[9] Napster. http://en.wikipedia.org/wiki/Napster.

[10] Peer-to-peer. http://en.wikipedia.org/wiki/Peertopeer.

[11] Pidgin. http://www.pidgin.im.

[12] Sip communicator. http://sip-communicator.org/.

[13] Skype. http://www.skype.com.

[14] Skype api. https://developer.skype.com/Docs.

[15] Telepathy. http://telepathy.freedesktop.org/.

[16] Using pidgin. http://developer.pidgin.im/wiki/Using

[17] Webkit. http://trac.adium.im/wiki/WebKit.

[18] Sven Kirsimäe. F2f mobile computing. Master's thesis, University Of Tartu, 2009.

[19] Keio Kraaner. Friend-to-friend computing. Master's thesis, University Of Tartu,
2008.

[20] Eero Vainikko Oleg Batra²ev Ulrich Norbisrath, Keio Kraaner. Friend-to-friend
computing - instant messaging based spontaneous desktop grid. The Third Inter-
national Conference on Internet and Web Applications and Services (ICIW 2008) ,
pages pp. 245�256, June 2008. Athens/Greece, IEEE Computer Society Press.

33

