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Zusammenfassung

1999 stellte Kocher ein Verfahren vor, um den geheimen Schlüssel eines Kryptosystems zu
enthüllen, indem von einer Smartcard ausgehende Seitenkanalinformationen ausgenutzt
wurden. Mittlerweile ist die Bedeutung dieses Forschungsfeldes stark angewachsen. Das
Motiv hinter diesem Forschungsfeld ist die Bedeutung der Informationssicherheit für eine
moderne Gesellschaft gepaart mit einem schier unvorstellbar schnell ablaufenden tech-
nologischen Fortschritt.

In dieser Arbeit wird zuerst die von uns vorgestellte Angriffsmethode der Power-
Amount-Analyse verallgemeinert und anschließend in eine Methodik zur Power-Analyse
überführt, die auf dem in der Telekommunikationstechnik häufig verwendeten weißen
Gauß-Rausch-Kanal basiert. Diese Methodik vermittelt zwei wesentliche Konzepte. Zum
einen stellt sie eine Möglichkeit bereit, aufgezeichnete Power-Traces zu bearbeiten, um
Informationslecks effizienter zu extrahieren und zu separieren, zum anderen können ver-
schiedene Unterscheidungsmerkmale statt nur des Korrelationskoeffizienten angewandt
werden.

Um die Angriffsmöglichkeiten zu erweitern, wird danach eine Kleinste-Quadrate-
Schätzung auf Basis der Traces vom Leakage-Modell vorgestellt. Basierend auf einem
solchen Modell werden die Power-Analysis-Mutationen I und II vorgeschlagen, um eine
bessere Angriffsleistung zu erzielen. Ferner wird ein Angriffs-Framework bereitgestellt,
das weitere Möglichkeiten zur Schlüsselenthüllung in Kryptosystemen zur Verfügung
stellt.

Weiterhin wird eine Reihe von Trace-Vorverarbeitungsverfahren eingeführt, die Fehl-
ausrichtungen in erfassten Power-Traces eliminiert, welche in durch Random-Clock-Ver-
fahren geschützten Kryptosystemen erzeugt wurden. Die Beseitigung der Fehlausrichtung
geschieht über horizontales Verschieben und vertikalen Abgleich. Hierzu werden zwei
Trace-Vorverarbeitungs-Frameworks bereitgestellt, die sich auf die Vorverarbeitung der
falsch ausgerichteten Traces bzw. auf Angriffe fokussieren. Gemäß der jeweiligen Angriffs-
voraussetzungen und Implementierungen kann man eine geeignete Trace-Vorverarbeitung
und Angriffsmethode für tatsächliche Angriffe selektiv auswählen, um eine effektive An-
griffsleistung zu erzielen.

Zuletzt werden alle eingeführten Angriffs- und Vorverarbeitungsmethoden erfolgreich
verifiziert und mittels verschiedener kryptographischer Implementierungen, die mit unter-
schiedlichen Clock-Typen und -Frequenzen laufen, evaluiert. Dies bildet eine brauchbare
Grundlage für die Beurteilung der Sicherheit eines Systems, um auch für reale Einsatz-
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zwecke sichere Kryptosysteme und Architekturen zu schaffen.



Abstract

In 1999, scientist Kocher proposed a way to reveal the secret key of cryptosystems by
exploiting the leaked side channel information from a smart card. Since then, such a
research field becomes more and more important. The motive for doing that arises from
the interests on the one hand, and the strategic vision behind the information security in
modern society accompanied with unimaginable high speed technology development on
the other.

In this work, our new proposed attack method, i.e., power amount analysis, is general-
ized and abstracted firstly, which leads to power amount analysis methodology based on
the mostly utilized additive white Gaussian noise channel in the telecommunication field.
This methodology conveys two important conceptions. On the one hand, it proposes a
way to process the captured power traces to extract and purify the information leakage
more efficiently, meanwhile, reduces the dimensionality for the analyzed data resulting
to simple calculation in real attacks; on the other hand, various distinguishers may be
executed for this attack rather than the calculation of the correlation coefficient.

Second, in order to improve the attack methods, a least squares estimation based
trace form leakage model is proposed. Based on such a model, power amount analysis
mutation I and II are suggested for perusing better attack performance. Subsequently,
an attack framework is given, which provides more possibilities to retrieve keys from
cryptosystems.

Third, a series of trace pre-processing methods are proposed to neutralize the misalign-
ment in captured power traces produced from a random clock featured cryptosystem in
terms of horizontal alignment and vertical matching. Thereafter, two trace pre-processing
frameworks are given concentrating on the misaligned and originally aligned power trace
pre-processing and attacks, respectively. According to the different attack requirements
and implementations, one can choose appropriate trace pre-processing and attack meth-
ods selectively in real attacks to achieve a good attack performance.

Finally, all the proposed attack and trace pre-processing methods and frameworks
are successfully verified and evaluated by exploiting different cryptographic implementa-
tions running with the different clock types and frequencies, which may be good tools to
evaluate the system security for yielding safe cryptosystems and architectures in reality.
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Cryptography has been developed for thousands years, which basically defines a pro-
tocol to secure or hide the information during transferring without being known by the
third party. Such a field is now divided into two main opposite branches, i.e., cryptogra-
phy and cryptanalysis.

Cryptography is widely deployed in our daily life from the very beginning of pure
encryption or decryption to identification, digital signature, digital envelope, and so on.
Meanwhile, the research in such a field features the knowledge from cross-disciplines
combining with the mathematics, computer science, physics, statistics, and electronic
engineering, etc. For instance, based on the quantum communication in physics, the
quantum cryptography was proposed and developed. In a word, the elemental function
of cryptography is to fulfill four goals, i.e., information confidentiality, authentication,
message integrity, and non-repudiation. Therefore, a lot of efforts are invested to im-
prove the security level in terms of algorithms, architectures, and to ensure that the
being transferred information is difficult to be revealed or recovered when facing with
malicious attacks.

The cryptanalysis evolves together with the development of cryptography, which, on
the contrary, analyzes the cryptosystem to get the hidden information from communi-
cation parties. In other words, different kinds of attacks may be mounted on a running
cryptosystem. However, some restricted factors must be taken into consideration, e.g.,
run time of the attack methods, resource usage, and computational complexity, etc.
Therefore, to some degree, these factors can be used as the metrics for evaluating attack
algorithms in practice.
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Figure 1.1: An Example in Cryptography

Indeed, both disciplines, i.e., cryptography and cryptanalysis, develop parallel and
interact with each other. In order to well protect the running cryptosystem, the mech-
anism of different attack methods must be well known in advanced. However, in this
thesis, we concentrate on the latter, i.e., cryptanalysis on the physical cryptosystem in
Side Channel Analysis (SCA) field.

1.1 Cryptography

As written in a lot of literatures, the information communication between Bob and Alice
are secured by the cryptographic algorithms running in a cryptosystem and transferred
through communication channel, as illustrates in Fig. 1.1. However, there is no absolutely
secure channel. A third party Oscar always wants to listen and intercept the informa-
tion transferring between Bob and Alice. This encryption process may be abstracted
as a function f(·, ·), where the input x and the key value k are mapped resulting in a
encrypted message y, as y = f(x, k). Accordingly, the decryption can be represented by
the reversed function x = f−1(y, k). The mentioned process is categorized as symmetric
and asymmetric key encryptions. The former features the advantages in terms of open-
ing algorithms, lower calculation complexity, shorter run time, and higher encryption
efficiency. Consequently, they are mainly used in the place, where the encryption takes
place very often. The typical algorithms are DES and AES, etc., as shown in [ST99],
[ST01], and [DR02]. However, the main drawback for the symmetric-key encryption is
that the two communication parties must share secret keys. Every time one uses it, a
new different key must be generated. After a long time using, the number of keys one
must remember increases considerably leading to problems for the key management. Fur-
thermore, some algorithms featuring short key bits can be easily attacked and recovered.
For this reason, the algorithm DES has been widely substituted by AES. Therefore, the
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asymmetric-key cryptography is taken into the consideration, which is based on very
complicate mathematic problems. Consequently, these methods characterize the higher
calculation complexity and longer run time. They are mainly exploited in the financial
and military systems. Its typical representatives are RSA and ECC, cf. [RSA78] and
[KKM08].

According to the purpose and function of cryptographic algorithms, people may have
more choices to select the correct one or combination in reality resulting in various cryp-
tosystems. Because of the widespread using, those cryptosystems feature a higher proba-
bility for being suffered from malicious attacks. For example, in Fig. 1.1, path a), Oscar,
on the one hand, can intercept the secured information y from the message transferring
channel; on the other hand, he can also get the information leakage, e.g., the variation
of power consumption, magnetic radiation, etc., from the side channel of cryptosystem
while the encryption or decryption is running, as shown in Fig. 1.1, path b). After that,
he can recover the secret key between Bob and Alice by analyzing the captured side
channel information. Therefore, the improvement of security level for the cryptographic
algorithms and systems to counteract attacks is a crucial work.

1.2 Cryptosystems

Cryptosystem is the carrier of cryptographic algorithms, which can be implemented with
both the software and hardware. As the development of chip technology, a lot of cryp-
tosystems are implemented in the hardware, e.g., embedded systems, which provides
the advantages in terms of fast run time, high through put, etc. For this reason, these
embedded cryptosystems are widely used in the industry as well as our daily life, e.g.,
RFID tags, smart cards, mobile phones, satellite communication systems, etc. Therefore,
more often the embedded cryptosystems are exposed to a risky condition, i.e., suffering
different kinds of attacks. Those attacks can be divided into two parts, i.e., active and
passive attacks. The former just leaves the cryptosystem in an extreme condition, where
the system is running with malfunctions or errors. These errors can be fully exploited by
the adversaries to reveal the secret key, e.g., fault analysis, cf. [BS97] and [BDL97]. The
latter does nothing about the cryptosystem, which just collects and attacks the inherent
information leakage from the running cryptosystem without causing any damages, i.e.,
side channel analysis. We will introduce two examples about the threatening of physical
cryptosystems in the sequel.

Field Programmable Gate Array (FPGA) is a kind of circuit where the implemen-
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tations can be reconfigured and customized by designers with the hardware description
languages. In an FPGA-based system, the Intellectual Property (IP) core is usually
stored into the on chip or external memory. When the system is powered on, the IP core
will be transferred from the memory to the targeted FPGA chip to fulfill given tasks.
However, during the data transferring with an unsecured channel, the bit file from IP
core may be intercepted by Oscar intentionally. Oscar, on the one hand, can modify the
bit file and then send it back to the FPGA chip leading to a malfunction system; on the
other hand, he can use this bit file to clone the whole system resulting in big economic
loss for the users or manufacturers. In other words, during the file transferring from the
memory to the FPGA chip, a lot of attacks can be mounted, cf. [Dri09]. Therefore, a
secure way to protect the IP core from being stolen during the transmission has to be
taken into consideration.

Maybe FPGA is far away from our daily life, now let us take the smart card as an
example. Smart card is so popular, for example, ID card, bank card, visa card, master
card, gate control card, and so forth. Nearly every day, you use more than one of the
mentioned cards in your life. When you insert your card into the card reader, besides
the normal operations for card reading and writing, maybe another party is observing
your card, where your input or output data may be intercepted. However, there exists
a method, where the power consumption variation during operations is measured, then
by means of the mathematic modeling and statistical analysis, the secret key may be
revealed in a very short time, cf. [KJJ99]. The very interesting thing is that by detect-
ing the magnetic radiation during the operations, the key may be revealed as well, cf.
[AARR03]. The attack methods mentioned before are typical examples of side channel
analysis in the path b), Fig. 1.1.

1.3 Side Channel Analysis

The basic idea for side channel analysis is that, without contacting the hardware system
directly, the side channel information leakage, e.g., timing, power consumption, magnetic
radiation, may be fully exploited to reveal the system key. The first practice in SCA is the
Simple Power Analysis (SPA), which directly observes a single power consumption curve
to recover some operation sequences or instructions in a running cryptosystem. Different
from the SPA attack, the Differential Power Analysis (DPA) needs more power traces
to reveal the secret key in cryptosystem by using statistical methods. Both SPA and
DPA methods were proposed by Kocher et al. [KJJ99] in 1999, which demonstrates that
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the power consumption attack on a physical cryptosystem, i.e., smart card, is feasible.
Since then, a lot of scientists are attracted to devote themselves to this research area.
After more than a decade’s development, this field becomes a hot topic for the hard-
ware security. More and more contributions were yielded. However, these contributions
concentrate on two main aspects, i.e., attack methods and countermeasures. For the
former, side channel information capture technologies, and leakage model building, etc.,
are exploited to improve various attacks considering the factors, e.g., run time, resource
usage, and reality feasibility, etc. For the latter, different kinds of countermeasures are
developed to make the system more secure by utilizing different means in terms of the
algorithms, hardware architectures, peripheral components, etc., to counteract malicious
attacks.

With regard to the attack methods, Chari et al. published in 2002 a paper on the
so-called template attack [CRR02] and [GLRP06], where an extra fully controlled device
is required to capture the profiling traces for template generation, after that the proba-
bilities of the noise between the template and the analyzed power traces are calculated
for key revealing. In 2004, Brier et al. proposed the Correlation Power Analysis (CPA)
method [BCO04]. It can be seen as a transform of DPA attack, where, the correlation
coefficient is calculated as a distinguisher between the leakage model and captured power
traces. Later, in 2005, the stochastic analysis approach was introduced by Schindler et al.
[SLP05] and [LRP07]. Such a method features some similarities to the template attack.
Definitely, a fully controlled training device is necessary. Here, the leakage model and the
profiling power traces from training device are mapped together by exploiting the least
squares estimation algorithm. In 2008, Gierlichs et al. [GBTP08] proposed a new attack
method called Mutual Information Analysis (MIA), which combined the knowledge from
the information theory, i.e., mutual information, and supplied a generic side-channel dis-
tinguisher to reveal a secret key in the embedded cryptosystem. In 2012, we proposed an
attack method called Power Amount Analysis (PAA) [TH12e], which relies on the additive
Gaussian white noise channel in communication field aiming to attack the cryptosystem
by exploiting a large set of time points in the time domain to contribute the information
leakage. With respect to the protection of cryptosystems from malicious attacks, a large
number of countermeasures were produced resulting in the hardened systems, where the
unintentional information leakage is reduced in order to obstacle the diversiform attacks
in practice, as detailed in [SP06], [MTT+05], and [SMBY05].
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1.4 Thesis Organization

The security of the cryptosystem has been widely concerned and penetrated in our daily
life by different of means. Therefore, in this thesis, we concentrate the side channel at-
tacks on the FPGA-based cryptographic implementations, where some new and existing
attack methods are proposed and considerably enhanced, respectively, meanwhile, some
trace pre-processing approaches are given to access the secret key in cryptosystem effi-
ciently. Finally, the enhanced attack methods and trace pre-processing approaches are
combined as a tool for supplying us more choices and possibilities to evaluate the security
of cryptosystem. The whole thesis is organized as follows:

Chapter 2 introduces a common architecture of FPGA and the source of power con-
sumption in the running circuits. Then the building of leakage model to mimic the
variation of power consumptions is discussed. Finally, the setup of the measurement
platform is introduced for the subsequent evaluation of attack methods and trace pre-
processing approaches.

Chapter 3 outlines the existing attack methods, as well as some countermeasures to
neutralize malicious attacks in practice. Subsequently, in order to evaluate the efficiency
of attack methods and the security of countermeasures, some evaluation metrics are in-
troduced for the future using.

Chapter 4 extends and abstracts the definition of our new PAA attack method re-
sulting in PAA methodology, where two key issues are presented. On the one hand, by
exploiting the knowledge in communication field a way to preprocess the power traces is
discussed, which reduces the dimensionality of analyzed data leading to the cutting down
of calculation complexity; on the other hand, more distinguishers are introduced to meet
the needs of specific attack requirements.

Chapter 5 introduces our trace form leakage model by means of the least squares
estimation, which can improve the performance of PAA attack significantly. Then, based
on the thoughts in PAA methodology, two derivative attack methods PAA-I and PAA-II
are proposed. Meanwhile, in order to provide more accesses to reveal the secret key in a
running cryptosystem, an attack framework is suggested, which combines different leak-
age models and attack methods.

Chapter 6 discusses our trace pre-processing approaches, i.e., horizontal alignment
and vertical matching, in detail, which are mounted to preprocess the misaligned power
traces produced from the random clock featured cryptosystem in the time and ampli-
tude domains, respectively. In addition, some technical problems during the parameter
adapting phase are discussed. Finally, a software architecture is proposed to deal with
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the misaligned power traces easily in reality.
Chapter 7 is an extension of Chapter 6, where the influence factors for trace capturing

and attacking are introduced first. Then, by exploiting the autogenetic features in PAA
attack, the peak position based horizontal alignment is introduced to speed up the pre-
processing of misaligned power traces without the pattern and vertical matching phases.
Finally, the frameworks for attacking the misaligned and originally aligned power traces
are given, respectively.

Chapter 8 studies and verifies the new proposed attack methods and trace pre-
processing approaches in the previous chapters by attacking different implementations
of block ciphers, i.e., AES, PRESENT, which are running with different clock types and
frequencies.

Chapter 9 concludes the whole thesis and presents the future work.
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2.1 Introduction

The widely used embedded cryptosystems now face a lot of challenges to the system
security. Regardless when and where, the invading of cryptosystems may take place,
where the important data or user’s information is leaked and intercepted. In order to
well protect the embedded system from malicious attacks, one has to get familiar with the
existing attack methods. In other words, the well understanding about the mechanism
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of attacks may greatly help the designers to revise or create proper countermeasures.
Therefore, in order to understand the side channel analysis more easily, the pre-knowledge
about the architecture of FPGA and the source of power consumption in the circuits are
introduced; then, the building of leakage model is discussed, which is studied by running
AES and PRESENT algorithms, respectively. Finally, the measurement setup and the
way to capture the power traces are detailed.

2.2 Field Programmable Logic Array

Field programmable logic array is a type of specific circuit, which can be exploited to
implement the logic gates, e.g., AND, OR, NOT and XOR, complex combinational func-
tions, and temporal logics, etc. The whole or a part of implementation can be re-designed
by the customers exploiting the Hardware Description Language (HDL), e.g., Very high
speed integrated Hardware Description Language (VHDL) and Verilog. Generally, the
speed of FPGA is slower than the Application Specific Integrated Circuit (ASIC). In
addition, it is difficult to fulfill complex designs in FPGA, where much more power is
consumed. However, FPGA features many more advantages, e.g., shorter design period;
flexible re-programmability; the internal logic designs can be modified for error correction
procedure; the costs for such chips are relative low. Therefore, FPGA is widely used to
implement the prototype of ASIC design. After different kinds of verifications in FPGA
design, the mature one is transferred to ASIC leading to lower costs and risks in the chip
design industry. Moreover, in some special industries, FPGA is directly taken as the
components of electronic systems aiming to seize the market as soon as possible.

2.2.1 Architecture of FPGA

There are different kinds of FPGA vendors around the world, e.g., Xilinx, Altera, Actel,
etc. The two biggest vendors are Xilinx and Altera, both produce FPGAs on the basis
of SRAM, where the information will lose when the chip is switched off. FPGAs from
Actel mainly feature anti-fuse technology, which embodies the advantages in terms of
anti-radiation, higher temperature resistance, lower power consumption, etc. Therefore,
FPGAs from Actel are widely used in the military and aerospace fields. The architec-
tures for the FPGAs produced from different vendors are slightly different, however, they
share some common principles. The elemental components in FPGA are introduced in
the sequel.

The FPGA chip embodies four basic modules, Configurable Logic Block (CLB), I/O
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Figure 2.1: Internal Architecture of FPGA

Block (IOB), Block RAM (BRAM), and Digital Clock Manager (DCM), as shown in Fig.
2.1.

CLB is a fundamental logic unit within FPGA. The number of the CLBs varies from
device to device. Each CLB contains a configurable switch matrix consisting of 4 or 6
inputs, multiplexers, and flip-flops. They can be used to implement the combinational
or sequential logics, as well as the configuration of distributed RAM or ROM. In Xilinx
FPGA family, CLB is composed of 2 or 6 slices with additional logics. Each slice has two
4-input Look Up Tables (LUT), user-controlled multiplexers to implement the combina-
tional logic, arithmetic logic, as well as 1 bit register.

IOB is an interface functioning as a bridge to connect the chip’s internal logics with
external pins, which fulfills different electrical characteristics of the input/output signals.
In order to meet the needs of different electrical standards, the IOBs in FPGA are divided
into several groups by interface voltage, i.e., different banks. Please note that each bank
can only have one specific voltage standard.

BRAMs are embedded into the FPGA bringing more application flexibilities, which
can be configured as a single/dual-port RAM, Content Addressable Memory (CAM), and
FIFO, etc.

Digital Clock Management is a very important component in the FPGA, which is
exploited to manage the clock running in the FPGA chips, e.g., clock frequency divide,
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multiplication, skew elimination, and phase shift. It contains four functions, which are
delay locked loop, digital frequency synthesizer, phase shift, and status logic.

2.2.2 Configuration of FPGA

Normally, the implementations, e.g., soft/hard IP cores, are stored into the on-chip RAM
deployed in FPGA. Therefore, in order to change the functions or architectures of FPGA,
the on-chip RAM can be re-programmed easily. When the FPGA is powered on, either
the complied program data can be downloaded to the on-chip RAM or the compiled
bit file can be loaded automatically to the FPGA via the flash to fulfill given tasks.
There are several modes to configure the FPGA chip, for example, JTAG/boundary-scan
configuration mode, master-serial configuration mode, slave-serial configuration mode,
master-serial peripheral interface flash configuration mode, and so forth. The user can
choose the configuration mode selectively according to the specific requirements.

2.2.3 Dynamic Partial Reconfiguration

Dynamic Partial Reconfiguration (DPR) is a new conception in FPGA technology. It de-
notes that some parts within the FPGA system can be dynamically reconfigured without
interfering with the function of the system while the other parts are still well working.

Generally, FPGA chip is divided into three parts, i.e., dynamic partial reconfiguration
region (DPR region), static region, and bus macro, as shown in Fig. 2.2. DPR region
must be downloaded at some idle slots during the whole application. In this application,
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three DPR modules can be downloaded selectively according to the specific requirements.
These three modules can fulfill the same function with different type of implementations,
or they all are different functions with different implementations. With regard to the bit
stream downloading, one has two possibilities to fulfill this goal. On the one hand, these
modules can be downloaded via the interface outside the FPGA; on the other hand, one
may do it from the internal memory, where a control logic is needed in the static region
to control the sequence of bit stream downloading. Meanwhile, such a region must keep
running correctly to manage the input and output data during the whole application.
Here, the bus macro is an only bridge for the communication between the DPR and the
static region.

As mentioned before, the modules A, B, and C, can be reconfigured with the same
function and different implementations. Assume that the modules A, B, and C at a
certain time point consume the power consumption, e.g., 3, 5, and 9 units, respectively,
while the static module dissipates 15 units power consumption. Then at the same time
point, for doing the same task, the power consumption for the system features three
possibilities, i.e., 18, 20, and 24 units. Therefore, by choosing the DPR modules ran-
domly, the total power consumption from this system is randomized accordingly. For
this reason, the DPR based cryptosystem may be a countermeasure to neutralize the
power consumption attacks.

2.3 Power Consumption in CMOS Circuits

In this section, a brief introduction to the source of power consumption in the CMOS
circuits will be given, which is an important reason why power consumption attack can be
mounted feasibly. Nowadays, the electronic circuits are composed by the enormous num-
ber of CMOS transistors, meanwhile, ASICs and FPGAs are no exception. Therefore, the
power consumption for the transistors switching in CMOS circuits should be considered
carefully. Theoretically, the total power consumption arises from the hardware circuits
are divided into two main parts, i.e., dynamic and static power consumptions. Both of
them detailed in [WH10] are introduced in the sequel.

2.3.1 Dynamic Power Consumption

A CMOS inverter with a load capacitance shown in Fig. 2.3 is taken as an example.
When the value of input Vin switches from 1 to 0, the pMOS-transistor conducts, and
the capacitance C is charged with load voltage VDD yielding the output value 1 for Vout
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Figure 2.3: CMOS Inverter With a Load Capacitance

accordingly. On the contrary, when Vin changes the value from 0 to 1, then the nMOS-
transistor switches on, the capacitance C is discharged via the ground line GND leading
to the output value 0 for Vout accordingly. Because of the input value changing, the pMOS
and nMOS transistors are switched on and off alternatively resulting in the capacitance
charging and discharging accordingly. The most of the power dissipation for this inverter
derives from the capacitance’s charging and discharging, which can be calculated as fol-
lows:

E =

∫ ∞
0

C
dV

dt
VDDdt = C · VDD ·

∫ VDD

0

dV = C · V 2
DD (2.1)

If the gate switches with the frequency fsw during the time period Tc, then the num-
ber of certain capacitance charging and discharging is presented by Tc · fsw resulting in
average power consumption:

Psw =
E

Tc
=
Tc · fsw · C · V 2

DD

Tc
= C · V 2

DD · fsw (2.2)

Psw is so-called dynamic power consumption. One finds that the transistors may not
switch in every clock period. Therefore, in order to describe the switching frequency fsw
more properly, an activity factor α is introduced. Parameter fsw is then depicted as the
product of active factor α and system clock frequency f leading to the rewrite of dynamic
power consumption:

Psw = α · C · V 2
DD · f (2.3)

The parameter α is a statistic value, which can be roughly estimated. The maximum
value of α features 1, i.e., the transistor gates switch in each clock period, otherwise the
value is smaller than 1, however, larger than 0.
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Another type of dynamic power consumption is called short circuit current. It de-
scribes that when the circuit is being pulled up or down, the network states are partially
powered on. Consequently, the short circuit current occurs consuming a certain amount
of power as well.

Theoretically, the dynamic power consumption consists of two main parts. On the
one hand, it is the charging and discharging power consumption arisen from the CMOS
gates switching; on the other hand, it is produced from the short circuit current between
pMOS and nMOS transistors in the circuit networks.

2.3.2 Static Power Consumption

Static power consumption always exists regardless the CMOS gates switching. The source
of the static power consumption arises mainly from the following four parts, subthreshold
leakage, gate leakage, junction leakage, and contention current, cf. [WH10, 194-197]. All
these leakages occur when the transistors are supposed to be turned off, which consume
the power consumption as well. However, comparing with the proportion of dynamic
power in total power dissipation, the static power consumption is negligible.

In order to have a further investigation between the dynamic and static power con-
sumption in FPGA chip, the authors in [SKB02] proposed an example in Xilinx FPGA,
Vertex-II series. They stated that the static power consumption requires 5 − 20% of
the total power dissipation. Consequently, the most portion of power consumption of a
running chip derives from the dynamic power dissipation, which is the basic principle to
mount power consumption attacks successfully.

2.4 Leakage Model

Leakage model exploits the mathematic approaches to estimate the variation of power
consumption for a certain component in the circuits. Especially in side channel analysis,
the efficiency of attack methods depends on the quality of the leakage model building.
Usually, the estimation of power dissipation for the whole circuit is not necessary. The
states changing of the targeted register are focused during the cryptographic operations.
When a cryptosystem is running with some cryptographic implementations, a certain
amount of registers is exploited and assigned to store and transfer the intermediate values
in a binary form. Therefore, a bit value changing from 0 to 1 in a register denotes that a
unit power is consumed. For instance, a byte register with 5 bits changing the values from
0 to 1 denotes that 5 units power consumption have been dissipated, which is a small
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example to show the basic idea of leakage model building. Consequently, the well selection
and carefully building of the leakage model play an important role in side channel analysis
field. There are a lot of ways to build the leakage model and to mimic the variation of
power consumption in cryptosystem, e.g., Hamming Wight (HW), Hamming Distance
(HD), bit model, and zero-value model, etc., cf. [MOP07, pp. 129-135]. However, here,
two very common leakage models, i.e., HW and HD, are introduced, respectively, which
are widely utilized in practical attacks.

2.4.1 Hamming Weight Leakage Model

Hamming weight leakage model calculates the occurrence number of value 1 for a certain
register in the cryptosystem, e.g., an eight bits register with value 11001001 features the
Hamming weight value 4. This model just estimates the power consumption of current
state for the analyzed register, i.e., the instant power consumption. Therefore, we named
it as Instantaneous Leakage Model (ILM), see [TH12e], which has nothing to do with
the previous states of the analyzed register. Therefore, it is easy and fast to mount this
model into real attacks.

2.4.2 Hamming Distance Leakage Model

Hamming distance model considers the different corresponding positions between the
two states of a certain register. For example, a register changes the state from s1 =

01101110 to the state s2 = 10010110 resulting in the Hamming distance value 5. One
finds that the HD model estimates the variation of power consumption within a time
interval. Therefore, we called it as Process Leakage Model (PLM), as detailed in [TH12e].
Comparing to HW model, the HD model involves the previous states into the calculation,
which features higher calculation complexity than HW model. However, experimental
results show that the HDmodel is more powerful than HWmodel in practice, see [MOP07,
pp. 131].

Please note that the HD value can be achieved easily via the calculating of Hamming
weight by (2.4). In other words, the Hamming distance can be seen as the Hamming
weight calculation between the two exclusive-or-ed states.

HD(s1, s2) = HW (s1 ⊕ s2) (2.4)
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Figure 2.4: Wrokflow of AES-128

2.4.3 Examples in Leakage Model Building

Usually, before mounting attacks, it is better for the adversaries to have the knowledge
about the specific implementations in the analyzed cryptosystem. Then, they may fo-
cus some weak parts in the hardware architecture to build the leakage model, where the
information is considerably leaked. Therefore, in order to explain the mentioned leak-
age models and exploit them in the subsequent chapters, an AES-128 implementation
is taken as an example to show how to build a leakage model for a cryptographic algo-
rithm running in the cryptosystem. It includes two steps, which are analyzed register
locating and leakage model selection. Please note that a wrong register targeting and
an improper leakage model selection result in lower attack efficiency, successful rate, or
fruitless attacks. Therefore, in this section, a short introduction about block cipher AES,
light weight algorithm PRESENT, and their leakage model building is given.

2.4.3.1 Leakage Model Building for AES

AES The workflow of an AES-128 is shown in Fig. 2.4. The plaintext, ciphertext and
the key are all 128 bits. The whole process features 10-round operations. In the first 9
rounds, each round embodies four operations, i.e., SubBytes, ShiftRows, MixColumns and
AddRoundkey. In the last round, the operation of MixColumns is omitted. Therefore,
for the last round, by means of the known ciphtertext and guessed key values, the register
states before the SubBytes operation can be easily traced back. Hence, the cryptosystem
may be attacked by building the HD leakage model focusing on the last round operation
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j 1 6 11 16 5 10 15 4 9 14 3 8 13 2 7 12

Table 2.1: Index Table of HD Model in the Last Round
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Figure 2.5: Register Scheme for Shift Rows

before and after the SubBytes operation in the sequel.

Leakage Model Building The HD model focusing the register states A and B before
and after S-Box in the last round operation is described as follows:

HD(AB) = HW (A⊕B)

= HW (c′j ⊕ cj)

= HW ((Sbox−1(ci ⊕ ki))⊕ cj) (2.5)

where c′i denotes the output from previous round. i and j are byte index, where
i, j ∈ [1, 16] holds. Because of the ShiftRows operation, the output byte values after
SubBytes operation are shifted to different positions, except the bytes 1, 5, 9 and 13, as
illustrated in Fig. 2.5. Therefore, in order to attack the ith key byte value, the index val-
ues for i and j are different accordingly. For example, for revealing the second byte key,
the Hamming distance model is calculated as HD(AB) = HW ((Sbox−1(c2⊕ k2))⊕ c6)),
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i.e., the second key byte causes the register states changing in sixth position before and
after the S-Box. Then, the corresponding relationship for indexes i and j are listed in
Table 2.1. In general, the HD model is exploited to calculate how much power has been
consumed during the register states changing from A to B.

The HW model considering the register state A in the last round before S-Box is
calculated as follows:

HW (A)j = HW (Sbox−1(ci ⊕ ki)) (2.6)

where the Hamming weight for jth byte in register A is caused by the ith byte key for the
ShiftRows operation, where j, i ∈ [1, 16] holds. The corresponding relationship between
i and j is shown in Table 2.1.

2.4.3.2 Leakage Model Building for PRESENT

PRESENT As known, AES is a very common algorithm, which is widely used in
cryptosystems. However, it may not meet some special purposes, where the hardware
resource is confined, e.g., RFID tags. Therefore, a light-weight block cipher algorithm,
PRESENT was proposed in [BKL+] to meet the needs for both the resource and security
requirements.

The whole algorithm was proposed on the basis of a SP-network [MOV96]. It con-
sists of totally 31 rounds, where the length of plaintext is 64 bits and the key length
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Figure 2.7: Work Scheme of the First Nibble Key

can be chosen selectively, e.g., 80 or 128 bits. The basic workflow for such an algorithm
is illustrated as Fig. 2.6. Different from the AES, for the data processing, the whole
PRESENT algorithm only features three main operations, for instance, add round key,
substitution box (S-Box) and permutation. Before the data getting into the S-Box, it
must be exclusive-or-ed with the round key. Then the output feeds to the S-Box, where
the data are processed nibble by nibble, i.e., four bits in and four bits out. Therefore,
for processing 64 bits input at the same time, 16 S-boxes are required. For attacking
this system nibble by nibble, only 16 possible key values for each S-Box are guessed.
After that each bit is permuted to another position in a 64 bits register line, as shown
in Fig. 2.7. For example, for the first nibble key, after the S-Box operation, these four
bits are assigned to the positions, i.e., 0, 16, 32, and 48, in the register line. The whole
corresponding relationship for each bit before and after the S-Box is given by the Table
2.2. The completion of the mentioned three steps is taken as a round operation. This
round operation runs for 31 times resulting in the ciphertext. For each round, the key is
updated by running the key schedule algorithm as the round key, cf. [BKL+].

Leakage Model Building For attacking PRESENT, the Hamming distance model
before and after the S-Box is built by (2.7), where pi and ki denote the ith nibble plain-
text and key, respectively; while ci defines the output of S-Box.

HD = HW (pi ⊕ ci) (2.7)

= HW (pi ⊕ Sbox(pi ⊕ ki)) (2.8)
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P(i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P(i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P(i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P(i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Table 2.2: Index Table of Permutation Layer
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Figure 2.8: Measurement Setup

2.5 Measurement Setup and Power Trace Capture

In order to reveal the secret key of cryptosystems, a good measurement setup for capturing
the power consumption in a working cryptosystem is necessary. Such a measurement
setup plays an important role for the power consumption analysis, and helps the attacker
to achieve high attack success rate by means of an oscilloscope with higher sample rate
and resolution. In this section, a power consumption measurement setup is introduced,
and some problems occurring in the trace capture phase are discussed as well.

2.5.1 Measurement Setup

As shown in Fig. 2.8, the whole setup is composed by five main parts, i.e., FPGA-
development board, DC power supply, function/arbitrary waveform generator, computer,
and oscilloscope.

Two FPGAs are deployed into FPGA-development board. One is used as the target
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device to implement cryptographic algorithms; the other one is exploited for the board
control, including the communication interface, which is a bridge between the target and
out-board devices. Between these two FPGAs, there exist three buses, i.e., data, address,
and control buses. The control and targeted FPGAs are driven by the on-board oscilla-
tors, respectively. However, which are removable. The external clock can be used as well
via the SMA (SubMiniature version A) connector from an arbitrary waveform generator.

Function/arbitrary waveform generator is exploited to supply the FPGA board with
adjustable higher-quality clock signal in real experiments. Therefore, the waveform gen-
erator can be easily adjusted with different clock frequencies. In order to have a stable
power supply, a DC power supply is selected for providing the power to both FPGAs. For
example, the 3.3V power, which is then divided into two parts by the regulators in the
FPGA board: one is an unchanged 3.3V power for the peripheral devices, i.e., memory,
configurations; the other one is a 1.6V power to the core chip of FPGA.

Computer is exploited for communicating with the targeted device via the control
FPGA. The input and output data are sent and received via an Universal Serial Bus
(USB) interface. During the trace capture, the encrypted data is verified with the soft-
ware to assure the captured power traces are under the correct encryption or decryption
operations. Meanwhile, the computer is connected to the oscilloscope via USB socket to
store the captured power trace synchronously for the subsequent analysis.

In order to monitor the variation of power consumption produced from the target
cryptographic FPGA, an oscilloscope with two channels is necessary, where, one is con-
nected to the FPGA board to execute the trace capture task, and the other one is used to
receive the trigger signal. The monitored power consumption is sampled and stored into
on-line memory in the oscilloscope. Then, these data are written to the computer via the
USB connecter. Usually, the higher sample rate the better quality can be achieved for
the captured power traces resulting in the improvement of attack methods.

2.5.2 Power Trace Capture

In power trace capture step, the power consumption of a resister, inserted between the
target FPGA and ground line, is measured. One may also measure the power consump-
tion variation for the resister inserted between the 1.6V voltage supply and the core chip
of target FPGA. In order to capture the power traces precisely, an extra trigger signal is
needed. When the trigger signal is higher/lower than a threshold value, the oscilloscope is
then informed to start the power traces recording. Therefore, it is necessary to output a
trigger signal deliberately. For example, in the idle state, the trigger signal is high valid,
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i.e., value 1 holds. During the encryption or decryption, the trigger signal is changed
to 0. Then the capturing can be precisely executed by setting the trigger point in the
oscilloscope as falling edge. However, for a real attack, it is difficult to yield or capture
an extra trigger signal. The adversaries just record the power consumption from the very
beginning when the cryptosystem is turned on. Therefore, they must know exactly the
start point of the system, which may also be taken as a trigger signal in general. However,
in scientific research, the trigger signal during the running of encryption or decryption
can be output intentionally.
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3.1 Introduction

Side channel analysis represents the attacks on physical cryptosystems, where the infor-
mation leakage, i.e., timing, fault, power consumption, magnetic and thermal radiation,
etc., may be fully exploited to reveal the secret key in the running cryptographic imple-
mentations. As mentioned, a lot of attack methods were published in the last decade.
On the one hand, they try to improve the existing approaches in terms of run time, side
channel resource usage, and so forth; on the other hand, a lot of new attack methods
were proposed by means of new models or conceptions from other disciplines.
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Figure 3.1: Workflow of Side Channel Analysis

The general workflow of side channel analysis is illustrated in Fig. 3.1. A crypto-
graphic algorithm C(x, k∗) = y is running in a physical system, where x and y denote
the input and output, respectively, and k∗ defines the secret key. During that time, some
operations are executed by the function O(x, k∗) resulting in the specific register state
v. Meanwhile, the leaked side channel information SI , e.g., power consumption, is moni-
tored by the adversaries. However, not all the side channel information is useful because
of the noise and other useless information. Actually, the adversaries focus on the data
dependent information leakage L, where L ∈ SI holds. In order to mimic the register
state v, the beforehand intercepted input x, output y, and guessed key value k may be
exploited by function O(x, k) resulting in the key dependent intermediate register states
ṽk. Consequently, the leakage model, e.g., Hamming distance or Hamming weight is cal-
culated to estimate the key dependent leakage model L̃k by the function f(ṽk). Finally,
the estimated leakage model L̃k and the side channel information SI are analyzed by
D(SI , L̃k) to reveal the correct key in cryptosystems. D(·, ·) denotes the statistical anal-
ysis methods, e.g., least squares, correlation coefficient, maximum likelihood, or mutual
information, etc.

In this chapter, some existing attack methods are introduced first. Then the effec-
tive countermeasures are discussed to neutralize different attacks in practice. Finally, the
metrics to evaluate the attack methods and the security of targeted devices are presented.

3.2 Attack Methods

Before we start to discuss the attack methods, a definition called analysis region used
throughout the thesis is introduced first. It is a portion of the captured side channel
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Figure 3.2: Analysis Region

information, which contains the information leakage the adversaries focus on. Take a
captured power trace as an example, if the attackers concentrate on the last round oper-
ation of a standard AES-128, then the analysis region is the area, where the last round
peak exists, as shown in Fig. 3.2. In real attacks, by determining such a region, a lot of
time can be saved for analyzing the part where the adversaries are not interested in.

3.2.1 Simple Power Analysis

Simple power analysis fully observes the variation of power consumption with a single
power trace to reveal the secret key of a running system or to reconstruct the opera-
tion sequence for the cryptographic implementations, see [KJJ99]. Because of the noises
produced from the physical hardware, sometimes several power traces are captured for
the noise reduction. However, this scheme shows some flaws, especially when the power
consumption varies the power values considerably during the data processing phase. In
that case, to identify the operation sequence and to reveal the correct key value for the
analyzed cryptosystem become difficult. In addition, by mounting this attack, the at-
tackers must have good knowledge about the targeted device and the running algorithms
as well as some practical experiences.

3.2.2 Differential Power Analysis

Differential power analysis is a powerful attack method in side channel attack field, which
is based on the statistical theories. Therefore, the adversaries may not know the details
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of the inner architecture in targeted device, and a large number of power traces are
required in the attack phase. The general attack scenario consists of three parts, i.e., side
channel information capture, estimated leakage model generation, and attack mounting
by statistical analysis. In this attack method, the adversaries tend to classify the power
traces according to the values in the estimated leakage model, and then the differences of
mean values for the classified power traces are calculated resulting in correct key value.

3.2.2.1 Side Channel Information Capture

In this thesis, the side channel information SI defines the power traces captured from
a running cryptosystem during its encryption or decryption. Therefore, N power traces
compose of the trace matrix T with the size N ×M , where T ∈ SI holds. Each trace
embodies M sample points. The power traces are one to one corresponded to the input
p and output c, both of them feature the size N × 1.

The power traces must be strictly aligned, which is a prerequisite for mounting DPA
attack successfully, cf., [MOP07, pp. 120]. In other words, for a common time point in
trace set T , all these power values are produced by the same operation. Otherwise, the
misaligned power traces may cause difficulty during the attacks. Unfortunately, if the
power traces are misaligned, some pre-processing efforts should be invested in advance
to yield the sound power traces for the subsequent attacks.

3.2.2.2 Estimated Leakage Model Generation

The generation of the estimated leakage model L̃ includes two steps. The first step is
targeted register determining. Take an AES-128 as an example, which features 10-round
operations. The operation round should be determined in advance, e.g., the first round
or the last round. In the second step, the intermediate values ṽ is calculated by exploiting
plaintext p and possible guessed key value k̃ via function O(p, k̃) = ṽ. The intermediate
value ṽ is then mapped by the function f(ṽ) leading to the estimated leakage model L̃
as follows:

L̃ =


L̃1,1 · · · L̃1,K

... . . . ...
L̃N,1 · · · L̃N,K

 (3.1)

where N denotes the number of the input, and K defines the space of subkey values. In
order to generate an efficient and feasible leakage model L̃ for the subsequent attacks,
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the key space K must be chosen carefully. For a register, the more bits one focuses on,
the larger key space one may face. For instance, if the adversary focuses a byte register,
then the possible key values are 28, i.e., K = 256. However, if he wants to attack a whole
register with 16 bytes, then the key space is a huge and infeasible number, i.e., 2128, which
leads to an impossible mission. Therefore, for attacking block cipher AES-128, usually,
the attack is mounted byte by byte. In other words, the DPA attack is mounted 16 times
for revealing all the key bytes.

3.2.2.3 Attack Phase

The basic conception of DPA attack is that, after some transforming processes, the esti-
mated leakage model L̃ only contains two values, e.g., 1 and 0. According to these values,
the power traces are classified into two groups. Then the mean values of the 1 and 0

featured power traces are calculated, respectively. Finally, the difference R between these
two mean values is determined, from which the secret key of targeted cryptosystem can
be eventually revealed. The whole attack scenario depicted in [MOP07, pp. 150-152] is
outlined in the following.

Each element in L̃ is compared to a threshold value q and stored back to the same
position in L̃. After that the element L̃i,j in L̃ only contains value 0 or 1. For example,
the threshold value q = 4. If L̃i,j ≥ 4 then, L̃i,j = 1 else L̃i,j = 0, where i ∈ [1, N ] and
j ∈ [1, K] hold. Subsequently, the mean values m1, m0 of 1 and 0 featured power traces
are separated and calculated by following formulas, respectively.

m0(i,j) =
1

n0(i)

N∑
s=1

(1− L̃s,i) · Ts,j (3.2)

m1(i,j) =
1

n1(i)

N∑
s=1

L̃s,i · Ts,j (3.3)

n1(i) =
N∑
s=1

L̃s,i (3.4)

n0(i) = N − n1(i) (3.5)

where i ∈ [1, K] and j ∈ [1,M ] hold. Finally, the difference Ri,j can be calculated as
(3.6). Then the correct key is identified by the largest difference value in R.

Ri,j = m0(i,j) −m1(i,j) (3.6)



30 Chapter 3. Side Channel Analysis

3.2.3 Correlation Power Analysis

Correlation Power Analysis, to some extent, is a variation of DPA attack. Comparing to
the trace selection and group in DPA attack, CPA attack exploits the Pearson correlation
coefficient as a distinguisher to analyze the relationship between the leakage model L̃ and
the captured power trace set T to yield the correct key featuring the largest correlation
value.

Given two random variables X = [x1 . . . xn] and Y = [y1 . . . yn], both of them contain
n elements, in order to evaluate the similarity between X and Y , Pearson correlation
coefficient is carried out as follows:

ρ =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2

√∑n
i=1(Yi − Y )2

(3.7)

where −1 ≤ ρ ≤ 1 holds. If ρ > 0, then X and Y are positive correlated; if ρ < 0, then
negative correlated; and if ρ = 0, then uncorrelated; if ρ = ±1, then completely positive
(negative) related. This is the basic idea of Pearson correlation coefficient.

In CPA attack, the power traces do not need to be classified. The attacks can be
mounted directly by calculating the correlation coefficient (Corr) between the estimated
leakage model L̃ and the captured power trace set T by the formula (3.7).


R1,1 · · · R1,M

...
. . .

...

RK,1 · · · RK,M

 = DCPA




T1,1 · · · T1,M

...
. . .

...

TN,1 · · · TN,M




L̃1,1 · · · L̃1,K

...
. . .

...

L̃N,1 · · · L̃N,K


 (3.8)

Ri,j = Corr(T1:N,j, L̃1:N,i) (3.9)

The whole attack phase is depicted as follows:

1. Build the estimated leakage model L̃.

2. Calculate the correlation coefficient between L̃ and T , as shown in (3.8). The
element value Ri,j is then calculated by (3.9), where i ∈ [1, K] and j ∈ [1,M ] holds.

3. Determine the maximum value in R, which indicates the correct key.

In practice, CPA is widely used for its low calculation complexity and high attack effi-
ciency.



3.2. Attack Methods 31

3.2.4 Profiling Based Attacks

Template attack and stochastic approach were proposed based on the prior knowledge of
the attacked hardware, where an identical fully controlled device is required for profiling
phase to build the key dependent template and stochastic model in advance. Both meth-
ods share a common conception that between each captured power trace and template or
stochastic model the noise vector Z exists, which features multi-Gaussian distribution,
as shown in (3.10). Here, for each attacked power trace, the probability of the noise
vector Z can be obtained. Then the maximum likelihood method is used for each trace
to identify the secret key in cryptosystems.

In this section, the general idea of the template attack and stochastic approach, de-
tailed in [CRR02] and [SLP05], respectively, are outlined.

Prob(Z) =
1√

(2π)m|C|
exp(−1

2
ZT · C−1 · Z) (3.10)

3.2.4.1 Template Attack

The attack scenario for template attack contains two steps, i.e., profiling and attack
phases, as discussed in the following.

Profiling Phase In the profiling phase, the template and the covariance matrix are
calculated by means of the profiling traces produced from an identical fully controlled
training device as follows:

1. For each subkey value k, N power traces T ′k are acquired, where the mean vector
Mk for these captured power traces are calculated as the template:

Mk =
1

N

N∑
i=1

T ′k(i,:) (3.11)

2. Calculate the difference between pairwise
∑K

i,j Mi−Mj, choose p time points where
the large differences are shown.

3. Calculate the noise matrix Zk = T ′k(j,1:p) −Mk(1:p), where j ∈ [1, N ] holds. Then
compute the covariance matrix Ck = cov(Zk) with the size p× p.

Attack Phase In the attack phase, for each power trace captured from the targeted
device, the probabilities of key dependent noise are calculated by the formula (3.10). Then
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the secret key can be eventually revealed by exploiting maximum likelihood estimation,
cf. [CRR02] and [GLRP06].

3.2.4.2 Stochastic Approach

Stochastic approach embodies some similar steps with the template attack. The differ-
ence between both attack methods is the profiling phase. Here, the leakage model, i.e.,
Hamming distance, Hamming weight, or bitwise model is required indirectly. In other
words, these leakage models are projected into the captured profiling traces by exploit-
ing least squares estimation. Then the estimation of the covariance matrix for the noise
is calculated. The attacking phase is the same as template attack, for each trace, the
maximum likelihood method is exploited to identify the largest noise probability, which
indicates the correct key.

3.2.4.3 Stochastic Model

Profiling Phase In stochastic model, at any time point t, the captured power traces
are modeled as Tt(x,k) = Lt(x,k) + Z, where, x denotes the input, and k represents the
subkey value; Lt(x,k) defines the data dependent part, i.e., leakage part; Z denotes the
random noise. In order to estimate the Lt(x,k) by L̃t(x,k), where L̃t =

∑u−1
i=0 βigi holds, the

least square estimation is exploited as follows:

N1∑
j=1

(Tt(xj ,k) − L̃t(xj ,k))
2 = ‖Tt −Mb̃‖2 (3.12)

b is the coefficient, where b := β0, . . . βu−1 holds. M consists of the element g, which is
formed by the leakage model, e.g., Hamming weight, Hamming distance, or the power
values in bitwise, as follows:

M =


1 g1,2 . . . g1,u−1

1 g2,2 . . . g2,u−1

...
...

...
1 gN1,2 . . . gN1,u−1

 (3.13)

where N1 denotes the number of captured profiling traces, and u is the dimension of the
base vector g. Subsequently, the coefficient b is estimated by b̃ as b̃ = (MTM)−1MTTt.
Then L̃t = Mb̃ can be achieved. In the estimation of covariance matrix C, the number
of N2 profiling traces with the fine chosen p time points are exploited, which holds the
size p× p, cf. [SLP05] and [LRP07].
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Figure 3.3: Relation Between Entropy and Mutual Information

Attack Phase Both parameters L̃t and covariance C are utilized in the attack phase
together with the N3 power traces captured from the targeted device to depict the proba-
bility of noise by exploiting Rt =

∏N3

j=1 Prob(Tt(xj, k)−L̃t(xj, k)) in (3.10), i.e., maximum
likelihood estimation. Then the correct key can be determined.

3.2.5 Mutual Information Analysis

Mutual information analysis, proposed in [GBTP08] and [BGP+11], combines the knowl-
edge from information theory, i.e., mutual information, to determinate the correct key
value in the physical cryptosystem. A short introduction about such a method, detailed
in [CT05, pp.31-48], is given in the following.

3.2.5.1 Mutual Information

There exists a random variable X with the element x. The probability mass function of
X is p(x), then the entropy is defined as follows:

H(X) = −
∑
x

p(x)log2p(x) (3.14)

The entropy measures the average uncertainty of random variable X. The base of the
logarithm is 2, which means the unit of the entropy is bit. Consequently, it is widely
used in the communication channel theory. H(X) denotes the entropy for a single ran-
dom variable. one can also define the conditional entropy as H(X|Y ), which means that
the entropy of X is conditionally under the prior knowledge of another variable Y , as
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given in the following:

H(X|Y ) = −
∑
x,y

p(x, y)log2p(x|y) (3.15)

The reduction between H(X) and H(X|Y ) is called mutual information, as shown in
(3.16). Mutual information measures the mutual dependency between the analyzed two
variables X and Y , which features the range 0 ≤ I(X;Y ) ≤ min(H(X), H(Y )).

I(X;Y ) = H(X)−H(X|Y ) =
∑
x,y

p(x, y)log2
p(x, y)

p(x)p(y)
(3.16)

Therefore, both variables X and Y are independent when I(X;Y ) = 0 holds; the larger
of I(X;Y ) the more mutual dependent of X and Y are, which is the fundament that
I(X;Y ) may be exploited as a distinguisher in the side channel analysis. The relation-
ship between the entropy and the mutual information is visualized in Fig. 3.3, where the
I(X;Y ) can be obtained in three forms by (3.17). H(X, Y ) implies the joint entropy of
X and Y , which can be calculated as (3.18).

I(X;Y ) = H(X)−H(X|Y ) (3.17)

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(X, Y )

H(X, Y ) = −
∑
x,y

p(x, y)log2p(x, y) (3.18)

3.2.5.2 Mutual Information Analysis

CPA attack just measures the correlation coefficient ρ between the captured power trace
set T and the estimated leakage model L̃ to reveal the correct secret key in the running
cryptographic algorithms. As a consequence, like CPA attack, T and L̃ can also be ana-
lyzed by using mutual information:

I(T ; L̃) = H(T ) +H(L̃)−H(T, L̃) (3.19)

However, one finds that the mutual information cannot be calculated by exploiting the
elements in T and L̃ directly, the mass function p(T ), p(L̃), and their joint mess function
p(T, L̃) must be determined in advance.

There are different ways to carry out mass function estimation. A common and easy
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Figure 3.4: Histogram Examples

way is called histogram estimation, where the variables are divided and grouped into
several bins, i.e., intervals. Then the number of occurrences for a certain value falling into
the same bin is counted, which results in the probability density of the analyzed data. Fig.
3.4 a), b), and c) illustrate the mass functions estimated by histogram. Subsequently, the
entropy H(T ), H(L̃), and H(T, L̃) can be calculated accordingly. Since the adversary
has all the elements, the mutual information analysis can be mounted successfully, as
detailed in [GBTP08] and [BGP+11]. One finds that the estimation of mass function
plays an important role in MIA attack, which gives a direct impact on the attack results.
Besides the histogram estimation, the authors of [BGP+11] suggested another way called
kernel density estimation to estimate the mass function in practice.

3.3 Countermeasures

In order to neutralize different kinds of malicious attack, more and more countermeasures
were proposed. The main idea for the countermeasure is to disconnect or disturb the
relationship between the processed data and the leaked side channel information, e.g.,
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Figure 3.5: Setup of Random Clock Featured Cryptosystem

power consumption. We cannot prevent the system from being attacked completely.
However, the improvement of the security level in cryptosystem is feasible.

3.3.1 Hiding

Hiding is a very common countermeasure for mitigating malicious attacks in reality,
which features two purposes: on the one hand, randomizing the operations, input clock,
etc., of cryptosystem to mislead attackers from the produced misaligned power traces.
Regardless whichever method one uses, before carrying out attacks some pre-processing
for the power traces is necessary; on the other hand, hiding increases the noise level in
the circuits resulting in lower Signal to Noise Ratio(SNR), i.e., the useful information is
hidden into the noise, which cannot be discerned easily.

Regardless the CPA, DPA, template attack, or stochastic approach, the prerequisite
for all these attacks are the power traces must be aligned. Therefore, the misalignment
injection in the captured power traces deliberately may be a good choice to counteract
the attacks. There are different ways to achieve this goal, e.g., dummy wait sates in-
serting, clock frequency varying, etc. Especially in [YWV+05], the authors proposed a
countermeasure, where not only the power supply voltage of the cryptosystem changes
but also the system clock frequencies vary resulting in the power peak positions shift in
the time domain as well as the power values changes in the amplitude domain. However,
in all these mentioned countermeasures, only random clock changes the clock frequency
fed in the cryptosystem, which impacts on the power consumption in hardware circuits.
In other words, the clock frequency variation has direct relationship with the dynamic
power consumption in the circuits, as shown in (2.3). Therefore, some phenomenons
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accompanied must be considered before mounting the attacks. Here, the random clock
featured cryptosystem is illustrated as Fig. 3.5. A random number generator is inserted
between the clock line and the cryptocore. A multiplexer is exploited to choose the clock
type, i.e., fixed clock or random clock, by the selection signal. The clock frequency in
the clock chip is fixed and named as base clock frequency fb, which feeds to the interface
and the random number generator, respectively. The output fr of the random number
generator drives the cryptocore resulting in the misaligned power traces. Please note
that 0 ≤ fr ≤ fb holds. Therefore, the maximum clock frequency of the fr is fb, i.e., the
increasing of base clock frequency enlarges the range of random clock frequency.

Signal to noise ratio is a widely used terminology in the communication field, which
defines the ratio of signal power Ps to noise power Pnoise by:

SNR =
Ps

Pnoise

(3.20)

It shows the signal strength, which is emerged in the noise. The higher SNR, the easier
one can distinguish the signal from the noise. On the contrary, the lower SNR value
means the signal is weak and surrounded by too much noise. Therefore, under this con-
dition, the signal cannot be discerned easily, i.e., the information is hidden in the noise.

With regard to the noise adding, theoretically, we have two possibilities to satisfy this
aim: on the one hand, the information containing in the captured side channel infor-
mation can be reduced without changing the amount of noise. However, it is infeasible,
because the amount of leaked information cannot be easily controlled, which is blinded
to the designers; on the other hand, the noise may be generated and added to the system,
which is pretty easy by means of dummy operation inserting and shuffling. With all these
methods, more power is dissipated, which, to some extent, emerges the information into
the noise leading to lower success rate in real attacks.

The design technologies may help the cryptosystem to resist power consumption at-
tacks. For instance, parallel architecture, dynamic dual-rail logics, etc. The dynamic
reconfigurable FPGA mentioned in Chapter 2 can also be used as the countermeasure,
where the S-Box implementations are changed randomly during the running encryption
resulting in the changes of power consumption.

3.3.2 Masking

Masking is a most-used method in the cryptography field to counteract the power con-
sumption analysis. This method exploits one or several mask value to hide the information
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processing. The basic conception is that, the input or intermediate value x involved in the
calculation in the cryptographic algorithm is concealed by a random value m using spe-
cific operations, e.g., x∗m, where ∗ denotes the boolean or arithmetic maskings. Boolean
masking defines the input or intermediate value x is concealed by exclusive-or with the
masking value m, i.e., x ⊕m. In contrast, arithmetic masking presents the masking of
input or intermediate value by means of arithmetic calculations, e.g., the modular addi-
tion or multiplication. Please note that m is known by the algorithm designer. However,
the using of masking brings some extra calculations. Later, the masking value m has to
be removed at the end of the calculation to yield the correct output, i.e., de-masking.
Therefore, in order to remove masking value, one must calculate synchronously how this
value changes during the running operations.

The cryptosystem can also be secured by exploiting both masking schemes selectively,
cf. [CG00] and [Gou01]. For attacking masking featured cryptosystem, the second or even
higher order attacks has to be mounted, which relies on the times of the masking value
being used. Therefore, much more efforts are required for breaking such a system, cf.
[OMHT06] and [JPS05].

3.4 Evaluation Metrics

How to evaluate the efficiency of attack methods or the security of cryptosystems is
a crucial problem for attackers and system designers in practice. People may say my
attack method is better than others. However, who knows? We need a standard to eval-
uate them. In this section, three evaluation metrics are introduced, which are exploited
frequently in real attacks.

3.4.1 Time Requirements

Time requirements denote the run time for mounting attack methods or trace pre-
processing algorithms in practice, which is a relative value relying on the computation
conditions, e.g., the speed of CPU, the volume of memory, etc. However, to some de-
gree, it demonstrates the efficiency of attack and trace pre-processing methods. Usually,
the faster run time may help the adversaries to reveal the key of cryptosystems without
being noticed within a limited timeframe. However, as a designer, the faster run time
may shorten the security evaluation time for the analyzed cryptosystem. Therefore, the
optimizing of attack methods or algorithms by using C/C++ codes, parallel, and GPU
calculations, etc., improve the time requirements in real attacks considerably.
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3.4.2 Success Rate

In order to evaluate and compare the attack methods and trace pre-processing approaches
under different attack conditions, the success rate and guessing entropy, etc., are exploited
as the metrics, respectively. In real attacks, different parameters are exploited by the ad-
versaries and system designers to show the advantages for their attack methods and
countermeasures. However, when comparing them together, it is difficult to determine,
which one is the best attack method or countermeasure. Therefore, in [SMY09], the
Success Rate (SR) and Guessing Entropy (GE) were proposed, which suggests a way
to evaluate the quality of attack methods and implementations in cryptosystems. The
general idea of these terminologies is discussed in the sequel.

In side channel analysis field, some factors, e.g., calculation time t, system memorym,
and trace quires (usage) q, must be considered, which directly interferes with the attack
performance. Therefore, the variation of any factor results in different success rate and
guessing entropy. In this chapter, the trace usage q is considered as a mentioned factor.

Success rate, as the name suggests, it measures the probabilities to reveal a sub-key or
the global keys in cryptosystem successfully. In practical attacks, each key k is mapped
by a function f : K → S to the key class s = f(k). g := [g1, g2, . . . , g|S|] is a guess-
ing vector containing different key candidates. Please note that g1 is considered as the
most likely key candidate. After mounting an attack, the output of the attack is s. If
s ∈ [g1, g2, . . . , go], then R = 1 is returned, otherwise R = 0 holds. Subsequently, the
success rate of oth order can be calculated by:

SR(q) = Pr(Experiments(R = 1)) (3.21)

Usually, if there is no specific notation, the success rate is considered as first order, i.e.,
if the output g1 = s, then R is assigned with value 1. During the increasing of the power
traces with some interval, the attack in each increasing step is mounted to yield the
output value R. After running this experiment for several times, the success rate can be
achieved with the increasing of trace usage.

Here is an example, for attack one byte of AES-128 by exploiting the total number
of 100,000 power trace. The correct key value is 137, i.e., g1 = 137. The experiment
is run for 100 times; for each experiment, the number of 1,000 power traces is used; for
each attack, the number of 10 power traces is added. Therefore, 100-time attacks can
be executed in each experiment. After executing such an experiment for 100 times, the
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Figure 3.6: Examples of, a) Success Rate, b) Guessing Entropy

probabilities for each increasing step are calculated accordingly. Then, a success rate
curve can be achieved, where the x-axis defines the trace usage, and the y-axis shows
the success probability. The maximum value for success rate is 1, which denotes this
byte is one hundred percent attackable, as illustrated in Fig. 3.6 a). It is clear that the
minimum trace usage to reveal such a key byte successfully is 570, which is highlighted
in the figure.

3.4.3 Guessing Entropy

Guessing entropy implies the average number of the key candidate to be tested during
the attack. For each attack, the rank i of the correct key is returned and assigned as
R = i. Then the guessing entropy can be calculated from:

GE(q) = E(Experiments(R = i)) (3.22)

Continuing the previous example, the key space for a byte is 256, i.e., |S| = 256. For
each attack, we sort all these 256 attack results and find out the index for the correct
key value 137, then assign the index value to R. After mounting the experiment for
100-times, the average numbers of the indexes are calculated resulting in the guessing
entropy in the y-axis, meanwhile, the x-axis presents the trace usage, as shown in Fig.
3.6 b).
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4.1 Introduction

Power amount analysis was proposed by us in [TH12e] and [TH12d], where a new way
to understand the captured side channel information, i.e., power traces, was presented
by means of the so-called Additive White Gaussian Noise (AWGN) channel in the field
of telecommunication. Based on such a conception, the mechanism of power dissipation
from physical cryptosystems is simulated as an AWGN channel, by which more time
points in the captured power traces are exploited to contribute more information leakage
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with limited trace usage resulting in a better attack performance in practical power con-
sumption attacks. In comparison to the other attack methods, e.g., DPA and CPA, the
PAA attack features the advantages in terms of run time, side channel resource usage,
e.g., trace usage, misalignment tolerance, and amplitude fluctuation invariance, which
are elaborated in the upcoming sections.

PAA attack arises from a following assumption. There is a register in a running
cryptosystem, the states changing in this register from A to B span 0.001ms, which is
monitored and sampled by an oscilloscope running with 100 MHz sample rate. Obvi-
ously, there exist 100 discrete sample points in the captured power trace curve to depict
such states changing process. If an attacker focuses on the operations during the states
changing in the register, theoretically, these 100 time points do contain more or less the
useful side channel information leakage, which can be fully utilized to reveal the secret
key of the cryptosystem. However, in DPA and CPA attacks, only one time point leaking
the biggest information is considered, whereas the other time points are just involved into
the calculation as references. In contrast, in template attack and stochastic approach,
several time points are being used to contribute the information leakage. However, the
calculation complexities for both methods are quite high. Consequently, power amount
analysis was proposed to balance the calculation complexity and the contribution of in-
formation leakage in practical attacks.

Our new proposed PAA attack exploits the correlation coefficient as a distinguisher
to extract the useful information leakage from the targeted cryptosystem. However, one
may have more possibilities in the distinguisher choosing. Therefore, in this section, we
first detail the mechanism of PAA attack and its autogenetic advantages; then the power
amount analysis methodology is introduced, which supplies us a thought to deal with the
power traces, i.e., reducing the dimension of the analyzed data before mounting attacks.
In this methodology, more statistical analysis methods are exploited as the distinguishers
to determine the secret key of physical cryptosystem in practice.

4.2 AWGN Channel in Telecommunication

Telecommunication can be simply represented as the information signal transfer via an
electromagnetic carrier. Such a technology now is sufficiently mature through more than
one hundred years’ development in both theoretical and practical aspects. How to model
the telecommunication channel is a very important topic in this field, which to some
degree determines the quality of the communication. In order to simplify the real, com-
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Figure 4.1: AWGN Channel

plicate, multi-noise, communication channels, a lot of models were proposed in the past.
Among all these models, there exists a simple and easy but widely used one without
considering the fading, interference, dissipation, etc., in real condition, which is called
additive white Gaussian noise channel, as depicted in [TV05, p. 167], and [Gol05]. In
such a model the noise features a Gaussian distribution, which is added to the signal dur-
ing its transferring between two communication parties, as shown in Fig. 4.1. Usually, a
discrete time AWGN channel is written by:

Y [i] = X[i] +N [i] (4.1)

where X[i] and Y [i] denote the input and output signals of the channel in the discrete
time domain, respectively; and N [i] defines the additive white Gaussian noise while the
signal X[i] is passing through this channel. The input X[i] and Gaussian noise N [i] are
independent and uncorrelated in the discrete time domain, where N ∼ N(0, σ2) holds,
cf. [CT05, p. 261] and [TV05, pp. 29-30]. In other words, for a fixed AWGN channel, it
always complies with the rule that whenever the input signal passes through the channel,
the statistical characteristic for the noise always holds the mean value 0 and the constant
variance σ2, i.e., it is stable.

4.3 Power Amount Analysis Methodology

Usually, the captured power trace set T contains the information leakage L. However,
this information leakage is immersed by a lot of noises from the inner and outside circuits.
Different from the existing algorithms, the captured power traces may be pre-processed
before mounting attacks, where the information leakage L is abstracted and purified,
i.e., de-noising pre-processing. It is no doubt that the pre-processing phase does take
some time. Usually one must balance the time requirements, the resource usage and the
benefits from the trace pre-processing. The ideal way is to preprocess the power traces
without the efficiency losing while mounting power attacks in practice.
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In DPA and CPA attacks, by means of the statistical methods even without de-noising
pre-processing procedure, the information leakage L can be still identified resulting in a
successful key revealing. However, during the maximum information leakage point search-
ing for both methods, the rest time points containing a certain amount of information
leakage are not fully utilized leading to the waste of resources.

Therefore, the power amount analysis methodology is suggested in the sequel, by
which, the mentioned drawbacks in the existing attack methods can be well handled in
the following way.

1. Preprocess the captured power traces without increasing the attack time. Mean-
while, abstract and purify the information leakage leading to the improvement of
success rate in real attacks.

2. Employ a large number of time points to contribute the information leakage to
improve the attack performance.

Different from the definition of PAA attack we proposed in [TH12e] and [TH12d], PAA
methodology extends such a specific definition to a general one, which not only presents
a way to understand and preprocess the power traces, but also introduces different dis-
tinguishers, e.g., correlation coefficient and mutual information, etc., in the final attacks.
Based on this principle, the process of de-noising and more time points calculation are
realized by only one operation, which cuts down the calculation complexity by reducing
the dimension of analyzed data and omitting the time points traversing step in practice.

4.3.1 Understanding of Power Traces

In order to mount attacks on the physical cryptosystem, the captured power traces are
analyzed with the help of mathematic modeling. It is something like the pattern match-
ing, where the leakage model can be seen as the key dependent template and the power
traces are taken as the analyzed samples. The correct key will be revealed when the
template is well matched with the analyzed samples. Power amount analysis is no ex-
ception. Therefore, based on the AWGN channel (4.1), the power dissipation path in a
running cryptosystem is abstracted as an AWGN channel. The new hardware model is
shown in Fig. 4.2 with the visualized trace examples. Assume the power consumption
dissipated from the target hardware component, i.e., a register, is an input of channel
model, and the additive Gaussian noise is added while the targeted power dissipation
is propagating via this channel. Then the noise added power consumption is captured
and sampled by the monitoring devices, e.g., oscilloscope. It is obvious that the power
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trace produced from targeted hardware embodies the pure power dissipation with clear
profile. However, for the reason of noise, the captured power trace presents as a curve
with an un-smooth profile. The time discrete power trace consists of two parts: one is
the power consumption arisen from the target hardware during the process of encryption
or decryption, which carries the information leakage correlated to the processed data and
the architecture of running implementations; the other one is the noise stemmed from
two sources. One is the true noise in the circuits, e.g., the peripheral components, power
supply, clock generator, and existing electromagnetic circumstance, etc.; the other one
is the non-targeted hardware operations. These noises are assumed featuring additiv-
ity, Gaussian distribution, which, meanwhile, are independent of the power consumption
from targeted hardware. Consequently, each measured power trace is modeled in the
discrete time domain as follows:

Po[i] = Ptarg[i] + Pn[i] (4.2)

where Po[i] defines the output power consumption from the channel sampled by the os-
cilloscope; Ptarg[i] denotes the pure power dissipation produced by the target hardware
component during the running of encryption or decryption, which contains the informa-
tion leakage the adversaries focus on; and Pn[i] implies the additive Gaussian noise, which
is independent and uncorrelated with Ptarg[i] and features the fixed statistical character-
istics. The new hardware model in (4.2) considers the time interval spanning a certain
amount of time points in each captured power trace. In other words, the new hardware
model considers the time points in the rows of trace set T , while DPA and CPA attacks
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concentrate on the columns. For the different power traces, the noise holds the same
statistical property, i.e., Pn ∼ N(0, σ2), which is a prerequisite assumption for mounting
the power amount analysis methodology feasibly.

4.3.2 Mean and Variance of a Power Trace

In this section, the mean and variance of a power trace are discussed by exploiting the
hardware model outlined in (4.2) in the sequel.

Usually, a working cryptographic device dissipates the time continuous power con-
sumption. In order to measure and visualize the behavior of this dissipation, a sampling
oscilloscope is exploited to monitor the voltage changing of a resister, who may be in-
serted between the cryptographic device and the ground line in hardware circuits. The
power curve in the vision of the oscilloscope consists of discrete points. Let’s focus on a
power curve Po spanning the time from point m1 to m2, where Po[i] is an instantaneous
power value with the index i in the discrete time domain.

Given a certain amount of work ∆W operated during a period of time ∆t, the average
power Po can be calculated from:

Po =
∆W

∆t
(4.3)

For a continuing power curve Pc in the time domain, the average power Pc can be cal-
culated directly within a time interval ∆t by the function Pc =

∫ ∆t

0
Pcdt/∆t. The power

curve captured from the oscilloscope is composed by the discrete time points. Then the
average power consumption Po may be estimated approximately by exploiting integral
thought. In other words, for each sampled point, a small area is established by drawing
right-end rectangle, as shown in Fig. 4.3 a), then the average power for all these small
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areas are calculated and integrated by exploiting the following formulas:

Po =
1

(m2 −m1 + 1) ·∆t
(Po[m1]∆t+ · · ·+ Po[m2]∆t) (4.4)

=
1

(m2 −m1 + 1)
(Po[m1] + · · ·+ Po[m2])

The average power consumption between m1 and m2 is just the mean value of all the
sampled time points within [m1,m2]. In order to estimate the average power more pre-
cisely, one may just increase the sample points within the same time interval [m1,m2], as
illustrates in Fig. 4.3 b). In other words, the more sample points within the time interval
[m1,m2], the more precise for the average power estimation. Consequently, based on (4.2)
the expectation of the power Po can be rewritten as follows:

E(Po) = E(Ptarg) + E(Pn)

= E(Ptarg) (4.5)

Theoretically, E(Po) denotes the constant part to the power trace, which is stable
in the cryptosystem while the input data or key is changing. Such an item carries less
information leakage the adversary is finding. Therefore, the key revealing by exploiting
E(Po) is not feasible.

Because the power consumption of the targeted hardware Ptarg and the noise Pn

are independent and uncorrelated in the time domain, meanwhile, E(Pn) = 0 and
V ar(Pn) = σ2 hold. V ar(Po) may be easily calculated by:

V ar(Po) = V ar(Ptarg) + V ar(Pn)

= V ar(Ptarg) + σ2 (4.6)

The variance of the analyzed power trace denotes the degree where the element (time
points) of the samples (the trace) deviate away from the average power value E(Po).
Here, in (4.6), the V ar(Po) means that the system’s power values change around the
average power value within the time points [m1,m2], e.g., how much states changing
caused power dissipation is consumed for the targeted hardware during that time inter-
val, which attracts more attentions from the attackers. It embodies two portions, i.e., the
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V ar(Ptarg) and V ar(Pn), respectively. V ar(Ptarg) is the variation of power consumption,
which arises from the targeted register containing the abstracted and purified informa-
tion leakage, i.e., V ar(Ptarg) ∈ L; the second portion is the variance of noise V ar(Pn),
which is a constant value. The measuring of the item Ptarg results in the most interested
leakage V ar(Ptarg). Subsequently, the adversaries can analyze the relationship between
V ar(Ptarg) and estimated leakage model L̃ by means of D(V ar(Ptarg), L̃) for the final
key revealing. However, there is no direct way to separate and measure the item Ptarg

in a noise surrounded running cryptosystem, as well as the noise item Pn. Only the
summation Po of both items can be measured directly. However, one finds that the items
V ar(Ptarg) and V ar(Po) are in a linear relationship. Therefore, in the attack phase,
V ar(Po) and L̃ are analyzed instead of V ar(Ptarg) and L̃ to yield the correct key.

Std(Po) =
√
V ar(Ptarg) + σ2 (4.7)

√
x = 1 +

1

2
(x− 1) +

1

8
(x− 1)2 + · · · (4.8)

Theoretically, the standard deviation of Po cannot be used to reveal the key values.
Because the items Std(Po) and V ar(Ptarg) are in a non-linear relationship, as given in
(4.7). However, the square root can be expanded to a Taylor series, as given in (4.8).
By truncating this Taylor series with the first two items, V ar(Ptarg) and Std(Po) can be
approximately taken in a linear relation. Consequently, Std(Po) may be a substitution
for the V ar(Ptarg) in the real system attack. However, the attack performance may be
not that good.

Now let’s concentrate on the power consumption of a resister R, which is driven
by the voltage U with the current I. Then the power consumption of the resister is
calculated as Pr = UI = U2/R. If the resister has the fixed value R, then the power
consumption Pr and U2 are in the linear relation. However, in power consumption attacks,
the power voltage is measured by inserting a resister between the cryptographic chip and
the ground line. In fact, the so-called captured power traces present the voltage variation
of the resister. Usually, in DPA, CPA, and MIA attacks, the voltage variation curves are
directly taken as the power consumption traces. In other words, the voltage U is treated
as the square of voltage U2, which, theoretically, is not that reasonable. In the attack
of power amount analysis, the variance calculation for the voltage curves leading to the
square of voltage, which can simulate the variation of power consumption veritably.
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4.3.3 Attack Scenario

V ar(T ) =


V ar(T1,1 · · · T1,m)

...
V ar(TN,1 · · · TN,m)

 =


V1,1

...
VN,1

 (4.9)

Relying on the new hardware model and the understanding of power traces, the variance
or standard deviation is calculated by spanning a certain amount of the time instants
as (4.9). After the calculation of variance, the power trace matrix T becomes a purified
leakage vector V , i.e., one dimensionality of the matrix T is reduced, which is exploited for
the similarity analysis with the estimated leakage model L̃. In our original PAA attack,
the Person correlation coefficient was utilized as a distinguisher to extract the information
leakage in the captured power traces. However, in PAA methodology, the adversaries have
more possibilities to choose the statistical analysis methods, i.e., distinguisher DStat(·, ·).
The attack scenario of power amount analysis methodology is detailed as following.

1. Build the leakage model L̃ by using plaintext p or ciphtertext c and subkey value
k.

2. Choose the number ofm time points in power trace set T within the analysis region.
Calculate the variance or standard deviation of each trace in T and store them into
the purified leakage vector V , i.e., Vi,1 = V ar(Ti,1:m), where i ∈ [1, N ] holds, as
shown in (4.9).

3. Calculate the results R with the size 1 × K by the selected distinguishers, e.g.,
difference of means, correlation coefficient, or mutual information, etc., between V
and L̃, as stated in (4.10).

(
R1,1 · · · R1,K

)
= D




V1,1

...
VN,1




L̃1,1 · · · L̃1,K

... . . . ...
L̃N,1 · · · L̃N,K




(4.10)

Analysis Method: Difference of Means The purified leakage vector V and the
leakage model L̃ can be analyzed by the method difference of means, where V may be
classified according to the values in L̃ resulting in the correct key values.
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Analysis Method: Pearson Correlation Coefficient (Corr) Correlation coeffi-
cient can be exploited directly for the similarity analysis, which is the basic idea of PAA
attack. Here, the elements in R are computed as R1,i = DCorr(V1:N,1, L̃1:N,i), where
i ∈ [1, K] holds.

Analysis Method: Mutual Information (MI) Like the correlation calculation,
mutual information can also be exploited as a distinguisher here:

R1,i = DMI(V1:N,1, L̃1:N,i) (4.11)

= I(V1:N,1; L̃1:N,i) (4.12)

where i ∈ [1, K] holds. Please note that the probability mass function for V and L̃ must
be pre-calculated.

Among all these analysis methods, only the correlation coefficient can be mounted
directly and easily, whereas, the classification of power traces in difference of means, and
the probability mass function calculation of mutual information do take some time and
feature higher calculation complexity.

The prerequisite for mounting PAA methodology successfully is the choosing of pa-
rameters m, which relies on the sample rate of the oscilloscope and the shape of the
captured power traces. The time points can be chosen around the analyzed power peak
within the analysis region manually, which is enough to reveal the secret key. Please note
that, within a certain range, the more time points are considered the fewer power traces
are required to mount this attack. On the contrary, the choosing of the wrong or extreme
more time points leads to the cutting down of attack performance. Therefore, on the one
hand, more time points can be exploited in the calculation; on the other hand, in order
to increase the sampled time points within a fixed time period, an oscilloscope featuring
high-resolution is needed.

Theoretically, in PAA methodology, the whole method considers the factor of a time
interval in the time domain. Therefore, the process leakage model, e.g., Hamming dis-
tance matches this attack method very well. On the contrary, the instantaneous leakage
model, e.g., Hamming weight focuses the states changing at some time point. Conse-
quently, the using of such a model in PAA methodology may result in lower success rate.

Usually, DPA and CPA attacks focus on a single time point, therefore, those at-
tacks are classified as time point attack. In contrast, PAA methodology is categorized as
time interval attack for concentrating on the power value changing within a certain time
interval.
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4.4 Autogenetic Advantages

In practical attacks, comparing to CPA attack, PAA methodology features some nice
autogenetic advantages in terms of run time, trace usage, misalignment tolerance, am-
plitude fluctuation invariance. By means of these characteristics, PAA methodology can
be applied in the attacks for both aligned and misalignment injected power traces.

4.4.1 Time Requirements

In PAA methodology, the calculation of variance and standard deviation change the two
dimensions trace matrix T to one dimension purified leakage vector V , i.e., one dimen-
sionality of the analyzed data is reduced, which cuts down the calculation complexity
during the attack. Therefore, the run time is considerably shortened. As known, most
of the mathematic methods focusing on the similarity analysis for two vectors can be
exploited as a distinguisher in real side channel attacks. The different distinguisher al-
gorithms feature different time requirements during the computation. However, with the
same distinguisher, i.e., correlation coefficient, comparing to CPA attack, PAA attack
features shorter run time, as shown in the experimental parts in [TH12e] and [TH12d].

One can benefit as well from the dimensionality reduction for the analyzed data.
That’s because sometimes the dimension of the analyzed data is higher, e.g., three di-
mensions, then we have to do the complex calculation. However, the simple calculation is
mounted when the analyzed data are of reducible dimensionality. In the upcoming chap-
ter, this thought is used to improve the attack methods considerably without reducing
the attack performance.

4.4.2 Trace Usage

The trace usage is a crucial metric for evaluating attack methods. Comparing to DPA,
CPA, and MIA attacks, the PAA methodology fully exploits a large number of leakage
contained time points to contribute the information. Therefore, theoretically, for ac-
cumulating the same amount of information leakage, PAA attack requires fewer power
traces, which was proven by us in [TH12d] and [TH12e]. However, we cannot conclude
that this feature functions for every case. It should be verified in the future with more
real attacks.
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T =

 T1,6 T1,7 T1,8 T1,9 T1,10 T1,11 . . . T1,100

T2,6 T2,7 T2,8 T2,9 T2,10 T1,11 . . . T1,100

T3,6 T3,7 T3,8 T3,9 T3,10 T1,11 . . . T1,100

 (4.13)

T ′ =

 T1,6 T1,7 T1,8 T1,9 T1,10 T1,11 . . . T1,100

T2,4 T2,5 T2,6 T2,7 T2,8 T1,9 . . . T1,98

T1,7 T1,8 T3,9 T3,10 T3,11 T3,12 . . . T1,101

 (4.14)

4.4.3 Misalignment Tolerance

Assume that the CPA attack is mounted to the power trace matrix T , as shown in (4.13).
All the time points do contain the information leakage, where the column 8 supplies the
maximum one. In other words, the elements T1,8, T2,8, and T3,8 are the best combination
for the key revealing in CPA attack. However, for the misaligned power trace matrix
T ′, as shown in (4.14), it is obvious that the good combination is deliberately broken by
the misalignment injection. Meanwhile, CPA attack calculates the correlation coefficient
between each column of the power trace and the leakage model L̃. Therefore, these
maximum information suppliers, i.e., T1,8, T2,8, and T3,8 cannot contribute the information
leakage together resulting in the descent of coefficient values. In trace matrix T ′, the
time points T1,8, T2,6, and T3,9 do supply the information leakage as well. However, this
combination is not an optimum for CPA attack. In order to have the same attack results
as before, the trace usage must be increased as a balance. However, in some extreme
conditions, the captured power traces are limited, which cannot be increased any more.

In PAA methodology, the variance and standard deviation of each power trace within
several time points are pre-calculated. Both methods are based on the statistics. If the
number of samples is large enough, a small changing of any element or several elements
in the samples cannot give great impact on the final results. Take the trace matrices T
and T ′ again as an example. In trace matrix T1:3,6:100, all these time points contribute
the information leakage together. Therefore, the leakage strength is stronger than the
single time point attack, i.e., CPA attack. In contrast, for misaligned trace matrix T ′,
when calculating the variance within 95 time points, all the maximum leakage points,
i.e., T1,8, T2,8, and T3,8 are involved into the calculation and contribute the maximum
information leakage together. Comparing to trace matrix T , in the second column two
time points T2,99 and T2,100 are substituted by the elements T2,4 and T2,5 in trace matrix T ′.
However, this substitution does not greatly impact the variance value, which still yields
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the stable attack results. Therefore, PAA methodology features stronger misalignment
tolerance than the time point attack methods, e.g., CPA attack. In other words, PAA
methodology can efficiently neutralize a small misalignment during attacks.

This feature has been also tested by us in [TH12e] and [TH12d] by exploiting the
artificially generated misaligned power traces. However, in the upcoming experimental
chapter, the mentioned feature is verified again with the true misaligned power traces
produced from a random clock featured cryptosystem.

4.4.4 Amplitude Fluctuation Invariance

In PAA methodology, the variance or standard deviation calculation features an advan-
tage, which is named as amplitude fluctuation invariance, and introduced as following.

X ′ = X +O = [X1 + o · · ·Xm + o] (4.15)

V ar(X ′) = V ar(X +O) = V ar(X) (4.16)

Given a vector X = [X1, . . . Xm], one can get another vector X ′ by adding X with a
vector O in the amplitude domain, which contains the number of m constant values o,
as shown in (4.15). Regardless the value changing in vector O the variance or standard
deviation value for vector X and X ′ are always the same, see (4.16). In a word, all the
input elements add a same value leading to the same variance or standard deviation for
the output. Therefore, we conclude that moving a power trace in the amplitude domain
up or down, the variance and deviation before and after the moving are always the same.
Because of this property, for a captured trace set T , moving each trace in the amplitude
domain randomly, the yielded purified leakage vector V is always the same. Therefore,
when mounting PAA methodology, the attack results R are always the same before and
after the moving in the amplitude domain.

We have applied this feature in [TH12d] to neutralize the clock frequency effects
proposed in [TH12b]. These effects interfere with the attack results in DPA and CPA at-
tacks, etc., considerably. However, they do not degrade the results of PAA methodology.
Therefore, PAA methodology can counteract the clock frequency effects automatically
for its amplitude fluctuation invariance.

In practice, the power consumption fluctuated in the amplitude domain intention-
ally can be taken as a countermeasure to antagonize the power consumption analysis,
which may be achieved by exploiting following ways: varying the power supply for cryp-
tographic circuits; feeding the cryptosystem with random clock frequency resulting in
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clock frequency effects; exploiting the dynamic reconfigurable technology in FPGA to
implement cryptographic algorithms. However, all these countermeasures become invalid
when facing with PAA methodology.

4.5 Summary

In this chapter, the definition of PAA attack is extended to PAA methodology. Be-
sides the four merits of PAA attack, in PAA methodology, two viewpoints are conveyed.
Firstly, this methodology supplies us a way to process the power traces, where, based on
the AWGN channel model, the dimensionality of the analyzed data is reduced resulting
in lower calculation complexity; Secondly, for the similarity analysis, not only the cor-
relation coefficient can be used, but also the other algorithms, e.g., difference of means,
mutual information, can be involved as a distinguisher to reveal the secret key in physical
cryptosystems.
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5.1 Introduction

In order to improve the performance of power consumption analysis in practice, the
qualified attack methods are needed, where different means are exploited to extract the
information leakage from attacked cryptosystem. Meanwhile, without modifying attack
methods, a fine chosen leakage model may be selected, which can precisely depict the
power consumption variation of the targeted components in a running cryptosystem.
Therefore, the leakage model building plays an important role in side channel analysis
field, which determines the performance of attack methods.

Usually, in DPA and CPA attacks, Hamming distance and Hamming weight are sim-
ple and easy leakage models to mimic the possible information leakage for the targeted
hardware components. In contrast, in template attack and stochastic approach, the leak-
age model exists in the form of key dependent traces. However, in order to generate such
models, an extra fully controlled identical device is needed to collect the profiling traces
in advance. We, therefore, in [THH12], classify the leakage models into two categories
according to the existence form, i.e., mathematic and trace form leakage models. Here,
these two leakage models are abstracted as L̃ma = fma(x, k) and L̃tr = ftr(·, ·), respec-
tively, where x is the input or output of the cryptosystem, and k defines the possible key
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values. The mathematic form leakage model simulates the variation of power consump-
tion by exploiting mathematic method fma(x, k). For instance, fma may be a mapping
of Hamming Distance or Hamming weight, etc. The trace form leakage model can be
achieved in two ways. Firstly, it may be produced by exploiting simulation software or
fully controlled hardware to profile the running processes. For example, in the template
attack, the profiling trace set Tp can be achieved from a fully controlled identical de-
vice, then the trace form leakage model is written as L̃tr = ftr(Tp), where ftr denotes the
mean value calculation; secondly, the key dependent mathematic form leakage model L̃ma

may be injected into the power traces leading to the estimated trace form leakage model
L̃tr. For instance, in the stochastic approach, the mathematic form leakage model fma is
mapped into the profiling power trace set Tp as L̃tr = ftr(L̃ma, Tp), where ftr denotes the
calculation of stochastic model.

Given a trace form leakage model T̃k, where T̃k ∈ L̃tr and k ∈ K hold, usually, one has
to resort to the maximum likelihood method mentioned in stochastic approach for the
secret key revealing, where the calculation is very complicated. However, the situation
has changed. We proposed in [THH12] an attack method combining the trace form leak-
age model L̃tr with power amount analysis, where L̃tr = ftr(L̃ma, T ) holds. Please note
that the captured power trace set T is exploited directly to build the trace form leakage
model. Therefore, the profiling phase is not needed any more. The whole attack relies
on the thoughts of PAA methodology, which can preprocess the power traces to extract
and purify the inherent information leakage meanwhile to reduce the dimensionality of
the analyzed data.

In this chapter, the building of trace form leakage model L̃tr is discussed in detail,
where the existing mathematic form leakage model L̃ma is mapped into such a trace form
model by utilizing least squares estimation. Then, an attack framework by exploiting dif-
ferent forms of leakage model and analysis methods in power consumption analysis field
is given, where the attack methods can be chosen selectively according to the specific
requirements.

5.2 Trace Form Leakage Model Building

In order to understand the mechanism of trace form leakage model building, in this
section, the least squares estimation is introduced first. Subsequently, the building of
trace form leakage model is elaborated.
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5.2.1 Least Squares Estimation in Statistics

The least squares estimation is a widely used method for solving data fitting problems
in statistics field, which finds the minimal squares between the observed and estimated
data. The general idea of this method detailed in [HTF01] is discussed in the following.

Given an observed variable vector XT = (X0, X1, . . . Xu−1), where u denotes the di-
mension of X, the output value Y can be written by the linear equation as:

Y = β0 +
u−1∑
i=1

Xiβi. (5.1)

β0 is an intercept (or bias), which is correspondent to the constant value 1 in X0, i.e.,
X0 = 1. Then the linear model from (5.1) is rewritten as:

Y = XTβ (5.2)

This equation may be expanded to the matrix form, then (5.2) is transformed as Y = Xβ,
and the elements X, β are presented as follows:

X =


X1,0 · · · X1,u−1

... . . . ...
XN,0 · · · XN,u−1

 (5.3)

β =


β1,0 · · · β1,m−1

... . . . ...
βu−1,0 · · · βN,m−1

 (5.4)

which results in the output matrix Y . Each column in Y can be calculated by Yj = Xβj,
where j ∈ [0,m−1] holds, i.e., each column in Y can be linear expressed by the production
of matrix X and its counterpart column in β.

Y =


Y1,0 · · · Y1,m−1

... . . . ...
YN,0 · · · YN,m−1

 (5.5)

Given the matrix X, Y can be estimated by Ỹ to find the minimal distance between
these to matrices as

‖ Y − Ỹ ‖2=‖ Y −Xβ̃ ‖2 (5.6)
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β̃ is the estimation of β. One finds that by choosing the estimator β̃, the minimal distance
can be achieved. If X is full column rank, where any column of X cannot be written
as the linear equation with other columns, i.e., XTX is nonsingular. Then the unique
coefficient estimator β̃ can be calculated as follows:

β̃ = (XTX)−1XTY (5.7)

Subsequently, by choosing carefully the estimator β̃, Y can be recovered by its prediction
Ỹ = Xβ̃. In the upcoming section, these calculations are exploited for the generation of
trace form leakage model L̃tr.

5.2.2 Trace Form Leakage Model Building

The generation of key dependent trace form leakage model T̃k by exploiting least squares
estimation was discussed by us, in [THH12]. Such a conception was first applied into
the power consumption analysis field by stochastic approach as the profiling phase, cf.
[SLP05], which is detailed in the sequel.

The key dependent trace form leakage model T̃k may be written as a linear product
with fine built matrix Ak and coefficient estimator β̃k, i.e., T̃k = Akβ̃k, where k ∈ K holds.
The estimator coefficient β̃k can be achieved by finding the minimum distance between
the captured power trace set T and key dependent trace form leakage model T̃k as follows:

β̃k = argmin‖ T − T̃k ‖
2

= argmin‖ T − Akβ̃k ‖
2

(5.8)

Subsequently, the estimator coefficient β̃k may be calculated by the following formula:

β̃k = (AT
kAk)−1AT

k T (5.9)

Ak =


1 A1,1 . . . A1,u−1

1 A2,1 . . . A2,u−1

1
...

...
1 AN,1 . . . AN,u−1

 (5.10)

It is obvious that an elaboration of Ak determines the success rate for subsequent
attacks. Here, the mathematic form leakage model, i.e., Hamming distance, hamming
weight, or the register states in bitwise are exploited to build the matrix Ak, as shown
in (5.10). The first column of Ak is always a constant value 1, which defines the bias
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or intercept in mathematics. However, in power consumption analysis, it represents the
non-data dependent part in the captured power traces. The other columns in matrix Ak

denotes the data dependent portion. Therefore, Ai,1:u−1 can be filled by the Hamming
distance (weight) values, or the bitwise values of the targeted register. For instance, if
u = 2, the second column is filled by exploiting the values from the Hamming distance
or weight model; if u = 9, the bitwise model for a certain register in the cryptosystem is
used. In a word, most of the mathematic form leakage model can be exploited here. The
power trace set T embodies the number of m time points, as shown in (5.11), i.e., m time
points around the power peak in the analysis region are involved into the calculation.
Different from the building of the stochastic model, the trace matrix T is directly used
into the calculations to establish the trace form leakage model.

T =


T1,1 T1,2 . . . T1,m

T2,1 T2,2 . . . T2,m

...
...

...
TN,1 TN,2 . . . TN,m

 (5.11)

Subsequently, by exploiting the estimator coefficient β̃k and matrix Ak, the adversaries
can recover the trace form leakage model T̃k as follows:

T̃k = Akβ̃k (5.12)

When drawing a certain row of T̃k, the shape of the drawn curve is similar to the power
trace in set T , which is the reason why it is called trace form leakage model. The
calculation thoughts of this model are the same as the building of the stochastic leakage
model. However, the differences are: on the one hand, the exploited power traces are
directly captured from the targeted device rather than the identical fully controlled device;
on the other hand, the final attack phase is greatly different. In other words, in the
trace form leakage model building and the attack phase, the same power trace matrix T
produced from the targeted device is utilized. Therefore, an advantage is shown, say, the
fully controlled device is not needed any more nor is the profiling step, which leads to a
fast calculation.
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5.3 Attack Scenario

Now the captured power trace set T and the key dependent trace form leakage model T̃
are at hand. Then the variance or standard deviation for each trace in both parties is
calculated, respectively. Finally, PAA methodology can be mounted.

The whole attack scenario to mount PAA methodology combining with trace form
leakage model is given as follows:

1. Choose the number of m time points around the power peak in the analysis region
in trace set T .

2. Generate mathematic leakage model L̃ma, e.g., Hamming distance or bitwise leakage
model, for the targeted register. Inject the constructed L̃ma into the power trace
set T by exploiting least squares estimation algorithm (5.12) to establish the trace
form leakage model, i.e., T̃ = ftr(L̃ma, T ).

3. Calculate the variance or standard deviation for each captured power trace Ti,1:m,
where i ∈ [1, N ] holds, resulting in the purified leakage vector V holding the size
N × 1.

4. Calculate the variance or standard deviation for each estimated trace form leakage
model T̃i,1:m, where i ∈ [1, N ] holds, resulting in the purified estimated leakage
matrix Ṽ with size N ×K.

5. Analyze the leakage vector V and each column of the purified estimated leakage
matrix Ṽ by using different distinguishers, e.g., difference of means, correlation
coefficient, or mutual information, to yield the attack results R accordingly.

6. Identify the correct key value in the attacking results R.

The whole attack scenario is visualized in Fig. 5.1. One finds that by applying the
thoughts of PAA methodology in real attack, three dimension matrix T̃k is transformed
to a two dimension variance matrix Ṽ , meanwhile the two dimension trace matrix T

becomes a variance vector V . After that, the calculation complexity in the attack phase
is cut down considerably.

When building the trace form leakage model, the adversaries can choose u = 2, u = 9

or other values in a selective manner. No one can conclude which dimension of the matrix
A is optimal, the choosing of the parameter u relies on the specific implementations and
the hardware architectures. The fine chosen of this parameter results in a higher success
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rate.
In order to verify the proposed attack framework, we, in [THH12], mounted CPA and

PAA attacks by exploiting the mathematic and trace form leakage models, respectively,
on an FPGA-based cryptosystem running with AES-128 cryptographic algorithm. The
attack results showed that the trace form leakage model combing with the PAA attack can
achieve a better attack performance than those attacks applying directly the mathematic
leakage model in practice.

5.4 Attack Framework With PAA-I and PAA-II

In this section, an uniform attack framework is proposed for the key revealing with
different leakage models and analysis methods. Meanwhile, two mutation forms of PAA
attack are introduced, which are named as PAA-I and PAA-II, respectively. In Fig. 5.2,
five choices to mount attacks are detailed as following.

1. Analyze the captured raw traces T and estimated mathematic leakage model L̃ma by
using correlation coefficient, difference of means, and mutual information selectively,
as shown in Fig. 5.2 Analysis 1), which is the basic framework for DPA, CPA, and
MIA attacks.

2. Calculate the purified vector V , and the mathematic leakage model L̃ma by different
means selectively, as shown in Fig. 5.2 Analysis 2), which presents the basic idea
of PAA methodology.

3. The power traces T and the estimated trace form leakage model L̃tr can be analyzed
directly by exploiting the maximum likelihood, as illustrated in Fig. 5.2 Analysis
3). However, before analyzing both parties, the distribution of noise between them
will be estimated and a profiling phase is needed. A typical representative for this
framework is the stochastic approach.

4. The purified leakage vector V and leakage matrix Ṽ are analyzed, as illustrated
in Fig. 5.2 Analysis 4), where different statistic methods are mounted for both
parties. Such an attack framework is named as Power Amount Analysis mutation I
(PAA-I). The calculation of trace from leakage model does take some time, which,
however, can depict the estimated information leakage for the targeted hardware
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components precisely. Therefore, it is worth doing that for giving in return the
higher attack performance.

5. In practice, the purified leakage matrix Ṽ and the captured power trace set T
can also be analyzed by exploiting correlation coefficient and mutual information,
as presented in Fig. 5.2 Analysis 5). The attack results are achieved as Ri,j =

D(T1:N,j, Ṽ1:N,i), where j ∈ [1,m] and i ∈ [1, K] hold. This attack framework is
called Power Amount Analysis mutation II (PAA-II). Theoretically, the results from
the attack are not satisfactory. That is because the calculation of estimated leakage
matrix Ṽ is based on the AWGN model, which considers the time interval for the
analyzed data. On the contrary, the way to calculate the results R concentrates on
the time instant. Both parties do not well match with each other.

Both attack methods PAA-I and PAA-II are the derivatives of original PAA attack, that
is because all these attack methods share a common principle to purify and abstract the
leakage information by exploiting a large number of time points in the analyzed data.
Therefore, for attack methods PAA-I and PAA-II, they inherit at least two good prop-
erties from PAA attack, i.e., stronger misalignment tolerance and amplitude fluctuation
invariance. With regard to the items of run time and trace usage: the former needs
more time to compute the complicate trace form leakage model; the latter requires some
verifications in real attacks in the future.

The proposed attack framework supplies more choices to build the leakage model
and to select the analysis methods. One cannot definitely conclude which analysis com-
bination in the framework performs the best attack results. However, we take such a
framework as a tool to help the researchers to evaluate the system security in a selective
manner.
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6.1 General Description

Misalignment injection is an effective countermeasure to neutralize power attacks in prac-
tice. In order to improve the attack performance during the attacking of misaligned power
traces, some pre-processing must be done in advance. For example, in [MOP07, pp. 205-
212], the authors proposed several methods, e.g., pattern matching, convolution, and
fast Fourier transformation, etc., to deal with the misaligned power traces. Later, van
Woudenberg et al. [WWB11] discussed an elastic alignment approach to deal with the
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misaligned power traces and to eventually improve the DPA attack by exploiting the
Dynamic Time Warping (DTW) algorithm. The suggested algorithm computes the warp
path between the reference and the targeted traces, which is a well-known method for
aligning utterances in the sound processing field. All these mentioned methods are feasi-
ble and useful. However, when trying to attack the misaligned power traces yielded from
a random clock armed cryptosystem in practice, the following problems may appear,
which must be solved in advance.

First, when dealing with the misaligned power traces, only a small portion in the
analysis region of power trace contains the information leakage, which the adversaries
focus on. Therefore, the alignment of the whole trace with more efforts investment is
unwise. However, how to first efficiently locate the region of interest in power traces for
the pattern matching step is a key issue. For instance, an AES encryption curve features
the round power peaks in the monitor device. The shapes for the different round peaks
look similar. We cannot directly align the peaks without distinguishing the targeted one.
When the correlation is exploited to align the power traces, one can find the best matches
for the beforehand template in the first, second, or other round peaks by visual obser-
vation easily. However, usually, thousands or millions of power traces are captured, and
the mentioned mission cannot be executed manually. How to identify the aimed round
peak and locate them automatically is a tough job. The authors did not mention it in
the previous literatures. Consequently, we proposed a way to align the misaligned power
traces partially and dynamically in the time domain in [TSSH12] and [TH12a], where the
targeted power peaks are identified firstly according to the building of the leakage model,
then the pattern matching is mounted accordingly. It is called Horizontal Alignment
(HA).

Second, during the further investigation, one finds that when the base clock fre-
quency is increased in a random clock armed cryptosystem, the power traces present a
phenomenon that the power peak positions not only shift in the time domain, but also the
power values change in the amplitude domain. We named such a phenomenon as clock
frequency effects in [TH12b]. These effects become stronger with a higher base clock
frequency. Under that condition, only running the horizontal alignment is not sufficient
to improve the attack performance. In other words, an extra trace pre-processing is re-
quired to neutralize the clock frequency effects. Therefore, we proposed another method
Vertical Matching (VM) operated in the amplitude domain, as detailed in [TH12b]. The
running of VM algorithm to the horizontally aligned power traces results in a consider-
able improvement of attack performance.
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Figure 6.1: Power Trace Behaviors in Random Clock Featured Cryptosystem

In this chapter, the mechanism of the misalignment injection is generalized first, then
the horizontal alignment and the vertical matching methods mentioned before are dis-
cussed in the sequel, respectively. Finally, a software architecture is suggested to process
the misaligned power traces efficiently in practice.

6.2 Misalinged Power Trace Capture

A measurement setup for a random clock armed cryptosystem is illustrated in Fig. 3.5,
Chapter 3. When the input is selected as a random clock via the multiplexer, then
the misaligned power traces are yielded during the running encryption or decryption, as
shown in Fig. 6.1, where the base clock frequency is running at 2 MHz. One finds that
the power peaks of the counterparts shift in the encryption 1 and 2 in the time domain
randomly. As a result, mounting attacks directly on those misaligned power traces im-
mediately leads to lower success rate.

Obviously, before mounting attacks, the power traces have to be monitored and cap-
tured correctly. There exists some technique phenomenons when monitoring a running
cryptosystem feeding with a random clock. Those phenomenons are classified by us as
left and right elastic features, respectively, as described in the following:

Left Elastic Feature (LEF): The power trace, recoded from the end of the trigger
signal during the encryption or decryption, features a static end within the vision of
the oscilloscope. Accordingly, the left part of the power trace in the valid trigger range
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Figure 6.2: Power Trace Capture With REF

demonstrates a length variation.
Right Elastic Feature (REF): The power trace, recoded from the beginning of the

trigger signal during the encryption or decryption, features a static beginning within the
vision of the oscilloscope. Accordingly, the right part of the power trace in the valid
trigger range demonstrates a length variation.

Both technique cases rely on the settings of the monitor device, i.e., oscilloscope.
For instance, in case of the trigger signal is set as low valid and falling edge, the power
traces being captured feature REF characteristic, otherwise they feature LEF character-
istic. Fig. 6.2 a) shows a REF featured power trace with low valid trigger signal. The
oscilloscope is set to record the power traces when the falling edge of the trigger signal
comes, i.e., at the beginning of the cryptographic operations. At the position of falling
edge, the power trace has a fixed start and the right part of the power trace presents a
variable length. If the adversary focuses the last round peak during the attack, capturing
power traces in REF manner results in a large probability for the last round peak being
squeezed out from the vision of the oscilloscope, as illustrated in Fig. 6.2 b). In other
words, a lot of invalid power traces without the last round peak are captured. Accord-
ingly, a large amount of the time must be invested to separate the valid power traces from
the mixture ones, which considerably reduces the efficiency of the trace pre-processing
and enlarges the efforts input during the attack. As a result, in order to reduce the
occurrence probability of the invalid power trace being captured, LEF manner is a better
way to capture the power traces focusing on the last round peak. In a word, the trace
capture style directly impacts the efficiency of the trace pre-processing step.
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Algorithm 1 Threshold Based Peak Location
Require: Ti,1:W ; P ∗; W ∗

Ensure: t∗

1: Create empty boundary matrices D and C, with size (:, 2).
2: Run Boundary Domain Check Algorithm 2.
3: Compress D into C by exploiting Algorithm 3.
4: Find maximum value (t∗, Pmax), where t∗ ∈ [Cq,1, Cq,2].
5: return t∗.

6.3 Horizontal Alignment

6.3.1 Workflow of Horizontal Alignment

The workflow of horizontal alignment is divided into three parts, which are peak detec-
tion, coarse truncation, and pattern matching, as shown in Fig. 6.3. In the peak position
detection phase, the position of the aimed power peak containing the information leakage
in the analysis region will be located dynamically. Then, a portion of the power trace
around the peak position is truncated, which is the basic idea of coarse truncation. In
the pattern matching phase, the cut trace will be matched with the beforehand prepared
template by exploiting correlation coefficient, Euclidean distance, or convolution, etc.
Only a small portion of the power traces has been truncated resulting in a fast computa-
tion in the pattern matching phase. For the whole algorithm, the peak position detection
plays an important role, which is the main difference between our methods proposed in
[TSSH12] and [TH12a]. Both algorithms concentrate on the threshold and slope based
peak position detection algorithms, respectively, which are introduced in the upcoming
section.

6.3.2 Threshold Based Peak Detection

As the name suggests, in the threshold based peak position detection algorithm, a
threshold power value P ∗ is required to separate the peak parts in each trace of set T ,
as shown in Fig. 6.4. Subsequently, another threshold value W ∗ in the time domain
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Glitches

Figure 6.4: Power Value Thresholds

is exploited to distinguish the round peaks from the glitches, which are caused by the
random noise in and outside the hardware circuits, as illustrated in Fig. 6.4. Arrays D
and C are utilized to store the domains of filtered isolated peaks, both matrices feature
uncertainty rows and two constant columns, i.e., (:, 1 : 2). Because the numbers of
isolated peaks in each trace are uncertain, the number of rows in D and C is dynamic
accordingly, which increases relying on the specific number of the peaks in each analyzed
power trace. Here, D:,1 and C:,1 denote the left boundary of the domains, whereas D:,2

and C:,2 store the right ones.
Algorithm 1 presents how to determine the positions of randomly shifted power peaks

dynamically. In each trace, the power values of the isolated power peaks, who are larger
than the threshold P ∗, are determined. Hereafter, the boundaries of the isolated peaks
are saved into the boundary matrix D, as shown in Algorithm 2. Then these boundaries
are compressed by Algorithm 3 resulting in the compressed boundary matrix C. And the
time point corresponding to the maximum power value in boundary [Cq,1, Cq,2] indicates
the target peak position, where q is the peak index the adversaries are focusing on.

Theoretically, the power value P ∗ must be smaller than and closer to Pmin, where
Pmin denotes the minimum power peak height in all the power traces. In practice, the
threshold value P ∗ can be easily determined by monitoring the working oscilloscope
dynamically during the trace capture phase.

The existence of glitches is highlighted in Fig. 6.4. In order to distinguish the domains
caused by the glitches, a domain threshold value W ∗ in the time domain is required in
Algorithm 3, by which the domain D is compressed to matrix C resulting in the one to
one correspondence between the number of domains in matrix C and the targeted round
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Algorithm 2 Boundary Domain Check
Require: Ti,1:W , P ∗
Ensure: D
1: Search each point in Ti,1:W

2: if Ti,1 > P ∗ then D1,1 = 1
3: if Ti,j > P ∗ and Ti,j−1 ≤ P ∗ then D:,1 = j
4: if Ti,j ≤ P ∗ and Ti,j−1 > P ∗ then D:,2 = j − 1
5: if Ti,W > P ∗ then Dend,2 = W
6: return D.

Algorithm 3 Merge Function
Require: Domain Matrix D, W ∗

Ensure: Compressed Domain Matrix C
1: Search adjacent domains [Di,1, Di,2] and [Di+1,1, Di+1,2]
2: if Di+1,1 −Di,2 < W ∗ then combine two domains into [Di,1, Di+1,2]
3: Store combined domain into C
4: Return C
Example:
Input: D = [19, 25], [28, 31], [45, 53];W ∗ = 5
Output: C = [19, 31], [45, 53]

peaks. Therefore, given the index number, the peak position can be eventually located
by finding the maximum power values within the correspondent domain in matrix C,
which indicates the targeted peak position in the power trace. In practice, the threshold
value W ∗ in the time domain can be assigned equal to the width of the round peak, as
shown in Fig. 6.4.

After the detection of targeted peak position, the trace will be coarsely extracted
from position t∗−Ol with the width Wc. Here, Ol denotes the offset value in time. After
that, the pattern matching between the template and the extracted power trace can be
mounted.

6.3.3 Slope Based Peak Detection

We study the threshold based peak detection in Algorithm 1 mentioned before with the
misaligned power traces running at 2 MHz in [TSSH12], i.e., relatively low base clock
frequency. The performance of such an algorithm is efficient. However, when the fed
clock frequency is increased, the clock frequency effects take place resulting in the vari-
ation of power peaks fiercely. Finding a proper threshold power value P ∗ to filter out
all the isolated power peaks in algorithm 2 is hindered. For instance, in Fig. 6.5 a), the
threshold value can be found easily, when the power traces are running at 2 MHz base
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Figure 6.5: Trace Behaviors Running at 2 and 24 MHz Base Frequencies

clock frequency. Whereas, in case of 24 MHz base clock frequency, the threshold deter-
mination becomes difficult, as illustrates in Fig. 6.5 b). In other words, the threshold
based peak detection algorithm is disarmed when facing with the power traces running
at a higher base clock frequency. In order to overcome such a drawback in Algorithm 1,
we proposed a slope based peak position detection algorithm in [TH12a]. The general
idea is to analyze the slope tendency between any two points in the analyzed power trace
without considering the fed base clock frequency in the cryptosystem.

6.3.3.1 Slope Analysis
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Figure 6.6: Generic Slope of Power Curve

Some basic definitions are given first for understanding and describing the algorithms
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easily in the sequel.
Fig. 6.6 illustrates a captured power trace curve ah. The curve bg is assumed as

a round peak containing the information leakage. The curves ab and gh behave as the
electronic noise. One finds that there exist two obvious peaks in curve bg, i.e., the curves
bd and dg with summits c and e, respectively. The peak position of the bigger curve bd
is the adversary’s target. Please note that by observing a large number of power traces
captured from FPGA-based AES implementations, the curve bg is a basic trace element
for the most of the captured power traces. Without loss of generality, this curve is taken
as our example. Now several definitions are given for the future using.

Slope Characteristic (SC): It depicts the tendency of slope k for a line crosses through
two certain points within the interval WI in the analyzed trace segment. However, the
adversaries concentrate the positive-negative characteristic of slope k rather than its exact
value.

1. If k > 0, then the SC property for these two points and the points in between
features positive. The flag Fsc is assigned as 1, i.e., Fsc = 1 holds.

2. If k ≤ 0, then the SC property for these two points and the points in between
features negative. The flag Fsc is assigned as 0, i.e., Fsc = 0 holds.

Fig. 6.6 illustrates an analyzed power trace curve with its flag Fsc shown underneath.
Peak Start Position: As the name suggests, it defines the start position of the analyzed

power peak. For example, the start position of the bigger and smaller peaks are the points
b and d, respectively, as shown in Fig. 6.6.

Peak Height: It measures the height of a peak by calculating the power value difference
between the peak start position and its summit. As illustrated in Fig. 6.6, the peak height
H for the peak def derives from the power value difference between the start point d and
the summit e.

The values in Fsc can predict the rising and falling tendency of the analyzed power
trace as follows:

1. For the curve segments ab and gh, the flag Fsc shows the values 0 and 1 in alterna-
tion.

2. For the power peak, the Fsc features long continuous value 1 or 0 for the rising and
falling parts, respectively. For example, for the rising curve bc, Fsc = 1 holds. In
contrast, for the falling curve cd, Fsc = 0 holds.



74 Chapter 6. Pre-processing of Misaligned Power Trace

Algorithm 4 SC Calculation
Require: Ti,1:W ,WI

Ensure: Fsc

Initialize Fsc(j) = 0, j ∈ [1,W ]
for j = 1 to W do

Determine Fsc for Ti,j within interval WI

end for
Return Fsc;

Consequently, by extracting the information from the values in flag vector Fsc, one can
eventually figure out the peak position for the targeted round peak. The whole analysis
scenario is discussed in the sequel.

6.3.3.2 General Peak Detection Algorithm
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Figure 6.7: Calculation Steps for Slope Based Peak Detection

For each misaligned power trace Ti,1:W , Algorithm 4 is mounted resulting in flag vector
Fsc, as outlined in Fig. 6.7 a) with an analyzed power trace presenting as a background.
In the rising and falling region, the Fsc value features long continuous 1 and 0, respec-



6.3. Horizontal Alignment 75

Algorithm 5 Slope Analysis
Require: Fsc,Wc

Ensure: F
Initialize Ftemp(i) = 0, Fi = 0, i ∈ [1,W −Wc]
Fluctuation Filtering:
for j = 1 to W −Wc do
if FSC(j:j+Wc) = 1 then Ftemp(j) = 1 end if

end for
Flag Simplify:
for k = 1 to W −Wc do
if k == 1 then
if Ftemp(1) == 1 then F1 = 1 end if

else
if Ftemp(k−1) == 0 and Ftemp(k) == 1 then Fk = 1 end if

end if
end for
Return F ;

tively. In contrast, in the fluctuation region, the flag vector Fsc shows the values 1 and 0

varying alternatively. Please note that the time point interval WI must be chosen prop-
erly, i.e., neither too large nor too small. For example, there exists a vector A=[6, 8, 9,
12, 5, 8, 19, 25, 16, 10, 4, 5], if we choose the points A1 and A12 to establish a line, then
the Fsc = 0 holds, i.e., WI = 10, all the time points A2:11 feature the same property. One
finds that the points in A5:11 form a small peak, however, Fsc = 0 holds, i.e., the peak
from point A5 to point A11 is taken as the noise and filtered out by the algorithm. If we
want to keep such a peak, then the value WI may be chosen smaller. In other words, the
choosing of interval value WI relies on the size of the analyzed peak. Thus, by adjusting
the interval WI , the rising and falling sections of the round peaks can be discerned from
the glitches and noise. Later, by analyzing the values in the flag vector Fsc, the targeted
peak position can be clearly identified for the subsequent algorithms.

Algorithm 5 is exploited to further analyze the flag Fsc and to distinguish the tar-
geted peak from the noise resulting in the finding of peak start position in the analyzed
power trace. The whole process contains two main steps, i.e., fluctuation filtering and flag
simplifying. In the first step, values 0 and 1 fluctuation parts in Fsc will be assigned to 0

after the checking of the value 1 appearing Wc times continuously. In other words, there
exists an empty vector Ftemp with the number of W −Wc zero elements. If any element
and the number of Wc elements following are equal to 1 in the flag vector Fsc(1:W−Wc),
then the element at the same position in Ftemp is assigned to 1. After this process, the
0, 1 fluctuation parts disappear, and the rests are the regions with long continuous value
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Algorithm 6 Peak Position Detection
Require: Ti,W , F , Wo, Ph

Ensure: t∗

for j = 1 to W −Wc do
if Fj = 1 then search domain [j, j +Wo] in Ti,1:W and calculate the peak height H
if H ≤ Ph then assign Fj = 0

end for
for t = 1 to W −Wc do
if Ft = 1 then detect maximum value (t∗, Pmax) in the domain [t, t+Wo] of Ti,1:W

end for
Returnt∗

1, which point to the rising parts of each peak, as illustrated in Fig. 6.7 b). The start
position of each region with continuous value 1 is the start position of the peak. In the
flag simplifying phase, each element in the flag vector Ftemp is checked. The transition
points featuring value changing from 0 to 1 are the peak start positions for the analyzed
round peaks, which are assigned to the value 1 in flag vector F , as illustrated in Fig.
6.7 c). One finds now that each flag in F points to a peak start position. However,
there exist two obvious peaks, i.e., bigger and smaller ones, and the start position for the
former one is focused. Therefore, the identification between the bigger and smaller peak
is necessary, which is discussed in the sequel.

In order to distinguish the peaks with different sizes, i.e., the peak height threshold
Ph is introduced into Algorithm 6, where Wo denotes the peak start offset. The indicator
elements with value 1 in F point to the start positions of each peak in the analyzed power
trace. The peak height value H can be calculated for each power peak, then, such a value
is compared with the peak height threshold Ph resulting in the separation of bigger and
smaller power peaks. At the same time, the indicators, which point to the smaller peaks
are removed, i.e., assigned to the value 0, which is visible in Fig. 6.7 d). After that,
all the indicators in the flag vector F are in an one to one correspondence with all the
targeted peaks. Then the peak positions can be located by searching the biggest pair
(t∗, Pmax) from the peak start position with the offset Wo, where t∗ denotes the peak
position in the time domain. Then according to the index of the peaks, the adversaries
can get the peak position correctly.

The proposed algorithm embodies more parameters than the threshold based algo-
rithm in 1. Consequently, before mounting the algorithm, a trace training is required to
get the appropriate parameter settings. As long as one can find the proper parameters,
the correct peak position can be detected successfully without considering the fed base
clock frequency. Therefore, a visualized software is needed to train the traces and to
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determine these parameters properly.
When running the suggested algorithms at hand, if the correct peak position cannot

be found, two possible cases may appear. Firstly, the parameters may not be correctly
selected; secondly, the analyzed power trace is invalid and not being exploited for the fur-
ther analysis. Therefore, the analyzed power trace and its counterpart, e.g., input/output
(plaintext and ciphertext), must be discarded.

6.4 Analysis GUI

In order to train the power traces in advance to find the proper parameters in the slope
based peak detection algorithm and visualize the attack results, a Graphical User Inter-
face (GUI) is created by Matlab. The GUI embodies several basic functions and algo-
rithms mentioned before, which is called traces view and parameters setting, as shown
in Fig. 6.8. There are two functions in such a GUI. Firstly, it is utilized to visualize
the analyzed data or do some basic analysis for the attack results, i.e., maximum values,
positions, etc.; secondly, it is exploited to train a certain amount of the analyzed power
traces for the parameters adapting in the slope based peak detection algorithm. However,
the latter is predominated.

6.4.1 Data Analysis

The basic function for this GUI is to analyze the selected data in the variable space.
First, the analyzed variable "traces" is selected from the popup menu in the Analyzed
Traces Information panel. Then the different information of the being analyzed data are
shown in the same panel, e.g., the variable "traces" contains 100 power traces. Each
trace embodies 4,200 time points. Besides that, the maximum and minimum values,
positions, variance, standard deviation are shown in the Single Trace Information panel.
The extreme values and its positions are presented in the Global Information panel, ac-
cordingly. Here, one can decide only one or all traces in this variable is shown in the
figure by selecting the radios in panel Traces Showing. Additionally, the mean, variance,
standard deviation or 3D curves for all the traces can also be drawn by selecting the
buttons in panel Extra Drawing. For example, in Fig. 6.9, all the traces are shown with
gray color except the being analyzed one. At the same time, the mean and standard
deviation curves for all these traces can be presented, respectively. In Fig. 6.10, all the
traces are drawn with the 3D view.
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Figure 6.8: Parameter Setting GUI
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6.4.2 Parameter Adapting

The main function for this GUI is to adapt the parameters in the slope based peak
detection algorithm. In the Parameters panel, the parameters, for example, time point
interval WI , continuous point number Wc, peak height threshold Ph, peak start offset
Wo, are set in advance for the testing. The start and the end time points of the analyzed
traces can also be adjusted, as well as the counting order, i.e., counting from left is 1 and
from right is 0; the aimed peak number defines the index of the peak which the adversary
wants to locate. After the setting of the parameters, one can press the Execution button
in panel Analysis Results to run the proposed analysis methods. At the same time, a
visualized panel shows the progress of peak detection step by step, as shown in Fig. 6.7.
The values for determining a set of parameters properly can be changed by training a
certain amount of the power traces. All these finely chosen parameters can be exported
as a text file for the subsequent using in real attacks, which can also be imported from
the previously stored text file.

Take the variable "traces" again as an example. The third trace is focused, where
the second peak counting from left side is taken as the aimed peak. The whole trace
contains 11 power peaks, and the targeted peak position is at the time point 606. Then
the GUI is run for the traces training. The counting direction and the aimed peak number
are set as 1 and 2, respectively, where Wc = 40, Ph = 30, and Wo = 100 hold. In order to
help the readers to have a further impression about the WI selection, the parameter WI

is changed with three values, i.e., 2, 5, 70. One finds that only in Fig. 6.12, all the power
peaks can be recognized correctly, where WI = 5 holds. With the smaller time point
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Figure 6.11: Trace Training: WI = 2
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Figure 6.12: Trace Training: WI = 5
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interval, e.g., WI = 2, the targeted peak position is lactated by mistake at the position
856, as shown in Fig. 6.11; with the larger time point interval, e.g., WI = 70, the aimed
peak position is recognized incorrectly at the time point 1, 189, as illustrate Fig. 6.13.
Both parameters WI = 2 and WI = 70 are set either too small or too large, respectively,
which are unwise choices for the peak detection. Consequently, after the adjusting of the
parameters for training a certain amount of the power traces, a set of parameters for the
analyzed power traces can be eventually found. Then the trace pre-processing can be
run.

6.5 Clock Frequency Effects

The main portion of power consumption in the CMOS circuits is the dynamic power,
which can be estimated by (2.3). Theoretically, the value of capacitance C is fixed when
the cryptosystem and all its peripherals are deployed; it is no doubt that voltage regulator
can supply the stable power, i.e., VDD is a constant; the switching activity α is a statistical
parameter, which, to some extent, may be taken as a constant as well. Only the on
system clock frequency f is a random variable in a random clock featured cryptosystem.
Therefore, the random clock frequencies have an influence on the variation of dynamic
power consumption in the physical cryptosystem directly, which are presented in the
captured power traces with the power values of round peaks shifting in the amplitude
domain, i.e., clock frequency effects.

For better understanding of the clock frequency effects, assuming in a CMOS circuit, a
capacitance charging and discharging requires the time 0.05s and 0.05s, respectively, i.e.,
the frequency for such a process is 10 Hz. When a cryptosystem is running at 7 Hz fixed
clock frequency, for each valid clock, the capacitance can charge and discharge completely.
Accordingly, the power traces feature the behavior with stable power peaks. If the clock
frequency is increased to 15 Hz, the charging and discharging for the capacitances become
incomplete. However, the power peaks are still stable. If the capacitances are fed with
a random clock running at 15 Hz base clock frequency, then one finds that with the
clock slower than 10 Hz the capacitances can charge and discharge completely. On the
contrary, the incomplete and the different amount of power dissipation arisen from the
charging and discharging take place when the fed clock is higher than 10 Hz. Both cases
are mixed randomly yielding the complete and incomplete charging and discharging for
the capacitances alternatively. For example, there exist two types of clock frequencies,
i.e., 6 Hz and 15 Hz. Under the former situation, the capacitance dissipates 13 units
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Algorithm 7 Search Area Calculation
Require: T
Ensure: Vd
1: Search each time point in each trace of the set T , find its maximum power consump-
tion value, and store it into a vector Vf , where N defines the number of the power traces
in T .
2. Find the maximum and minimum peak heights Vf(max) and Vf(min) in Vf .
3. Calculate Vd = Vf(max) − Vf(min).
4. Return Vd

power; for the latter, the capacitance consumes 20 units power. When there comes
a continuous clock with 6 Hz or 15 Hz, and then the capacitance dissipates 26 or 40
units power accordingly. However, if there come two clocks operated at 6 Hz after the
15 Hz, then the capacitance dissipates 33 units power. In other words, the different
combinations of the adjacent clock frequencies cause different power dissipation, which
behaves in the power traces as the power values changing of round peaks, i.e., clock
frequency effects. These effects may be observed from the captured power traces directly.
Fig. 6.5 illustrates two encryption traces running at 2 and 24 MHz base clock frequencies,
respectively. Fig. 6.5 a) shows the power traces working at 2 MHz base clock frequency,
where the power peaks shift only in the time domain, with a little power values variation
in the amplitude domain. When the base clock frequency is increased to 24 MHz, in
contrast, the power peak positions not only shift in the time domain, but also the power
values vary considerably in the amplitude domain, as highlighted in Fig. 6.5 b).

6.6 Vertical Matching

In order to antagonize the clock frequency effects existing in the misaligned power traces,
we proposed the vertical matching algorithm resulting in the improvement of attack per-
formance, as detailed in [TH12b]. In this section, a brief introduction about this trace
pre-processing method is given.

Without loss of generality, the maximum fluctuation Vd is determined by exploiting
Algorithm 7, which defines the maximum difference between the maximum and minimum
summit values of the power peaks in set T . Such a value must be calculated in advance,
and it implies the search range, which is used for the subsequent algorithm.

In Algorithm 8, each trace is moved in the amplitude interval [Ti,1:W−Vd, Ti,1:W +Vd].
During the moving, the Euclidean distance between the analyzed power trace and the
template Tt is determined and stored in a vector Dis, where the minimal value Disj∗
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Algorithm 8 Vertical Matching
Require: Ti,1:W , Tt(1,1:W ),
Ensure: Tv
1: Calculate the step interval s = (2Vd/N)
2: Calculate Disj = EuDis(Ti,1:W − Vd + j · s, Tt) for each move, where j ∈ [0, 2Vd/s]
3: Find minimum distance in Disj, record its index j∗
4: Store the trace Ti,1:W − Vd + j∗ · s into trace set Tv
5: Return Tv

Minimum 
Euclidean 
Distance

Vertical 
Searching Area

Euclidean
Distance

Template

Trace

Figure 6.14: Visualization of Vertical Matching

indicates that the both analyzed parts are matched with each other very well. Then the
trace with the offset j∗ · s − Vd in the amplitude domain is stored into the vertically
matched trace set Tv, as shown in Fig. 6.14.

Here is a tip, the integer power values for the captured traces are derived from the
sampling and quantizing oscilloscope. Therefore, in practice, the power values are kept as
integer after the process of vertical matching, i.e., the step of each moving can be set as
1 or bigger. One may also assign it smaller than 1. However, it increases the calculation
time considerably without bringing the improvement of the attack performance.

By exploiting vertical matching, the efficiency of power attacks is considerably im-
proved, which has been presented by us in [TH12b] with the evaluation metrics, i.e., total
trace usage and correlation peak height.
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Figure 6.15: Architecture of Trace Pre-processing

6.7 Process Framework

Combining the horizontal alignment with the vertical matching method, the whole sce-
nario of the trace pre-processing is illustrated in Fig. 6.15. Here, for the horizontal
alignment, two peak detection methods can be utilized alternatively, which relies on the
base clock frequency fed into the cryptosystem. Subsequently, the vertical matching may
be mounted accordingly. The whole process to the misaligned power traces can consid-
erably improve the power attacks in reality.

6.8 Software Architecture

In order to preprocess the misaligned power traces for the subsequent attacks systemat-
ically, a software architecture is proposed, as shown in Fig. 6.16.

The whole architecture is composed by several functions and sub-functions, which are
detailed in the following.
Function 1. FrequencyDetermining is applied to determinate whether the intensity
of the clock frequency effects are strong enough, i.e., when the base clock frequency are
higher than a preset threshold value, the program will choose the proper horizontal align-
ment and vertical matching algorithms accordingly. Usually the threshold value can be
achieved by monitoring the trace capture phase online.
Function 2. ThresholdHA is a main function to execute the horizontal alignment

by finding a proper threshold to filter the isolated peaks, which embodies three sub-
functions, i.e., ThresholdPeakDetect, TracesVerification, and PatternMatching.
Function 3. SlopeHA defines a main function to run the horizontal alignment by
analyzing the slope of the analyzed power traces. The whole function contains three
sub-functions, i.e., SlopePeakDetect, TracesVerification, and PatternMatching, which are
introduced in the sequel.
Function 4. ThresholdPeakDetect implements the peak detection algorithm from
exploiting the threshold value P ∗, which embodies two sub-functions, i.e., PeakFiltering
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Figure 6.16: Software Architecture for Trace Processing in Matlab

and DomainCompress. Both of them execute the algorithms proposed in Algorithms 1,
2, and 3, respectively.
Function 5. SlopePeakDetect achieves the peak detection algorithm by analyzing the
slope characteristics of the power traces, which contains two sub-functions, i.e., SlopeAn-
alyzing and PeakDetect. Both functions run the algorithms suggested in Algorithms 4,
5, and 6, respectively.
Function 6. TracesVerification is a common subfunction, which is called by the func-
tions ThresholdHA and SlopeHA. The main contribution for such a function is to detect
two abnormal cases: on the one hand, there is no peak existing in the analyzed section, it
is caused by system or communication errors during the trace capture phase; on the other
hand, the power trace does contain the power peaks, however, which is not the correct
one the adversary is looking for. The mentioned cases occurring implies that the being
analyzed power trace is useless. Therefore, this invalid power trace and its correspondent
plaintext (ciphtertext) must be removed from the analyzed data. Then the programm
goes on to analyze the next power trace.
Function 7. PatternMatching embodies different pattern matching algorithms, e.g.,
correlation coefficient, Euclidean distance, etc. According to the specific utilization, which
is divided into two sub-functions, i.e., HorizontlPM and VerticalPM. The difference be-
tween these two functions is the template moving type. In the former, the template shifts
from left to right in the time domain to find the best matched section in the analyzed
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trace segment. Consequently, the similarity analysis algorithms, i.e., correlation coef-
ficient, and Euclidean distance can be exploited; for the latter, the template is shifted
in the amplitude domain. Therefore, only Euclidean distance can be exploited as the
distinguisher. Hereafter, the matched trace section is stored into a new trace matrix, i.e.,
horizontally aligned or vertically matched power trace matrix for the subsequent attacks.
Function 8. SearchingRangeDetect calculates the searching range for the template
shifting in the amplitude domain in vertical matching phase, as presented in Algorithm
7.

The proposed architecture supplies more possibilities when the misaligned power
traces occur. This architecture can help people to access the secret key in cryptosys-
tems with ease and to achieve s better attack performance in practice.
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7.1 Introduction

In this chapter, some attack factors are introduced first, which have the impact on the
trace pre-processing as well as the attack performance. Then the attack methods and
trace pre-processing approaches are combined into a framework to provide more choices
for the key revealing in physical cryptosystems.
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Figure 7.1: Pattern Matching With Different Matching Algorithms

7.2 Factors for Trace Pre-processing

In the trace pre-processing phase, several objective factors, e.g., template length, pattern
matching algorithms, sample frequency, and adaption of the oscilloscope, etc., may affect
the final attack results in practice, which are discussed in the sequel.

7.2.1 Template Length and Pattern Matching

In the pattern matching phase, the relationship between the template and the analyzed
power trace is calculated by exploiting different means as distinguishers to find the best
matched section in the analyzed power trace. However, the template length and the
pattern matching algorithms do impact the final matched results. On the one hand, by
matching the same template using different pattern matching algorithms, different results
may be achieved, where tiny variations exist between each matched power trace leading
to different attack results. Fig. 7.1 illustrates a mentioned case where the same template
moves from left to right in the time domain within 100 time points. For each moving
step, the correlation coefficient and the Euclidean distance are calculated, respectively.
In order to depict it clearly, an analyzed trace section and a template are shown in the
upper part of figure, meanwhile, the similarity calculation results are shown in the lower
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Figure 7.2: Pattern Matching With Different Length of the Template

part. Taking correlation coefficient as a distinguisher, the matched position is located
at time point 55. However, in case of the Euclidean distance, the matched position
is shifted to the time point 63; on the other hand, when exploiting the same pattern
matching algorithm to match the power trace with varying length template, sometimes
the results are not exactly the same. For example, the same trace section is matched
by using different lengths of template, i.e., 90 and 250 time points hold, respectively, as
shown in Fig. 7.2 a) and b). The correlation coefficient is taken as the distinguisher for
these two operations. The matched positions are found at the time points 55 and 45,
respectively. Consequently, for the time point attacks, such differences for the aligned
power traces result in different attack performance. However, this influence may be min-
imized by applying PAA methodology directly for its concentrating on the time interval
rather than the time instant. Therefore, a proper length of the template and a proper pat-
tern matching algorithm affect the performance in trace pre-processing and attack phases.

7.2.2 Sample Frequency

The sample frequency for the oscilloscope plays an important role in the trace capture
phase. From Nyquist sampling theorem, in order to reconstruct the being sampled signal
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from the discrete sample points, the sample frequency must be greater than the twice
maximum frequency of the sampled signal, cf., [MA07, pp. 397 ], which is a basic principle
for the oscilloscope working properly. Therefore, before capture the power traces, the
sample rate of the oscilloscope and the maximum frequency of the being sampled signal
must be checked carefully. Usually, the higher sample rate, the more information can
be collected during the capture phase. In other words, an oscilloscope with good quality
featuring a higher resolution is a great help for power consumption analysis. Assume that
there exists an information leakage in an analyzed power trace segment. If this process is
monitored by exploiting oscilloscope with lower sample rate, two possibilities may occur:
firstly, as highlighted in Fig. 7.3 a), the leakage lies just in between of the two sampled
points, then the sampled discrete curve contains nothing about the information leakage;
secondly, fewer information leakage points may be captured, e.g., as illustrated in 7.3 b),
where the oscilloscope features the same sample rate as in Fig. 7.3 a). However, only one
time point carrying the information leakage is sampled and captured occasionally, which
may not include the maximum information leakage point, i.e., most of the information
leakage is lost during the sampling. A better way is illustrated in Fig. 7.3 c), where,
the sample rate of the oscilloscope is higher, and more time points with the information
leakage are sampled and recorded for the subsequent analysis. Therefore, by accelerating
the sample rate of the being used oscilloscope, the probability for capturing the points
containing the valid information leakage is increased leading to an efficient attack.

DPA and CPA are time point attacks, therefore, the extreme condition in Fig. 7.3 b)
may work in such attacks. In contrast, PAA is a time interval attack. Consequently, under
the same condition, a lot of time points without the information leakage are exploited
resulting in the lower success rate. In other words, PAA attack requires the oscilloscope
with a higher sample rate. Usually, in the laboratory, the better attack performance can
be achieved by slowing down the input clock of the cryptosystem, where the sample rate
of the oscilloscope is unchangeable.
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7.2.3 Oscilloscope Adaption

Oscilloscope adaption is also an important factor in the trace capture phase. The speed
for trace collection directly affects the final attack efficiency. In order to speed up the
trace capture step, a small portion of the whole trace is concentrated by tuning the
oscilloscope focusing on the information leakage region, where the adversary is focusing
on. The captured power trace is first stored into the online cache of the oscilloscope. Then
such data is transferred to the computer or other storage devices. If the whole power
trace containing more time points is captured, the heavy burden for the data transferring
line will decelerate this process resulting in a longer run time in trace capture phase.

7.2.4 Light, Temperature, and Surrounded Noises

In practice, the light, temperature, and surrounded noises, all may be the influence fac-
tors for a running cryptosystem. They have a common feature that a strong intensity of
all these factors may vary the power consumption dissipated from the circuits. In other
words, with the same input and output, the variations of power consumption stemmed
from the cryptosystem are out of the tolerance range resulting in encumbrances for the
subsequent attacks.

Strong lights can malfunction the cryptosystem. Let’s take an extreme example in
fault attack. Usually, the laser is exploited to shine the running cryptosystem to intro-
duce the artificial errors in the running algorithm. Meanwhile, the variation of the power
features certain irregular changes. If it occurs during the trace capture phase, the output
of cryptosystem may be incorrect, as well as the behaviors of the captured power traces.
Then with the wrong output and the abnormal power traces, the leakage model cannot be
built correctly, and the right key bytes cannot be achieved resulting in the worse attack
performance.

Usually, when the temperature becomes higher, the power dissipation from the cryp-
tosystem is increased accordingly, which makes the temperature of the running system
even higher. Therefore, with a higher temperature, for the same input and key, one may
get different power traces resulting in an increment of trace usage in practical attacks.

The strong surrounded noises from the other electromagnetic devices also interfere
with the working cryptosystem leading to unexpected variation in the power consump-
tion or system.

In order to capture sound power traces containing unnecessary noises in practice,
we recommend laying the running cryptosystem in a place, where exist no strong light,
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Algorithm 9 Peak Position based Horizontal Alignment
Require: Ti,1:W , Ol, Wp

Ensure: T ′i,1:Wp

1: Detect the aimed peak position t∗ in Ti,1:W by exploiting algorithms: threshold or
slope base peak position detection
2: Truncate the power trace from position t◦ −Ol with width Wp

3: Save the truncated power trace as the aligned trace T ′i,1:Wp

4: return T ′i,1:Wp
.

constant lower temperature, and clean electromagnetic environment.

7.3 PAA Attack on Misaligned Power Traces

In this section, the drawbacks of the misaligned power trace pre-processing with time
point attacks are outlined. In contrast, the autogenetic advantages of PAA attack are
fully used to overcome the weak points stemmed from the time point attack methods
resulting in faster calculation during attacks.

7.3.1 Misaligned Trace Pre-processing With Time Point Attacks

Both methods, horizontal alignment and vertical matching, can considerably improve the
power consumption attacks. However, there exist two problems, which should be taken
into the consideration. First, by mounting time point attacks, e.g., CPA attack, on the
misaligned power traces the different template lengths and the algorithms chosen in the
template matching phase yield different matching results; meanwhile, regardless which
method being exploited in the pattern matching phase, the traces cannot be aligned
exactly, i.e., there always exist alignment errors in both the horizontal alignment and
vertical matching phases. These errors are taken as inevitable artificial noises interfering
with the attack success rate. Therefore, the performance of time point attacks relies
so heavily on the quality of trace pre-processing algorithms; on the other hand, in the
vertical matching step, the extra efforts must be invested in this process. Therefore, we
proposed a new efficient and effective way without the template trace and the vertical
matching step in [TH12c], which is outlined in the sequel.

7.3.2 Peak Position Based Trace Alignment

In horizontal alignment, the captured power traces have to be truncated twice in the
coarsely truncation and pattern matching phases, respectively. In order to minimize this
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process, the stronger misalignment tolerance characteristic in PAA attack is fully utilized,
where the peak position based trace alignment was proposed as Algorithm 9 combining
with PAA attack resulting in a faster attack procedure without greatly cutting down the
attack performance in practice. In other words, after the peak position finding, the power
traces are truncated according to the peak position only once for the subsequent attacks.
Without the pattern matching phase, the template is not required anymore, meanwhile
a lot of computation time can be saved.

7.3.3 Invalidating of Vertical Matching

The mechanism for vertical matching is to move the power trace up and down in the
amplitude domain to find the best matched trace section. Such a process is invalid in
the PAA attack for its amplitude fluctuation invariance, which results in a stable attack
performance regardless the movement of the power traces.

Based on the autologous features in PAA attack, the pattern and vertical matching
steps are omitted together leading to the speed up of attack procedure in reality.

7.4 Attack Frameworks

7.4.1 Attack Framework of Misaligned Power Traces

In order to have a visible framework for attacking the misaligned power traces by apply-
ing different attack methods, a complete framework is proposed, which takes the attack
methods, the trace pre-processing algorithms, and the fed base clock frequency into con-
sideration.

There are two approaches to mount attacks on such misaligned power traces in prac-
tice, as illustrated in Fig. 7.4. Firstly, by exploiting path a), one can mount alignment
sensitive attack methods, i.e., DPA, CPA, etc., on the misaligned power traces processed
by the Template Based Horizontal Alignment (TBHA). If the clock frequency effects
in the captured power traces are fierce, then the vertical matching may be applied to
counteract these effects and to eventually improve the attack performance. The vertical
matching step in PAA attack is superfluous resulting in short trace pre-processing time.
In addition, the attack results are superior to CPA attack after the vertical matching
phase, as shown in [TH12e] and [TH12d]; secondly, in order to have the short trace
pre-processing time, the power traces processed by the Peak position Based Horizontal
Alignment (PBHA) algorithm may be applied without running the pattern matching
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Figure 7.4: Attack Framework for Misaligned Raw Traces

step. Then, PAA attack can be mounted directly on such imprecisely aligned power
traces. The attack results are better than or nearly equal to CAP attack after the verti-
cal matching, as shown in [TH12c]. Subsequently, the roughly aligned power trace may
be vertically matched when the base clock frequency is higher. CPA or DPA attacks
can also be executed on the coarsely horizontally aligned and vertically matched power
traces, respectively. However, the attack results are not so good. Comparing to the path
a), the calculation for the path b) is simpler and faster. With the proposed attack archi-
tecture, the adversaries may access the secret key of cryptosystems in a selective manner.
Moreover, this architecture can be exploited for the security evaluation in practice as well.

7.4.2 Attack Framework of Aligned Power Traces

In previous chapter, the trace pre-processing methods are generated for neutralizing the
misaligned power traces yielded from a random clock featured cryptosystem. However,
whether these methods can be applied to preprocess the originally aligned power traces
are unknown. We propose our conceptions as following and verify them in the upcoming
chapter by mounting several attacks in reality.
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Horizontal Alignment Usually, the power traces captured from a running unpro-
tected cryptosystem are assumed as the aligned ones. Therefore, it is time-consuming
to run horizontal alignment algorithm on the aligned power traces. In addition, there
exist some alignment errors in the horizontally aligned power traces. However, in order
to improve the attack performance, we suggest exploiting path a) in Fig. 7.5 under the
following conditions: on the one hand, the power traces are captured when the trigger
signal is valid, however, the circuit networks may have some delays, which causes the
beginning of the trigger signal for different input data may be a bit different. Therefore,
there still exists the misalignment in the targeted originally aligned power traces; on the
other hand, the clock chip may be of lower quality, then the input clock may contain some
vibrations or shifts. If the mentioned cases are strong enough, the adversaries may also
collect the power traces with tiny misalignment resulting in a bad attack performance.
When one of the mentioned cases occurs, the horizontal alignment may be resorted to
improve the attack performance. However, if these interferences are negligible, i.e., they
are in a tolerance range, then the system can be attacked directly without spending the
time in horizontal alignment. Therefore, whether the pre-processing should be mounted
or not relies on the quality of the cryptosystem and the trace capture technology in re-
ality. Here, the horizontal alignment can be mounted easily. Because the power traces
are assumed as aligned, the positions of aimed power peaks for different power traces are
nearly the same, which can be determined by observing the power traces. Subsequently,
the power trace around the known peak position can be directly truncated for the pattern
matching phase. Subsequently, the attacks can be executed.
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Vertical Matching The reason to run vertical matching algorithm in the aligned traces
is that, when the normal cryptosystem is fed by a higher clock frequency, although the
input clock frequency is fixed, which may more or less cause the power consumption
changing in the circuits. As mentioned in chapter 2, the dynamic power is the main
portion of the total power dissipation in CMOS circuits. It does not mean the static
power consumption is always stable. They do vary the power consumption within a tiny
range when fed with higher clock frequencies. That is to say, in the electronic circuits,
some other factors may also affect the power values changing when running at a higher
clock frequency. Such tiny variations behave like the clock frequency effects in random
clock featured cryptosystem. Therefore, we suggest exploiting vertical matching in path
b) to deal with the aligned power traces for achieving a better attack performance, as
illustrated in Fig. 7.5.
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8.1 Introduction

In this chapter, the attack frameworks combining the attack methods and trace pre-
processing approaches are studied in real cases. The attack results are then compared
accordingly by means of the evaluation metrics introduced in Chapter 3. In order to
yield the persuasive experimental results without loss of generality, an FPGA-based
cryptosystem running with different implementations and clock frequencies is attacked,
respectively. The whole experiments are designed as four separate parts:
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1. The performance for attack methods CPA, PAA, and MIA is compared by attacking
the same power traces with Hamming distance leakage model.

2. Study the attack framework proposed in Fig. 5.2, Chapter 5, by mounting attack
methods CPA, PAA, PAA-I, and PAA-II on the normal power traces with the
mathematic and trace form leakage models, respectively.

3. Preprocess the aligned power traces with the trace pre-processing workflow, as
illustrated in Fig. 7.5, Chapter 7. Then mount CPA attack on the preprocessed
power traces accordingly.

4. Preprocess the misaligned power traces according to the trace pre-processing work-
flow proposed in Fig. 7.4, Chapter 7. Meanwhile, mount CPA and PAA attacks
during the processing steps, respectively.

The success rate, guessing entropy, run time, and minimal traces usage are exploited as
evaluation metrics. Before running the specific experiments, the considered platform is
introduced firstly.

8.2 Hardware and Software

There are several platforms, which can be exploited to run the cryptographic algorithms
for yielding the analyzed power traces, e.g., smart card, micro-controller, FPGA, and
ASIC, etc. In order to have flexible choices for the cryptographic implementations and
to generate the comparable attack results, the considered platform is side channel at-
tack standard evaluation board (SASEBO) version G [Ins08]. The whole architecture
of this board is shown in Fig. 2.8, Chapter 2. Two Xilinx Virtex-II pro FPGAs, i.e.,
XC2VP30-FG676 and XC2VP7-FG456 are deployed on this development board as the
control and cryptographic devices, respectively. By exploiting such a platform, the ar-
chitectures for the cryptographic algorithms can be modified and customized according
to the specific requirements. During the whole experiments, a random number generator
may be inserted between the oscillator and the cryptographic FPGA, when a random
clock featured cryptosystem is required to yield the misaligned power traces.

The power and the input clock for the board are supplied by an Agilent E3646A DC
power supply and a 33250A waveform generator, respectively. The power supply can pro-
vide voltage 0-8V with 3A current or voltage 0-20V with 1.5A current. For the waveform
generator, it can generate function or arbitrary waveforms with the maximum frequency
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of 80MHz.
For trace capture, the Agilent oscilloscope is considered with model number DSO6052A

featuring 500 MHz bandwidth and 4 GSa/s sample rate, which contains two channels:
one is applied to sample the trigger signal; the other one is used to capture the power
consumption dissipated from a working cryptosystem.

The calculation computer features a Quad-Core processor running at 2.8 GHz with 8
GB memory. Indeed, the efficiency of the attack methods sometimes relies on the con-
figuration of calculation computer. The fast CPU and the large memory result in better
attack performance in practice.

Xilinx ISE is exploited to edit and compile the VHDL designs, which can be down-
loaded to FPFA chips to fulfill some given tasks. Matlab is used as the analysis software
to preprocess the captured power traces and to mount power consumption attacks. If
C/C++ codes or parallel calculation, etc., can be utilized during the attack, the attack
results may be achieved faster.

8.3 Comparison of Normal Power Trace Attacks

In this section, CPA, PAA, and MIA attacks are executed on the normal power traces
with the same leakage model for the comparison of attack performance.

8.3.1 Experimental Setup

The considered algorithm is AES-128 featuring TBL S-Box as proposed in [RDJ+01].
The Hamming weight concentrating on the register in the last round before and after the
S-Box is taken as a leakage model for all subsequent attacks, as detailed in (2.5). Then
the CPA, MIA and PAA attacks are mounted, respectively.

The whole system is running at 2 MHz clock frequency. In the attacking phase: for
each key byte, the experiments are mounted 30 times with different input data; for each
experiment, the maximum number of the trace usage is set to 3,500; in each attack, 10
power traces are added, i.e., 350-time attacks are run in each experiment. Subsequently,
the success rate, guessing entropy, and run time are presented and compared, respectively.



102 Chapter 8. Application Examples

0 700 1400 2100 2800 35000

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 R
at

e

Number of Traces

 

 

CPA
PAA
MIA

Figure 8.1: Global SR Comparison of CPA, PAA, and MIA Attacks

8.3.2 Experimental Results

8.3.2.1 Success Rate Comparison

Fig. 8.1 shows the global success rate of CPA, PAA, and MIA attacks, respectively.
One finds clearly that the PAA attack shows the best attack performance to reveal all
the key bytes within 1,000 power traces; To achieve the same goal, CPA attack needs
nearly 1,800 power traces, whereas the MIA attack cannot crack all the key bytes within
provided power traces.

In order to do a further comparison, the success rate and the guess entropy for each
key byte are illustrated in Fig. B.1 and B.2, Appendix B, respectively. Comparing to
CPA and MIA attacks, for revealing all the key bytes, PAA attack always features the
best performance in terms of the success rate and the guessing entropy; meanwhile, by
exploiting MIA distinguisher, the byte nine needs more power traces to be revealed suc-
cessfully, while the other bytes can be attacked within the given power traces. However,
for each key byte attacking, MIA presents the worse attack performance than CPA and
PAA attacks.

8.3.2.2 Run Time Comparison

In order to have an intuitive impression about the run time for different attacks, all these
attack methods are executed to reveal the first key byte of the analyzed cryptographic
algorithm within 10,000 power traces spanning 600 time points in the analysis region. In
other words, the size of the power trace set T and the HD leakage model are 10, 000×600



8.4. Attack Framework Evaluation 103

Attack Methods CPA PAA MIA
Run Time 1.06s 0.75s 33.67s

Table 8.1: Run Time Comparison for Different Attack Methods

and 10, 000×256, respectively. For CPA and MIA attacks, the correlation coefficient and
mutual information are calculated 600 × 256 times. However, please note that in MIA
attack, the mass function for each analyzed data should be estimated in advance, which
is a time consuming task. Whereas in PAA attack, the purified leakage vector V features
the size 10, 000 × 1, then the correlation coefficient is mounted only for 1 × 256 times
resulting in lower calculation complexity. In order to get an average time requirement for
the evaluated attack methods, each experiment is repeated for 10 times.

Table 8.1 shows the run time for all the mentioned attack methods. PAA Attack
requires the shortest run time, i.e., 0.75s, while the MIA needs the longest one, which
is nearly 44 and 31 times of the figures in PAA and CPA attacks, respectively. Under
the same condition, comparing to CPA attack, the PAA attack can save 29% run time
in practice. There is no double that MIA requires more time because of the higher
calculation complexity in the mass function estimation.

From the presented figures, one finds that the PAA and CPA attacks show better
attack performance in terms of traces usage and time requirements, whereas, the MIA
attack shows an opposite case. Consequently, in the subsequent attacks, MIA attack is
out of our consideration.

8.4 Attack Framework Evaluation

In this section, the normal power traces produced from the light-weight block cipher,
i.e., PRESENT, mentioned in Chapter 2 running at 7 MHz clock frequency are captured
and attacked to evaluate the attack framework proposed in Fig. 5.2, Chapter 5. The
considered attack methods are CPA, PAA, PAA-I, and PAA-II.

8.4.1 Experimental Setup

Two leakage models are exploited in the experiments. One is the HD leakage model,
where the Hamming distance for the first round of PRESENT algorithm before and after
the S-Box will be calculated by (2.8); the other one is the least squares estimation based
trace form leakage model. Before calculating the Hamming distance, the bitwise values
pi⊕Sbox(pi⊕ ki) are mapped into the matrix A by (5.10). In the following section, such
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Figure 8.2: Global SR Comparison for CPA, PAA, PAA-I and PAA-II

a model is called Least Squares estimation based Trace form leakage Model (LSTM).
Please note that the system is attacked nibble by nibble, i.e., 4 bits. The experiments
are divided into three groups as following.

1. Mount PAA-II attack to analyze the power trace set T and the purified leakage
matrix Ṽ by exploiting correlation coefficient, as illustrated in Fig. 5.2, Analysis
5).

2. Run PAA-I attack to analyze the purified leakage vector V and the matrix Ṽ by
exploiting correlation coefficient, as shown in Fig. 5.2, Analysis 4).

3. Execute CPA and PAA attacks with the HD leakage model, as shown in Fig. 5.2,
Analysis 1) and Analysis 2), respectively.

In the attack phase: for each key nibble, the experiments are mounted 30 times with
different input data; for each experiment, the maximum number of the traces is set to
3,000; in each attack, 10 power traces are added, i.e., 300-time attacks are executed in
each experiment. Subsequently, the evaluation metrics, i.e., success rate and guessing
entropy, are presented for the comparison.

8.4.2 Experimental Results

Fig. 8.2 shows the global success rate for the proposed attack methods. Within 3,000
power traces, CPA and PAA attacks present lower global success rate than PAA-I and
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Figure 8.3: SR of Nibble 2
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Figure 8.4: SR of Nibble 8
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Figure 8.5: GE of Nibble 2
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Figure 8.6: GE of Nibble 8

PAA-II attacks, which can be seen obviously in the figure. Among all these attacks, the
trace form leakage model improves the attack significantly. However, only the attack
PAA-II can reveal all the 16 key nibbles successfully after using 2,750 power traces.

Fig. B.3 and Fig. B.4 in Appendix B show the success rate and guessing entropy
for each nibble, respectively. For nibbles 3, 4, 8, and 9, the success rate and the guessing
entropy curves for PAA-I and PAA-II surpass their counterparts in CPA and PAA at-
tacks, i.e., the success rate rising rapidly, while the guessing entropy falling fast, which is
the reason that the global success rates for PAA-I and PAA-II are superior to CPA and
PAA attacks; for the rest key nibbles in each sub-figure, four curves are twisted a bit.
Such a phenomenon is illustrated by the larger success rate and guessing entropy figures
for nibble 2 and 8 in Fig. 8.3, Fig. 8.4, Fig. 8.5, and Fig. 8.6, respectively. As known,
CPA and PAA attacks are powerful, however, there still exist some nibbles, which leak
less information resulting in the lower success rate, e.g., nibbles 3, 4, 8, and 9. Therefore,
one can resort to PAA-I and PAA-II attacks. Especially in nibble 8, the success curve
rises faster than its counterparts in CPA and PAA attacks. The minimal number of the
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power traces to attack such a nibble in PAA-I and PAA-II are 520 and 390, respectively,
which are rather low.

In this section, the attack framework proposed in Chapter 5 are studied. The experi-
mental figures show that the proposed attack framework is feasible, which provides more
choices to reveal the cryptosystem with different leakage models and analysis methods.
Meanwhile, it shows that the trace form leakage model is useful, as well as the new attack
methods, i.e., PAA-I and PAA-II. Both methods can excavate more hidden information
from the power traces. This attack framework may help the adversaries in real attacks
as well as the security evaluation for cryptosystems.

8.5 Pre-processing of Aligned Power Traces

In this section, the trace pre-processing algorithms, i.e., horizontal alignment and vertical
matching, are exploited to preprocess the originally aligned power traces, respectively.
Subsequently, the cryptosystem is attacked by studying the attack framework proposed
in Fig. 7.5, Chapter 7, where the CPA attack is executed several times to yield the
comparable attack results.

8.5.1 Experimental Setup

The considered cryptographic algorithm is AES-128 featuring PPRM3 S-Box, as detailed
in [MS02]. The whole cryptosystem is running at 12 MHz clock frequency.

The Hamming distance leakage model focusing on the register states changing before
and after the S-Box in the last round is considered, as shown (2.5), Chapter 2. In order
to produce the comparable results, the whole experiment is divided into two parts:

1. Execute CPA attack on the power traces before and after the horizontal alignment,
respectively.

2. Run CPA attack on the power traces before and after the vertical matching, re-
spectively.

For each key byte, the experiments are mounted 30 times with different input data; for
each experiment, the maximum number of the traces is set to 4,500; in each attack, 10
power traces are added, i.e., 450-time attacks are mounted for each experiment. Sub-
sequently, the success rate and guessing entropy are presented and compared, respectively.
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8.5.2 Experimental Results

8.5.2.1 CPA Attack Before and After Horizontal Alignment

Fig. 8.7 illustrates the global success rate for mounting CPA attack on the power traces
before and after the horizontal alignment. One finds that the two success rate curves
are overlapped with each other exactly. It implies that the captured power traces pro-
duced from the targeted cryptosystem embody no clock shifting caused misalignment.
Therefore, the pre-processing step can be omitted. Fig. B.5 and Fig. B.6 in Appendix
B show the success rate and the guessing entropy for each key byte, respectively. One
can see clearly the same situation, where both curves in the figures overlap with each
other exactly. As mentioned in previous chapter, horizontal alignment for pre-processing
the aligned power traces usually is not necessary. Because a tiny clock shifting of the
cryptosystem is in a tolerance range. Therefore, the attacks can be mounted directly.

8.5.2.2 CPA Attack Before and After Vertical Matching

Fig. 8.8 shows the global success rate for executing CPA attack before and after the
vertical matching. Different from the scene in the horizontal alignment, the presented
two success rate curves show a gap. In addition, after the vertical matching, the success
rate curve, i.e., VM+CPA, rises faster than its counterpart, i.e., CPA attack before the
vertical matching. In other words, the success rate is improved. And the minimal power
trace usage for revealing all the 16 key bytes is decreased from 4,290 to 3,690, i.e., 14%

power traces are saved. In order to have an intuitive impression, the success rate and
the guessing entropy for each attackable byte are illustrated in Fig. B.7 and Fig. B.8,
respectively. The success rates increment for bytes 2, 8, 12, 14, and 16 are not that high,
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which are nearly the same as their counterparts before the vertical matching. However,
for the rest key bytes, the success rates are obviously improved. The experiments show
that there are some other factors, which cause the values of the power peaks changing,
even if the cryptosystem is driven with a fixed clock. Therefore, when the system is
running at a higher clock frequency, the adversaries are recommended to preprocess the
aligned power traces by means of the vertical matching to neutralize the power value
variation and to achieve an improvement of attack method.

8.6 Attacks on Misaligned Power Traces

In this section, the misaligned power traces produced from a random clock featured AES-
128 cryptosystem are attacked by studying the attack framework proposed in Fig. 7.4,
Chapter 7.

8.6.1 Experimental Setup

The S-Box type is TBL [RDJ+01]. The base clock chip is running at 7 MHz clock fre-
quency, thus, theoretically, the random frequencies fed to the cryptographic core vary the
range from 0 to 7 MHz.

The considered leakage model is Hamming distance focusing on the register states
changing before and after the S-Box in the last round by (2.5). The targeted attack
methods are CPA and PAA. Before running these attacks the horizontal alignment by
using template and peak position based algorithms proposed in Chapter 6 and 7 is run
in advance, respectively, resulting in the aligned power traces. From the practical ob-
servation, one finds that the clock frequency effects in these misaligned power traces are
a bit higher. Therefore, it is necessary to execute vertical matching for the horizontally
aligned power traces. The whole experiment is divided into two parts as below.

1. Mount CPA and PAA attacks on the power traces preprocessed by the template
based horizontal alignment and the vertical matching, respectively.

2. Execute CPA and PAA attacks on the power traces preprocessed by the peak
position based horizontal alignment and the vertical matching, respectively.

For each key byte, the experiments are mounted 25 times with different input data; for
each experiment, the maximum number of the traces is set to 4,000; in each attack, 10
power traces are added, i.e., 400-time attacks are mounted in each experiment. Sub-
sequently, the success rate, guessing entropy, run time, and minimal traces usage are
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Figure 8.9: Global SR Comparison of CPA
and PAA With Template Based Horizontal
Alignment

0 1000 2000 3000 40000

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 R
at

e

Number of Traces

 

 

HA+CPA
HA+VM+CPA
HA+PAA

Figure 8.10: Global SR Comparison of CPA
and PAA With Peak Position Based Hori-
zontal Alignment

presented and compared.

8.6.2 Experimental Results

8.6.2.1 Template Based Horizontal Alignment

Fig. 8.9 shows three global success rate curves resulted from the proposed attacks on
the horizontally aligned and vertically matched power traces, respectively. One finds
that within 4,000 power traces, after the horizontal alignment, CPA attack cannot reveal
all the key bytes successfully, i.e., the success rate is 92%. In contrast, when mounting
CPA attack on the vertically matched power traces, the attack results are improved sig-
nificantly, i.e., within 1,700 power traces, all the key bytes are recovered, see the curve
HA+VM+CPA. Therefore, when the cryptosystem is running with higher random clock
frequency, the vertical matching is an efficient way to counteract the clock frequency ef-
fects and to eventually improve the alignment sensitive attack methods, e.g., CPA attack.
PAA attack shows the best attack performance by just attacking the horizontally aligned
power traces without efforts investment in the vertical matching, where for revealing all
the key bytes, only 1,050 power traces are consumed. The success rate and guessing en-
tropy for each attackable byte are illustrated in Fig. B.9 and Fig. B.10, respectively. It
is clear that the attack performance order for each byte from best to worst shows always
like HA+PAA, HA+VM+CPA, HA+CPA.
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Table 8.2: Time Requirement and Minimal Trace Usage

Type Process Type HA VM CPA PAA TTR MTU

TB
HA+CPA

107.31s
- 13.77s - 121.08s >4,000

HA+VM+CPA 40.24s 13.44s - 160.99s 1,700
HA+PAA - - 7.88s 115.19s 1,050

PB
HA+CPA

13.98s
- 13.52s - 27.5s >4,000

HA+VM+CPA 40.68s 13.53s - 68.19s 1,750
HA+PAA - - 7.96s 21.94s 1,660

TTR: Total Time Requirement MTU: Minimal Trace Usage
TB: Template Based PB: Peak position Based

8.6.2.2 Peak Position Based Horizontal Alignment

Fig. 8.10 illustrates the global success rate for CPA and PAA attacks as well. Different
from the previous attacks in Fig. 8.9, in these attacks, the power traces are aligned only
according to the peak positions, i.e., the alignments are not that precise. Therefore, the
pattern matching step in the horizontal alignment is omitted leading to a fast calculation.
One finds that after the horizontal alignment, the CPA attack still cannot reveal all the
correct key bytes, and the global success rate is reduced from 92% in the template based
horizontal alignment to 80% after using 4,000 power traces, see the curve HA+CPA. In
other words, the imprecise alignment causes the decline during the attacks. In order to
improve the CPA attack, vertical matching may be executed for the horizontally aligned
power traces. It is true that the attack results are improved, and the global success rate
is almost the same as its counterpart in Fig. 8.9. The number of the minimal used traces
to reveal all key bytes is increased from 1,700 to 1,750, as shown in the last column of
the Table 8.2. In PAA attack, the global success rate is also reduced, i.e., the rising point
starts after the using of 520 traces, however, which still rises faster than CPA attack after
the vertical matching. The variations of success rate and guessing entropy for each byte
are given in Fig. B.7 and Fig. B.8, respectively. The performance order is the same as
the previous attacks in Fig. B.5.

8.6.2.3 Time Requirements and Minimal Trace Usage

In order to show the time requirements in the trace pre-processing and attacking phases,
10,000 power traces are preprocessed and attacked by the proposed attack methods, as
shown in Table 8.2. The template based horizontal alignment requires 107.30s to process
all the supplied power traces. However, the peak position based horizontal alignment only
needs 13.98s. It means that the latter is 7 times faster than the former. Because in the
template based horizontal alignment, there exists a pattern matching phase, which takes
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some time. In all these attack combinations, HA+VM+CPA in TB takes the longest run
time, i.e., 160.99s; whereas HA+PAA in PB requires the shortest run time, i.e., 21.94s.
It is true that the peak position based horizontal alignment is faster due to its imprecise
alignment. However, the success rates for CPA and PAA attacks are reduced. Although
the attack performance is reduced, the minimal trace usage to reveal all the key bytes in
PAA attack is as low as 1,660, which is still less than that in the CPA attack after the
vertical matching in the template based horizontal alignment. In other words, it is diffi-
cult to balance the processing time and the trace usage in practice. Therefore, we suggest
the adversaries just choosing the attack framework in an active manner: if the time is
limited in reality, they can try to speed up by exploiting peak position based horizon-
tal alignment; if the trace usage is a crucial requirement, the template based horizontal
alignment with vertical matching is then selected. In a word, the different possibilities to
preprocess the misaligned power traces with different attack methods are provided. One
can choose it freely according to the specific implementations and the attack requirements.

8.7 Summary

In order to widely study the attack frameworks and trace pre-processing architectures
proposed in previous chapters without loss of generality, in this chapter, different im-
plementations of block cipher running at the different clock frequencies are evaluated.
All these application examples prove that the new attack methods and the trace pre-
processing architectures work properly and efficiently, which provide researchers more
choices in practice to evaluate the security of cryptosystem.
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9.1 Conclusions

In this work, the main contribution is divided into three parts, i.e., attack methods, trace
pre-processing approaches, and attack frameworks.

Attack Methods The conception of PAA attack was extended as the PAA method-
ology based on the thoughts from communication field. Different from the time point
attack methods, e.g., DPA and CPA, etc., traversing the time points for searching the
maximum information leakage, PAA methodology utilizes a large number of time points
in the power trace to contribute the information leakage and purifies them by calculating
variance or standard deviation. Such a methodology inherits some autogenetic char-
acteristics, e.g., stronger misalignment tolerance, and amplitude fluctuation invariance,
from the original PAA attack, which conveys two useful conceptions. One is the way to
purify the information leakage and reduce the dimension in the analyzed data; another
one emphasizes that more similarity analysis methods may be run in the attack phase.
Later, the least squares estimation based trace form leakage model was proposed, which
is exploited fully by the derivative attack methods PAA-I and PAA-II suggested on the
basis of PAA methodology. Both attack methods excavate the information leakage from
trace form leakage model resulting in an improvement of attack performance in practice.
Finally, all these attack methods are combined into an attack framework for supplying
more choices when mounting attacks.
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Trace Pre-processing A series of trace pre-processing methods were proposed when
facing with practical problems for attacking the misaligned power traces. Basically, the
template based horizontal alignment is applied for neutralizing misalignment in the time
domain dynamically and partially, where the threshold and slope based peak position
detection algorithms were given, respectively, for finding the peak position in a selective
manner. Later, in order to counteract the clock frequency effects, the vertical matching
algorithms were suggested. Both algorithms can handle the misaligned power traces quite
well and improve the attack performance considerably. Meanwhile, a software architec-
ture was given to clearly show the readers how to deal with the misaligned power traces
easily. Finally, peak position based alignment was proposed, by which, the template and
vertical matching phases are omitted for saving a lot of time in the trace pre-processing
phase.

Attack Frameworks Different attack methods and trace pre-processing approaches
were embedded into the attack frameworks for giving more choices to process and to
attack the misaligned and the originally aligned power traces efficiently. Such frameworks
were evaluated and verified via the real application examples in Chapter 8 with expected
attack performance.

9.2 Future Works

In this thesis, there are still some open questions should be done or solved in the future.

Attack Phase In the leakage model building, for instance, a HD leakage model focusing
on a certain byte register features only nine values, i.e., from 0 to 8. However, between the
two analysis states S1 and S4, there exist some other operations. If all these operations
cause the same register states changing, one may build a multi-section leakage model for
these specific operations by exploiting some intermediate states, e.g., S2 or S3, i.e., the
leakage models for states pair (S1, S2), (S2, S3), (S3, S4) are calculated, respectively. Then
all these leakage models are summated as the final one for the attack. The accumulation
of the multi-section leakage model changes the value range of previous HD model from 0

to 24, which may depict the power value changing more precisely. In other words, such
a leakage model is more distinguishable in real attacks. Theoretically, these summated
states take place in the different time instants, i.e., the summation value denotes the
power variation during a time interval, which fits for the PAA methodology very well and
can be exploited in the future to improve the attack performance .
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In PAA methodology, several hundreds or even thousands sampled points in time are
involved into the calculation. At the moment, these time points are chosen according to
the adversaries’ experience. However, how to choose them precisely is a difficult task.
Therefore, a pre-calculation method is needed for the time points choosing, by which, the
number and the start position for these time points are selected properly resulting in the
optimum attack results.

In the power consumption attack field, the voltage variation curve is taken directly as
the power consumption curve during the attacks. As known, the power consumption P
and the square of voltage U2 are in a linear relation. Therefore, theoretically, the square
of voltage curve matches the power consumption oriented leakage model quite well to
pursue a better attack performance, which needs a large number of verifications in the
future.

Trace Pre-processing Phase Regardless the fixed or random clock featured cryp-
tosystem, from the experiments in previous chapter, one finds that when the input clock
is higher, the power traces all feature more or less the power value changing for the power
peaks resulting in lower attack performance. However, the relationship between the input
clock frequency and the power value variations are not that clear. If one can estimate
quantitatively for both parties, then during attacks, the adversaries can decide when to
mount vertical matching algorithm; meanwhile, the shifting step in the vertical matching
phase can be set more precisely for the time saving.

Summary Side channel analysis is a multidisciplinary research topic. Most of the at-
tack methods are focusing on the leakage model building and distinguisher improvement.
However, by exploiting different trace processing methods, one can abstract and purify
the information leakage from the power traces resulting in an improvement of attack
performance. In the future a lot of mature technologies from other disciplines can be
transplanted to such a field, which may supply us various sorts of possibilities to access
the information leakage from the physical cryptosystem.
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Figure B.5: SR Comparison Before and After HA
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Figure B.6: GE Comparison Before and After HA
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Figure B.7: SR Comparison Before and After VM



133

0
1500

3000
4500

0 50

100

150
B

yte1

N
um

ber of Traces

Guessing Entropy

 

 

C
P

A
V

M
+C

P
A

0
1500

3000
4500

0

100

200
B

yte2

Guessing Entropy

N
um

ber of Traces
0

1500
3000

4500
0 50

100

150
B

yte3

Guessing Entropy

N
um

ber of Traces
0

1500
3000

4500
0 50

100

150
B

yte4

Guessing Entropy

N
um

ber of Traces

0
1500

3000
4500

0 50

100

150
B

yte5

Guessing Entropy

N
um

ber of Traces
0

1500
3000

4500
0 50

100

150
B

yte6

Guessing Entropy

N
um

ber of Traces
0

1500
3000

4500
0

100

200
B

yte7

Guessing Entropy

N
um

ber of Traces
0

1500
3000

4500
0 50

100

150
B

yte8

Guessing Entropy

N
um

ber of Traces

0
1500

3000
4500

0

100

200
B

yte9

Guessing Entropy

N
um

ber of Traces
0

1500
3000

4500
0 50

100

150
B

yte10

Guessing Entropy

N
um

ber of Traces
0

1500
3000

4500
0

100

200
B

yte11

Guessing Entropy

N
um

ber of Traces
0

1500
3000

4500
0 50

100

150
B

yte12

Guessing Entropy

N
um

ber of Traces

0
1500

3000
4500

0 50

100

150
B

yte13

Guessing Entropy

N
um

ber of Traces
0

1500
3000

4500
0 50

100

150
B

yte14

Guessing Entropy

N
um

ber of Traces
0

1500
3000

4500
0 50

100

150
B

yte15

Guessing Entropy

N
um

ber of Traces
0

1500
3000

4500
0

100

200
B

yte16

Guessing Entropy

N
um

ber of Traces

Figure B.8: GE Comparison Before and After VM
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Figure B.9: SR Comparison of Template Based Horizontal Alignment
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Figure B.10: GE Comparison of Template Based Horizontal Alignment
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Figure B.11: SR Comparison of Peak Position Based Horizontal Alignment
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Figure B.12: GE Comparison of Peak Position Based Horizontal Alignment
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