
A Model of Computation for
Reconfigurable Systems
Ein Berechnungsmodell für rekonfigurierbare Architekturen
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
genehmigte Dissertation von Dipl.-Inform. Felix Madlener aus Frankfurt am Main
2013 — Darmstadt — D 17

Fachbereich Informatik
Institut für Integrierte Schaltungen
und Systeme

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/16269508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Model of Computation for Reconfigurable Systems
Ein Berechnungsmodell für rekonfigurierbare Architekturen

Genehmigte Dissertation von Dipl.-Inform. Felix Madlener aus Frankfurt am Main

1. Gutachten: Prof. Dr.-Ing. Sorin A. Huss
2. Gutachten: Prof. Dr.-Ing. Hans Eveking

Tag der Einreichung: 25.11.2012
Tag der Prüfung: 9.4.2013

Darmstadt — D 17

Erklärung zur Dissertation

Hiermit versichere ich die vorliegende Dissertation ohne Hilfe
Dritter nur mit den angegebenenQuellen und Hilfsmitteln angefertigt
zu haben. Alle Stellen, die aus Quellen entnommen wurden, sind
als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 25. November 2012

(Felix Madlener)

1

2 Erklärung zur Dissertation

Contents

1 Introduction 7
1.1 Motivation . 7

1.1.1 Reconfiguration . 7
1.1.2 Outline of this Thesis . 8

1.2 Previous Own and Related Works . 9
1.2.1 Model-Driven Design Flows . 10
1.2.2 Reconfiguration Methodologies 11
1.2.3 Verification . 12

1.3 Impact . 12

2 System Development of Formally Specified Reconfigurable Systems 15
2.1 Design Flow Methodologies . 15

2.1.1 MoC-based High-Level Design Flow 16
2.1.2 Design Flow Methodologies for Reconfigurable Systems . . . 21
2.1.3 Verification-based Design Flow 22

2.2 Reconfigurable Architectures . 26
2.2.1 Behavior and Structure of Reconfigurable Hardware 27
2.2.2 Towards a Model of Computation for Reconfigurable Hardware 29
2.2.3 Field Programmable Gate Arrays 31

3 RecDEVS: Model of Computation for Reconfigurable Systems 35
3.1 DEVS Model of Computation . 35

3.1.1 Classical DEVS . 36
3.1.2 The DEVS Extension for Ports 40
3.1.3 Coupled DEVS . 42
3.1.4 Parallel DEVS . 44

3.2 Reference DEVS Model of Computation 47
3.2.1 Component States . 47
3.2.2 Ports and Port Coupling . 48
3.2.3 Output Function . 48
3.2.4 State Transition . 49

3

3.3 RecDEVS Model of Computation for Reconfigurable Systems 53
3.3.1 Existing Reconfigurable Models 54
3.3.2 DSDEVS . 55
3.3.3 RecDEVS Definition . 56
3.3.4 Port Coupling and Communication 57
3.3.5 Reconfiguration . 59
3.3.6 Definition of the System Executive Cχ 62
3.3.7 Invalid Communication Messages 63
3.3.8 Communication Constraints . 66
3.3.9 Resource Management . 68

4 Design Flow Methodologies for RecDEVS-specified Systems 73
4.1 Horizontal Transformation for System Verification 73

4.1.1 System Verification . 75
4.1.2 The UPPAAL Model Checker 76
4.1.3 Model Transformation from RecDEVS to UPPAAL 77
4.1.4 Automatic Transformation . 82

4.2 Vertical Design Flow Methodology for System Implementation in
SystemC . 84
4.2.1 SC-DEVS Extension for SystemC 84
4.2.2 Extending SC-DEVS towards RecDEVS 86

4.3 Vertical Design Flow Methodology for a VHDL-based Implementa-
tion of RecDEVS . 88
4.3.1 System Architecture . 89
4.3.2 Bus System and Protocol . 89
4.3.3 Arbiter Implementation . 90
4.3.4 Implementation Results . 91

5 Demonstration of Concepts 93
5.1 Autovision . 93

5.1.1 CSensor . 95
5.1.2 CShape . 96
5.1.3 CCont rast . 100
5.1.4 CTail l i ght . 103
5.1.5 Verification Results . 105
5.1.6 SystemC Results . 108

4 Contents

5.2 Game of Life . 113
5.2.1 Game of Live for Reconfigurable Systems 115
5.2.2 RecDEVS Implementation of Game of Life 115

6 Conclusions and Outlook 123
6.1 Conclusion . 123
6.2 Outlook . 124

Contents 5

6 Contents

1 Introduction

1.1 Motivation

More than 40 years ago Moore [40] stated his famous law about an exponentially in-
creasing number of logical elements in electronic circuits that still does hold. Beside
all its technological implications, this prediction has had a severe impact on hardware
design methodology. The complexity of hardware systems is also exponentially in-
creasing together with the size. Design methodologies, which have been feasible in
the 1970s are not able to handle current complex systems any more.

Conventional hardware development has addressed the problem of increasing com-
plexity by levering the abstraction levels in the design phase. In general, this leads to
the introduction of abstract Models of Computation (MoC) which allows a system de-
signer to concentrate on functional behavior. The lower abstraction layers are hidden
from the designer and are processed by advanced automatic processing steps, such as
logic synthesis or automated routing tools.

1.1.1 Reconfiguration

In the last decade, a new kind of hardware, the reconfigurable hardware architec-
ture, has emerged as a promising technique to increase the flexibility of hardware
design. While this new technology is still in its infancy, especially the support of dy-
namic reconfiguration will clearly expand the present limitations of existing hardware
implementations.

The general idea of such systems is to reconfigure the actual logical behavior of
logical design elements. For example, a logical AND gate can be reconfigured to
work as a logical OR gate. Beside some direct advantages, such as a serving as a
fast development platform dynamic reconfiguration gives even more benefits: The
reconfiguration of existing hardware resources enables their reutilization. This leads
to a better resource exploitation without losing hardware-specific advantages such as
high performance. At the same time, it is possible to apply reconfiguration method-
ologies to improve the flexibility and fault tolerance of hardware implementations. A

7

hardware system has no longer to remain static after deployment but can be changed
in-field to update the functionality or correct faulty behavior.

The introduction of reconfigurable hardware architectures does not only have great
impact on the hardware implementations, but also on the design methodologies re-
quired for the development of these systems. The problem of system design flow
complexity is even more present for reconfigurable systems, where the additional
reconfiguration aspects increase the design space even more. While the number of
logical elements is roughly the same, the possibility of reconfiguration introduces a
whole new design dimension that has to be taken care of.

One main disadvantage of existing reconfigurable systems is the lack of an estab-
lished proper design methodology that would enable a rise in the abstraction level
to a point including reconfiguration. An important reason for this is the lack of an
underlying formal MoC for reconfigurable hardware systems. Instead, the design
methodologies for such systems are based on low-level design tools and hardware
description languages that do not provide a proper formal semantic. Without such a
semantic it is not possible to define formal design activities as required by a high-level
reconfigurable systems design flow. By incorporating reconfiguration on such a low-
level only, the formal models feature deep problems in modeling the reconfiguration
specific properties.

An introduction of high-level MoCs does not only ease the system implementation
of complex system, but also enables other design methodologies such as verification
by the utilization of Model Transformation processes. A key benefit of formally
defined models is the possibility to apply formal verification methods.

This work addresses the design flow complexity by first investigating the require-
ments for a reconfigurable design methodology. The insights on the development of
formal reconfigurable hardware systems are then used to develop a formal MoC and a
corresponding design flow for reconfigurable hardware systems. The Reconfigurable
Discrete Event Specified System (RecDEVS) model first published by the author in
Madlener et al. [34] is this high-level MoC.

1.1.2 Outline of this Thesis

The structure of this thesis is as follows. In the first half of Chapter 2 the essential
features of a reconfigurable hardware systems are analyzed. In its second half a high-
level design methodology for a MoC-based formal specification is developed. This
design methodology is based on the concept of model transformation. It distinguishes

8 1 Introduction

between horizontal transformations that keep the same abstraction level and vertical
transformations, lowering the abstraction.

The RecDEVS formalism, other related formalisms, and the design considerations
that led to the development of RecDEVS are presented in Chapter 3. We will see that
this event-based formalism with an integrated reconfigurable and timed behavior is
highly applicable for reconfigurable hardware and real-time software models.

The design methodology of Chapter 2 is then applied to RecDEVS. The necessity
and usage of horizontal transformations is demonstrated on base of an automated
model transformation between RecDEVS and the formal representation of the UP-
PAAL model checker. A vertical model transformation from the RecDEVS MoC into
hardware description languages is being presented. For this, the existing hardware
description language SystemC has been extended towards reconfiguration. Details
on both, the horizontal model transformation into UPPAAL models and the vertical
model mapping in a SystemC-based implementation language, are given in Chapter 4.

Several different test scenarios have been exercised to illustrate the strength of
various aspects of this work. The implementations and a discussion of their results
are given in Chapter 5.

Finally Chapter 6 concludes this work and provides an outlook on further research
topics that will benefit from this work.

1.2 Previous Own and Related Works

Parts of this thesis have been published previously in cooperation with other authors
in various publications. A concept for resource management of reconfigurable hard-
ware systems has been developed in the author’s diploma thesis and published in
Kühn et al. [30]. In his diploma thesis, Geisse [22] has developed a framework for
the integration of different domain specific languages under supervision of the author
of this thesis. In Molter et al. [39] the general concept of the presented high-level
design methodology based on model transformation is presented. One possible ver-
tical mapping from DEVS into SystemC is outlined in Madlener et al. [35] while the
advantages of vertical transformations and the resulting possibilities for the verifica-
tion of reconfigurable systems have been worked out in Madlener et al. [37]. The
RecDEVS MoC that will be presented here in detail, has been published by Madlener
et al. in [34].

There are also various other publications in which the author was involved during
the creation of this thesis. These works of Anikeev et al. [4], Madlener et al. [36],

1.2 Previous Own and Related Works 9

Stöttinger et al. [51], and Anikeev et al. [5] focus on the area of security and cryp-
tography. The original hope was that such implementations will turn out as good
examples for the presented design methodology. However, as will be motivated in
Chapter 5, other examples are much more promising and have been preferred later
on.

The area of related work can roughly be separated into distinct research fields.
Only few works focus directly on the research topic of this thesis. Thus, a short
overview on the state of different relevant research fields will be given first. These
fields are high-level design flows based on model transformation, design methods for
reconfigurable systems and system verification.

1.2.1 Model-Driven Design Flows

There is a variety of publications which emphasize the advantages of MoC-based
design flows. For this work approaches on model transformations in the hardware
domain are of interest. Most of this research is done on base of SystemC as it directly
supports arbitrary abstraction levels. Patel and Shukla [42] describe the integration
of synchronous data flow models (SDF) in SystemC and Patel et al. [43] address the
integration of a rule-based MoC (Bluespec). There is a lot of work available, which
is aimed to overcome the lack of a formal SystemC specification and to extend it to
a formally specified MoC. This would allow to reduce the need for other MoCs in
the area of hardware development. Vardi [55] summarizes formal methods which can
applied to SystemC itself, and Man [38] develops a formal MoC for a subset of the
SystemC language.

An integration of Petri Nets is described by Rust et al. [46]. Each Petri Net is di-
rectly implemented as a SystemC module without any supporting framework, which
makes this approach questionable for complex system specifications. The integra-
tion of an analog MoC to support mixed-signal simulation is described by Aljunaid
and Kazmierski [2]. As it is focused on the analog simulation environment, it lacks
a methodical description of the integration into SystemC execution environments.
However, none of these works address reconfigurable systems.

HetSC, originating from Herrera and Villar [25] specifies an additional SystemC
layer to ease the integration of different MoCs. It features the so-called Border Pro-
cess and Border Channel to simplify the SW implementation of a heterogeneous MoC
design.

10 1 Introduction

Ptolemy II from Brooks et al. [12] is a genuine design environment for the combi-
nation of arbitrary MoCs. Its focus is the research of model interaction in heteroge-
neous systems instead of model transformations. To support HW synthesis in terms
of VHDL generation it was extended by Filiba et al. [20]. In contrast to our proposed
system level design flow, they transform models from the synchronous reactive do-
main only. Their extension neither supports heterogeneous models nor discrete event
models.

For this work we have taken the methodology from Molter et al. [39] as reference.
It distinguishes horizontal and vertical transformations aimed to denote either the
transformation of single implementations or the transformation of complete MoCs.

As already stated we strongly believe that a more formal approach will yield bet-
ter results than extending existing description languages like SystemC. In the area
of formally defined MoCs the Discrete Event Specified System (DEVS) from Zei-
gler et al. [58] seems most promising. It is highly flexible and several MoCs can be
easily transformed into a DEVS model description. This fact has already been ex-
ploited in previous works, e.g., Risco-Martín et al. [45] describe an UML statecharts
transformation into DEVS and Bobeanu et al. [9] present a Petri Net conversion.

1.2.2 Reconfiguration Methodologies

There are various approaches which deal with modeling methods for reconfigurable
hardware architectures. The first approach to be mentioned addresses the develop-
ment of dedicated frameworks around existing design languages. These frameworks
add certain reconfiguration mechanisms and reuse existing design flows for conven-
tional hardware development. SyCERS by Santambragio [48] extends VHDL, the
Perfecto framework by Hsiung et al. [26] extends SystemC and the work by Craven
and Athanas [17] is based on ImpulseC. While these works can benefit from existing
design tools, the underlying design languages lack a formally specified MoC. It is
unclear, whether and how formal design activities such as verification are realizable
here.

The Molen processor by Vassiliadis et al. [56] and Morpheus by Thoma et al.
[53] utilize reconfigurable architectures as flexible coprocessors. They do not put
a specific focus on a formal computational model and are less suited for hardware
solutions.

A slightly different approach is used in the Hybrid System Architecture Model
(HySAM) by Bondalapati and Prasanna [10]. This proposal does provide a formal

1.2 Previous Own and Related Works 11

model for the reconfiguration process. However, it separates the reconfiguration from
the execution functionality. To create a complete reconfigurable system the HySAM
model has to be combined with some other model. This will clearly limit a compre-
hensive formal analysis of component-induced reconfiguration activities.

In the area of dynamic hardware-aware MoCs the proposal OSSS+R of Schal-
lenberg et al. [49] is to be mentioned. This approach utilizes the concept of code
polymorphism from the object-oriented software development domain. We argue
that this approach is somehow limited for dynamic hardware reconfiguration due to
the underlying complexity of the polymorphism paradigm.

By the Dynamic Structure Discrete Event Specified System (DSDEVS), Barros
[6] has already extended DEVS with a dynamic structure. Though not originally
targeted to reconfigurable hardware architectures, many of DSDEVS concepts were
considered and extended for the development of the more general RecDEVS model.

1.2.3 Verification

This thesis shows that one great benefit of horizontal model transformations stems
from the application of formal verification techniques. There are different verification
techniques such as logical inference based on theorem proving or the Model Checking
approach. Clarke [14] gives a comprehensive overview over these techniques. In this
work an approach based on the Model Checking tool UPPAAL presented by Larsen
et al. [32] was selected.

Regarding the verification of RecDEVS models, there is some preliminary work
on the formal verification of the underlying DEVS formalism. The work of Mori-
hama et al. [41] implements an own theorem prover, while Weingart [57] as well as
Dacharry and Giambiasi [18] benefit to some extend from the established UPPAAL
model checking environment.

1.3 Impact

This work is intended as a fundamental step towards a scalable and persistent design
methodology for reconfigurable systems. By using the formally specified RecDEVS
MoC and the proposed high-level design flow it is likely to integrate all the new fea-
tures reconfigurable hardware architectures can offer into a real operational system.

Currently, various approaches exist that try to integrate reconfigurable features into
existing hardware design flows in a rather pragmatic way. As they are able to reuse

12 1 Introduction

existing technologies they may be more effective in short term. However, it is ques-
tionable whether such approaches without a formal base have the same long term
potential.

Although this work proposes the RecDEVS formalism as the foundation of its high-
level model transformation flow and verification capabilities, it is not limited to this
formalism. This work defines the requirements of a model for reconfigurable systems
as a set of formal lemmas. As long as any model can also fulfill these requirements
(or be modified in such a way), it will be possible to adapt the presented design
methodology for it as well.

1.3 Impact 13

14 1 Introduction

2 System Development of Formally Specified Reconfigurable Systems

In this chapter, an overview over design methodologies for reconfigurable hardware
systems will be given.

In the first half of this chapter, the concepts and the advantages of model-based sys-
tem development are presented and explained. It is detailed how a formally defined
MoC such as the RecDEVS formalism can be utilized for the development of recon-
figurable systems. For this, the concept of model transformation and two targeted
design flows for reconfigurable systems are presented. A special focus will be set on
formal verification, which is an important aspect of formal design methodologies in
general and of reconfigurable systems in special.

In the second half, reconfigurable hardware itself is introduced in more detail.
This work sets a special focus on the most established reconfigurable architecture,
the Field Programmable Gate Array (FGPA). As a conclusion of this chapter, the
most important aspects and features are summarized in a collection of lemmas. As
we will see in Chapter 3, the development of an approriate MoC allows to select be-
tween some different design variants. These lemmas embody a major design criteria
when it comes to the selection of the best design variant for a MoC in the context of
reconfigurable systems.

2.1 Design Flow Methodologies

In the recent past the abstraction in system-level design has been significantly raised
to handle the complexity of modern computing systems. Conventional design flow
methodologies have been enriched with formal Models of Computation (MoC). In
software-centric design flow methodologies this process is reflected by the introduc-
tion of model-driven design tools like MOFLON (Amelunxen et al. [3]) or Ptolmy II
(Brooks et al. [11]). Hardware-centric design methodologies and circuit-level design
follow the same path, but are still lacking the same amount of established model-
driven design tools.

At the same time reconfigurable hardware architectures have emerged as a new
computing platform and formal verification has been established as an design al-
ternative to testing and simulation environments. The possibility for reconfigura-

15

tion introduces additional design flow aspects for which no well-established design
methodologies exist yet.

2.1.1 MoC-based High-Level Design Flow

Most existing design flows for reconfigurable systems are directly based on low-level
implementation languages like VHDL or Verilog. While it is possible to completely
implement a design on these lower abstraction levels it is highly appropriate to raise
the abstraction level and to represent a system exploiting several Models of Compu-
tation. These models provide a more abstract system view and give multiple benefits
as follows.

They allow to step back from the actual platform-dependent implementation and to
obtain a more abstract view of the system and its behavior. A high-level design-flow
based on an abstract MoCs can ease the system development and can account system
requirements. Another great benefit of a design-flow with MoCs is the verification
ability. High-level specifications allow for the formal verification of system-level
constraints without having to respect language specific properties of low level hard-
ware description language (HDL) based methods. Therefore verification is one of the
strengths of MoCs over low-level design-flows. Reusability and modeling comfort
are additional advantages.

Distinct MoCs provide different specific properties and different advantages for
system-level design. A high-level design flow should therefore not be composed of a
single MoC, but it should allow the integration of arbitrary and possibly new MoCs.

In the sequel, a systematic approach to integrate different MoCs into an integrated
system-level design flow for reconfigurable systems will be presented. The key fea-
ture to achieve this goal is the process of model transformation or model mapping.
With this process the functional description given in one model can be transformed
into the formal specification within another MoC.

Note that the exploitation of just a single generic MoC instead of a plain implemen-
tation language will already provide a remarkable benefit due to the higher abstraction
level. Utilization of one MoC would allow to implement most of the system using,
e.g., SysML with its design methodology and tools. By supporting multiple MoCs
previously existing hardware components, e.g. described as FSMs, can also be in-
tegrated and reused. Dedicated parts of the inter-module communication may then
be implemented by Petri-Nets, which allow to verify their liveness (i.e., the absence

16 2 System Development of Formally Specified Reconfigurable Systems

of potential deadlocks). To gain the full benefit of different MoCs, the system-level
design flow requires to support an easy way to integrate new MoCs.

If new features like reconfiguration are to be supported, a corresponding new de-
sign flow is required. In general it is not reasonable to create completely new design
flows, but to exploit existing technologies and expertise. This goal can either be
achieved by defining a transformation of a new MoC into an equivalent system model
specified within another MoC, which is already part of the design flow, or by imple-
menting the MoC in a suited specification language like SystemC.

The consideration of existing MoCs as a means for design entry allows to reuse ex-
pertise and knowledge, which has already been aggregated for these specific models.
It is then possible to partition the design into smaller units and to use domain-specific
MoCs instead of a generic MoC or a design language. As a substantial part of the
domain-specific features will already be included in the MoC definition, this will
considerably ease a system development. This leads to our first requirement for de-
veloping a design flow methodology for reconfigurable hardware systems, which is
given in Lemma 1.

Lemma 1 (Model Driven) A design flow for reconfigurable hardware systems
should be based on an appropriate Model of Computation (MoC).

The integration of existing MoCs into the system design flow allows the reuse of
all the expertise which already exists for this model. For example, it might be possible
to model a part of the system with Petri Nets, allowing the analysis of deadlocks and
liveness. Such a formal analysis is not possible with low level implementation lan-
guages as they do not contain a sufficiently formal specification or this specification
is too complex to allow proving of interesting system properties. There is a wide va-
riety of available MoCs focusing on different problem domains, examples are UML,
Petri Nets, or FSM. However, a problem arises on how to integrate such models into
a consistent design flow.

Furthermore, the raised abstraction layer no longer utilizes a specific hardware or
software specific description language like VHDL or C, but a computational model
that can be mapped into both implementation domains (HW or SW) in the ongoing
design flow.

Thus, there are two possible orthogonal mappings for a design flow described by
multiple MoCs: Vertical transformations, which transform a high-level MoC into
lower abstraction levels and horizontal transformations which map between different

2.1 Design Flow Methodologies 17

high level MoCs. These two options have a considerable impact on the design flow
consistency and will be discussed in more detail in the following.

Vertical Transformation

First, the abstract models denoted in different MoCs can be transformed verti-
cally into underlying programming languages. This process is also known as
Implementation-step when the target model of the transformation is a programming
language.

Inside the vertical transformation process two fundamental concepts can be distin-
guished: Mapping of the whole MoC in a generic way and a specialized mapping of
a single model instance. The first approach, the mapping of the whole MoC, can op-
erate on arbitrary models. It reflects each of the MoC specific computational rules in
a generic way in the underlying programming language. Each MoC model instance
will be based upon these computational rules. Once the complete MoC formalism
is mapped into a programming language, we can derive a transformation for every
single model. The model derivation can then be done automatically.

The latter approach, the mapping of a single model, may result in a more fine-
grained implementation. It does not transform the generic computational rules of the
MoC but rather the specific behavior of a specific model. As the mapping process
is mostly handcrafted, we can cope with model specific characteristics and thus opti-
mize the code. Modeling expertise about the concrete realization of the model is then
used to create a sufficiently simple low-level description. The transformation into
the programming language cannot be done automatically. Each time the model is
modified, its changes must be transformed, too. This approach does also work when
not all original MoC properties can be represented in the target language, as long as
they are not a substantial part of the actual model to be mapped. In Chapter 4 it is
detailed, how the RecDEVS formalism can be vertically transformed into the lower
level programming language SystemC.

Vertical transformations are platform specific. They integrate low-level implemen-
tation constraints into the system description. So, if we change these constraints,
e.g., change the platform architecture of the implementation, we may need to adapt
all vertical transformation engines in our design-flow methodology to meet the new
requirements. Vertical transformations are also poorly scalable. Each supported com-
bination of MoC and programming language requires an own specialized transforma-
tion engine.

18 2 System Development of Formally Specified Reconfigurable Systems

RecDEVS

SystemC / VHDL

HW Instance

V
al

id
at

io
n

Vertical Transformation

Synthesis

Figure 2.1: Vertical Design Flow

In contrast to the vertical transformations, horizontal ones between high level
MoCs are platform independent and scale better, as it will be explained the fol-
lowing. Thus, it is appropriate to utilize horizontal mappings when possible and
to reduce the number of vertical transformations.

Please note that it is generally not sufficient to provide just one vertical transforma-
tion engine. In general, MoCs build different disjoint classes, where the MoCs within
each class can only be transformed into elements of the same class, e.g., continuous
time MoCs cannot directly be transformed into time discrete ones. Thus, we need
a vertical transformation engine for at least one representative MoC of each class.
The other class members can be transformed vertically after successive horizontal
transformations within the same MoC class.

In Fig. 2.1 a sample vertical design flow is depicted. A system may be described in
RecDEVS, it will then be mapped into SystemC or VHDL descriptions that are imple-
mented on reconfigurable hardware instances. It is also possible to utilize the reverse
mapping direction as it is the case when validation results from lower abstraction
levels influence the design in the higher abstraction levels.

2.1 Design Flow Methodologies 19

FSM Petri Net DEVS

Horizontal Transformations

Figure 2.2: Horizontal Design Flow

Horizontal Transformation

In the second design flow variant, MoC-based system descriptions can be transformed
horizontally into other MoCs, e.g., Petri Nets to DEVS, and then taken down to Sys-
temC code. In this case only one vertical transformation, i.e., one “synthesizable”
MoC, is required.

Horizontal transformations can ensure the consistency of the different models.
They stay on the same abstraction level and do not introduce additional platform-
specific properties into the model description until a vertical transformation step is
applied. As the implementation requirements and constraints change over time, we
have to modify the used models. The consistency of the unchanged models therefore
is ensured as they are logically connected on the same abstraction level and not at
a lower level. If we choose a flexible target MoC in terms of timing notation, state
notation, state transitions, and hierarchical design, just to name a few, it is quite easy
to create those transformation engines. Thus, horizontal transformations are platform
independent.

In contrast to vertical transformations it is not required to provide model trans-
formations for each utilized combination of source and target model. Instead, it is
possible create transitive mappings. This is illustrated in Fig. 2.2, where an FSM sys-
tem description is first transformed into an Petri Net representation which is then
mapped into an DEVS model. The DEVS formalism of Zeigler et al. [58] is a
very good target MoC for horizontal transformations: It is highly flexible and sev-
eral MoCs can easily be transformed into a DEVS model description. This fact has
already been exploited in previous work, e.g., Risco-Martín et al. [45] describe an
UML statecharts transformation into DEVS and Bobeanu et al. [9] present a Petri
Net conversion.

20 2 System Development of Formally Specified Reconfigurable Systems

2.1.2 Design Flow Methodologies for Reconfigurable Systems

Most existing design flows for reconfigurable hardware systems are directly based
on low-level implementation languages like C or hardware description languages like
VHDL and Verilog. They build upon the bottom abstraction layer. It is necessary
to manually partition the design into the reconfigurable components and to schedule
the reconfiguration of these components. Afterwards, a classical design process is
performed for each single reconfigurable solution and each component that has been
scheduled and partitioned. In addition, it is necessary to create and to implement the
on-chip infrastructure to support the required reconfigurable functionality.

The low abstraction level is an even bigger problem when complexity is further in-
creased by the introduction of the reconfigurable features. As a first approach to raise
the abstraction level, the programming language SystemC as high-level modeling
language has been introduced. SystemC aims towards the combined development of
HW and SW. It is widely known and has become a de facto standard for system-level
design.

While it is possible to implement system models directly in SystemC, it is highly
appropriate to increase the abstraction level even further and to represent a system
design on top of several MoCs. These models provide a more abstract system view,
because SystemC has to integrate model specific features in a single, C-compatible
programming language. In contrast, MoCs can be defined more formally without the
limitations of a specific programming language.

A formal MoC for reconfigurable hardware systems has to address two different
problem domains:

• First, it has to support the flexibility in system behavior that stems from dy-
namic reconfiguration. This objective is well-covered by most MoCs for soft-
ware development. Most hardware-centric MoCs, however, do not support
such behavior as the structure and functionality of conventional hardware re-
mains static all the time.

• Secondly, the concurrency and time annotated behavior of hardware has to be
modeled as well. This aspect is handled very well by most existing hardware
models, while software models rarely consider such properties.

Thus, we have to address both domains in one single MoC to obtain a fully op-
erational RecDEVS model. It is reasonable to extend an existing MoC with the ap-
proriate features instead of creating a new model from scratch. Therefore, we have

2.1 Design Flow Methodologies 21

DEVS Model
RecDEVS

UPPAAL Model
SystemC /

VHDL

HW Instance
Counterexamples /

Properties

M
od

ifi
ca

tio
n

Code Generation

Transformation

Verification Synthesis

Figure 2.3: Proposed Design Flow for Verifiable Reconfigurable Systems

chosen DEVS (respectively its extension Dynamic Structure DEVS) as the fundamen-
tal MoC. The main reason for this decision lies in the clear and formal specification
that makes DEVS well-suitable for further extensions. Furthermore, it provides sup-
port for relevant hardware properties such as concurrency and timed behavior. The
DEVS formalism and the developed RecDEVS extension are presented in detail in
Chapter 3.

2.1.3 Verification-based Design Flow

An essential aspect of a MoC-based high-level design methodology is the consid-
eration of formal verification methods for system design. Such methods include
mathematically-based languages, techniques, and tools for modeling, specification,
and verification. Their purpose is to ease the development of complex systems where
unintended system behavior may otherwise not be detectable due to the overall com-
plexity of the system. Compared to testing techniques, a formal verification technique
is an exhaustive process that can cover the whole possible system behavior whereas

22 2 System Development of Formally Specified Reconfigurable Systems

testing techniques can only explore a limited set of user-specified test cases. As
Gupta [24] and Lam [31] summarized, the main goal of formal verification is re-
vealing design errors by proving a relationship between an implemented model and
an user-specified system behavior. Hence, with the help of formal verification, it is
possible to prove whether the implementation satisfies a desired specification or not.

Formal methods require an exact specification, mostly in form of a formally de-
fined Model of Computation that is used for system description. The verification
of informally defined systems (e.g., by using a low-level implementation language
like VHDL or C++) is possible as well, but only by retroactively annotating a for-
mal behavior. However, if the original system specification may be ambiguous or too
complex for a formal verification approach, the retroactive annotation is not always
feasible. Thus, it is highly appropriate to start system-level entry with formally de-
fined MoCs. This fact is established as next requirement for the subsequent parts of
this work as Lemma 2.

Lemma 2 (Formal Specification) The Model of Computation for a reconfiguration
specific design flow must be formally specified to enable verification.

There are various verification techniques, ranging from automated higher-order
theorem provers to model checking tools. The model checking approach is suitable
for the verification of systems, which can be represented by nondeterministic pro-
cesses with finite control structures and real-valued clocks (i.e., Timed Automata).
Compared to theorem proving approaches it does not require any user-interaction.
The model checker can also produce counterexamples when the implemented model
does not satisfy the required specifications. The counterexample generation is an-
other important feature that often motivates the utilization of model checking tools
over theorem provers which cannot produce counterexamples in the same manner.
For the verification of reconfigurable hardware systems the automated model check-
ing approach seems more promising and will be carried forward.

In the design flow presented throughout this work we combine two specialized
MoCs. The RecDEVS MoC captures the functionality of reconfigurable hardware sys-
tems. It focuses on reconfiguration and provides specific properties for the description
of such features. The UPPAAL Model of Computation is especially designed for the
UPPAAL model checking environment and includes valuable verification expertise
and knowledge. This combined approach was chosen because it turned out to be eas-
ier to exploit two specialized MoCs instead of including all required features into a
single MoC.

2.1 Design Flow Methodologies 23

To enable the verification of reconfigurable models described by RecDEVS a model
transformation between RecDEVS and UPPAAL is necessary. If the transformation
preserves all important RecDEVS model properties, then any verification statement
about the transformed UPPAAL model will also hold for the equivalent RecDEVS
system.

A transformation from a RecDEVS specification into an equivalent UPPAAL
model representation can thus obtain verification results at an early stage of the
design process. They can then be used to further refine the implementation until
all desired verification properties are met. The quality and exactness of the model
transformation is of essential significance for UPPAAL verification results represent-
ing the original RecDEVS model. If there is not only a transformation from RecDEVS
into UPPAAL, but also a back transformation the other way around, then it is possible
to change the model in UPPAAL (e.g., after finding a bug during verification phase)
and directly back-annotate the changes into RecDEVS. If no such transformation is
available, then the flawed system properties have to be re-identified in the original
RecDEVS model and changed there manually.

If the transformation itself is not completely accurate and not all model properties
are transformed correctly the results of the UPPAAL verification do not necessarily
hold for the equivalent RecDEVS model as well. However, even then the verification
process can serve as an indicator for potential problems. In this case the developer has
to reassure that the verification problem really exists in the original RecDEVS model
or has been introduced by an incorrect model transformation step. Also, a correctly
verified property in the UPPAAL model provides no guarantee that the corresponding
property in the original model is also correct if the transformation step is incorrect.
But even then, the verification process provides huge benefits for the overall system
development of complex systems. The more exact the model transformation is, the
more exact will the verification results represent the behavior of the RecDEVS system.
It is furthermore possible to improve the model transformation each time a mismatch
between the behavior of both models is detected without changing anything else in
the overall design flow.

In this work, an automated horizontal transformation from arbitrary RecDEVS
models into UPPAAL has been developed and utilized. The model transformation
will be explained in detail in Chapter 4. A proposal for a designed flow to enable
the verification of reconfigurable systems is illustrated in Fig. 2.3. There is no formal
proof available that the presented model transformation is always correct, thus the
verification results can only be used as indicators for the correctness of the RecDEVS

24 2 System Development of Formally Specified Reconfigurable Systems

behavior as described above. Until now, no mismatch between the UPPAAL and the
RecDEVS model has ever occurred throughout the development of this work and the
implementation of the examples presented in Chapter 5. There is also currently no
back transformation from UPPAAL to RecDEVS available, but the re-identification of
system flaws in RecDEVS was never a problem due to the close relationship between
these models.

2.1 Design Flow Methodologies 25

2.2 Reconfigurable Architectures

In the following, the concept of reconfigurable hardware and some of the underlying
theoretical ideas are explained. This is important as the terms and definitions are not
consistent in the scientific community and are sometimes ambiguously used.

In general, reconfiguration can be regarded as a special kind of dynamic behavior
of previously static hardware structures. It is possible to distinguish three different
kinds of dynamic behavior in a computational model:

Dynamic Values: The most general example for dynamically changing values inside
a computational model is the system state. Only reactive, stateless systems can
be modeled without the need to save the current system state over time. All
other computational models provide mechanisms to change the system state
and other stored values during execution.

Dynamic Communication Structure: One common approach to ease system de-
sign is the creation of more coarse granular modules that can then be described
independently. Interaction between such modules uses a clearly specified
communication interface and a fixed communication structure. Dynamically
changing communication structures can thus change the communication topol-
ogy during runtime.

Dynamic Functionality: The functional behavior of a system description can also
be adopted dynamically during runtime. For module-based computational
models this is mainly realized by the creation (or deletion) of functional mod-
ules. In this case a functional change comes together with a modification of the
communication structure that reflects the new functionality. The functionality
inside the individual module remains static, however.

While Dynamic Values are part of most computational systems, this is not the
case for the other two behaviors. In software-centric enviromnments the concept of
Dynamic Communication Structures is realized by address manipulation. For more
abstract models like object-oriented software Dynamic Functionality can be mod-
eled by the instantiation of new software modules. In that case object pointers are
modified, transmitted, or deleted to change the communication topology.

However, in hardware-centric environments (namely integrated circuits) the func-
tional description and the communication structure is part of the fixed circuit. They

26 2 System Development of Formally Specified Reconfigurable Systems

can not be modified without the production of a new chip. To keep the hardware-
centric system descriptions compact, Dynamic Communication Structures and Dy-
namic Functionality have been left out from the corresponding computational mod-
els. As we will realize reconfigurable hardware overcomes this limitation and enables
all three kinds of dynamic behavior for hardware.

While this overview might suggest that communication structure and dynamic
functionality may be merged, we will see in the following that the separation of both
is helpful for the description of reconfigurable hardware systems.

2.2.1 Behavior and Structure of Reconfigurable Hardware

A conventional hardware architecture is characterized by a completely static struc-
ture. While the contents of memory elements like RAM and flipflops may change,
the layout of the chip and the connections between the logic elements always remain
static. In contrast, reconfigurable hardware introduces a dedicated reconfiguration
process that may change functionality of all hardware resources within a chip. Thus,
reconfiguration allows the reuse of hardware resources by different operations.

A reconfigurable hardware system can be defined by a set of functional compo-
nents. Each functional component utilizes a certain amount of available resources,
may it be computational resources, routing resources, or memory resources avail-
able in the reconfigurable hardware system. The process of reconfiguration changes
the instantiated functional components. This process can create additional functional
components if there are enough systems resources available, it can replace or re-
move existing components to release utilized system resources. The granularity of
the functional components may reach from a fine granular architecture, where the
functionality of single flip flops (e.g., it’s reset values) may change, up to coarse
granular architectures where the computational elements are DSP cores and reconfig-
uration changes the programs executed by these cores.

Reconfiguration consists of two different basic operations on which this work
focuses. All other operations can be build upon these two operations as given by
Lemma 3.

Lemma 3 (Reconfiguration Operations) A reconfigurable system requires a New-
operation and a Delete-operation to perform reconfiguration activities. Both opera-
tions require associated information on the target component that should be created
or removed from the system resources.

2.2 Reconfigurable Architectures 27

There may be additional operations to ease the description of reconfigurable sys-
tems. This work focuses on the two essential operations from Lemma 3 as other op-
erations can be constructed by them. A move-operation, for example, which moves
an existing functional component to other system resources and may ease potential
fragmentation issues for the resources of reconfigurable systems, can be modeled by
a direct sequence of a delete-operation followed by a new-operation.

It is one essential goal of this work to develop a design flow methodology for
reconfigurable systems that supports verification. To address reconfiguration features
in such a design flow the following lemma will be required in the following chapters:

Lemma 4 (Self-Contained Model) Specification of reconfigurable behavior, repre-
sented by the New-operation and the Delete-operation has to be a part of the func-
tional specification model. This allows a verification process to reason about the
impact of functional elements on reconfigurable systems.

This lemma addresses another approach to formal specification discussed in Bon-
dalapati and Prasanna [10], where reconfiguration and functional behavior have been
split into two disjunct MoCs. In such a case it is not easily possible to reason about
the effect of a functional result on a subsequent reconfiguration step.

We pick up some important definitions of that work and define several classes of
reconfiguration, namely statically, partially, and dynamically reconfigurable archi-
tectures.

Statically reconfigurable architectures allow the reshaping of a hardware system
as a whole. This situation is depicted in Fig. 2.4. As a consequence, static
reconfiguration does not allow any data persistence across reconfiguration as
this would require to keep back some areas where the persistent data can be
stored. The design flow for statically reconfigurable architectures is performed
by repeating conventional design flows multiple times. Possible examples for
this kind of application is the in-field deployment of hardware patches etc.

Partial reconfiguration denotes the situation where only a smaller part of the whole
chip is being reconfigured. In this case the remaining part of the chip preserves
both its functionality and data. This kind of reconfiguration adds a new dimen-
sion to the hardware design space. System design is no longer limited to the
space domain (routing and placement of modules), but is extended to time
domain (by reusing resources over time).

28 2 System Development of Formally Specified Reconfigurable Systems

Chip

Block A

Chip

Block A’

Reconfiguration

Figure 2.4: Static Reconfiguration

Chip
Block A’ Block B

Chip

Block A

Block B

Reconfiguration

Figure 2.5: Partial and Dynamic Reconfiguration

Dynamic reconfiguration is a special case of the partial reconfiguration. While
some part of the chip is being reconfigured, the other components continue
their execution. This situation is depicted in fig. 2.5.

2.2.2 Towards a Model of Computation for Reconfigurable Hardware

The creation of a new Model of Computation is a complex and time consuming pro-
cess. It seems natural to reuse existing solutions and research results. As already
mentioned, a formal MoC for reconfigurable systems has to integrate two different
concepts found in other Models of Computation too:

• The flexible and dynamic system behavior that previously may only be found
in software systems (here stemming from from dynamic reconfiguration).

2.2 Reconfigurable Architectures 29

• Hardware-centric features like concurrency and cycle accurate time-annotated
behavior.

As a special class of hardware-centric systems, reconfigurable hardware systems
share some basic modeling principles with all other hardware-centric systems. One
key benefit compared to software-centric systems is the ability to improve the sys-
tem performance by parallel computations. This requires the possibility to describe
concurrency inside the system description. Practical experiences with various hard-
ware description languages and models have shown that it is normally desirable to
also offer the possibility to model small sequential blocks, which are then executed
in parallel.

Lemma 5 (Concurrency) The components of a reconfigurable system run concur-
rently to each other and sequentially inside themselves.

Another special property of hardware centric systems is the ability to support
cycle-accurate system models. In the more general case this concept can be extended
towards a requirement for time-annotated models. These models can be interpreted
as cycle accurate if the time granularity is chosen appropriately small. While it may
be possible to imagine hardware systems, that work without any time-annotation the
availability has no direct disadvantages. Thus, the intended model for reconfigurable
hardware systems should support it as well.

Lemma 6 (Time Annotation) A formalism for reconfigurable hardware systems
should be able to model timed behavior.

At the beginning of this work is was not completely clear if the development of
a MoC for reconfigurable systems should start with a highly-dynamic software-
centric model that will then be extended towards timed-behavior and concurrency
or vice-versa with a hardware-centric model that has to be extended towards dy-
namically changing behavior. The second approach has been chosen and started
with a hardware-centric model for two reasons. First, the retroactive extension of
an MoC with timing annotation seemed more difficult than the other way around.
Secondly, the internal behavior of reconfigurable components is, in most cases, a
straight-forward hardware implementation and can thus be easily modeled within a
hardware-centric MoC.

30 2 System Development of Formally Specified Reconfigurable Systems

2.2.3 Field Programmable Gate Arrays

The most established platform for reconfigurable hardware systems are the Field Pro-
grammable Gate Arrays (FPGA). While the general concept of this work is applica-
ble to every reconfigurable system, certain design considerations for developing the
RecDEVS MoC take in account platform features.

This work focuses on reconfigurable hardware systems with a fine granularity. To
motivate certain design decisions in the development of RecDEVS, we first give a
short overview over such systems.

An FPGA consists of an large array of small reconfigurable elements, the so-called
Configurable Logic Blocks (CLB). A logic block is build up by a logical computa-
tional element, a memory element and additional resources speed-up dedicated op-
erations (e.g., the carry-chain of an addition). Depending on the architecture, the
computational element can be realized in form of an Look-Up-Table (LUT) or by a
set of multiplexers. All logic cells are connected via a flexible switch matrix, which
is able to connect different logic cells together and thus build up arbitrary complex
functions. The actual functionality of an FPGA is defined during the configuration.
In this process the computational elements are set up to perform the approriate func-
tions, the switch matrix enables the required connections between the utilized logic
cells and all additional logic resources are configured according to the requirements
as well. The overall structure of a typical FPGA is depicted in Fig. 2.6.

The configuration data inside the FPGA can be inserted on top of an SRAM-based
technology or an Anti-Fuse-based technology. This work focuses on the SRAM-
based technology as it provides an substantial benefit compared to Anti-Fuse. The
functionality can easily be replaced by a new one, simply be changing the content of
the reconfiguration SRAM, thus enabling reconfiguration.

It must be noted that the reconfiguration process of existing hardware architec-
tures is multiple times slower than the actual computation inside the computational
elements. Thus, it is reasonable for a MoC to distinguish between reconfiguration
and normal system execution. This allows to handle both processes separately in a
design methodology for reconfigurable systems. For faster architectures, it is easily
possible to merge both processes if no distinction is required.

Lemma 7 (Network Topology) Reconfiguration should distinguish between a change
in functionality (Reconfiguration), a value change (Storage) and routing changes
(Communication).

2.2 Reconfigurable Architectures 31

Figure 2.6: Basic Structure of Field Programmable Gate Arrays

Reconfiguration is limited by present hardware architectures. The reconfigurable
hardware resources are formed into blocks of a certain minimal size. This is justified
by the various design rule checks required for reconfigurable hardware. Reducing the
granularity of these reconfigurable blocks too far would increase the complexity of
design rule checks beyond feasibility. Reconfiguration can then be summed up into
the creation and the deletion of those reconfigurable blocks. This may also be applied
to multiple components at the same point in time.

Together with the runtime overhead to perform an actual reconfiguration this leads
to component sizes that must not be too fine granular. This is specified by lemma
Lemma 8.

Lemma 8 (Granularity) Due to the reconfiguration times, reconfiguration requires
a certain coarser granularity. Thus, reconfiguration should be performed on a
module-based level.

Communication between different resources is another critical limitation of present
dynamically reconfigurable architectures. In order to assure signal integrity, the con-
nections between different resources are deactivated during reconfiguration. Typi-
cally, this task is performed automatically by the design tools. However, this requires
that the interface of the reconfigurable blocks is reasonable small and simple.

32 2 System Development of Formally Specified Reconfigurable Systems

Lemma 9 (Encapsulation) The reconfigurable modules should be self-contained.
Interaction with the external enviroment should be realized with a limited and ex-
plicitly specified interface.

In most systems, reconfiguration is triggered by an external component which
holds the different reconfiguration informations and performs the required interface
protocols with the FPGA. A new approach is the In-System-Configuration (ISC) (Ja-
cobson [28]) that enables an FPGA to reconfigure certain parts of it itself. This allows
for the realization of an FPGA as a stand-alone reconfigurable hardware platform.

FPGAs do not provide inherent management for the reconfigurable resources. This
means that different configuration data is required depending on the exact resources a
component should utilize on the FPGA. The resources have to be specified explicitly
and it is not possible to just demand to place the component onto free resources.

Such a resource management, together with the management of configuration data
for the different functional components, is generally handled by an user-implemented
Arbiter component. Such a component will also manage the reconfiguration interface
of an ISC architecture. Technical realizations of existing FPGAs provide only one sin-
gle ISC interface. Consequently, the implementation of a central Arbiter component
is reasonable.

This results in a certain problem for a generic MoC for reconfigurable systems. To
be platform-independent such a MoC should not require a special arbiter realization.
Furthermore, it is desirable to be able to trigger the reconfiguration process from each
component.

Lemma 10 (Trigger Reconfiguration) All components should be able to trigger a
reconfiguration. Because of Lemma 9, this operation should be part of the compo-
nents interface.

From an user-based point of view this lemma allows to abstract all arbiter com-
ponents that might be required by an actual reconfigurable platform. Furthermore,
the local reconfiguration process allows a modular based design-flow. A system de-
signer needs to implement his own components independently. This would not be
possible if all components incorporate their own arbiter implementation. In that case
potentially colliding requests from multiple reconfiguring components would have to
be considered. In the MoC such parallel requests will be handled by the envisioned
MoC formalism and not by the system designer.

2.2 Reconfigurable Architectures 33

34 2 System Development of Formally Specified Reconfigurable Systems

3 RecDEVS: Model of Computation for Reconfigurable Systems

As already stated in the previous chapter a MoC based design flow provides many
benefits. Consequently, Lemma 1 demands that a design flow methodology for recon-
figurable systems will also be based on MoCs. However, in the area of reconfigurable
hardware systems there is a certain lack of appropriate MoCs. Section 3.3.1 ex-
plains why the already existing models are not sufficient for modeling reconfigurable
hardware systems.

Therefore, in this chapter a novel Model of Computation for reconfigurable sys-
tems, RecDEVS, is developed. It is based the DEVS formalism from Zeigler et al.
[58] which does already provide a lot of the desired features. It is highly flexible
and already provides a complete formally specified behavior that eases the creation
of model transformations. Thus, other MoCs can be easily transformed into a DEVS
model description.

We will see that DEVS already covers many of the non-reconfiguration specific
requirements, which have been formulated as lemmas in the previous chapter. It is
cleanly and formally specified and therefore suitable for verification as required by
Lemma 2. It is also time-annotated and supports concurrency as required by Lemma 5
and 6, respectively.

The rest of this chapter is structured as follows. In Section 3.1 the existing DEVS
formalism is introduced together with various extensions. In addition, a graphical
representation of DEVS models is developed that will be used subsequently. In
Section 3.2 the different DEVS extensions that are important for the development
of RecDEVS are combined in a single Reference DEVS that works as a foundation
for the following development of the RecDEVS Model of Computation for Recon-
figurable Systems detailed in Section 3.3. Reference DEVS will not only combine
all important extensions, but it will also cover certain ambiguities that exist in the
original specification.

3.1 DEVS Model of Computation

The DEVS formalism is a powerful mathematical foundation for specifying hierar-
chically, concurrently executed formal models. It is organized in a layered structure

35

which starts with an atomic model that exists as a stand alone system and is extended
towards the concurrent execution of multiple hierarchically coupled components. We
will follow this definition scheme and first explain the DEVS formalism basic com-
ponents and then its various important extensions.

The DEVS formalism is created as an event-based, timed Model of Computation.
Each component consists of a local time t that contains the elapsed time since the
actual state has been entered. The local times of all components in a complex DEVS
system advance simultaneously. The DEVS formalism uses the time to define certain
timeouts, that force state transitions.

3.1.1 Classical DEVS

A classical atomic DEVS component Cclassic is described by the tuple

Cclassic
[name] = (X[name], Y[name], S,δint,δext,λ,τ).

X[name] : Input Type

Y[name] : Output Type

S : Set of States

δint : S→ S

δext : Q× X → S where Q = {(s, e)|s ∈ S, 0≤ e ≤ τ(s)}
λ : S→ Y

τ : S→ R+

This formalism is similar to usual finite state machines. The state set S is a non-
empty set of states where all elements must be distinct. A component C has an ex-
ternal interface defined by its input set X and output set Y . Input and output events
occur upon state transitions. Every state has an associated timeout τ : S→ R+. The
optional [name] allows to differ between multiple components. It can be omitted if
the correct component can be derived from the context of the given formula. Such an
optional naming tag exists for all subsequent DEVS extensions, however, it will not
be defined separately for each definition in the sequel.

Functional behavior in DEVS is realized via state transitions. The DEVS formal-
ism differs between different transition types for various system scenarios. For the
classical DEVS component there are two state transitions defined.

36 3 RecDEVS: Model of Computation for Reconfigurable Systems

timeout e = τ(si)

output λ(si)

si = δint(si−1)

si−1 si si+1

Figure 3.1: State Transition and Output

Internal Transition δint : S→ S: After the timeout τ(s) of a certain state occurred,
i.e., the local time of the component has been advanced to this point in time,
the component will do an internal state transition. After the transition a new
timeout is set by the new state.

External Transition δext : Q× X → S: Iff the component receives an input event on
the input X it will do an external state transition δext((s, e), x). δext has knowl-
edge about the elapsed time e < τ(s) since the last state transition occurred.
After the transition the local time is set to 0 and the new timeout is derived
from τ(s′) for the new state s′.

Whenever a timeout τ(s) is hit, the component will emit the output λ(s). This
means that the output is bound to the end of an internal transition. An external tran-
sition can only be activated before the timeout occurs, because at each timeout the
internal transition will switch the system state and set a new timeout. Consequently,
an external transition can not directly generate an output. Section 3.2.3 will explain
why this is no limitation of the DEVS formalism.

As DEVS is an event-based model, its output is both, an output value and a cor-
responding event at the same time. The output may also be the absent event �. As
depicted in Fig. 3.1 an output occurs upon leaving a state si to the next state si+1,
although its value is determined upon entering si from the previous state si−1.

If no explicit transition is given, DEVS defines implicit transitions δext((s, e), x) =
s and δint(s) = s, i.e. the system remains in its current state.

3.1 DEVS Model of Computation 37

DEVSclassic Example

In the following an example for a classical DEVS component is given. This compo-
nent comprises a variable n that is emitted and incremented every 10 time units. In
addition, it is possible to update the variable n with an external input. In this case an
output of the new value n is generated immediately.

Cclassic
ex1 =< X , Y, S,δint,δext,λ,τ >

X = N
Y = N
S = {“wait”, “update”}

︸ ︷︷ ︸

phase

× R+
︸︷︷︸

timeout t

× N
︸︷︷︸

variable n

δint(phase, t, n) =

(

(“wait”, 10, n+ 1) if phase=“wait”

(“wait”, t, n) if phase=“update”

δext(((∗, t, n), e), x) = (“update”, t − e, x)
λ(∗,∗, n) = n

τ(“wait”, t, . . .) =

(

t if phase=“wait”

0 else

* is used as a wildcard parameter. This parameter can have any value without
influencing the result of the function.

This example demonstrate a typical behavior of all DEVS models. The output
value of a DEVS model does only depend on the current state s and it is only gener-
ated if a timeout occurs.

The output does not depend on the input set X . Therefore, it is necessary to include
the “update”-state in its definition. Here, we have the updated state that includes the
new external value x that can now be written to the output.

Another typical aspect are external transitions with a timeout of the kind t − e.
With this pattern the timeout of the originating state (“wait” in this example) can be
preserved. For this, the timeout has to be saved as part of the state. Without such an
approach all external events would reset the timeout as we can not directly modify τ
depending on e.

38 3 RecDEVS: Model of Computation for Reconfigurable Systems

In this case the context of the functions as elements of Cclassic
ex1 is clear and thus the

optional [name] is omitted.

DEVSclassic Graphical Notation

The DEVS models can also be denoted by an equivalent graphical representation.

(wait, t, n) t (update, t, n) 0
n←− IN

n←− INn−→OUT
n := n+ 1

n−→OUT

Figure 3.2: Graphical Representation of DEVSclassic

Each box denotes a system state with an associated timeout that is given in the
right side of the box. The dashed arrows depict the external transitions and the nor-
mal arrows internal transition. All internal transitions may emit an output event that
is denoted as “x → OUT” in the graphical representation. All external transitions
receive an input event that is received and saved in an element of the system state
with “n← IN”.

In this example it would not be possible to draw all possible system states explic-
itly, as t and n are elements of an infinite set. The graphical representation allows to
denote such elements as variables instead of explicit values as shown in the example.
To change these state elements all transition may have an additional update label like
n := n+ 1 in the example.

3.1 DEVS Model of Computation 39

3.1.2 The DEVS Extension for Ports

In the next step the classical DEVS formalism is extended towards a distinction be-
tween different inputs and outputs. This is performed by the introduction of ports.

A classical component Cclassic is extended towards Cports by

Cports = Cclassic ∪ {InPorts, OutPorts} with

InPorts : Enumeration of Input Port Names

OutPorts : Enumeration of Output Port Names

X ports = {(p, v)|p ∈ InPorts, v ∈ X classic}

Y ports = {(p, v)|p ∈ OutPorts, v ∈ Y classic}

Here, the input and output sets X and Y of Cclassic are denoted as X classic and Y classic

for better readability. This means that the input and output variables are extended into
tuples of the form (por t, data). These port names ease communication and model
description. They allow to differentiate between the communication structure and
communication data. This is of special importance in the subsequent definitions with
multiple interacting DEVS components.

By the given construction of ports, all ports share one common data type. All
input ports have the data type X classic and the output ports Y classic. However, this is
no requirement of the DEVS formalism and it would be easily possible to extend the
formalism for distinct data types for all ports if necessary.

DEVSports Example

To illustrate the DEVSports the example of the classical DEVS formalism is picked
up. Two input ports are introduced, however the system should only react on the port
“in2”. Only one output port “out1” is defined.

40 3 RecDEVS: Model of Computation for Reconfigurable Systems

Cports
ex1 =< X , Y, S,δint,δext,λ,τ >

InPorts= {“in1”, “in2”}
OutPorts= {“out1”}

X = {(pin, v in)|pin ∈ InPorts, v in ∈ N}
Y = (pout , vout)|pout ∈ OutPorts, vout ∈ N
S = {“wait”, “update”}

︸ ︷︷ ︸

phase

× R+
︸︷︷︸

timeout t

× N
︸︷︷︸

variable n

δint(phase, t, n) =

(

(“wait”, 10, n+ 1) if phase=“wait”

(“wait”, t, n) if phase=“update”

δext(((∗, t, n), e), (pin, v in)) = (“update”, t − e, v in) if pin = “in2”

λ(∗,∗, n) = (“out1”, n)

τ(phase, t, . . .) =

(

t if phase=“wait”

0 else

DEVSports Graphical Notation

For the DEVSports formalism the generic keywords “IN” and “OUT” are replaced
with the corresponding port name p. Thus, an transition label n ← in2 refers to
the value n that is received via the port in2. It is also possible to generate multiple
outputs with one transition, which would be noted by multiple output lines.

(wait, t, n) t

start

(update, t, n) 0 sn←− in2

n←− in2n−→out1
n := n+ 1

n−→out1

Figure 3.3: Graphical Representation of a DEVSports model

3.1 DEVS Model of Computation 41

3.1.3 Coupled DEVS

With help of the port formalism it is now possible to combine multiple DEVS compo-
nents into a DEVS network system S. The previously defined elementary components
are denoted as atomic components.

Each network description includes a set D of unique identifiers. These identifiers
may be identical with the optional [name] of an atomic component. They are used
to identify the components coupled together in S. The Coupled DEVS formalism
connects an arbitrary set Cd ∈ D with each other by:

Scoupled =< X Por t , Y Por t , D, {CPor t
d | d ∈ D}, EIC , EOC , IC , Select> with

D : Set of Component Identifiers for CPor t
d

EIC ⊆ {(x , (Cd , pin) | x ∈ X Por t , d ∈ D, pin ∈ InPortsd}
EOC ⊆ {(y, (Cd , pout) | y ∈ Y Por t , d ∈ D, pin ∈ OutPortsd}

IC ⊆ {((Cd , pin), (Cd′ , pout)) | d, d ′ ∈ D, pin ∈ InPortsd , pout ∈ OutPortsd′}

Select : 2|D|− {} → D

The distinction between the model identifier d and the actual component Cd allows
to instantiate multiple components of the same kind. Thus D can be interpreted as the
type of the component.

The coupled DEVS network features one common set of input and output ports
X and Y , respectively. These external ports are linked to corresponding component
ports Cd by the External Input Coupling (EIC) and the External Output Coupling
(EOC). The Internal Coupling (IC) is used to link the ports of two internal compo-
nents without any interaction with the global external interface of S. Port couplings
are statically defined and cannot be changed throughout the execution of the system.
This means that all communication channels which may be used during runtime have
to be defined initially.

The Select function provides an order of execution for all DEVS components. In
the Coupled DEVS formalism only one transition can be active at a time. With mul-
tiple independent components in one system it might occur that multiple transitions
are activated at the same time. In such cases the Select function works as a resolu-
tion function and defines the next active component. This can be compared to similar
formal execution models like Petri Nets.

42 3 RecDEVS: Model of Computation for Reconfigurable Systems

Note that the Select function is not part of any atomic DEVS component. Instead,
it has to be provided as a global realization aspect of the complete network.

It is also possible to hierarchically instantiate other DEVS networks S in addition
to atomic components. This extends the Coupled DEVS towards a hierarchal sys-
tem of components. However, as this feature is not required for the development of
RecDEVS, it will not be detailed in this work.

DEVScoupled Example

To illustrate the coupled DEVS formalism two components Cex1 and C′ex1 are con-
nected. The output “out” of the component Cex1 is used as an input port for C′ex1. All
remaining ports of both components are tied to the global port interface.

Sex1 =< X , Y, D, {Cex1, C′ex1}, EIC , EOC , IC , Select>

X = {(port, val) | port ∈ {“gIn1”, “gIn2”, “gIn3”}, val ∈ N}
Y = {(“gOut”, n) | n ∈ N}
D = {ex1}

EIC = {(“gIn2”, (Cex1, “in1”)), (“gIn3”, (Cex1, “in2”)),
(“gIn1”, (C′ex1, “in1”))}

EOC = {(“gOut”, (C′ex1, “out”))}
IC = {((Cex1, “out”), (C′ex1, “in2”))}

Selec t(M) =

(

Cex1 if Cex1 ∈ M
C′ex1 else

DEVScoupled Graphical Representation

For a graphical representation of Coupled DEVS, it is possible to use conventional
block diagrams. For the given example the block diagram is depicted in Fig. 3.4.

3.1 DEVS Model of Computation 43

Cex1 C′ex1

“gIn1”

“in1”“gIn2” “in1”

“gIn3” “in2” “out” “in2” “out” “gOut”

Figure 3.4: Block Diagram of DEVScoupled

3.1.4 Parallel DEVS

The Coupled DEVS formalism does not support concurrent model execution. When-
ever multiple concurrent transitions occur, they are serialized by the Select function.
The Parallel DEVS formalism addresses this issue. It incorporates the component
instantiation and port coupling formalisms of Coupled DEVS but it modifies the be-
havior of the transition functions. For this, the Select function is replaced by a third
type of transition functions δcon. A Parallel DEVS system S is defined as

Spar =< X Por ts, Y Por ts, D, {Cpar
d | d ∈ D}, EIC , EOC , IC > with

Cpar =< X Por ts, Y Por ts, S,δint,δext,δcon,λ,τ > with

δcon : Q× X Por ts→ S

The Confluent Relation δcon

In Parallel DEVS multiple transitions are executed in parallel when they are triggered
at the same time. Thus, a Select function as it was utilized in Coupled DEVS is no
longer required.

However, the concurrent execution of two different transition functions inside one
atomic component is not possible. This is because the two transitions δint and δext

44 3 RecDEVS: Model of Computation for Reconfigurable Systems

might calculate two contradictory new states leading to undefined system situations.
In Coupled DEVS this is not been possible, because all transitions that ought to be
executed at the same point in time are serialized by Select. For the resolution of this
possible contradiction inside one atomic component, the additional confluent relation
δcon is introduced. It is triggered whenever two different transition functions would
be called otherwise. These two transition functions are not activated in this case.

Confluent Transition δcon : Q× X Por ts→ S: Iff the component receives an exter-
nal event while an timeout occurs, the next state will be computed by
δcon((s, e), x) instead of δint or δext.

With the confluent function δcon there is no longer a need for a centralized serial-
ization system. All components can now run independently. The only interaction with
the external environment is via the component interface, as demanded by Lemma 9.

Compared to Coupled DEVS the confluent transition is also more expressive. Con-
sidering a situation where δint and δext should fire, it is only possible to select one of
both functions. With the Parallel DEVS model it is possible to apply both functions
by defining the confluent transition similar to δcon = δint(δext(q, x)).

DEVSparallel Example

Consider the example of DEVSports again, it can be extended towards Parallel DEVS
by defining the confluent transition function.

Spar
ex1 =< X , Y, D, {Cex1, C′ex1}, EIC , EOC , IC > with

Cpar
ex1 = CPorts

ex1 ∪δcon

δcon(((phase, t, n), e), x) = δext(((phase, t, n), e), x)

DEVSparallel Graphical Representation

In the graphical notation, confluent transitions are depicted by double-lined arrows.
Their labels follow the conventions introduced by the internal and external transitions,
Fig. 3.5 illustrates the usage of the component Cpar

ex1.

3.1 DEVS Model of Computation 45

(wait, t, n) t

start

(update, t, n) 0 sn←− in2

n←− in2

n←− in2

n←− in2

n−→out1
n := n+ 1

n−→out1

Figure 3.5: Graphical Representation of a DEVSparallel model

46 3 RecDEVS: Model of Computation for Reconfigurable Systems

3.2 Reference DEVS Model of Computation

To have a consistent base for the development of a reconfigurable MoC the different
DEVS variants have been unified towards a Reference DEVS. A Reference DEVS
System S is given by the tuple:

Sref =< X re f , Y re f , D, {Cpar
d | d ∈ D}, EIC , EOC , IC > with

Cref =< X re f , Y re f , S, soδint,δext,δcon,λ,τ >

This development covers three different goals:

• There is no standardized reference definition of a parallel DEVS formalism
with a clear definition of ports. However, a clearly defined reference is of
great benefit for defining research cooperations and public discussions.

• The original definitions contain some minor ambiguities. In some cases there
are different possible interpretations of certain execution rules. While the dif-
ferences are not crucial in many cases it has to be decided which interpretation
is used throughout the following work.

• The original DEVS formalism realizes a Timed Model of Computation. How-
ever, the RecDEVS MoC that is to be developed has a clear focus on reconfig-
urable hardware systems that are clock synchronous. To achieve this goal, the
Reference DEVS will be extended by an empty event � that is used for clock
events without a corresponding DEVS event.

In the following, all functional elements are grouped together thematically and
their functionality will be presented.

3.2.1 Component States

S : Set of States

s ∈ S : Current State

s0 ∈ S : Initial State

τ : S→ R+

3.2 Reference DEVS Model of Computation 47

In addition to the state set S an additional dedicated initial state so with s0 ∈ S∩{;}
is defined1. The other state specific functionality remains unchanged. The current
state s is left at latest after τ(s) via the transition functions δint, δext, or δcon.

3.2.2 Ports and Port Coupling

X ref = {(p, v)|p ∈ InPorts, v ∈ {X classic ∪ �}}

Y ref = {(p, v)|p ∈ OutPorts, v ∈ {Y classic ∪ �}}
EIC ⊆ {(x , (Cd , pin) | x ∈ X Por t , d ∈ D, pin ∈ InPortsd}
EOC ⊆ {(y, (Cd , pout) | y ∈ Y Por t , d ∈ D, pin ∈ OutPortsd}

IC ⊆ {((Cd , pin), (Cd′ , pout)) | d, d ′ ∈ D, pin ∈ InPortsd , pout ∈ OutPortsd′}

As already mentioned this MoC introduces the absent event �. The port definitions of
the DEVSports formalism have to be extended appropriately such that the values v of
each port tuple (p, v) may now also contain �.

3.2.3 Output Function

λ : S→ Y ref

Λ : Q→ Y ref with

Λ(s, e) =

(

λ(s) if e = τ(s)
� if e < τ(s)

The output function λ generates output data on the different output ports defined
by Y ref. The output on each port can either be the empty event � or a real output

1 The original DEVS defintion did not include the initial state, however the initial state has been
used consistently throughout the literature on DEVS.

48 3 RecDEVS: Model of Computation for Reconfigurable Systems

value. The output values on all different ports of Y share one common output alphabet
defined by Y classic of the port definition.

Non-empty output events may only be generated when the timeout τ(s) = e is
reached. More precisely, the output only depends on the current state s0 and is inde-
pendent of the taken transition function δint or δcon, respectively. Consequently it is
not directly possible to generate a transition dependent on the output values λ(δint)
or λ(δcon). This can however easily be modeled by the introduction of two supple-
mental output states for the timeout transitions as depicted in Fig. 3.6.

s0 τ(s0)start

s′ 0 sint τ(sint)

s′′ 0 scon τ(scon)

λ((δint))−→ in2

λ((δcon))−→ in2

Figure 3.6: Modeling of Transition Dependent Output Function

For the realization of a clocked synchronous model it is necessary to generate
an absent event whenever no other event is explicitly generated. For this, a new
output function Λ is created. The previous output function λ is embedded into Λ as
a partial function. It creates � as long as the timeout is not reached, i.e., t 6= τ(s).
Please note that the definition of Λ remains fixed and exists for a clear definition of
hardware-near clocked synchronous behavior. It is not possible for a developer to
modify this function in the system specification. Therefore, the definition of Sref will
only mention the user-modifiable output function λ.

3.2.4 State Transition

The definition of the three transition functions is consistent with their definition in
Parallel DEVS. They are denoted as:

3.2 Reference DEVS Model of Computation 49

δint : S→ S

δext : Q× X ref→ S

δcon : Q× X ref→ S

Q ={(s, e)|s ∈ S, 0≤ e ≤ τ(s)}

Because of the introduction of absent events the definition of the existing transi-
tion functions becomes somewhat unclear. Following the existing definitions strictly,
these empty events would mean that the internal transition would never fire. When-
ever an timeout occurs there will always be an external event. Whether this is an
absent event or a real event is not important to the original distinction of confluent
and internal transitions. It is very desirable for the comfortable modeling of DEVS
model, that the original behavior of the transition functions is preserved. For this,
we will first analyze the impact of empty events on the transition functions. In the
following, a new meta-transition function ∆ is proposed. This transition function is
the only function that needs to be executed and will evaluate which other transition
functions have to be executed.

The following transition cases may occur in DEVS models with absent events:

No Event: This happens when no timeout has occurred yet (e < τ(s)) and no
“real” external event is applied, i.e., all input ports contain the absent event
(∀(p, v) ∈ X ref.v = �).

Internal Transition: This happens when the e = τ(s) timeout is reached and the
input ports contain only absent events (∀(p, v ′ ∈ X ref.v = �).

External Transition Variant 1: The function δext is called when the timeout is not
reached e < τ(s) and exactly one “real” external event is applied, i.e.,
∃!(p, v) ∈ X ref.v 6= �. In this variant the handling of multiple external events
will be covered by δcon.

External Transition Variant 2: In this variant it is sufficient if at least one external
event instead of exactly one event is applied to the input port before the timeout
e < τ(s). The related condition is given by ∃(p, v) ∈ X ref.v 6= �).

50 3 RecDEVS: Model of Computation for Reconfigurable Systems

Confluent Transition Variant 1: The transition δcon has to be taken when at least
two different events occur. There are two possibilities for this. First, at least
one external event (∃(p′, v ′) ∈ X ref.v ′ 6= �) happens together with the timeout
event e = τ(s). And second, at least two different external events are applied
to the component ∃(p′, v ′), (p′′, v ′′) ∈ X ref.v ′ 6= � ∧ v ′′ 6= �).

Confluent Transition Variant 2: : In accordance with the external transition variant
2, δcon has to be executed only when both δint and δext would be jointly called.
Therefore δcon can only occur when there is an external event in combination
with the timeout e = τ(s)∧ ∃(p′, v ′) ∈ X ref.v ′ 6= �.

The different variants for the confluent and external transitions are related to each
other. The first variant utilizes the confluent transition for two different external
events. The second variant utilizes the confluent transition only for a combination
of internal and external transitions, i.e., when a timeout occurs. Two external events
before the timeout are left to the external transition function in this variant.

For the Reference DEVS and the subsequent development of RecDEVS Variant 2
has been chosen. The decision has been taken with respect to potential hardware im-
plementations of the MoC. In these systems the process to calculate the exact number
of external events across all input ports is of significant complexity. For the calcu-
lation whether at least one event has been occurred a realization of an OR-tree is
required. Such a computational structure can be implemented efficiently in hardware.

A combination of all transition functions in one global function ∆ can now be
given by:

∆ : Q× X ref→ S

∆((s, e), x) =

no Transition if τ(s)< e ∧ (∀(p, v) ∈ x .v = �)
δext((s, e), x) if τ(s)< e ∧ (∃(p, v) ∈ x .v 6= �)
δint(s) if τ(s) = e ∧ (∀(p, v) ∈ x .v = �)
δcon((s, e), x) if τ(s) = e ∧ (∃(p, v) ∈ x .v 6= �)

(3.1)

Like in previous DEVS definitions, the user specifiable transition functions δint,
δext, and δcon implement a “default”-behavior. If no explicit state transition is given,
then these functions remain in their current state. This has no impact on the behavior
of the system model and is just to ease the modeling of system components.

3.2 Reference DEVS Model of Computation 51

Definition 3.1 (Trace) A trace t(s1, s2) denotes a possible path from the state s1 to
the state s2. It is given by a set of transitions {δ1,δ2, ...,δn}. They describe the order
of execution to start at the state s1 and reach the state s2 = δn(...(δ2(δ1(s1)))).

There can be multiple and different traces for each combination of beginning and
end state. In general, each trace gives only one potential transition sequence of the
DEVS model. It is not mandatory that a trace will always reach the final state. A
trace might contain an external transition δext and the required input event for this
trace may not occur. It is also possible that another transition may be taken in one
intermediate state.

52 3 RecDEVS: Model of Computation for Reconfigurable Systems

3.3 RecDEVS Model of Computation for Reconfigurable Systems

The Reference DEVS model already provides many features that have been defined
as requirements for the modeling of reconfigurable systems in Chapter 2.

It is specified as a formal model of computation as required by Lemma 1. This
enables model-driven design approaches and formal verification as will be shown in
Chapter 4. The Reference DEVS supports true concurrency and parallelism between
the parallel components as required by Lemma 5. With the help of the timeout prop-
erty τ all DEVS formalisms fulfill the time annotation requirements from Lemma 6.

In the following the DEVS Formalism for Reconfigurable Systems RecDEVS will
be presented. It extends the DEVS formalism towards reconfiguration. There have
been two important guidelines for the development of RecDEVS: Introduce minimal
modifications on the existing DEVS formalism and to account for existing reconfig-
urable hardware architectures and their properties.

A formal model has to provide a formalism that allows the modeling of dynami-
cally changing functionality. To comply to Lemma 7 the formalism should be able to
distinguish between

Dynamic Values which are utilized during the normal execution of all behavioral
models.

Dynamic Communication which changes the communication topology.

Dynamic Behavior which changes the functionality of the computing core elements
that are interconnected by the communication topology and works on dynamic
values.

In compliance with Lemma 4 these three aspects should all be part of one combined
formal computational model. This will allow formal reasoning about the influence of
e.g. the current state (a representative for the class of dynamic values) on certain
configuration actions (which lie in the class of dynamic behavior).

These additional requirements have been met by a message-based communication
scheme and the introduction of a special arbiter component, which is responsible for
all reconfiguration actions.

3.3 RecDEVS Model of Computation for Reconfigurable Systems 53

3.3.1 Existing Reconfigurable Models

There are various approaches known, which deal with modeling methods for recon-
figurable hardware architectures. Jówiak et al. [29] gives a comprehensive overview
over the current state of this research area. Some of these works will be shortly dis-
cussed in the following to highlight the different approaches to reconfiguration and
the special features which shape up RecDEVS.

The first approach to be mentioned addresses the development of dedicated frame-
works around existing design languages like VHDL or SystemC. These frameworks
add certain reconfiguration mechanisms and reuse existing design flows for conven-
tional hardware development. SyCERS by Santambragio [48], the Perfecto frame-
work by Hsiung et al. [26], and PaDReH by Carvalho et al. [13] are examples for
this approach. While these works can benefit from existing design tools, they lack
an underlying formal MoC. It is unclear, whether formal design activities such as
verification are realizable here.

The Molen processor by Vassiliadis et al. [56] and Morpheus by Thoma et al.
[53] utilize reconfigurable architectures as flexible coprocessors. They do not put
a specific focus on a formal computational model and are less suited for hardware
solutions. A runtime environment utilizing the Molen processor has been developed
by Fazlali et al. [19].

A slightly different approach is used in the Hybrid System Architecture Model
(HySAM) by Bondalapati and Prasanna [10]. This proposal does provide a formal
model for the reconfiguration process. However, it separates the MoCs for modeling
reconfiguration and modeling functional behavior. To create a complete reconfig-
urable system the HySAM model has to be combined with some other model. This
will clearly limit a comprehensive analysis of component-induced reconfiguration
activities.

In the area of dynamic hardware-aware MoCs the OSSS+R from Schallenberg
et al. [49] is to be mentioned. This approach utilizes the concept of code poly-
morphism from the object-oriented software development domain. We think that
this approach is somehow limited for dynamic hardware reconfiguration due to the
underlying complexity of the polymorphism paradigm.

As already stated, we strongly believe that a more formal approach will yield better
results. In the area of formally defined MoCs the Discrete Event Specified System
(DEVS) from Zeigler et al. [58] seems most promising. With the Dynamic Structure
Discrete Event Specified System (DSDEVS), Barros [6] has already extended DEVS

54 3 RecDEVS: Model of Computation for Reconfigurable Systems

by a dynamic structure. The work on DSDEVS has been continued by the same
author [7] aiming at a heterogeneous flow system specification with the focus on
continuous system simulation.

3.3.2 DSDEVS

In [6] the DEVS formalism has been extended to the Dynamic Structure Discrete
Event Specified System (DSDEVS). While not originally targeted to reconfigurable
hardware architectures, DSDEVS can be enhanced and thus adopted for hardware
reconfiguration purposes. An efficient simulation algorithm for DSDEVS models
was presented by Shang and Wainer [50].

DSDEVS introduces a special system component, the network executive Cχ , which
is part of every system SDSDEVS. Cχ is realized as a conventional component being
enhanced by a structure function γ.

SDSDEVS =
¬

X p, Y p, elem, conn, Cχ
¶

Cχ = (X p, Y p, S, s0,δint,δext,δcon,γ,λ,τ)
γ : S→ conn× elem

The structure function γ is executed at each state transition of Cχ . It can modify
the system structure which is defined by the port couplings conn and instantiated
elements elem. γ does not directly depend on the input ports X p, but only on the
current state of the network executive.

This top-level network executive Cχ has some special properties and is defined as
follows:

Mχ = (Xχ , Sχ , s0,χ , Yχ ,γχ ,Σ∗,δχ ,λχ ,τχ)

Σ = γ(sχ) = (D, Mi , Ii , Zi) is the actual network topology

∀i ∈ D, Mi are conventional DEVS models

Ii is the set of influencers of component i

Zi is the i− input function

E.g.: IB = (χ, A)⇒ ZB : Yχ × YA→ XB

In contrast to the classical DEVS specification DSDEVS is originally defined for
just one state transition function δ. A distinction between δext and δint does not take

3.3 RecDEVS Model of Computation for Reconfigurable Systems 55

place. Zeigler et al. [58] present a DSDEVS specification with such disjunct state
transitions. However, this extended DSDEVS specification is modeled as sequential
Coupled DEVS only, i.e., without a confluent transition δcon.

For a specification of reconfigurable hardware systems, which are the focus of this
work, the main problem of DSDEVS lies in the specification of γ. By definition,
it models dynamic changes of communication topology and functional behavior of
components at the same time. This violates Lemma 7 in which we demand that we
should be able to distinguish between these two kinds of dynamic behavior.

In addition, γ is defined globally as part of the network executive and depends on
its system state. This system state Sχ itself depends on all actual elements of the
structure. Thus, a change in one component of the system may change the state of
the network executive and so the structure function γ and by this the communication
topology conn. This behavior clearly violates Lemma 9, by which we demand that
interaction between components should only be influenced by a small self-contained
interface.

3.3.3 RecDEVS Definition

Based on the experiences with DSDEVS the DEVS extension for dynamically recon-
figurable hardware systems, denoted as RecDEVS is defined in the sequel. RecDEVS
accounts for the various special properties of reconfigurable hardware architectures.
The fundamental concept of RecDEVS is the representation of reconfigurable hard-
ware blocks as DEVS components. Thus, some kind of dynamic structure function is
being introduced to model reconfiguration within RecDEVS.

Similar to DSDEVS, the dedicated network executive Cχ is responsible for the
reconfiguration of the system. It must exist in each RecDEVS system at least once.
As we will see in Section 3.3.5, in contrast to DSDEVS Cχ has no special structure
function γ, but can be denoted just like any other RecDEVS component.

SRecDEVS =
¬

X par , Y par , D, Cχ
¶

.

D = Set of all available DEVS components

56 3 RecDEVS: Model of Computation for Reconfigurable Systems

The list of instantiated components {Cpar
d | d ∈ D} has been moved to the network

executive Cχ and a list of available component names D has been added to the global
system description SRecDEVS. This list can be compared to a list of available compo-
nent types. It is thus possible to add multiple DEVS components of the same type to
one system.

RecDEVS has moved from a connection-based communication as in DSDEVS to-
wards a message-based communication scheme. Each component instance is defined
by its type d ∈ D and an unique identifier I D ∈ N. Thus, the set I = {C ID

d | d ∈
D, I D ∈ N} can be used to address all instantiated components within a configuration.

A communication between two components is performed by sending a mes-
sage onto a global communication system. Each message consists of a a tuple
(sender, receiver, data), where sender, receiver ∈ I . The receiver can identify rel-
evant messages by their address. A predefined port coupling with EIC , EOC , and IC
is thus no longer necessary.

In the following we present a detailed description of the special properties of
RecDEVS and the design considerations leading to them.

3.3.4 Port Coupling and Communication

The dynamic behavior of reconfigurable hardware systems can be divided into two
separate domains:

• Changes in the communication structure.

• Changes in the component instantiation with respect to the component struc-
ture. The changed components will then provide a change in functionality.

DSDEVS addresses both problems by means of the dynamic structure function γ.
However, this concept does not work for the targeted reconfigurable hardware.

As stated in Section 2.2, the reconfiguration process of most available hardware
architectures is a time-consuming step. Thus, one design goal for the development of
RecDEVS was the minimization of reconfiguration activities. In many reconfigurable
systems such a reconfiguration step does not affect the component interconnection.
With Lemma 7, it has been decided to separate reconfiguration of functional units
and a structure change of the communication topology. The reconfiguration pro-
cess of RecDEVS only covers dynamic module instantiations and does not include a

3.3 RecDEVS Model of Computation for Reconfigurable Systems 57

dynamic communication topology. This allows to realize a change in the communi-
cation structure without a time-consuming reconfiguration.

It may even be possible to implement a change of the functional components with-
out influencing the communication structure. This may be interesting for applications
similar to garbage collection, where a component is deleted a certain time after it has
been completely removed from the communication structure. In this case, it is not
necessary to adapt the communication structure upon deletion of the component.

Nevertheless, some kind of dynamic communication topology is required. Oth-
erwise, it would not be possible to communicate with new components. A static
communication system solution with a complete set of point-to-point connections
may fit this requirement. However, any real-world implementation of this concept
will not be feasible due to scalability issues.

RecDEVS obtains the required communication flexibility by introducing message-
based communication as suggested by Ullmann and Becker [54]. While the under-
lying communication structure (hereafter referred as bus system) can remain static,
the actual communication topology changes with the known and addressable mod-
ules within each component. In contrast to the existing DSDEVS MoC and other
solutions that would dynamically change the port couplings EIC , EOC , IC this solu-
tions works locally. All topology changes can be realized locally, there is no need for
a centralized component which would require a substantial administration overhead.
This follows the requirements of Lemma 9.

If multiple components send messages concurrently, all messages may be on the
bus system at the same time. It is up to an actual implementation of RecDEVS to limit
the number of concurrent messages. While this requirement may be complicated to
implement, it is a necessity to stay close to the previous port coupling concept. With
port couplings, it is possible to utilize multiple different communication channels
(each of the described by one port coupling) simultaneously. This feature should
be preserved with RecDEVS that provides only one bus system. Thus, it requires
multiple messages on the bus to obtain the same functionality.

58 3 RecDEVS: Model of Computation for Reconfigurable Systems

The change from connection-based to message-based communication has an im-
pact on the definition of atomic RecDEVS components as follows:

CRecDEVS =
¬

X], Y], S, s0,δint,δext,δcon,λ,τ
¶

.

X : I × I × Data

Y : I × I × Data

δint : S→ S

δext : Q× X]→ S

δcon : Q× X]→ S

λ : S→ Y]

τ : S→ R+

Instead of a fixed tuple of input and output ports only one input bag X] and one output
bag Y] exist.

These bags may contain multiple messages at one time. The transition functions
will have to identify relevant messages by their destination address. This also allows
for message broadcasting, which is not feasible within port-coupled DEVS realiza-
tions. Again, the output function λ is embedded into Λ as presented for Sre f in Chap-
ter 3.2.3. And again, the system specification will only include the user-modifiable
part λ.

The RecDEVS communication concept is a generalized version of hardware bus
structures. In actual hardware implementations, the demand for multiple active bus
messages at the same time can be hard to realize. However, as we will see in Chap-
ter 4, it is possible to create appropriate hardware implementations based of a proper
bus arbitration mechanism. For software implementations like the SystemC based
SC-DEVS simulator, the communication bus can be realized quite naturally with a
container data type.

3.3.5 Reconfiguration

RecDEVS handles reconfiguration by a dedicated network executive component Cχ .
There are two ways to define the reconfiguration process inside such a component:
either with an explicit function like DSDEVS’s γ, or by the utilization of existing

3.3 RecDEVS Model of Computation for Reconfigurable Systems 59

functions. We take the second approach in order to minimize the difference between
a conventional DEVS component to the dedicated network executive component.

One objective of RecDEVS is to model the system such that the network executive
stays transparent for a system developer. A reconfiguration process has to be com-
pletely encapsulated in the participating DEVS components. This requirement does
not hold for DSDEVS, where reconfiguration depends on the current state of the net-
work executive. Other components cannot trigger a reconfiguration directly, i.e., they
cannot modify this state.

Therefore the reconfiguration task moves from the functional into the communica-
tion domain by defining a dedicated set of reconfiguration messages. Reconfiguration
is now triggered by sending corresponding messages to the network executive. This
requires only a modification of the local output function λ, a change in Cχ is no
longer necessary.

This novel reconfiguration scheme models reconfiguration on a higher and thus a
more user-friendly abstraction level than DSDEVS. The creation of new RecDEVS
components consists of a fixed sequence of messages as follows:

• If the component C i’
d′

wants to create a new component of the type d ′′ ∈ D, it
sends a message (C i’

d′
, Cχ , (new d ′′)) to the network executive.

Cχ C(d′,i′)

Bus
new(d ′′)

• Cχ receives the message and performs an external transition δext. This will

create a new RecDEVS component C i′′

d′′
and add it to the list of instantiated

components.

Cχ C(d′,i′) C(d′′,i′′)

Bus

Trigger Reconfiguration

• A confirmation message (Cχ , C i’
d′

, (confirm, C i′′

d′′
)) with the address of the new

component is then sent to the originator.

60 3 RecDEVS: Model of Computation for Reconfigurable Systems

Cχ C(d′,i′) C(d′′,i′′)

Bus
confirm(d ′′, i′′)

• Upon reception of the confirmation message the originator can address the
newly created component.

Cχ C(d′,i′) C(d′′,i′′)

Bus
data

The deletion of components is slightly different. In RecDEVS each component can
only delete itself, so that it may reach a consistent state before it will cease operation.

• To delete itself, a component C i’
d′

sends the message (C i’
d′

, Cχ , (del)) to the
network executive.

Cχ C(d′,i′) C(d′′,i′′)

Bus
del()

• Cχ receives the message and releases the resources of C i’
d′

. However, it is not
mandatory to delete this component immediately. The deletion may take place
any time after the network executive received the corresponding message.

Cχ C(d′′,i′′)

Bus

Trigger Reconfiguration

It is up to the system designer to assure that a component will not react to incoming
messages after emitting a deletion message.

3.3 RecDEVS Model of Computation for Reconfigurable Systems 61

3.3.6 Definition of the System Executive Cχ

The network executive Cχ is defined as follows:

Cχ =

Xd , Yd , S, s0,δint,δext,δcon,λ,τ
�

S = {“Wait”, “SendConfirm”} × {Elems ∈ D} × I

δext((s, elems, src), e, msg) =
(

(“SendConfirm”, elems ∪ C ID
d , C ID

d) if msg= (C ID
d , Cχ , (new d))

(“Wait”, elems \ C ID
d , src) if msg = (C ID

d , Cχ , del)

s0 = “Wait”

λ(“SendConfirm”, e, Corig) = (Cχ , Corig , (confirm C ID
d))

τ(s) =

(

∞ if s = “Wait”

0 else

δint(s, elems, src) = (“Wait”, elems, 0)
δcon((s, e), x) = δext((s, e), x)

In RecDEVS the set of instantiated components is now represented by the state
of the network executive S = {Elems}. This set contains all components that are
currently active (i.e., instantiated). Reconfiguration processes can then be modeled
by simply applying the state transition functions δ. A dedicated structure function γ
is not required any more.

Cχ handles two different external input types, which can be regarded as commands.
The input message new(d) triggers the creation of a new component of the type d. The
new component C ID

d will be added to the list of instantiated components {Elems} and
the originator of the request Corig will be notified with a confirm message. This con-
firmation is necessary since to this point in time no component other than Cχ knows
the actual address ID of the new component. The confirmation message contains
this information and, thus, the originator component can now communicate with the
new component or, it can distribute the address of the new component allowing other
components to communicate with the new component as well.

The second message del() triggers the executive to delete the component, which
sent the message, from the list of active components. Note that there is no broadcast-

62 3 RecDEVS: Model of Computation for Reconfigurable Systems

ing mechanism announcing that a component is deleted and this concept only allows
for deleting itself, but not other components.

This method has two benefits: First, a deletion specific behavior can be modeled
differently for each component. E.g., a communication-critical component may no-
tify other components that it will be deleted in the near future and wait for some
acknowledge of other components. In contrast, other uncritical components can sim-
ply delete themselves without this overhead.

The second benefit is the fulfillment of our encapsulation requirement given in
Lemma 9. The complete deletion process is side-effect free because it is handled by
each component itself. It cannot happen that a system designer accidently deletes an-
other component which is still in use elsewhere. Instead he has to tell the component
that he does not need it anymore and the component itself is able to implement some
deciding logic whether it can safely be deleted or must persist longer.

3.3.7 Invalid Communication Messages

By utilizing a message-based communication scheme some problems may arise in
RecDEVS. The formalism does not prohibit messages with a destination address that
does not exist in the current network. In other words, a message m= (MA, MB, data)
is sent by some component but MB 6∈ Elems where Elems has been defined as the set
of active components held as part of the system state S inside the system executive
Cχ .

The main reason why such messages may occur is the fact that reconfiguration is
controlled by an isolated system executive where normal system modules do not need
to take care of reconfiguration for themselves. The advantages for this reconfiguration
mechanism (like modular component design, the ability to trigger reconfiguration via
simple system messages etc.) have already been discussed. Here we see one possible
disadvantage arising from this approach. Assume that one component MA is able to
address MB by having stored that address as part of its component state. In the mean
time the deletion of MB is triggered and executed. Now MA is still able to send a
message to MB . However since Mb is already deleted there is no recipient for this
message and the behavior of MA might not be as expected.

RecDEVS does not exclude such invalid messages. The correct behavior would be
to simply ignore and discard those messages. In many system implementations this
behavior would be just fine and therefore it was decided to keep the RecDEVS defini-
tion as simple as possible. If a system implementation requires a more advanced error

3.3 RecDEVS Model of Computation for Reconfigurable Systems 63

handling for invalid messages, there are three different approaches possible, which
will be mentioned in the following. The existence of different suitable error handling
models was another reason not to deal with such messages in the original specifica-
tion. Depending on the actual implementation all of the following approaches have
their advantages and disadvantages and RecDEVS should not be limited to one of
them only.

Implementation-Specific Mechanisms

The first countermeasure against invalid target addresses is to handle such errors in-
side a specific implementation and not by the MoC. This can be done in many differ-
ent ways. The easiest one might be the utilization of acknowledge messages. Given
the example above MA and MB can be extended in a way that MB replies with an ac-
knowledge and MA waits for that acknowledge message. If the acknowledge message
is not received within a certain timeout, a suitable recovery is triggered. The main
benefit of this solution is its tight adoption to an actual implementation. E.g., there
may only be a very small set of messages that would require an acknowledgement.
In this case it can save a substantial amount of resources if only exactly these mes-
sage are monitored but not the remaining part of the messages. A disadvantage is of
course that it requires additional implementation logic and the additional work has to
be done for each newly implemented model.

Enhanced Resource Management

The second solution to prevent invalid messages may be a sufficiently smart reconfig-
uration resource management unit inside the system executive. Messages with invalid
destination addresses can only exist if a component has been deleted while it can still
be addressed from somewhere else. If the deletion of components would only be per-
formed when no other component can address the component to be deleted any more,
this problematic situation can never happen.

This situation is very similar to the mechanism of Garbage Collection in object-
oriented programming languages. In that case an object may also be deleted as soon
as there exist no references to that object any more, but must not be deleted if some-
one still holds a reference to that object. There is a wide research field regarding
efficient garbage collection algorithms, but it is pretty clear that such algorithms can

64 3 RecDEVS: Model of Computation for Reconfigurable Systems

be adopted for RecDEVS and improve the reconfiguration mechanism inside the sys-
tem executive. However, the introduction of garbage collection into RecDEVS will
also require an additional computational and resource overhead in order to detect
which components can safely be deleted and which components will have to be re-
tained.

Enhanced Communication Infrastructure

The third countermeasure may be the enrichment of the communication infras-
tructure with a detection mechanism for invalid messages. Each time a message
(MB, MB, data) occurs a corresponding error message (∗, MA, “invalid destination”)
is generated and sent to the originator of the message. The source of the error mes-
sage is not important and therefore denoted as a wildcard. The detection mechanism
itself depends mainly on the actual implementation of the RecDEVS communication
structure. Thus, it is hard to describe a suitable implementation for this countermea-
sure approach. If it is possible to implement the system executive Cχ in a way that it
receives all messages sent by any component, it can be extended as follows:

Cχ =

Xd , Yd , S, s0,δint,δext,δcon,λ,τ
�

S = {“Wait”, “SendConfirm”, “SendError”} × {Elems ∈ D} × I

δext((s, elems, src), e, msg) =

(“SendConfirm”, elems ∪ C ID
d , C ID

d) if msg= (C ID
d , Cχ , (new d))

(“SendError”, elems, C src
d) if msg= (src, dest, “data”)∧ dest 6∈elems

(“Wait”, elems \ C ID
d , src) if msg = (C ID

d , Cχ , del)

s0 = “Wait”

λ(“SendConfirm”, e, Corig) = (Cχ , Corig , (confirm C ID
d))

λ(“SendError”, e, Corig) = (Cχ , Corig , (invalid destination))

τ(s) =

(

∞ if s = “Wait”

0 else

δint(s, elems, src) = (“Wait”, elems, 0)
δcon((s, e), x) = δext((s, e), x)

3.3 RecDEVS Model of Computation for Reconfigurable Systems 65

Here, the system executive will verify for all messages that their destination ad-
dress is currently valid, i.e., that it is listed in elems. While this approach might
work in a wide area of RecDEVS implementations, the overhead of validating all ad-
dresses inside one single component may lead to a performance bottleneck in actual
implementations. In addition, this approach possibly does not work in more complex
RecDEVS communication structures, where it is not feasible to forward all messages
to Cχ .

For the sake of simplicity the following examples in this work will use
implementation-specific mechanisms and handle invalid addresses inside the actual
implementation if necessary.

3.3.8 Communication Constraints

The introduction of message-based communication revealed some limitations of
RecDEVS. In a connection-based system the maximum number of input events is
limited for each component. Each connection can only transmit one event at a time
and thus the number of input ports forms an upper bound for the number of input
events. This upper bound can simply be determined locally within each component.

With the global bus system of RecDEVS the situation gets more complex. As each
output function λ can generate multiple messages at the same point in time an upper
bound cannot be determined. Since the target of this work is a system specification
for reconfigurable hardware systems, the existence of such an upper bound would
be very useful. In actual implementations such a bound may be used to dimension
message buffers which realize the communication system.

To preserve this feature of connection-based DEVS systems an additional con-
straint must be introduced that somehow limits the communication capabilities of
the system. This limitation should have minimal impact on the system specification,
meaning that it has to be easy to implement on the one side and pose on the other as
few limitations to the user as possible.

The straightforward solution is to define a limit for concurrent messages that may
occur at the same time. However, this constraint is extremely difficult to find as it
is system-wide and not component-specific. A system designer has to have detailed
knowledge of all other components in the system at each point in time in order to
know about the number of messages they are emitting.

Thus, another communication constraint is introduced in order to obtain an upper
bound for the number of messages. Each component may still send multiple messages

66 3 RecDEVS: Model of Computation for Reconfigurable Systems

at the same time. However, at one certain point in time it must not send more than one
message to each receiver. To provide a clear definition what this means it is necessary
to define so called τ= 0-Traces:

Definition 3.2 (τ= 0-Traces) A trace t(s1, s2) is called τ= 0-trace iff it is possible
to proceed from state s1 to state s2 without any time advancement. This is the case
when the trace consists of internal transitions with τ= 0 or external conditions only,
i.e.
∀δ ∈ t.(δ = δint(s′)∧τ(s′) = 0)∨ (δ = δext) .

The existence of τ = 0-Traces can easily be formally analyzed. With the help
of this definition it is possible to coin a local communication constraint that can be
formally analyzed. The communication constraint can now be refined to

Definition 3.3 (Communication Constraints for RecDEVS) To prevent an infinite
number of messages on the communication bus all τ = 0-Traces of a RecDEVS
may address all other component instances only once. If the number of component
instances is given by |C | the upper bound of messages on the communication bus is
then]≤ |I | ∗ |I |.

Note that this limitation does also cover multiple time-less (i.e., τ= 0) transitions.
In such a situation not more than one transition is allowed to send a message to a
receiver. This constraint is not too restrictive as the system designer can decide to
merge multiple messages for the same recipient into one larger message structure.
It is also component-specific, meaning that the requirement can be checked for each
component independently and it is not influenced by other components.

As a consequence of this constraint, each component can create up to m messages
at one time step, where m denotes the number of active components in the system. As
each component may sent in parallel, there is an upper bound of m∗m messages that
can occur on the bus. This constraint still does not allow to determine the upper bound
locally inside a component because only the network executive is able to evaluate the
number of active components during runtime.

3.3 RecDEVS Model of Computation for Reconfigurable Systems 67

3.3.9 Resource Management

Up to this point, the definition of the RecDEVS network executive Cχ assumed that
there are always enough resources available to create a new component on demand.
In particular, the equation

δext(((s, elems, src), e), msg) =
(“SendConfirm”, elems ∪ C ID

d , C ID
d) if msg= (C ID

d , Cχ , (new d))

does not cover any situation, where this might not be the case.
In any real implementation this assumption cannot hold as this would require an

infinite amount of resources in the worst case. For RecDEVS this means that the new
set elems ∪ C ID

d would be too large to fit into the available resources, e.g., an FPGA.
Thus, some mechanisms to manage the available resources have to be examined.
Such Resource Management mechanisms have to provide a feasible and useful way
to handle resource shortage.

Resource management has already been discussed in the previous Section 3.3.7. In
this case it was proposed to prevent the occurrence of messages with invalid destina-
tion addresses by retaining components that are still reachable, even if their deletion
was requested. But in most cases a resource management will be necessary when
handling valid messages of a special type: create-messages for the network executive
Cχ as only those messages can increase the amount of required resources in a system.

As it was the case with the handling of invalid addresses, there exist various ap-
proaches for resource management. Each of those may be suited best for certain
implementation scenarios. Thus they are not part of the formal specification of
RecDEVS, but rather suggestions for an actual implementation.

Implementation-Specific Resource Management

The approach easiest to implement is based on an introduction of error messages
in case that a create request cannot be fulfilled. With such an error response the
requesting component will be able to realize some own, implementation specific error
recovery mechanism. What this error recovery may look like depends completely on
the actual implementations and the decisions of the developer. The best error recovery
mechanism may differ from solution to solution. This also means that if the developer
makes an implementation error or forgets to implement such an error recovery. then
the system might fail permanently.

68 3 RecDEVS: Model of Computation for Reconfigurable Systems

Fragmented System

C
′

A C
′′

A
CB

Compacted System

C
′

A
CB C

′′

A
Cnew

A

Figure 3.7: Compaction Benefits

Compaction

By utilizing proper resource management mechanisms it is also possible to optimize
the available resources. Depending on the underlying hardware architecture a com-
paction of the already used resources may result in much more successful create-
operations than without such compaction. This is the case, if the hardware platform
requires individual instantiated components to be locally self-contained. The appli-
cation of multiple subsequent reconfiguration steps with components of varying size
may lead to a fragmented resource allocation, where none of the free fragments is
large enough to support the creation of a new component. A compaction step will
move these fragments together and thus allows the creation of additional compo-
nents. This is illustrated in Fig. 3.7, where the system at the left hand side does not
allow for the creation of another component Cnew

A , but the situation on the right hand
side, which depicts the system after a compaction step, allows to create Cnew

A .

Component Swapping

Another mechanism to optimize resources usage and thus resulting in less failing
create-operations is the introduction of component swapping. If there are not suffi-
cient resources for a new component a hardware platform may allow to read out the
current system state of an already existing, but currently not running module, and
then storing this system state together with the component type on external persistent
memory. This component can then be temporarily deleted by the system executive to
allow the creation of the new component. The stored component has to be swapped

3.3 RecDEVS Model of Computation for Reconfigurable Systems 69

back onto the hardware platform if it is addresses by another component. It is possi-
ble to implement a system, where the swapping procedure is completely transparent
for the executed RecDEVS network. The implementation of such a system demands
several features from the RecDEVS implementation: The complete system state must
be extractable by the network executive and the executive has either to be able to ana-
lyze the currently running network to know which components can be swapped out or
it has to be able to detect whenever a swapped-out component is addresses, so that it
can be restored. In the latter case the additional time required to restore a component
has to be taken into consideration when realizing this solution.

Automated Garbage Collection

The main motivation for an advanced resource management mechanism lies in the
analogy of RecDEVS software systems, where each reconfigurable component is re-
garded as an object in the sense of object-oriented software construction. Experience
with those systems has shown that a manual resource management by explicitly cre-
ating and deleting objects is very error-prone. Developers tend to forget to delete
objects that are not longer used and thus do not free the utilized resources. Therefore,
automated garbage collection mechanisms have been introduced which analyze the
running program and detect objects that are not longer reachable. Those objects can
then be deleted automatically by the garbage collector. For RecDEVS this means, that
it is no longer necessary to perform delete-calls manually. Instead, the developer shall
only delete the reference to a certain component. If this was the last reference to that
module, a garbage collector can delete it. All components that are only known to that
component will be automatically deleted as well. Garbage collection requires that
the system can distinguish between object references and arbitrary user data, a fea-
ture that most object-oriented systems establish by using a type system for variables.
To support garbage collection in RecDEVS, the implementation must therefore also
be able to distinguish between addresses and other data stored as part of the compo-
nent state. The feasibility of garbage collectors for reconfigurable systems have been
examined in the author’s diploma thesis in [33], in which a Mark-Sweep-based algo-
rithm has been elaborated and implemented. Its pseudocode representation is given
by Alg. 1.

70 3 RecDEVS: Model of Computation for Reconfigurable Systems

Algorithm 1 Pseudo Code for Automated Garbage Collection
1: loop
2: Suspend forwarding of system messages.
3: Enable all components that are denoted in the list of root nodes.
4: repeat
5: if (A component has been enabled) then
6: Set internal Mark flag.
7: Send Heartbeat signal to the System Executive Cχ .
8: Enable all components listed in the components reference list.
9: end if

10: until No Heartbeat has been received by Cχ within a certain timeout.
11: Re-enable forwarding of system messages.
12: Read all components Mark-flag. All unmarked components may be deleted.
13: repeat
14: Normal system execution. No garbage collection is performed.
15: until A new garbage collection cycle is necessary
16: end loop

3.3 RecDEVS Model of Computation for Reconfigurable Systems 71

72 3 RecDEVS: Model of Computation for Reconfigurable Systems

4 Design Flow Methodologies for RecDEVS-specified Systems

In this chapter we demonstrate how the model transformation-based design method-
ology introduced in Chapter 2 can be applied to RecDEVS. Various exemplary model
transformation steps that ease system development will be detailed.

In the first part, a horizontal mapping from the RecDEVS formalism into UPPAAL
will be presented and it will be explained how this can be utilized for the verification
of reconfigurable systems. In the second part vertical model transformations will
be outlined as they are required for creating hardware implementations of RecDEVS
models. For this, both a SystemC based model transformation as well as a VHDL
implementation of RecDEVS are detailed.

4.1 Horizontal Transformation for System Verification

First, we demonstrate, how a formal verification technique can be applied to a recon-
figurable hardware system specified by means of the RecDEVS approach.

While the possibility for verification was one goal of this work, RecDEVS itself
is not directly targeted towards verification. Instead, it was developed with the gen-
eral idea of supporting model transformations in mind, as will be described in Sec-
tion 4.1.1. There are other, more suitable specialized MoCs available for verification
purposes. Therefore, a novel mapping method has been developed in order to trans-
form RecDEVS models into a timed automata based representation of the UPPAAL
Model Checker presented by Larsen et al. [32]. Using this approach the designer
can benefit from the model specific features of RecDEVS and the expertise of the
UPPAAL verification system at the same time.

The RecDEVS Model of Computation captures the functionality of reconfigurable
hardware systems. It focuses on reconfiguration and provides specific features for
the description of such reconfigurable features. On the same abstraction level lies
the UPPAAL Model of Computation, which already includes verification expertise
and knowledge. A transformation from RecDEVS to UPPAAL models is thus highly
appropriate to obtain verification results at an early stage of the design process. If the
transformation preserves all important model properties, then the results of the UP-
PAAL verification will also hold for the equivalent RecDEVS-based design. These

73

results may then be used to further refine the implementation until all desired verifi-
cation properties are met.

A model transformation in the other direction, i.e., from the UPPAAL MoC back
into a RecDEVS specification was not part of this work. While the presented trans-
formation process can map arbitrary RecDEVS models to UPPAAL, this is not true
the other way around. If the layout of the UPPAAL models is changed, the proposed
model transformation step cannot simply be reversed. This may be of importance
in cases where the system developer makes some modifications to the UPPAAL
model, e.g., after finding a design flaw during the verification process. However,
in the various examples that have been developed for this work, this has never been
an issue. The correspondence between RecDEVS and UPPAAL models always has
been so close that it was easily possible to fix the design flaws directly in the origi-
nal RecDEVS specification. This modified specification may then be transformed to
UPPAAL and verified again to validate the outcome of the modifications.

As already stated, there are some other approaches for modeling dynamic reconfig-
urable systems based on lower level programming languages like VHDL, SystemC or
ImpulseC by Santambragio [48], Hsiung et al. [26], and Craven and Athanas [17], re-
spectively. One statement of this thesis is that a formally specified model, in contrast
to actual programming languages, seems more promising for model transformation
in general and verification in special.

Both approaches, HySAM by Bondalapati and Prasanna [10] and RecDEVS, pro-
vide such a required formal specification foundation. HySAM splits the descriptions
of reconfiguration and functionality, respectively, into two disjoint models which
makes a conclusive verification difficult. RecDEVS combines both descriptions in
a single model and thus supports the verification of function-triggered reconfigura-
tion properties, directly.

Regarding the verification of RecDEVS models, there is some preliminary work
on the formal verification of the underlying DEVS formalism. The first work by
Morihama et al. [41] implements an own theorem prover and has been extended to-
wards the verification of continuous systems by Saadawi and Wainer [47]. Other
approaches by Weingart [57] or Dacharry and Giambiasi [18] benefit to some extend
from the established UPPAAL model checking environment.

74 4 Design Flow Methodologies for RecDEVS-specified Systems

4.1.1 System Verification

Formal verification techniques as presented by Gupta [24] are becoming increasingly
important nowadays. They are used to establish a relationship between an implemen-
tation and a formal specification. By creating a formal specification of the desired
system behavior it is then possible to validate that the system implementation is func-
tionally correct. Verification techniques are based on mathematical proof methods
and are one way to handle the increasing complexity of system specifications. In
contrast to testing techniques formal verification techniques are less error-prone to
user induced errors, such as forgetting an important test case. In the borders of the
formal system specification they can provide an exhaustive and complete conclusion
on system correctness.

There are two general approaches for formal verification that are commonly used:
Logical Inference (theorem proving) and Model Checking.

Logical Inference is based on automated theorem proving environments. Both, the
system specification and its properties are expressed with the help of mathematical
formulas. Then, the theorem proving tools try to proof the correctness of the system
properties based on the system specification, axioms, and inference rules such as
induction. Logical inference allows to verify properties on infinite system states and
can be very powerful. However, currently the process of theorem proving cannot yet
be fully automated. All automated theorem proving environments require manual
user interaction for non-trivial problems. If a proof fails there is not always a clear
connection to the original specification, so a system-designer is not always able to
obtain counter-examples.

The other general approach to formal verification, Model Checking, was developed
independently by Clarke and Emerson [15] and Queille and Sifakis [44]. The idea is
to model a system as a state transition graph and to define specifications in temporal
logic. By using very efficient and fully automated algorithms many model proper-
ties can then be verified by processing on the state transition graph. Also, Model
Checking is able to generate a counter-example in form of one way through the tran-
sition graph that violates the demanded specification. Compared to theorem proving
approaches Model Checking is less powerful as it does not use higher order logic
such as structural induction. In general, Model Checking is also limited to finite state
spaces, however, a lot of enhancements have been applied to extend its capabilities
towards infinite state sets. Grumberg and Veith [23] give an overview on the current
state of model checking.

4.1 Horizontal Transformation for System Verification 75

M1

S0

t ≤ 4

S1 S2
t ≥ 2 sync!

n := n+ 1

M2

S0 S1 S2
sync? n≥ 3

n := 0

Figure 4.1: UPPAAL Automata Example

For the verification of RecDEVS the Model Checking approach was chosen for
several reasons. Both MoCs are based on state transition graphs, enabling an easy
way to apply model checking techniques to RecDEVS. The generation of counter-
examples and the fully automated system verification process are other properties,
which were of essential importance to the author.

4.1.2 The UPPAAL Model Checker

UPPAAL, presented by Larsen et al. [32], is a model checking tool for modeling,
simulation, and verification of real-time systems. It is based on constraint-solving and
explicit verification techniques. The model checker is suitable for the verification of
systems, which can be represented by nondeterministic processes with finite control
structures and real-valued clocks, i.e., Timed Automata.

UPPAAL offers the verification of arbitrary user defined specification requirements
such as reachability, safety, or bounded liveness properties. Its intrinsic require-
ment specification language exploits timed computational tree logic. The UPPAAL
Model Checker has been successfully used in for many industrial case studies (e.g.
Behrmann et al. [8]). Its specification language is a finite-state machine extended by
clocks, synchronization channels, state and transition invariants, data variables, and

76 4 Design Flow Methodologies for RecDEVS-specified Systems

update labels. Time is modeled by means of a set of multiple user-defined clocks.
These clock values are incremented continuously, but they can also be set interac-
tively to arbitrary values during the model execution.

Fig. 4.1 illustrates the essential elements of an UPPAAL system with two commu-
nicating automatons M1 and M2, respectively. Exactly one state of each automaton
is marked by double lines as the initial node. Every state may additionally be labeled
with a state invariant (e.g., the invariant t ≤ 4 for the state M1.S0) to express time
constraints. The system may stay in a state as long as the invariant is true. The state
has to be left over state transitions at the latest when the invariant value changes to
false. If no invariant is given, then the invariant is true by default.

All transitions may be attributed by a guarding condition that has to be true for the
execution of the corresponding transition. The communication between the automa-
tons M1 and M2 in Fig. 4.1 is realized with synchronization channels and shared data
structures. Whenever a transition is marked with an ’emit’ synchronization (denoted
by an exclamation mark) a corresponding ’receive’ synchronization channel (denoted
by a question mark) has to exist and its transition will be executed, too. While syn-
chronization channels contain no additional data, they can be complemented with
update labels. These labels are executed on a transition and enable the user to update
shared data variables or to modify clock values. In the synchronized receiving tran-
sition these variables can then be read with another update label and thus realize the
data exchange. In the example of Fig. 4.1 this is demonstrated by means of the shared
variable n.

4.1.3 Model Transformation from RecDEVS to UPPAAL

Both models, RecDEVS and UPPAAL, have a similar structure and execution model.
They utilize an event-based, explicit specification of timed behavior and are based on
a concurrent, state-transition based execution model. As Molter et al. [39] explain,
this similarity is necessary to allow for an automated transformation process between
both models.

The main requirement for all created transformation rules is that they preserve
the behavior of the originating model. Verification can only prove properties of the
original RecDEVS model if the transformation can guarantee the equivalence of both
models. However, even without formal equivalence, verification environments can
still serve as a counterexample-based test system.

4.1 Horizontal Transformation for System Verification 77

Timeout

S0

t ≤ τ(S0)

S1t = τ(S0)

t := 0

Figure 4.2: Timeout Realization in UPPAAL

It is possible to perform an automated transformation of RecDEVS models into
UPPAAL ones. First, we present a set of transformation rules for all basic elements
of a RecDEVS model. As described in Molter et al. [39], this allows the implementa-
tion of conversion tools that can automatically transform any user defined RecDEVS
model. Then, a pseudo-code representation for the conversion of a complete model
is given in Alg. 2.

Secondly, we summarize features of RecDEVS, which can not be translated prop-
erly and we discuss the related consequences. Whenever the preservation of all prop-
erties is not feasible, the verification bandwidth will be somewhat limited. These
limitations stem from the differences between two distinct models of computation
and are unavoidable. The transformation process tries to circumvent such limitations
whenever possible.

Both models, RecDEVS and UPPAAL, incorporate multiple, communicating com-
ponents. It is thus feasible to transform each component of a RecDEVS model into
a corresponding UPPAAL automaton. However, the UPPAAL model does not pro-
vide mechanisms for a dynamically changing set of the components as required by
the RecDEVS formalism. Section 4.1.3 describes how such a behavior can still be
represented in UPPAAL.

Timing Behavior

Every RecDEVS state has an associated timeout function τ : S → R. However,
timeouts are not directly supported in UPPAAL. Thus, the timeout for an exemplary
state S0 is realized by a combination of a state invariant t ≤ τ(S0) for S0 and a

78 4 Design Flow Methodologies for RecDEVS-specified Systems

Elapsed Time

S0

t ≤ τ(S0)

Stmp Sint
input1?
t := 0

n= τ(S0)
t := 0
n := 0

t = τ(S0)n := 0
t := 0

Figure 4.3: Elapsed Times over Multiple States

transition guard t = τ(S0). Fig. 4.2 shows a corresponding UPPAAL model with a
timeout τ(S0) on state S0. The invariant forces the system to leave the state at the
latest when τ(S0) time units have passed on the clock t and the guard prevents the
system to take the transition any time before τ(S0). So, the transition with the guard
expression has to be taken exactly at the desired timeout time value.

A minor limitation of the model transformation is that UPPAAL supports natu-
ral numbers only and hence can only realize somewhat restricted timeout functions
τ : S → N instead of τ : S → R+. For a correct implementation of the timeout it is
also necessary to reset the clock t to zero whenever a state S0 is entered. This has to
be done on all incoming transitions using update labels.

UPPAAL does not provide any mechanism to obtain the elapsed time, when an
synchronization channel is triggered. This means that it is not possible to obtain the
elapsed time e, which is required by the RecDEVS transition functions δext((s, e), x)
and δcon((s, e), x). However, there is a wide range of applications where the elapsed
time is either not required, or it is only used to preserve the timeout of the originating
state. The latter scenario happens when a short interruption of a longer timeout cycle
is triggered. After the interrupt it is likely that the original timeout should continue
without restart. This is possible by introducing a second clock which is not automat-
ically reset to 0 on each transition as illustrated by means of the additional clock n in
Fig. 4.3. Currently, there is not yet an algorithm implemented to detect the mentioned
short interruption of a longer timeout state automatically. Thus, the additional clocks
for such interrupts have to be inserted manually into a generated UPPAAL model.

4.1 Horizontal Transformation for System Verification 79

Transitions

S0

t ≤ τ(S0)

Sex t

Scon

Sint

t ≤ τ(S0)
input1? t = τ(S

0)input1?

t =
τ(S0)

δext

δint

δcon

Figure 4.4: Mapped DEVS Transitions

RecDEVS Transitions δint,δext,δcon

All three RecDEVS transitions are realized by distinct UPPAAL transitions. Using the
previously described timeout mechanism these three transitions mainly differ in their
guard conditions and synchronization channels. The resulting model of a exemplary
single state S0 with three leaving transitions towards the states Sint , Sex t , and Scon is
depicted in Fig. 4.4.

The internal transition δint : S0 → Sint is guarded by the timeout condition
t = τ(S0). The external transition δext : S0 × X × R → Sex t is guarded by a re-
ceiving synchronization channel and must not have reached the timeout point in time,
i.e., t ≤ τ(S0). The synchronization channel represents the external event of an
RecDEVS model inside UPPAAL. The confluent transition δcon : S0×X×R→ Scon
combines the timeout of t = τ(S0) of internal transitions and the synchronization
channel mechanism of external transitions.

For the timeout t = τ(S) both transitions, δint and δcon, may trigger. However,
UPPAAL will always prefer transitions with synchronization channels. This behavior
is similar to a RecDEVS model, where the confluent transition has to be taken and thus
no further conditions are required to assure that the correct transition will be executed.

80 4 Design Flow Methodologies for RecDEVS-specified Systems

Inter-Module Communication

While RecDEVS utilizes a message based communication scheme, UPPAAL features
dedicated communication channels. It is therefore necessary to introduce a syn-
chronization channel for each output message λ : S → I D × Data of a RecDEVS
model. All synchronization channels must have unique names, which can be guar-
anteed by the target identifier ID that uniquely defines the recipient of the message
within RecDEVS. Thus, for each message a corresponding synchronization channel
pair ID_Data! and ID_Data? is created in UPPAAL.

RecDEVS allows the occurrence of multiple events at the same time. In UPPAAL
synchronization channels can only fire sequentially, which eventually leads to an ex-
ecution mismatch between both models.

To minimize this difference the transformation takes advantage of the fact that
UPPAAL chooses indeterministically between possible transitions. To represent two
concurrent messages the equivalent UPPAAL model implements both possible syn-
chronization message orders as illustrated in Fig. 4.5. This approach can be extended
to any number of multiple output events.

Reconfiguration

As already stated reconfiguration in RecDEVS is performed by a set of dedicated
communication messages. Consequently, these messages are to be mapped into UP-
PAAL models by means of synchronization channels as described in Section 4.1.3.

However, a problem arises from the static structure of UPPAAL, which does not
allow for the creation of new modules. Thus, for the reconfiguration of UPPAAL
models a new state is introduced for each model, to denote the ’deleted’ property.
Then, a set of ’deleted’ modules is instantiated. The creation of a new module changes
the system state of a free module from ’deleted’ to the initial state of the DEVS model
for this module. Consequently, a deletion of an instantiated module is performed by
resetting the state values to ’deleted’.

Depending on the implemented design it may be necessary to introduce an equiv-
alent to the system executive Cχ in UPPAAL. This component has to perform the
arbitration of available unused components and to distribute the reconfiguration mes-
sages. It does also suppress the confirm() message when no ’deleted’ components are
available to fulfill a new() request. For implementations with a predefined order of
reconfiguration the activities of the network executive can simply be removed.

4.1 Horizontal Transformation for System Verification 81

Channels

S0

S1

S2

S3
chan1!

chan2!

chan2!

chan1!

Figure 4.5: Concurrent Channels

While this solution may be viewed as a limitation in comparison with the origi-
nal RecDEVS model, it resembles other reconfigurable hardware architectures with
limited communication resources. Such a method is also used in other approaches to
model reconfigurable systems in other description languages such as related work on
SystemC by Hsiung et al. [26].

4.1.4 Automatic Transformation

Algorithm 2 gives a pseudo code representation of the outlined transformation rules.
Please note that the following representation of the mapping method is generic in so
far, because it creates just one reconfigurable module for each UPPAAL model. For
the instantiation of multiple components the algorithm has to be extended appropri-
ately. In that case, the names of the synchronization channels have to be adopted for
uniqueness as well.

82 4 Design Flow Methodologies for RecDEVS-specified Systems

Algorithm 2 RecDEVS to UPPAAL Transformation

Input: RecDEVS Specification SRecDEVS =
¬

Xext, Yext, D, Cχ
¶

.
Output: A corresponding UPPAAL system representation
function Transform(SRecDEVS) is

Create Global Time Variable t
for all d ∈ D do

Create an UPPAAL Component d
for all s ∈ Sd do

Create an UPPAAL State s
Create Transition from s to deleted with Synchronization Channel “del()?”
Create State Invariant t ≤ τ(s)
for δint(s) = sint do

Create Transition t from s to sint
Update(s,“x = τ(s)”,“x := 0”,;,t)

end for
for δext(s, xin, e) = sext do

Create Transition t from s to sext
Update(s,“x ≤ τ(s)”,“x := 0”,“d_input?”,t)

end for
for δcon(s, xin, e) = scon do

Create Transition t from s to scon
Update(s,“x = τ(s)”,“x := 0”,“d_input?”,t)

end for
end for

end for
end function
function Update(s, g, l, i, t) is

Add Guard Condition g to t
Add Update Label l to t
Add Synchronization Channel i to t
if If λ(s) = (tar, msg) is present then

Add Synchronization Channel “tar_msg!” to t
end if

end function

4.1 Horizontal Transformation for System Verification 83

4.2 Vertical Design Flow Methodology for System Implementation in SystemC

To establish a vertical design flow for RecDEVS based systems a two-step approach
has been chosen. In a first step a vertical transformation step for conventional DEVS
models has been established. Only in a subsequent second step this transformation
has been extended and modified to reflect the differences and extensions between
DEVS and RecDEVS.

In the following the first part will be detailed, i.e., how the DEVS Model of Com-
putation can be taken to SystemC. This work has been done together with G. Molter
and has been previously published in Molter et al. [39]. We distinguish between two
fundamental concepts: Mapping of the whole MoC in a generic way and specialized
mapping of a single model from the MoC.

The first approach, the mapping of the whole MoC, can operate on arbitrary mod-
els. It reflects the MoC specific computational rules in a generic way. Once the MoC
formalism is implemented manually to SystemC code, we can derive every single
MoC model from it. The model derivation can be done automatically.

The latter approach, the mapping of a single model, may result in a more fine-
grained implementation. As the mapping process is mostly handcrafted, we can
cope with model specific characteristics and thus optimize the code. Modeling ex-
pertise about the concrete realization of the model is then used to create a sufficiently
simple SystemC description. The transformation into SystemC cannot be done au-
tomatically. Each time the model is modified, its changes must be transformed into
SystemC, too.

4.2.1 SC-DEVS Extension for SystemC

Therefore we choose the former approach and integrate the whole MoC into an ex-
tended SystemC version. Our implementation can execute arbitrary RecDEVS mod-
els. The implementation is realized as non-introspective extension to the SystemC 2.2
kernel. Thus, the existing SystemC kernel is not modified, it has just to be extended
in an appropriate way. Fig. 4.6 depicts the relationship of the classes from the formal
model and their SystemC counterpart.

In the following, a short impression of the SystemC kernel extension with DEVS
functionality is given. A more detailed description of this extension is presented in
Madlener et al. [35].

84 4 Design Flow Methodologies for RecDEVS-specified Systems

sc_signal<T> devs_signal<T>

sc_in<T> devs_in<T>

devs_in_if

sc_interface

devs_out<T> sc_out<T>

devs_time

sc_time

devs_component<State>

sc_module

A B
class A uses n

instances of class B.

A B
class A inherits
abstract class B.

A B
class A depends

on class B.

A B
class A is associated

with class B.

n

n

1

0..∗ 0..∗

0..∗

Figure 4.6: UML Class Diagram of an exemplary MoC Mapping to SystemC

The DEVS communication ports differ from the SystemC ones. Like the commu-
nication in other event-based MoCs, e.g., TLM [1], RecDEVS ports emit events even
if the same value is written twice to an output port. Therefore, we enhanced the nor-
mal sc_in and sc_out port together with the sc_signal class to include this behavior.
See devs_in, devs_out, and devs_signal relations in Fig. 4.6.

In DEVS all specified models run in parallel, like components of other concur-
rent MoCs, e.g., parallel State Charts execution. This behavior is provided by the
sc_module class as SystemC runs all modules concurrently anyway. To integrate the
whole MoC into SystemC, the devs_component<State> class has an additional pri-
vate advance function, which maps the complete DEVS behavior to SystemC. It
is activated upon the receipt of an external event through the input ports or by the cur-
rent state timeout event. Iff the advance function was activated due to a timeout
event, then the output ports emit events. The output function λ(s) is directly mapped
to the corresponding abstract output function of devs_component<State>. The

4.2 Vertical Design Flow Methodology for System Implementation in SystemC 85

advance function computes the next state with the help of the δint, δext, or δcon
functions, respectively.

As SystemC, or rather C itself, does not enforce side-effect free functions, three
different implementation variants of the advance function have been realized.

Needed Serial: Only the needed transition function is executed. To determine which
transition function is needed it has to be checked whether a component was
activated by timeout or by external events. This variant is supposed to give the
best performance. However, if a certain side-effect of one unneeded transition
function is required, this variant might not work.

All Serial: The three transition functions, δint, δext, and δcon, are all executed in a
serial, but randomized order. But only the state of the actually required func-
tion is kept, the follow-up states of the two other two transitions are discarded.
This variant might expose certain unwanted side-effects that have accidentally
been modeled in a system specification. It can be especially useful during
development and testing.

Parallel: All three transition functions are executed in parallel with the help of
pthreads. Again, only the follow-up state of the active transition is kept.

Like in any time-based MoC the state transitions appear irregularly, because every
state may have an own timeout value. This requires a clock independent global time
modeled by the new devs_time class. When the timeout was hit, then a state tran-
sition occurs. The timeout function τ(s) is described by the devs_component<State>
abstract timeout function. After the advance function, the component is sus-
pended until reactivation.

In order to transform a RecDEVS MoC model into a SystemC representation auto-
matically, the behavior-specifying functions τ, λ, δint, δext, δcon have to be denoted
in SystemC. These functions are instantiations of the devs_component<State> ab-
stract functions as described above. Besides the declaration of the input and the
output ports, they provide the advance function with all the necessary information
to construct an executable SystemC module from an abstract DEVS model.

4.2.2 Extending SC-DEVS towards RecDEVS

To illustrate the feasibility of the RecDEVS MoC for dynamic reconfiguration the SC-
DEVS engine has been further extended towards reconfiguration. Due to its modular

86 4 Design Flow Methodologies for RecDEVS-specified Systems

concept it can comfortably be enhanced to cover the additional elements of RecDEVS.
The extension consists of three major modifications:

1. Implementation of a network executive

2. Integration of the message-based communication scheme

3. Extension of the existing DEVS components for dynamic reconfiguration

As Hsiung et al. [26] showed in their Perfecto framework, SystemC based re-
configuration environments have the common disadvantage that this modeling lan-
guage does not support a dynamic instantiation of modules. Similar to Perfecto, the
RecDEVS implementation realizes reconfiguration on top of SystemC with a static
set of instantiated components. Each component contains a flag for its configuration
state. During reconfiguration the network executive sets these flags to ’active’ on
creation and to ’inactive’ on deletion of a RecDEVS component.

For the support of message-based communication a RecDEVS bus system was re-
alized by using the SystemC communication channel sc_channel. SC-DEVS allows
the seamless integration of arbitrary sc_channel implementations. Listing 4.1 depicts
how write() and read() operations are realized. The messages are kept in the
std::list container bus_data.

s t d : : l i s t <msg> b u s _ d a t a
messages r e a d (c o n s t Model match) {

messages : : i t e r a t o r i t e r , e n d f o r ;
i f (! (b u s _ d a t a . empty ())) {

e n d f o r = b u s _ d a t a . end () ;
f o r (i t e r = b u s _ d a t a . b e g i n () ;

i t e r != e n d f o r ;
i t e r ++) {

i f (match == (* i t e r) . d s t) {
r v a l u e . push_back (* i t e r) ;
b u s _ d a t a . e r a s e (i t e r) ;

}
}

}
re turn r v a l u e ;

}

4.2 Vertical Design Flow Methodology for System Implementation in SystemC 87

void w r i t e (s t d : : l i s t <msg> u) {
i f (t imes t amp != s c _ t i m e _ s t a m p ()

&& ! (b u s _ d a t a . empty ()))
b u s _ d a t a . c l e a r () ;
t imes t amp = s c _ t i m e _ s t a m p () ;
b u s _ d a t a . i n s e r t (b u s _ d a t a . b e g i n () ,

u . b e g i n () ,
u . end ()) ;

b u s _ e v e n t . n o t i f y (SC_ZERO_TIME) ;
}

Listing 4.1: Read and Write Operations

Please note that the flexibility of message based communication comes at a cer-
tain cost. For each read operation the bus_data list has to be traversed to check
the receiver of each message. If this list becomes larger this may affect the overall
performance.

4.3 Vertical Design Flow Methodology for a VHDL-based Implementation of

RecDEVS

As an alternative vertical implementation approach a direct implementation of
RecDEVS in the VHDL programming language has been chosen.

The idea behind this approach was to obtain the most benefit from existing tools for
reconfigurable hardware platforms. VHDL is one of the most established hardware
description languages. It is widely used in FPGA-based system implementations
which represent the most popular platform for reconfigurable hardware.

The implementation has been realized as part of the master thesis by Theisen [52],
supervised by the author of this work. The proposed solution offers a framework
of skeleton VHDL components. Each of this VHDL entities represent one reconfig-
urable RecDEVS module. The complex communication scheme of RecDEVS and the
network executive Cχ are both implemented as part of this skeleton.

So, a system developer only has to implement the VHDL equivalent of transi-
tion functions δint, δext, δcon, the timeout τ, and the output λ. For this functions a
fixed set interfaces is defined. In the following the concept and architecture of the
framework are described.

88 4 Design Flow Methodologies for RecDEVS-specified Systems

Timer Arbiter Cχ

Module 1 Module 2 Module 3 Module n

Bus

System Time

Figure 4.7: Architecture of a VHDL-based RecDEVS network

4.3.1 System Architecture

The general architecture of the VHDL implementation for RecDEVS is given in
Fig. 4.7. Beside the already mentioned Arbiter that implements Cχ and the re-
configurable modules, the framework implements an additional timer element. All
reconfigurable components and the arbiter are connected to one centralized commu-
nication bus. Generally, FPGAs and other hardware platforms can only offer limited
communication resources. It is not possible to send multiple messages on the same
bus at the same clock cycle. Thus, the arbiter does also handle bus arbitration in a
way that only one component sends at a time.

The Timer component generates a global time as it is required by the timed compu-
tational model of RecDEVS. It is not possible to directly use the clock for RecDEVS
timing. The main reason for this is that a RecDEVS time event will take multiple
hardware clock cycles to process (e.g., for arbitration of the communication system).
The Timer implementation also allows to interrupt and pause the system execution,
e.g., if a hardware platform does not support dynamic reconfiguration.

4.3.2 Bus System and Protocol

Each message on the bus consists of the address of the originator of this message,
the destination of the message, and the message body itself. In this framework both
addresses are realized as 16 bit wide elements, the data bus is 8 bit wide. In addi-

4.3 Vertical Design Flow Methodology for a VHDL-based Implementation of RecDEVS 89

Init Statestart Idle
Select
Module

Await
Answer

Resend Data
to new Module

Create new
Module

Check
State

interrupt
module
inactive

module
alive

known target
pending interrupts

unknown
target

resend
data

pending
interrupts

Figure 4.8: State Machine of the Arbiter

tion, there is one global 1 bit wide interrupt line. Each reconfigurable module which
wants to write to the message bus (as required by the output function λ) will pull the
interrupt line up to 1.

The arbiter will then hold the RecDEVS time and address all active components in
a round-robin process. Each component that is addressed in this way may now write
its data to the bus. If a component does not start to send data, the arbiter will simply
go to the next component in the list.

As soon as the interrupt line is no longer pulled to 1 there are no more components
trying to send a message to the bus. In this case the arbiter will release the timer and
RecDEVS computation time will go on. The state machine of this communication
scheme as implemented by the arbiter is denoted in Fig. 4.8.

4.3.3 Arbiter Implementation

Beside processing the bus system communication protocol the arbiter is responsi-
ble for managing the available resources. This means that an arbiter has to know
about free resources such that it can process new requests by existing components.
It does also hold a list of active components so that it is able to address them in
round-robin manner for bus arbitration. A substantial implementation problem is the
effective handling of these lists in hardware. Since the removal and creation of ran-
dom components leads to a fragmentation of the resource lists, an approriate VHDL
implementation has to be found. A simple, but somehow inefficient approach would

90 4 Design Flow Methodologies for RecDEVS-specified Systems

be to compact the list after each processing step. Another more complex way that
was chosen for this implementation is with list indirections as depicted in Fig. 4.9.

The first list enumerates all physical positions (i.e. available resources) of the
FPGA. If such a resource is currently active then the list entry contains the RecDEVS
address of that component. This list may be fragmented since not all resources are
always used, the list entry of unused resources are invalid.

Each element of the second list contains a pointer to one unused component in the
first list. This list is realized as a stack, so when a new RecDEVS component needs to
be created the arbiter takes the physical resources found from the pointer of the top
element of this stack. If a component is deleted then a pointer to this position is put
on top of the stack. Part of this second list is an additional stack pointer marking the
top element of the stack.

4.3.4 Implementation Results

The depicted VHDL architecture has been implemented for the Xilinx Virtex 5 archi-
tecture. On that platform the implementation of the framework components, i.e., the
timer and the arbiter, takes about 800 logic cells, which is about 1% of the available
resources on that platform. All remaining resources can be used for reconfigurable
components. The arbiter requires about 1000 FlipFlops which would be about 50%
of the available resources. Please note that no dedicated memory elements, such as
BRAM, have been used.

Without any specific focus on optimization, the design can reach 160 MHz max-
imum clock frequency. In Chapter 5 the implementation of Game of Life on this
architecture will be presented. It gives an impression of the performance of this
architecture and of the logic requirements for reconfigurable cells.

4.3 Vertical Design Flow Methodology for a VHDL-based Implementation of RecDEVS 91

Configuration State of all
Reconfigurable Hardware
Modules

n

n-1

n-2

2

1

0

Stack with list of
free Resources

m

1

0

Stack Pointer

Figure 4.9: Lists for Resource Management inside the Arbiter Component

92 4 Design Flow Methodologies for RecDEVS-specified Systems

5 Demonstration of Concepts

In this chapter the practical application of RecDEVS shall be demonstrated on more
complex examples.

For this reason two different examples haven been selected that focus on differ-
ent aspects of RecDEVS. The first example is a more coarse-granular modeling of
interacting components in an automotive system. The system is based on exter-
nal input events and reconfigures functional components depending on these input
events. As these events originate from an uncontrollable output environment, the
confluent transition often comes into play to address event handling on internal tran-
sitions. However, due to the coarser granularity, the number of variations regarding
reconfiguration are not too large.

This issue is addressed in the second example, the “Game of Life”. This game
represents a cellular automaton with a simple set of rules, where the cells are recon-
figured throughout the execution. Compared to the first example, the input events are
much more predictable as the system is self-contained. However, the large number of
cells leads to a highly dynamical reconfigurable system.

In addition, the span between these two examples illustrate the capability of
RecDEVS to model applications at various abstraction levels, ranging from the high-
level automotive example to the low-level implementation of an cellular automaton.

5.1 Autovision

The first application example is based on the AutoVision scenario introduced by
Claus et al. [16]. It is taken from the automotive domain and consists of several
distinct components for vision enhancement and automated object recognition aimed
to a driving assistance scenario. It switches between various components, implement-
ing a shape- or a taillight-based object recognition depending whether the car is on
an open road at daylight or inside a dark tunnel. Fig. 5.1 gives an overview over the
following components and their interaction:

Sensor: An image sensor that provides pictures to all requesting components.

93

Sensor Shape Contrast Taillight
request

picture new()

Entrance detected

request

picture
request

picture

new()del()
Tunnel entered

request

picture

request

high-contrast picture

new()
del()

Tunnel exited

request

picture

Figure 5.1: Sequence Diagram of the AutoVision Example

Shape: Performs picture requests to the Sensor and scans the result for important
shapes (e.g., other cars). The detected shapes are provided to the driver. If the
shape of a tunnel entrance is found, then the Contrast component is invoked.

Contrast: Enhances the contrast of a Sensor picture and recognizes, when the car en-
ters or leaves a tunnel, in which case it activates or suspends other components.

Taillight: Provides object information to the driver based on taillight traces. It op-
erates when the car is inside the tunnel where it is too dark for the Shape
component to operate reliably.

The different situations inside and outside a tunnel trigger the reconfiguration of
Shape, Contrast, and Taillight, respectively. The implemented model consists of four
RecDEVS components, which switch their state values from ‘deleted‘ to ‘active‘ and
vice versa.

94 5 Demonstration of Concepts

5.1.1 CSensor

The Sensor implementation normally stays in an idle Waiting state for infinite time.
It will be activated by external transitions when some other component asks for the
current sensor data in form of a picture. The address of the requesting component is
stored as part of the component state so that is available to λ in the SendPic state. The
timeout of 1ns is intended to model the internal processing time of the image sensor
until it can answer a request.

Note that the two occurrences of reqI D
Model at the confluent transition are actu-

ally two different components. The output message uses still the previously stored
address, while the new address is only stored afterwards.

The formal and graphical RecDEVS specification of CSensor is as follows. A
screenshot of the equivalent UPPAAL model denoted as roi is presented in Fig. 5.2.

S = {“Waiting”, “SendPic”} × I

s0 =
�

“Waiting”,;
�

X = I × I × “request”

Y = I × I × “picture”

δext(((“Waiting”, i), e), (reqI D
Model , C

this
Sensor , data)

]

︸ ︷︷ ︸

msgs

) = (“SendPic”, reqI D
Model)

δint(“SendPic”, i) = (“Waiting”,;)
δcon((s, e), x) = δext(δint((s, e)), x)

τ(s′, i) =

(

∞ if (s′ = “Waiting”)
1 if (s′ = “SendPic”)

λ(“SendPic”, reqI D
Model) = {(C

this
Sensor , reqI D

Model , pic ture)}

5.1 Autovision 95

Figure 5.2: UPPAAL Sensor Model

(Waiting,;) ∞new (SendPic,reqI D
Model) 1ns

reqID
Model←− request

picture−→ reqID
Model

reqID
Model←− request

picture−→ reqID
Model

5.1.2 CShape

The RecDEVS specification of the Shape component illustrates the use of initializa-
tion messages to get addresses of other components. After receiving the Init_Sensor
message this component is able to send messages to the Sensor itself. Upon a new
Contrast component was successfully created, Shape sends an initialization message
Init_Shape_Sensor so that Contrast can communicate with those components as well.

There is no need for transitions back into states without a detected tunnel, because
according to Fig. 5.6 the shape component will be deleted if a tunnel has been detected
as soon as the contrast component is up and running.

96 5 Demonstration of Concepts

The UPPAAL representation is given in Fig. 5.3 and the RecDEVS specification is
as follows:

Init ∞new

Idle
NO_TUNNEL

TRe f resh
Process
NO_TUNNEL

0ns Entrance 0ns

Idle
TUNNEL

TRe f resh
Process
TUNNEL

0nsInitContrast 0ns

Deleted 0

Init_Sensor←−Contrast

request−→Sensor

picture←−Sensor

else

if(picture == PictureDaylightWithTunnel)

new(Contrast)−→Cχ

request−→Sensor
confirm←−Cχ

Init_Shape_Sensor−→Contrast

picture←−Sensor

del←−Contrast

del←−Contrastdel←−Contrast

del−→Cχ

5.1 Autovision 97

S = {“Init”, “Idle”, “Process”, “Entrance”, “InitContrast”, “Deleted”} × I × I × pic

s0 = (“Init”, 0, 0, 0)
X = I × I × {picture, confirm, del}
Y = I × I ×N× {Init_Shape_Sensor, request, new(Contrast), del}

δint(s) =

“Idle” if s = “Idle”∨ s = “Entrance”∨ s = “InitContrast”

“Idle” if s = “Process” and no Tunnel detected

“Entrance” if s = “Process” and Tunnel detected

δext(((“Idle”, l, m, n), e), (src I D
Model , Cthis

Shape, data)
︸ ︷︷ ︸

msg

]
) =

(“Deleted”, l, m, n) if data = del ∈ msg]

(“InitContrast”, l, I D, n) elsif data = con f irm(I D) ∈ msg]

(“process”, l, m, pic ture) elsif data = pic ture ∈ msg]

δext(((“Init”, l, m, n), e), (src, Cthis
Shape, Ini t_Sensor)

]
) = (“Idle”, Sensor, m, n)

δcon((s, e), x) = δext((δint(s), e), x)

τ=

Tre f resh if s = (“Idle”, l, m, n)
∞ if s = (“Deleted”, l, m, n)
0 else

λ(s) =

{(Cthis
Shape, Cχ , new(Cont rast)) if s = “Entrance”

{(Cthis
Shape, Sensor, request)} if s = “Idle”

{(Cthis
Shape, Cont rast, Ini t_Shape_Sensor)} if s = “InitContrast”

{(Cthis
Shape, Cχ , del)} if s = “Deleted”

� else
(5.1)

98 5 Demonstration of Concepts

Figure 5.3: UPPAAL Shape Model

5.1 Autovision 99

5.1.3 CCont rast

The Contrast component utilizes the fact that we can send multiple messages at the
same time. E.g., in the Exit state one message is send to the Taillight component and
one to the system executive Cχ at the same time. The equivalent UPPAAL model is
given in Fig. 5.4 and the RecDEVS specification is as follows:

Init ∞new

Idle TRe f resh Process τ= 0

InitTail τ= 0

Entrance τ= 0

Exit τ= 0

Wait ∞InitShape τ= 0

Init_Shape_Sensor←−Shape

picture←−Sensor

request−→Sensor

confirm(Taillight)←−Cχ

if(not entered)

if(entered tunnel)

if(quitted tunnel)

new(Taillight)

del−→Taillight
new(Shape)−→Cχ

confirm(Shape)

Init_Sensor−→Shape
del−→Cχ

Init_Contrast−→Taillight

100 5 Demonstration of Concepts

S = {“Init”, “Idle”, “Process”, “Entrance”, “Exit”, “InitTail”, “InitShape”, “Wait”},
× I × I × I ××Picture

s0 = (“Init”, 0, 0, 0, 0)
X = I × I × {pic ture, Ini t_Shape_Sensor, con f irm(...)})
Y = I × I × {request, Ini t_Sensor, Ini t_Cont rast, del, new(...)})

δint(s, ...) =

(“Idle”, ...) if s = “idle”∨ s = “InitTail”∨ s = “Entrance”

(“Entrance”, ...) if s = “process” and (entered tunnel)

(“Exit”, ...) if s = “process” and if (leaving tunnel)

(“Idle”, ...) if s = “process” and if (no change)

(“Wait”, ...) if s = “Exit”

δext(((s, k, l, m, pic), e), (src, Cthis
Cont rast , data)

︸ ︷︷ ︸

msg

]
) =

(“Idle”, Shape, Sensor, m, pic) if s = “Init”∧ Ini t_Shape_Sensor ∈ msg]

(“InitTail”, k, l, Tail l i ght, pic) if s = “Idle”∧ con f irm(Tail l i ght) ∈ msg]

(“Process”, k, l, m, pic ture) if s = “Idle”∧ pic ture ∈ msg]

(“InitShape”, Shape, l, m, pic) if s = “Wait”∧ con f irm(Shape) ∈ msg]

δcon((s, e), x) = δext((δint(s), e), x)

τ(s) =

Tre f resh if s = “Idle”

∞ if s = “Init”∨ s = “Wait”

0 else

λ(s, Shape, Sensor, Tail l i ght, pic) =

{(Cthis
Cont rast , Tail l i ght, Ini t_Cont rast)} if s = “InitTail”

{(Cthis
Cont rast , Sensor, request)} if s = “Idle”

{(Cthis
Cont rast , Cχ , new(Tail l i ght))} if s = “Entrance”

{(Cthis
Cont rast , Cχ , new(Shape), (Cthis

Cont rast , Tail l i ght, , del))} if s = “Exit”

{(Cthis
Cont rast , Cχ , del), (Cthis

Cont rast , Shape, Ini t_Sensor)} if s = “InitShape”

� else

5.1 Autovision 101

Figure 5.4: UPPAAL Contrast Model

102 5 Demonstration of Concepts

5.1.4 CTail l i ght

The Taillight component shows no additional features. It is a straightforward imple-
mentation of the requirements derived from Fig. 5.1. The RecDEVS specification is
as follows, its UPPAAL representation is given in Fig. 5.5.

S = {“Init”, “Idle”, “Process”, “Deleted”} × I × pic ture

s0 = (“Init”, 0,;)
X = I × I × {pic ture, Ini t_Cont rast, del}
Y = I × I × {request, del}
δint(s) = “Idle”

δext((s
′, m, pic), e),

msgs
︷ ︸︸ ︷

(src, Cthis
Tail l i ght , data)]) =

(“Idle”, Cont rast, pic) if s′ = ini t ∧ data = (“Init_Contrast”) ∈ msgs
(“Deleted”, 0,;) elsif s′ = idle ∧ data = del() ∈ msgs
(“Process”, m, pic ture) elsif s′ = idle ∧ data = pic ture ∈ msgs

δcon((s, e), x) = δext((δint(s), e), x)

τ(s, k, l, pic) =

Tre f resh if s = “Idle”

∞ if s = “Init”

0 if s = “Process”∨ s = “Deleted”

λ(s, k, l, pic) =

{(Cthis
Tail l i ght , Cont rast, request)} if s′ = “Idle”

{(Cthis
Tail l i ght , Cχ , del} if s′ = “Deleted”

� else

5.1 Autovision 103

Figure 5.5: UPPAAL Taillight Model

Init ∞new

Idle TRe f resh Process τ= 0Deleted 0

Init_Contrast←−Contrast
picture←−Contrast

request−→Contrast

del←−Contrast

del−→Cχ

104 5 Demonstration of Concepts

5.1.5 Verification Results

In the following subsections we outline the most important verification features for
reconfigurable systems by means of the AutoVision example. We will describe their
relevance during the development of reconfigurable systems and their UPPAAL nota-
tion. In Tab. 5.1 one can find a summary of the important statements, a corresponding
example for the AutoVision application, and verification results for the tested system
specification properties. The table entries denote some properties as Not Satisfied
represent design flaws in the first AutoVision implementation. After identifying them
in the UPPAAL verification process they may easily be fixed in the corresponding
RecDEVS model.

Reachability and Deadlocks

Beside reconfiguration specific properties, there is also a wide variety of important
conventional system properties. These properties can be checked by the presented
approach as well. UPPAAL enables the verification of statements that address
the reachability of specific states of a component. E.g., the UPPAAL statement
“E<>(P1.s1)” checks whether the state s1 of component P1 can be reached.
The UPPAAL statement “E[](P1.s1)” checks whether that state can be reached
at any time during system execution.

UPPAAL also allows the examination of complex system states, which are
composed from multiple components. An UPPAAL statement of the form
“(Comp1.state1 and Comp2.state2)” refers to a combination of two
atomic component states. All components that are not explicitly mentioned may have
arbitrary states.

As each RecDEVS state has a direct representation in UPPAAL it is thus possible to
examine the reachability of a system state by verifying UPPAAL specification state-
ments like “E<>(P1.s1 and P2.s2 and P4.s4)” to answer the ques-
tion whether a complex system state is actually reachable, or “E[](P1.s1 and
P2.s2 and P4.s4)” to verify whether a state is always reachable. Please note
that this approach does only work in one direction. Each RecDEVS state has a rep-
resenting state in UPPAAL, however as Fig. 4.5 illustrated multiple UPPAAL states
may have been created during the transformation modeling state transitions.

The existence or absence of deadlocks can also be verified by means of the system
specification “A[] not deadlock”. A deadlock is a system state in which

5.1 Autovision 105

no transition can be triggered and thus the system execution comes to a hold. The
global deadlock detection is directly useable for RecDEVS and does not require any
modifications.

Communication and Timing

An arbitrary UPPAAL state transition from P1.S1 to P1.S2 will be taken, if the
verification statement “E<> P1.S1 imply P1.S2” holds true. And because
each RecDEVS state is represented by a corresponding UPPAAL state an arbitrary
RecDEVS transition δ(S1) = S2 will be taken, if it can be verified by the same UP-
PAAL statement.

The imply keyword also allows for the verification of the RecDEVS output function
λ. As previously explained, RecDEVS messages are realized by means of synchro-
nization channels in UPPAAL. Unfortunately, UPPAAL does not support the explicit
notation of synchronization channels in verification statements. However, each syn-
chronization channel is directly bound to a specific state transition from P1.S1 to
P1.S2. Thus, if one wants to make some statements about a RecDEVS message,
one has to search the corresponding synchronization channel in UPPAAL and take
its transitions start and end state (P1.S1 and P1.S2). The occurrence of specific
RecDEVS messages can then be verified with statements of the form “E<> P1.S1
imply P1.S2”.

By introducing additional local clocks as explained in Section 4.1.3, it is also
possible to verify timing constraints. A verification statement like “E<>(P1.S1
imply P1.S2 imply P1.S3) and t ≤ 6” can guarantee that the speci-
fied path must not take more than 6 time units. This can also be used to verify whether
a state will always be left before the annotated timeout τ and, thus, its internal tran-
sition will never be used.

Dynamic Resource Allocation

For the implementation of a dynamically reconfigurable hardware system it is of cru-
cial interest to analyze whether there are enough resources for the execution of the
reshaped system. As the utilized resources will change during runtime, this question
is not trivial to answer. UPPAAL can be used for the exploration of such resource
requirements.

106 5 Demonstration of Concepts

Under the assumption that P1 to P4 are the only components of a system,
the statement “E[](P1.deleted or P2.deleted or P3.deleted
or P4.deleted)” will only hold true if at least one of the four compo-
nents is deleted at all times. Thus, a system with resources for three reconfig-
urable components will be sufficient in this case. It is even possible to opti-
mize this approach by suggesting implementation specific variants of the resource
constraint. The statement “E[]((P1.deleted and P2.deleted) or
(P3.deleted and P4.deleted))” can guarantee that the specified sys-
tem specification will always have at least either the combination P1 and P2 or the
combination P3 and P4 deleted. Depending on the size of the different components
this property may provide stronger information on the required resources than the
general resource constraint property, thus resulting in smaller designs.

Unfortunately, there is no simple way to model more advanced wildcards in the
UPPAAL verification statements. If the set of components becomes larger then the
verification statements will have to be larger as well. To overcome this problem it
would be possible to generate the verification statements with the help of an addi-
tional, implementation-specific tool or programming script.

Reconfiguration Activities

Another question is related to the existence of a specific reconfiguration activity, i.e.,
if component A will ever trigger a specific reconfiguration to create component B.
According to the message-based reconfiguration scheme described in Section 4.1.3
for RecDEVS, this always requires a corresponding message new(B) and will be
answered with confirm(id).

RecDEVS defines these reconfiguration specific messages as conventional mes-
sages, meaning that they are handled by the same mechanisms as all other commu-
nication messages. Consequently, we can extend the same verification techniques
described before to evaluate the occurrence of conventional RecDEVS messages to
gain insight into reconfiguration activities. So, the call of a specific reconfigura-
tion message to create a new component can be tested by verifying the specification
statement “E<>(P1.S1 imply P1.S2)”, where the transition from S1 to S2
contains a synchronization channel, which emits the new(B) message. This state-
ment is only true when a direct transition from state S1 to S2 of the model P1 will
be taken.

5.1 Autovision 107

It is also possible to check the existence of reconfiguration events by verifying
whether a component is in special states representing the initial state or the Dead
state. As the only way into these states is by messages which are part of the recon-
figuration mechanism, a component is in such a state indicates that the corresponding
reconfiguration event must have happened.

5.1.6 SystemC Results

In order to examine the SystemC based implementation, the AutoVision example has
also been implemented as a transactional model with UML as the underlying MoC.
We used the Rhapsody UML modeling tool from IBM [27] for design entry and
system model execution. Fig. 5.6 shows the resulting sequence diagram aimed to
give an overview over the components and their interaction.

This model covers a variety of features which allow the evaluation of MoC specific
properties:

• All four components run in parallel and thus allow the evaluation of typical
concurrency effects.

• The regular timing intervals for Sensor requests target timed MoCs.

• The AutoVision model allows multiple competing messages (e.g., from Shape
and Contrast) occurring at the same time. While this behavior is not sup-
ported by the UML MoC, it has eventually to be considered in more detailed
RecDEVS and SystemC models.

Originating from the UML model two different transformation paths have been
implemented.

First, a horizontal transformation into RecDEVS has been performed. The resulting
intermediate RecDEVS model has subsequently been transformed into a SystemC
model as detailed in Section 4.2. The mapping from RecDEVS to SystemC models is
performed fully automatic.

In a second approach a direct vertical transformation of the AutoVision example
from UML into SystemC has been performed directly. No intermediate MoCs have
been exercised on this path.

As a result of both approaches, we yield two different low-level SystemC models.
Both originate from the same UML model, but are obtained via different transforma-
tion paths. The SystemC models are directly executable, whereas the direct execution

108 5 Demonstration of Concepts

Description AutoVision Example UPPAAL Notation Property

State
Reachability

Is the state
(Shape.idle
and
Contrast.idle)
reachable?

E <>
(Shape.idle and
Contrast.idle)

Satisfied

General
Reachability

Is the state
(Shape.deleted)
always reachable?

E[] Shape.deleted Satisfied

Deadlock
Existence

Is the implementa-
tion free of dead-
locks?

A[] not deadlock Not Satisfied,
all existing
deadlocks can
be listed by
UPPAAL

Resource
Consumption

Is at least one
component always
deleted?

E[]
(Shape.deleted or
Contrast.deleted
or
Taillight.deleted)

Not Satisfied,
e.g., Taillight
is created be-
fore Shape is
deleted

Transition
Usage

Is the internal
transition from
(Shape.new) to
(Shape.request)
used?

E <> Shape.new
imply
Shape.request

Satisfied

Synchronization
Channel

Does Contrast
perform a picture
request?

E <>
Contrast.request
imply
Contrast.idle

Satisfied

Timing
Constraint

Can a tunnel be
detected in 6 time
units?

E <> (Shape.idle
imply
Shape.entrance
imply Shape.idle)
and t ≤ 6

Satisfied

Module
Reconfiguration

Will Taillight ever be
created?

E <>
Contrast.tunnel
imply
Contrast.idle
(this transition emits the
synchronization channel
new(taillight)!)

Satisfied

Table 5.1: Set of Verifiable Model Properties of the AutoVision Example

5.1 Autovision 109

Figure 5.6: UML Sequence Diagram of the AutoVision Example

110 5 Demonstration of Concepts

Number of Events

500 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

C
al

cu
la

tio
n

Ti
m

e
in

Se
co

nd
s

0
2
4
6
8

10
12
14

SC-DEVS SystemCUML

Figure 5.7: Simulation Results for the AutoVision Example

of UML models is supported by the Rhapsody modeling tool. Therefore, comparative
performance measurements between the different models are possible. By compar-
ing the SystemC models we can argue about potential performance losses caused by
the introduction of additional horizontal transformations. The comparison with the
original UML model helps in quantifying any overhead introduced by a vertical MoC
transformation (i.e., by lowering the abstraction level).

Fig. 5.7 depicts the results of the performance measurements with the mentioned
models of the AutoVision example. The graph visualizes the execution performance
for a given number of transaction-level events. In each MoC the same number of
events refers to the same state of the AutoVision system and therefore allows a com-
parison of the model properties.

The execution of the UML model is about two times faster compared to the Sys-
temC variants. This is reasonable because of a higher abstraction level, which does
not support the same level of concurrency as SystemC and DEVS models. This allows
a less complex and therefore faster simulation. We did not take more measurement
points of the UML specification as the difference to the SystemC based models is too
big to lead to additional conclusions.

For the different SystemC variants, the directly generated variant is labelled as
SystemC, whereas the RecDEVS based implementation is labelled as SC-DEVS. Both
implementations show similar performance and scale roughly linearly with the num-
ber of events simulated. This clearly demonstrates that an introduction of additional

5.1 Autovision 111

Number of Events
500 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

C
al

cu
la

tio
n

Ti
m

e
in

Se
co

nd
s

0

5

10

15

20

25

30

35
Parallel All Serial Needed Serial SystemC

Processing Time for each Transition (normalized)
100 200 300 400 500 600 700 800 900 1000

C
al

cu
la

tio
n

Ti
m

e
in

Se
co

nd
s

0

5

10

15

20

25
Parallel All Serial Needed Serial SystemC

Figure 5.8: Simulation Results for Different SC-DEVS execution variants

horizontal MoC transformations can be (and has been) performed without any sub-
stantial overhead.

As the SC-DEVS and the hand-crafted SystemC realization are both executed on
the same simulation engine a more detailed analysis can be done here. As already
stated in Section 4.2.1, there are three implementation for the SC-DEVS models avail-
able, which basically control which of the three transition functions δint, δext, and/or
δext are to be executed.

Fig. 5.8 depicts the results of the AutoVision example for the three different exe-
cution variants Parallel, All Serial, Needed Serial and the direct SystemC implemen-
tation. The upper graph visualizes the kernel performance for an increasing number

112 5 Demonstration of Concepts

of events. All variants scale linearly with the number of events. While Needed Se-
rial and All Serial show a similar performance compared to the SystemC simulator,
the Parallel simulation is approximately 3 times slower (33.3 seconds compared to
11.2 seconds). This stems from the additional kernel overhead for thread handling
and synchronization.

The lower Fig. 5.8 depicts the situation for transitions with high processing times.
Compared to the All Serial execution, the Parallel execution is 3 times faster as it can
calculate the three transition functions in parallel. The Needed Serial option again
shows a similar performance to the pure SystemC model. This has been expected as
this simulator variant realizes a similar behavior to the original SystemC kernel.

It may seem obvious that the Needed Serial should thus be preferred above the
other variants. However it may not be able to detect certain design flaws which may
originate from synchronization or concurrency issues. The Parallel mode is able to
detect such flaws and did it multiple times throughout our tests while only being
slightly slower in case of our example. So, the selection of the appropriate simulation
engine behavior should be decided on a case by case basis.

5.2 Game of Life

The original version of the Game of Life was first developed by John Conway and
has been presented in Gardner [21]. It consists of a simple set of rules that describe
the behavior of a cellular automaton. It takes place on an infinite two-dimensional
plane that is ordered as a regular grid. So, each position can be identified by its
(x , y) coordinates. At each coordinate there is a simple cell that can be in one of two
possible states: alive or dead.

The Game of Life is a simulation game, which means it has no user interaction
despite its initial configuration. The initialization specifies the state of all cells at the
beginning. Then a simple set of rules is applied in subsequent steps that changes the
state of each grid cell.

1. A living cell stays alive if it has two or three living neighbors.

2. A living cell with less than two living neighbors will die (i.e., becomes ’dead’
in the next evaluation step)

3. A living cell with more than three living neighbors will die.

5.2 Game of Life 113

Figure 5.9: A cyclic moving Glider in Game of Life

4. A ’dead’ cell will become ’alive’ if is has exactly three living neighbors.

These rules are applied to each cell to obtain its next state. After the evaluation is
completed the next state becomes the current state and the rules are applied again for
the next round.

If the system state is visualized after each computation step, the results can be
surprisingly complex, despite the simple set of rules. E.g., Fig. 5.9 depicts some sub-
sequent states of set of cells forming a glider. The black circles mark the living cells
on the grid. This object oscillates through 4 different states and “glides” downwards
to the right during each oscillation.

Since the memory of computing systems is finite it is not possible to save the
infinite number of cell states that exist on an infinite plane. For the glider example
from Fig. 5.9 this may quickly become an issue as the glider will continuously move
into one direction of the infinite grid and thus the number of crossed grid elements
becomes arbitrarily large. A simple approach for a real implementation of a Game Of
Life environment simply limits the grid size to a number that can be handled by the
actual machine. In this case the grid can be represented as a two-dimensional array.
While this approach is easy to implement, the glider would quickly reach the border
and can no longer fulfill the rules defined by the Game Of Life.

Another implementation approach does not limit the area of existing cells. Instead,
only one kind of cells (either living or dead ones) are explicitly stored together with
their coordinates. All cells that do not specifically exist are therefore known to be of
the other cell type. As a tradeoff, each cell becomes more complex because it must
track its coordinates. Finding cell neighbors becomes more complicated because the
coordinates may change during simulation time. The idea behind such an implemen-
tation is the observation that in many cases the number of one cell type, mostly the
living one, is very small. In contrast to the first implementation approach, the posi-

114 5 Demonstration of Concepts

tion of cells is now no longer limited by the grid size, however, now the number of
concurrently existing cells is limited. This approach is perfectly suited for the glider
model, where only a few cells are ever alive at the same point in time.

5.2.1 Game of Live for Reconfigurable Systems

The Game of Life is a very interesting candidate for examining reconfigurable sys-
tems. By implementing the second presented approach, which implements more
complex cells together with their coordinates, it is also an appropriate candidate
for implementation as a reconfigurable system. In that case all cells are realized
as separate reconfigurable modules.

If a cell becomes dead, it is simply deleted from the reconfigurable network. If
it becomes alive, a new component is created. This perfectly shows one of the ad-
vantages of reconfigurable systems: existing resources can be reused. Only those
component that are actually required at one moment are implemented, the remainder
will only be configured as soon as needed. The amount of reconfiguration and concur-
rent communication is very high, which makes the Game Of Life a good application
to prove the fitness of RecDEVS for modeling highly dynamic reconfigurable systems.

However, the Game Of Life is not the single perfect example for the whole world
of reconfigurable systems. As all cells follow the same rules and thus have iden-
tical implementations, the system state and the model execution is highly regular.
Compared to the AutoVision example, this Game Of Life implementation has a
high reconfiguration dynamic and a high frequency of concurrent communication.
But the processes can be regarded as a synchronous behavior without any external
influence. The AutoVision example addresses opposite system properties. It demon-
strates a set of complex and distinct components that are highly influenced by external
asynchronous events. In combination, both examples demonstrate the wide range of
systems in which the RecDEVS MoC is feasible.

5.2.2 RecDEVS Implementation of Game of Life

For the RecDEVS implementation some minor modifications were necessary. One
rule states that a dead cell has to be activated when there are three living neighbors.
However, as the cell is currently dead, it is not on an active RecDEVS component any
more and thus cannot actively count its neighbors. Therefore, a third cell state called
semi-live is introduced.

5.2 Game of Life 115

Figure 5.10: The Glider with the Semi-Life Extension

For RecDEVS these semi-live cells are active components, however, they are in
an inactive state from the Game of Life perspective. These RecDEVS components
will be configured on all neighboring positions of living cells. Thus, they can receive
RecDEVS messages and, by that, they can count the number of living neighbors and
become living cells if the conditions match. As soon as a cell gets alive, it has to check
all neighbor cells and create semi-life RecDEVS components if there is not already
a component in place. Consequently, if there are no longer any living neighbors, a
semi-life cell can be deleted from the RecDEVS network.

This results in the following modified rules of the Game of Life:

1. A living cell stays alive if it has two or three living neighbors, otherwise it
becomes semi-life.

2. A semi-life cell becomes alive if it is has exactly three living neighbors.

3. A semi-life cell dies if it has no living neighbors.

4. A dead cell becomes semi-life if it gets at least one living neighbor.

For the glider example the modified Game of Life is depicted in Fig. 5.10. The
grey shaded circles denote the newly introduced cells that are currently semi-life.

There are some additional aspects of RecDEVS which have to be kept in mind
when implementing Game of Life. Only the creator of a new component receives
its identifier (i.e., address) with the confirm() message from the network executive.
However, there may be multiple neighbors to a new cell. And while all cells know the
logical address (x , y) of the target because it can be calculated by their own address,
they do not automatically know the physical RecDEVS address corresponding to that
logical address. Therefore, a Mapper has been introduced as part of the Game Of Life
model. As we will see, the Mapper will take over the job of creating new components.

116 5 Demonstration of Concepts

Init ∞new

Semilive 15 Alive 15

Dead ∞

init(x,y)←−Mapper
coords := (x,y)

if (n!=3 ∧ n!=0)
n := 0

if(n= 3)
alive(X,Y)−→Mapper
n := 0

if(n= 2∨ n= 3)
alive(X,Y)−→Mapper
n := 0

if(n= 1∨ n> 3)
n := 0

if(n= 0)
del()−→Mapper
del()−→Cχ

if(n= 0)
del()−→Mapper
del()−→Cχ

alive(x,y)←−Source
n := n+ 1

alive(x,y)←−Source
n := n+ 1

Figure 5.11: Graphical Representation of a Game of Life Cell Specification

It will then assign the correct logical address to each newly created component. Any
subsequent communication between cells is directed to the mapper together with the
logical address of the target. The mapper will then lookup the corresponding physical
address and forward the message to the real recipient.

As all cells are updated synchronously at the same point in time, it may very well
happen that there arise situations where a dead cell gets two living neighbors at once.
In this case both cells would try to create a semi-life cell with the same coordinates.
The presented implementation addresses this issue inside the Mapper component.
Mapper tracks all logical addresses for which a new() call is pending at the network
executive.

5.2 Game of Life 117

Idle
ToMake, Map, msg ∞new

Forward
ToMake, Map, msg 0

Register
ToMake, Map, msg 0

alive(x,y)←− src
msg := (src,alive(x,y))

if(src,x,y) ∈Map
alive−→ src
if(src,x,y) 6∈Map
new()−→Cχ
ToMake :=ToMake+ (x,y)

confirm(d)←−Cχ
msg := confirm(d)

Take(x,y) ∈ToMake
init(x,y)−→d
Map :=Map+ (d,x,y)
ToMake :=ToMake− (x,y)

del()←− src
Map :=Map− (src,x,y))

Figure 5.12: Graphical Representation of the Game of Life Mapper Specification

Please recall that RecDEVS in its general form does not require that a new() call
is confirmed immediately. Therefore, all subsequently new() calls will simply be
ignored as soon as the new coordinates are stored

The resulting RecDEVS model for a cell of the Game Of Life is represented by
the graphical representation in Fig. 5.11. For ease of reading the list of neighbors for
a component (x , y,) is abbreviated by (X , Y) = {(x − 1, y − 1), (x − 1, y), (x −
1, y + 1), (x , y − 1), (x , y + 1), (x + 1, y − 1), (x + 1, y), (x + 1, y + 1)}. This
means that there will be eight alive() messages transmitted at the same time, one for
each neighbor. The formal RecDEVS representation of a single cell equivalent to the
graphical representation is given in Fig. 5.13. The address of CMapper is fixed inside
the cell implementations. Of course, it would also be possible to load it together with
the coordinates in the Ini t state.

118 5 Demonstration of Concepts

S = {{“Init”, “Semilive”, “Dead”}, (x , y),N}
s0 = (“Init”, (0, 0), 0)
X = I × I × {init(x ∈ N, y ∈ N), alive(x ∈ N, y ∈ N)}
Y = I × I × {alive(x ∈ N, y ∈ N), del()}

τ(s, I) =

(

∞ if s = “Init”∨ s = “Dead”

15 else

λ(s, (x , y), n) =

�

(CCell , CMapper , del()), (CCell , Cχ , del())
�

if n= 0
�

CCell , CMapper , alive(X , Y))
�

if s = “Semilive”∧ n= 3
�

CCell , CMapper , alive(X , Y))
�

if s = “Alive”∧ (n= 2∨ n= 3)

δext(((s, (x , y), n), e), msg) =

�

“Semilive”, (x ′, y ′), 0
�

if s = “Init”∧msg = ini t(x ′, y ′)
�

“Semilive”, (x , y), n+ 1
�

if s = “Semilive”∧msg = aliv e(x , y)
�

“Alive”, (x , y), n+ 1
�

if s = “Alive”∧msg = aliv e(x , y)

δint(s, (x , y), n) =

�

“Dead”, (x , y), 0
�

if n= 0
�

“Semilive”, (x , y), 0
�

if s = “Semilive”∧ (n!= 0∧ n!= 3)
�

“Semilive”, (x , y), 0
�

if s = “Alive”∧ (n= 1∨ n> 3)
�

“Alive”, (x , y), 0
�

if s = “Alive”∧ (n= 2∨ n= 3)
�

“Alive”, (x , y), 0
�

if s = “Semlive”∧ n= 3

Figure 5.13: Formal Representation of a Game of Life Cell Specification

5.2 Game of Life 119

The graphical representation of the corresponding Mapper is denoted in Fig. 5.12
and the equivalent formal representation is given in Fig. 5.14. Mapper manages two
important storage sets. The Map contains a mapping between physical addresses
and logical coordinates (x,y). When a component deletes itself it does also notify
the Mapper, which will then remove that mapping from the Map. The ToMake set
includes coordinates for which a new call was required. They are filled in whenever
the mapper receives a message for which there exists no entry in Map and a new
component will be created. Whenever the creations was confirmed one entry from
ToMake is removed and a corresponding entry in Map will be added.

The graphs in Fig. 5.15 and Fig. 5.16 depict the various system activities during
the execution of the Glider example in Game Of Live. The Glider iterates cyclically
through 4 different system states denoted as State 1 to State 4. Then, the system is
back in the original, but shifted state State 1’ from which the same system activities
will continue with a different set of coordinates.

Fig. 5.15 illustrates the number of system messages that are emitted by the active
components. Each state is divided into three phases. In the first phase the Alive
messages are transferred. It can be observed that this is by far the largest amount of
concurrent messages during system execution. In the second phase new components
are created, which require, to emit a new(), confirm(), and init() message for each
creation. Finally, in the third phase all components that are no longer used are deleted,
which requires two del() messages: one for Cχ and on for Mapper.

The amount of reconfiguration during system execution is detailed in Fig. 5.16.
Here, each state has two different phases: one in which new components are created
and a second one in which components are deleted.

The Game of Life has been implemented as a model in VHDL hardware descrip-
tion in the master thesis by Theisen [52]. The results have been published in Madlener
et al. [34] and are summarized in Tab. 5.2. The percentages denote the resource con-
sumption of each component on the target platform Xilinx Virtex 5 XC5VLX110T. It
can be observed that this implementation is limited by the utilized FlipFlops, which
are mainly used for realizing the communication network. The hardware model has
not been optimized towards the Game of Life, instead all cells are generic reconfig-
urable cells that provide an abstracted RecDEVS interface with δint, δext, and δcon.

120 5 Demonstration of Concepts

S = {“Forward”, “Idle”, “Register”}, {(x , y)}
︸ ︷︷ ︸

ToMake

, {(d, x , y)}
︸ ︷︷ ︸

Map

, I , coords}

s0 = (“Idle”,;,;, 0, 0)
X = I × I × {confirm(d ∈ I), alive(x ∈ N, y ∈ N), del()}
Y = I × I × {alive(), }

τ(s, I) =

(

∞ if s = “Idle”

0 else

λ(s, ToMake, Map, src, coords) =

�

CMapper , src, ini t()
�

if s = “Register”
�

CMapper , Cχ , new())
�

if s = “Forward” and coords 6∈ Map
�

CMapper , src, aliv e())
�

if s = “Forward” and coords ∈ Map

δext(((“Idle”, t, m, s, c), e), msg) =

(“Forward”, t, m, src, (x , y)) if msg = (src, dest, aliv e(x , y))
(“Idle”, t, m− (src,∗,∗), s, c) if msg = (src, dest, del())
(“Register”, t, m, d, c)) if msg = (src, dest, con f irm(d))

δint((s, t, m, src, (x , y))) =

(“Idle”, t − (x , y), m+ (src, x , y)), 0, 0) if s = “Register”

(“Idle”, t + (x , y), m, 0, 0) if s = “Forward” and (x , y) 6∈ Map
(“Register”, t, m, 0, 0) if s = “Forward” and (x , y) ∈ Map

Figure 5.14: Formal Representation of the Game of Life Mapper Specification

5.2 Game of Life 121

Component LUTs FlipFlops

Network Executive 974 (1.4%) 680 (7.6%)
Game of Life Cell 187 (0.2%) 169 (1.8%)

Table 5.2: Game of Life Implementation Results

Execution Steps
State 1 State 2 State 3 State 4 State 1’

N
um

be
ro

fM
es

sa
ge

s

0

5

10

15

20

25

30

35

40

Figure 5.15: Parallel System Messages while executing the Game Of Life Glider

Execution Steps
State 1 State 2 State 3 State 4 State 1’N

um
be

ro
fR

ec
on

fig
ur

at
io

ns

0

1

2

3

4

5

Figure 5.16: Reconfiguration Activities while executing the Game Of Life Glider

122 5 Demonstration of Concepts

6 Conclusions and Outlook

6.1 Conclusion

In this work the new RecDEVS Model of Computation was developed and its suitabil-
ity for specifying reconfigurable hardware systems was demonstrated. As a formal
specification model it introduces new aspects to the development of reconfigurable
hardware systems which are not feasible with less formal approaches based on lower
abstraction levels.

Before RecDEVS was defined two preliminary steps have been performed. First,
a novel design flow methodology based on model transformations has been investi-
gated and presented in Section 2.1. Horizontal model transformations create equiva-
lent models on the same abstraction level, but exploiting different MoCs. This allows
to benefit from special features, tools and insights from those MoCs without having to
incorporate them into our own MoC. Vertical transformation steps set the path from
more abstract high-level models down to an actual hardware implementation. The
design methodology can easily be extended by additional horizontal transformations.
As long as the transformations preserve the functional equivalence, no additional ver-
tical transformations are required. Instead, the newly added model should be trans-
formed horizontally into another model for which a vertical transformation already
exists and reuse that transformation.

The second preliminary step was the introduction of reconfigurable hardware sys-
tems. As this development field is rather new compared to other integrated circuit
design processes, there is not yet a clear list of requirements for a MoC suitable for
reconfigurable system specification. In Section 2.2 the target architecture for this
work has been presented. It is a generalized version of the most established archi-
tecture for reconfigurable hardware, the Field Programmable Gate Arrays (FPGA).
However, the results of this work are not limited to FPGAs, but can be applied to
other architectures as well. A set of important properties has been defined in Sec-
tion 2.2 that should be accounted for when developing a model for reconfigurable
hardware systems.

With these properties and the design flow methodology in mind the RecDEVS
formalism has been created, specified, and explained in Chapter 3. RecDEVS does

123

not try to reinvent modeling, instead it is based on the existing and well-established
DEVS formalism. The RecDEVS formalism consists of multiple interacting compo-
nents. Each component is a timed state machine with different transitions depending
on the occurrence of external or internal events. The components interact with a
message based communication scheme. Reconfiguration can be realized by a very
small set of special system messages and by an additional component, the network
executive Cχ .

Based on RecDEVS three different model transformations are presented in Chap-
ter 4. A horizontal transformation between RecDEVS and the UPPAAL model check-
ing environment has been proposed. This enables the verification not only of conven-
tional model checking properties for a RecDEVS specification such as reachability,
but also for the verification of reconfiguration specific properties, such as if there
will be enough reconfigurable resources throughout the execution of the specified
model. Verifying reconfiguration specific features is a new research area that has
not yet been addressed to the authors knowledge but that may bear much potential
for handling the complexity of reconfigurable systems. Two vertical transformations
for RecDEVS were presented as well: the first one transforming into the SystemC
specification language and the second one creating a VHDL model.

In Chapter 5 the so far obtained results are applied to two different examples.
The AutoVision example is a high-level example for image detection in an automo-
tive environment. The example has been modeled in RecDEVS, in UPPAAL, and
in SystemC. With the UPPAAL representation various insightful verification results
were achieved and the comparison with a hand optimized SystemC implementation
demonstrates that the introduction of a vertical model transformation step has no ma-
jor impact on the execution performance of the example. The Game of Life models a
cell-based automaton and was chosen as example because of its reconfiguration dy-
namic. It has been implemented in VHDL notation and demonstrates the feasibility
of the RecDEVS approach on FPGA platforms.

6.2 Outlook

For a fully integrated and flawlessly working design methodology for reconfigurable
hardware systems there are many important aspects that should be researched as well.
While this work presents possible design flows and with RecDEVS a formally spec-
ified model that is directly targeted for specifying reconfigurable hardware models,
there still has to be done research on how to actually model reconfigurable systems.

124 6 Conclusions and Outlook

As stated in this work, reconfiguration adds a whole new dimension of complexity to
the already existing design methodologies for classical hardware architectures. So,
additional research is necessary on how to find an optimal partitioning into suited
components and an optimal scheduling of such components onto the available re-
configurable resources. Those design steps will have to find trade-offs between the
additional time and effort for the required reconfiguration steps and the benefit of
saving resources by reconfiguring existing resources when they are not needed any
more for an actual computation step.

Verifying reconfigurable hardware systems is another area with a lot of potential
for future research. Applying model checking algorithms to classical timed state ma-
chines resulted in a lot of important verifiable properties such as state reachability
or the existence of deadlocks. Extending verification to reconfigurable systems bears
the potential for providing huge benefits for a system designer. “Can the actual im-
plementation reliably be executed with a given set of resources?” is just one of those
properties that has been worked out in this work, but a lot of other new interesting
questions may arise from examining this area more closely.

6.2 Outlook 125

126 6 Conclusions and Outlook

Bibliography

[1] Accellera System Initiative. TLM-2 Whitepaper. Website. URL www.
accellera.org/downloads/standards/systemc/. Last vis-
ited 2013-04-28.

[2] Hessa Aljunaid and Tom J. Kazmierski. SEAMS - a SystemC environment with
analog and mixed-signal extensions. In Proceedings of the IEEE International
Symposium on Circuits and Systems ISCAS’04, pages 281–284, 2004.

[3] Carsten Amelunxen, Alexander Königs, Tobias Rötschke, and Andy Schürr.
MOFLON: A Standard-Comliant Metamodeling Framework with Graph Trans-
formations. In Proceedings of the 2nd European Conference on Model Driven
Architecture - Foundations and Applications, pages 361–375, 2006.

[4] Maxim Anikeev, Felix Madlener, Andreas Schlosser, Sorin A. Huss, and
Christoph Walther. Automated Verification for an Efficient Elliptic-Curve Al-
gorithm - A Case Study. In Proceedings of the 9th International Scientific and
Applied Conference - Information Security, 2007.

[5] Maxim Anikeev, Felix Madlener, Andreas Schlosser, Sorin A. Huss, and
Christoph Walther. A Viable Approach to Machine-Checked Correctness Proof
of Algorithm Variants in Elliptic Curve Cryptography. In Workshop on Program
Semantics, Specification and Verification: Theory and Applications at the 5th
International Computer Science Symposium in Russia, pages 95–101, 2010.

[6] Fernando J. Barros. Modeling formalisms for dynamic structure systems. ACM
Transactions on Modeling and Computer Simulation TOMACS’97, 7(4):501–
515, 1997.

[7] Fernando J. Barros. Dynamic structure multiparadigm modeling and simulation.
ACM Transactions on Modeling and Computer Simulation TOMACS’03, 13(3):
259–275, 2003.

[8] Gerd Behrmann, Alexandre David, Kim G. Larsen, Oliver Moller, Paul Pet-
tersson, and Wang Yi. UPPAAL - Present and Future. IEEE Conference on
Decision and Control, 2001.

127

www.accellera.org/downloads/standards/systemc/
www.accellera.org/downloads/standards/systemc/

[9] Carmen-Veronica Bobeanu, Eugene J. H. Kerckhoffs, and Hendrik Van Lan-
deghem. Modeling of discrete event systems: A holistic and incremental ap-
proach using Petri nets. ACM Transactions on Modeling and Computer Simu-
lation TOMACS’04, 14(4):389–423, 2004.

[10] Kiran Bondalapati and Viktor K. Prasanna. Reconfigurable computing systems.
Proceedings of the IEEE, 90(7):1201–1217, 2002.

[11] Christoper X. Brooks, Edward A. Lee, and Stavros Tripakis. Exploring models
of computation with Ptolemy II. In Proceedings of the 8th IEEE/ACM/IFIP In-
ternational Conference on Hardware/Software Codesign and System Synthesis,
2010.

[12] Christopher Brooks, Edward A. Lee, Xiaojun Liu, Steve Neuendorffer, Yang
Zhao, and Haiyang Zheng. Ptolemy II Heterogeneous Concurrent Modeling and
Design in Java - Memorandum UCB/ERL M05/21. Technical report, University
of California at Berkely, 2005.

[13] Ewerson Carvalho, Ney Calazans, Eduardo Briao, and Fernando Moaraes.
PaDReH: A framework for the design and implementation of dynamically and
partially reconfigurable systems. In Proceedings of the 17th Symposion on In-
tegrated Circuits and System Design, pages 10–15, 2004.

[14] Edmund M. Clarke. The birth of modelchecking. 25 Years of Modelchecking
Festschrift, pages 1–26, 2008.

[15] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Lecture Notes in
Computer Science, volume 131, pages 52–71. Springer, 1981. ISBN 3-540-
11212-X.

[16] Christopher Claus, Walter Stechele, and Andreas Herkersdorf. Autovision -
A Run-time Reconfigurable MPSoC Architecture for Future Driver Assistance
Systems. it - Information Technology, 49(3):181–186, 2007.

[17] Stephen D. Craven and Peter M. Athanas. High-Level Specification of Runtime
Reconfigurable Designs. In Proceedings of the International Conference on
Engeneering of Reconfigurable Systems and Algorithms ERSA’07, pages 280–
283, 2007.

128 Bibliography

[18] Hernán P. Dacharry and Norbert Giambiasi. A formal verification approach
for DEVS. In SCSC: Proceedings of the 2007 Summer Computer Simulation
Conference, pages 312–319, 2007. ISBN 1-56555-316-0.

[19] Mahmood Fazlali, Mojtaba Sabeghi, Ali Zakerolhosseini, and Koen Bertels.
Efficient task scheduling for runtime reconfigurable systems. Journal of Systems
Architecture: The EUROMICRO Journal, 56(11):623–632, 2010.

[20] Terry Filiba, Jackie M.K. Leung, and Vinayak Nagpal. VHDL Code Generation
in the Ptolemy II Environment. Technical report, Electrical Engineering and
Computer Sciences, University of California at Berkeley, 2006.

[21] Martin Gardner. The fantastic Combinations of John Conway’s New Solitaire
Game "Life". Scientific American, pages 120–123, 1970.

[22] Martin Geisse. Integration of domain-specific languages. Master’s thesis, Tech-
nische Universität Darmstadt, Germany, 2008.

[23] Orna Grumberg and Helmut Veith, editors. 25 Years of Modelchecking
Festschrift. Springer LNCS, 2008.

[24] Aarti Gupta. Formal Hardware Verification Methods: A Survey. Formal Meth-
ods in System Design, 1:151–238, 1992. ISSN 0925-9856.

[25] Fernando Herrera and Eugenio Villar. A Framework for Heterogeneous Speci-
fication and Design of Electronic Embedded Systems in SystemC. ACM Trans-
actions on Design Automation of Electronic Systems, 12(3):1–31, 2007. ISSN
1084-4309.

[26] Pao-Ann Hsiung, Chao-Sheng Lin, and Chih-Feng Liao. Perfecto: A SystemC-
based design-space exploration framework for dynamically reconfigurable ar-
chitectures. ACM Transactions Reconfigurable Technology and Systems, 1(3):
1–30, 2008. ISSN 1936-7406.

[27] IBM. Telelogic Rhapsody, 2009. URL http://modeling.
telelogic.com/products/rhapsody/. [Accessed: Apr. 16,
2009].

[28] Neil G. Jacobson. The In-System Configuration Handbook. Kluwer Academic
Publishers, 2004. ISBN 1-4020-7655-X.

Bibliography 129

http:// modeling.telelogic.com/products/rhapsody/
http:// modeling.telelogic.com/products/rhapsody/

[29] Lech Jówiak, Nadia Nedjah, and Miguel Figueroa. Modern development meth-
ods and tools for embedded reconfigurable systems: A survey. Integrated VLSI
Journal, 43(1):1–33, 2010.

[30] Andreas Kühn, Felix Madlener, and Sorin A. Huss. Resource Manage-
ment for Dynamic Reconfigurable Hardware Structures. In 2nd Interna-
tional Workshop on Reconfigurable Communication-centric System-on-Chips
ReCoSoC’06, Montpellier, France, 2006.

[31] William K. Lam. Hardware Design Verification: Simulation and Formal
Method-Based Approaches. Prentice Hall Modern Semiconductor Design Se-
ries. Prentice Hall PTR, 2005. ISBN 0131433474.

[32] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell.
International Journal on Software Tools for Technology Transfer STTT’97, 1
(1-2):134–152, 1997.

[33] Felix Madlener. Entwicklung eines Gargbage-Collectors für rekofigurierbare
Hardwarestrukturen. Master’s thesis, Technische Universität Darmstadt, Ger-
many, 2005.

[34] Felix Madlener, Sorin A. Huss, and Alexander Biedermann. RecDEVS: A Com-
prehensive Model of Computation for Dynamically Reconfigurable Hardware
Systems. In 4th IFAC Workshop on Discrete-Event System Design DESDes’09,
2009.

[35] Felix Madlener, H. Gregor Molter, and Sorin A. Huss. SC-DEVS: An efficient
SystemC Extension for the DEVS Model of Computation. In ACM/IEEE Pro-
ceedings of Design Automation and Test in Europe DATE’09. ACM/IEEE, April
2009.

[36] Felix Madlener, Marc Stoettinger, and Sorin A. Huss. Novel Hardening Tech-
niques against Differential Power Analysis for Multiplication in GF(2n). In
IEEE International Conference on Field-Programmable Technology ICFPT’09,
December 2009.

[37] Felix Madlener, Julia Weingart, and Sorin A. Huss. Verification of Dynami-
cally Reconfigurable Embedded Systems by Model Transformation Rules. In

130 Bibliography

4th IEEE/ACM International Conference on Hardware-Software Codesign and
System Synthesis (CODES+ISSS 2010), 2010.

[38] Ka Lok Man. SystemCF L : a formalism for hardware/software codesign. In
Proceedings of the 2005 European Conference on Circuit Theory and Design,
volume 1, pages 193–196, 2005.

[39] H. Gregor Molter, Felix Madlener, and Sorin A. Huss. A System Level Design
Flow for Embedded Systems based on Model of Computation Mappings. In 4th
IFAC Workshop on Discrete-Event System Design DESDes’09, October 2009.

[40] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-
tronics Magazine, page 4, 1965.

[41] Liliana Morihama, Viviana Pasuello, and Gabriel A. Wainer. Automatic ver-
ification of DEVS models. In Proceedings of SISO Spring Interoperability
Workshop, 2002.

[42] Hiren D. Patel and Sandeep K. Shukla. Towards a heterogeneous simulation
kernel for system-level models: A SystemC kernel for synchronous data flow
models. IEEE Transactions on CAD of Integrated Circuits and Systems, 24(8):
1261–1271, 2005.

[43] Hiren D. Patel, Sandeep K. Shukla, Elliot Mednick, and Rishiyur S. Nikhil.
A rule-based model of computation for SystemC: Integrating SystemC and
Bluespec for co-design. In Proceedings of the ACM and IEEE International
Conference on Formal Methods and Models for Co-Design MEMOCODE’06,
pages 39–48, 2006.

[44] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of con-
current systems in CESAR. In Proceedings of the International Symposium on
Programming, 5th Colloquium, Torino, Italy, April 6-8, 1982, Lecture Notes in
Computer Science, pages 337–351. Springer, 1982. ISBN 3-540-11494-7.

[45] José L. Risco-Martín, Saurabh Mittal, Bernard P. Zeigler, and Jesús M. de la
Cruz. From UML Statecharts to DEVS State Machines using XML. In
IEEE/ACM Conference on Multi-paradigm Modeling and Simulation, 2007.

Bibliography 131

[46] Carsten Rust, Achim Rettberg, and Kai Gossens. From high-level Petri nets
to SystemC. IEEE International Conference on Systems, Man and Cybernetics
2003, 2:1032–1038, 2003. ISSN 1062-922X.

[47] Hesham Saadawi and Gabriel Wainer. On the verification of hybrid DEVS mod-
els. In Proceedings of the 2012 Symposium on Theory and Model Simulation -
DEVS Integative M&S Symposium, pages 21–26, 2012.

[48] Marco Santambragio. Hardware-Software Codesign Methodologies for Dynam-
ically Reconfigurable Systems. PhD thesis, Politecnico Di Milano, Italy, 2008.

[49] Andreas Schallenberg, Andreas Herrholz, Philipp A. Hartmann, Frank Oppen-
heimer, and Wolfgang Nebel. OSSS+R: A framework for application level mod-
elling and synthesis of reconfigurable systems. In ACM/IEEE Proceedings of
the Design and Automation Conference in Europe DATE’09, 2009.

[50] Hui Shang and Gabriel Wainer. A simulation algorithm for dynamic structure
DEVS modeling. In Proceedings of the 38th Conference on Winter Simulation,
WSC ’06, pages 815–822, 2006.

[51] Marc Stöttinger, Felix Madlener, and Sorin A. Huss. Procedures for securing
ecc implementations against differential power analysis using reconfigurable
architectures. In Dynamically Reconfigurable Systems - Architectures, Design
Methods and Applications, pages 305–321. Springer, December 2009. ISBN
978-9-04-813484-7.

[52] Alexander Theisen. Entwurf eines Frameworks für rekonfigurierbare DEVS
Modelle. Master’s thesis, Technische Universität Darmstadt, Germany, 2009.

[53] Florian Thoma, Matthias Kühnle, Phillipe Bonnot, Elena M. Panainte, Koen
Bertels, Sebastian Goller, Axel Schneider, Stéphane Guyetant, Eberhard
Schüler, Klaus D. Müller-Glaser, and Jürgen Becker. Morpheus: Heterogeneous
reconfigurable computing. In International Conference on Field Programmable
Logic and Applications FPL’ 07, pages 409–414, 2007.

[54] Michael Ullmann and Jürgen Becker. Communication concept for adaptive in-
telligent run-time systems supporting distributed reconfigurable embedded sys-
tems. IEEE Parallel and Distributed Processing Symposium, pages 8–pp, 2006.

132 Bibliography

[55] Moshe Y. Vardi. Formal Techniques for SystemC Verification; Position Paper.
In Proceedings of ACM Design Automation Conference DAC’07, pages 188–
192, 2007.

[56] Stamatis Vassiliadis, Stephan Wong, Georgi Gaydadjiev, Koen Bertels, Georgi
Kuzmanov, and Elena M. Panainte. The Molen polymorphic processor. IEEE
Transactions on Computers, 53(11):1363–1375, 2004. ISSN 0018-9340.

[57] Julia Weingart. Verifikation von DEVS Modellen für rekonfigurierbare Sys-
teme. Master’s thesis, Technische Universität Darmstadt, Germany, 2009.

[58] Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer. Theory of Modeling
and Simulation. Academic Press, Inc., 2000. ISBN 0127784551.

Bibliography 133

	Introduction
	Motivation
	Reconfiguration
	Outline of this Thesis

	Previous Own and Related Works
	Model-Driven Design Flows
	Reconfiguration Methodologies
	Verification

	Impact

	System Development of Formally Specified Reconfigurable Systems
	Design Flow Methodologies
	MoC-based High-Level Design Flow
	Design Flow Methodologies for Reconfigurable Systems
	Verification-based Design Flow

	Reconfigurable Architectures
	Behavior and Structure of Reconfigurable Hardware
	Towards a Model of Computation for Reconfigurable Hardware
	Field Programmable Gate Arrays

	RecDEVS: Model of Computation for Reconfigurable Systems
	DEVS Model of Computation
	Classical DEVS
	The DEVS Extension for Ports
	Coupled DEVS
	Parallel DEVS

	Reference DEVS Model of Computation
	Component States
	Ports and Port Coupling
	Output Function
	State Transition

	RecDEVS Model of Computation for Reconfigurable Systems
	Existing Reconfigurable Models
	DSDEVS
	RecDEVS Definition
	Port Coupling and Communication
	Reconfiguration
	Definition of the System Executive C
	Invalid Communication Messages
	Communication Constraints
	Resource Management

	Design Flow Methodologies for RecDEVS-specified Systems
	Horizontal Transformation for System Verification
	System Verification
	The UPPAAL Model Checker
	Model Transformation from RecDEVS to UPPAAL
	Automatic Transformation

	Vertical Design Flow Methodology for System Implementation in SystemC
	SC-DEVS Extension for SystemC
	Extending SC-DEVS towards RecDEVS

	Vertical Design Flow Methodology for a VHDL-based Implementation of RecDEVS
	System Architecture
	Bus System and Protocol
	Arbiter Implementation
	Implementation Results

	Demonstration of Concepts
	Autovision
	CSensor
	CShape
	CContrast
	CTaillight
	Verification Results
	SystemC Results

	Game of Life
	Game of Live for Reconfigurable Systems
	RecDEVS Implementation of Game of Life

	Conclusions and Outlook
	Conclusion
	Outlook

