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Abstract 

Facility location problem is one of the strategic logistical drivers within the supply chain which is 

a hard to solve optimization problem. In this study, we focus on the uncapacitated single-source multi-

product production/distribution facility location problem with the presence of set-up cost. To 

efficiently tackle this decision problem, two lagrangian-based heuristics are proposed one of which 

incorporates integer cuts to strengthen the formulation. Local search operators are also embedded 

within these methods to improve the upper bounds as the search progresses. Three set of instances 

with various characteristics are generated and used to evaluate the performance of the proposed 

algorithms. Encouraging results are obtained when assessed against an ILP formulation using 

CPLEX. The latter is used for generating optimal solutions for small size instances and also as a 

means for producing upper and lower bounds for larger ones when restricted by a limited amount of 

execution time. 
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1. Introduction  

Facility location problem (FLP) is concerned with where to locate a set of facilities and how to 

satisfy customers’ demands from these open facilities so that the total cost which includes the facility 

set up cost as well as the transportation cost is minimized. The facility location problem has many 

applications in various areas such as distribution management, transportation, health and 

telecommunication networks design. The FLP and its variants have received a great deal of attention 

in the literature, for instance see the comprehensive edited books by Drezner and Hamacher (2002), 

and Nickel and Puerto (2005).    

Lagrangian relaxation was first proposed by  Held and Karp (1970, 1971) and proved to be 

successful at solving many classes of optimization problems. In brief, these types of heuristics are 

designed to take into account the advantages of both exact and heuristic methods. The idea is to relax 

the set of constraints that are known to make the problem hard to solve by adding these to the 

objective function with a penalty attached. The transformed problem then becomes easier to solve 

optimally for which its optimal objective function value is a lower bound for the original problem. A 

feasible solution of the original problem (an upper bound in case of a minimization problem) is 

derived using a usually quick heuristic method. The penalties are then adjusted and the process 

continues until the gap between the best lower and upper bounds is reasonably small. This approach, 

which fits into the class of mathematically-based heuristics (see Salhi (2006) for an overview on 

heuristic search) was applied successfully in solving several classes of FLPs.  

We briefly mention those studies on location problems which are closely related to ours and for 

which Lagrangian relaxation (LR) was used. Capacitated FLP (CFLP) is a well-known variant of FLP 

where facilities have restricted capacity. A variant of CFLP is the single-source CFLP (SSCFLP) 

where each customer has to be served from one facility only. Different solution methods have been 

proposed to deal with this problem, some are based on LR, see Barcelo and Casanovas (1984); 

Klincewicz and Luss (1986); Beasley (1993); Sridharan (1993); Agar and Salhi (1998); Hindi and 

Pienkosz (1999); Rönnqvist et al. (1999), Holmberg et al. (1999),  Cortinhal and Captivo (2003), and 

Chen and Ting (2008).  

There are obviously other types of FLPs for which LR was also used and which are worth 

mentioning here. For instance, Pirkul and Jayaraman (1998) use LR to solve a multi-commodity, 

multi-plant capacitated FLP. The authors split the problem into two separate problems where each one 

was reduced to a continuous knapsack problem. Tragantalerngsak et al. (1997) develop LR for a two-

echelon SSCFLP. Mazzola and Neebe (1999) propose an interesting hybrid approach that combines 

branch and bound with LR heuristic to solve a multi-product CFLP. Tragantalerngsak et al. (2000) use 

a similar hybrid that solves a two-echelon SSCFLP to optimality. Klose (2000) put forward a 
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Lagrangian relax-and-cut approach for the two-stage CFLP for which the relaxation is strengthened 

by adding valid inequalities. Shen (2005) formulates a general multi-commodity supply chain design 

as a nonlinear integer programming and exploits the structure of the problem to apply LR problem. 

Recently, Li et al. (2009) solve a CFLP with multi-commodity flow by integrating LR with Tabu 

Search. Lin (2009) proposes a hybrid heuristic of Lagrangian relaxation embedded with branch and 

bound to tackle a stochastic version of the single-source capacitated facility location problem with 

service level requirements. 

The purpose of the study is twofold: (i) to investigate a new variant of FLP by considering single-

source and multi-product which has many practical applications, and (ii) to develop LR heuristics that 

incorporate new effective cuts and local searches to make the general LR methodology more efficient 

for solving hard combinatorial problems in general and this class of location problems in particular. 

The remainder of this paper is organized as follows. In Section 2, the problem definition with its 

mathematical formulation and possible applications are given. In Section 3, the proposed LR 

heuristics are presented followed by three local searches in Section 4. Our computational results are 

provided in Section 5 and finally in Section 6, our conclusions are summarized along with highlights 

of some research avenues.  

 

2. Problem definition 

Let  n,...,J 1  be the set of customers whose demands need to be satisfied by a subset of 

uncapacitated facilities chosen from the set of potential sites  m,...,I 1 . Each customer requires a 

number of commodities taken from the set of product types  p,...,K 1 and each open facility can 

produce one product type only.  The corresponding demand of each product type for a given customer 

must be assigned to only one facility. There is no restriction on the capacity of the facilities. There is a 

fixed setup cost for each facility as well as a variable production cost that depends on the type and the 

amount of product.  

The objective is to minimize the total cost which includes the transportation cost, the production 

cost and the setup cost. We aim to determine (i) the set of facilities to be opened, (ii) the product type 

to be produced at each of the open facilities (one type only) and finally (iii) the set of customers to be 

served by an open facility for a given type of product.   

The notations and the mathematical model are given below: 

 

Parameters 

jkq  Demand of product type k for customer j, KkJj   ,    
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ijkc  Transportation cost of product type k taken from facility i to customer j, 

KkJjIi   , ,  

ikf  Set up cost of producing product type k at facility i, KkIi    ,      

ikp             Unit production cost of product type k at facility i, KkIi    ,    

 

Decision variables 
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where ( )ijk ijk ik jkc p q   .  

     The objective function (1) minimizes the total cost, constraint set (2) ensures that each customer is 

served by one facility for each product type only, constraint set (3) indicates that the assignments are 

made to the open facilities only and constraint set (4) implies that at most one product type is 

produced at an open facility. Constraint set (5) denotes the binary nature of the decision variables.  

The proposed problem is reducible to the uncapacitated FLP by considering a single product. The 

latter is known to be NP-hard (Nemhauser and Wolsey, 1999) and hence the proposed problem is also 

NP-hard.  

The proposed model has many applications in manufacturing. For instance, a company may 

produce numerous types of products (e.g., high tech companies). However, to take advantages of the 

economy of scale and multiple benefits due to sole sourcing such as the required training, reductions 

in product variation, cost of quality, and fixed cost of machinery, the company has to centralize the 

production in a single facility. This strategic view point leads to the question of where to establish 

such a facility with specific requirement (a given product) and which incurs setup and production 
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costs to produce a specific product. Thus, the objective is to find the location of all types of facilities 

such that the overall distribution cost, production cost and setup cost is minimized.    

 

3. The LR heuristic 

    The main concept of Lagrangian relaxation is to identify the set of complicating constraints of a 

general integer program (i.e., those which increase the computational complexity of the solution 

approach) and to introduce them into the objective function in a Lagrangian fashion by attaching unit 

penalties to them so to guide the search toward reducing the amount of constraints violation. This 

transformation should be constructed to render the new problem easier to solve optimally and hence 

produce lower bounds (see the interesting seminal paper by Geoffrion (1974)). The penalties are 

adjusted based on the violation and the process is repeated until a suitable stopping criterion (for 

instance, when the gap between the best lower and upper bound is small, a negligible change in the 

solution configuration is detected, the maximum computing time is reached, among others.) is met.  

In our formulation, the variable upper bound constraint as defined by the constraint set (3) proves 

to be a facet for the convex hull of the feasible region of (IP), see (Nemhauser and Wolsey, 1999). 

This constraint set (3) links the x and y variables and hence can be considered to be a set of 

complicating constraints that could contribute in making the original problem harder to solve. In 

addition, this set of constraints (3), if relaxed, also has the advantage to leave the remaining problem 

with a structure which happens to be easier to exploit and hence to solve. 

  Based on the above reasoning, the constraint set (3) is dualized to provide a lower bound. A 

corresponding upper bound is then derived by exploiting the problem structure through the resolution 

of a sub-problem of (IP). In other words, at each iteration of the Lagrangian relaxation, lower and 

upper bounds are concurrently generated for (IP). The construction of efficient cuts and the adaptation 

of well-known local searches are then embedded into the search to enhance the overall efficiency of 

the proposed LR approaches. 

 

3.1. Lagrangian relaxation heuristic 1 (LR1)  

The Lagrangian relaxation problem can be expressed as follows: 
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where α  stands for the array of Lagrange multipliers.  

The above formulation can be decomposed into two separable and easier to solve sub-problems, 

which we refer to as Sub1 and Sub2, respectively. The first sub-problem, Sub1, which is expressed in 

terms of the x  binary variables only, is given below:  
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This formulation postulates that for some given products, the customers are to be assigned to the 

set of potential sites regardless of whether or not a potential site contains an open facility. In addition, 

Sub1 does not restrict each facility to produce one type of product only. As a result, an optimal 

solution of this sub-problem may violate the constraints sets (3) and (4) leading to an improper pattern 

of distribution. Sub1 consists of np  multiple choice problems that can be solved  optimally 

(Guignard, 2003) using a simple inspection procedure. Here, it suffices to compare the objective 

coefficients for n,...,j 1  and p,...,k 1 leading to 1
jki

x̂  where  ijkijk
Ii

αi 


argmin  for 

n,...,j 1  and p,...,k 1 .  

The second sub-problem (Sub2), which is defined in terms of the y binary variables only, is given 

as follows: 
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Sub2 deals with the assignment of the open facilities to the products provided that the constraint 
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To be more specific, the linear combination of the constraint set (3), which can be considered as a 

surrogate set of constraints, derives a set of valid inequalities, cutting away those solutions of Sub2 

which are infeasible for (IP). As such, the revised sub-problem, including the valid inequalities, is 

expressed as follows: 
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Re-Sub2 is introduced to generate feasible solutions y for (IP) given that all the products are now 

guaranteed to be produced by at least one open facility. More importantly, this revised sub-problem 

also results in generating tighter lower bounds for (IP). Note that Re-Sub2 has similarities with the 

assignment problem with the important addition that the coefficient matrix induced by the set of 

constraints (6), matches the Total Unimodularity properties as explained in Nemhauser and Wolsey 

(1999). As a consequence, Re-Sub2 satisfies the sufficient conditions of a sharp integer program 

where the linear programming relaxation offers systematically integral solutions as well. In other 

words, we can solve this sub-problem optimally and efficiently just as a pure linear programming 

problem.  

As mentioned above, solving the second Lagrangian sub-problem, Re-Sub2, leads to a feasible 

solution y . The following integer program then obtains the best feasible solution x  corresponding to 

the decision variable y : 
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where y stands for the optimal solution of Re-Sub2. This ensures the satisfaction of constraint set 

(3). Note that the feasibility problem (FP) is the same as (IP) with the exception that y  is replaced 

by y . Note that the optimal solution x can be easily found by setting 1
jki

x  for  ijk
Ii k

i 


 argmin  

and  m,...,i,yiI ikk 1    1  for p,...,k 1 .  

Here, the assignment of the products to the open facilities is provided by the Lagrangian relaxation 

while solving (FP) which provides the best assignment of the customers to these open facilities.  

 

3.1. Subgradient optimization 

Subgradient optimization is a commonly used method to update the Lagrange multipliers. In fact, 

subgradient optimization can be considered as an adapted version of the gradient method. Here, the 

subgradients are used instead of the gradients where a subgradient direction is obtained by minimizing 
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the dual function. The theoretical convergence properties of the subgradient method are given by Held 

et al. (1974). 

Step 0    Initialize the parameters ( 0
α , 0 , CountL , MaxL , , Maxiter and Maxtime). Set LBDZ and 

UBDZ . 
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Step 4      (a) Update the Lagrange multipliers using Eqs (7) to (9).  

 (b) If MaxCount LL  set 21 /tt   and 0CountL , otherwise set tt  1 .  

                (c) Set 1 tt  and return to Step 1. 

Fig. 1. The overall framework of the proposed algorithm (LR1). 

 

Regarding the dualized constraint set (constraint set (3)), the subgradient of the dual function with 

respect to the Lagrange multipliers 
t

ijkα  is represented as follows:  
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denote the best upper and lower bounds for (IP) that are obtained by the LR 

heuristic respectively, t  refers to a control parameter with 20  t  and t  stands for the iteration 

number. The step by step of our LR heuristic, which we call LR1, is outlined in Fig. 1. 

     In this study, t  
is halved whenever the LR heuristic fails to improve the lower bound for a 

number of consecutive iterations (i.e., MaxCount LL   where CountL  refers to the number of consecutive 

iterations without improvement in the lower bound and MaxL represents the maximum allowed number 

of consecutive iterations without improvement). 

 

3.3. Lagrangian relaxation heuristic 2 (LR2) 

The Lagrangian relaxation attempts to reduce the violation of constraint set (3) through updating 

the Lagrange multipliers. Nevertheless, this set of constraints links the variables x  and y . Therefore, 

such a correspondence becomes hard to maintain when dualizing this set of constraints. To overcome 

this limitation, we intend to tighten the polyhedron of the Lagrangian relaxation invoking the integer 

cuts which are usually known as the canonical cuts. 

 Consider the alternative formulation of the feasibility problem which we call (AFP) for short: 
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 Note that the canonical constraints, in spite of tightening the Lagrangian feasible region, do also 

make the sub problem Tight-Sub2 harder to solve as the Lagrangian heuristic proceeds. To reduce 

such a burden, we apply the non-accumulating method proposed by Gzara and Erkut (2009) in which 

only one canonical cut is kept at each iteration. In other words, at the first iteration of the LR 

heuristic, Re-Sub2 is solved without considering any canonical cut. From iteration t  onward, we set 

 pkm iykiB t
ik

t 1,...,  ,1,...,,1 ),(   if UBD
t ZZ FP  holds true, and 

1 tt BB   otherwise. We 

can say that Tight-Sub2 keeps a typical canonical cut until the Lagrangian heuristic succeeds in 

improving the upper bound.  

(AFP) successively generates a feasible integer solution for (IP) as a potential upper bound within 

the LR heuristic. This solution is considered as an incumbent if it improves the upper bound (see Fig. 

1). Unfortunately, the possibility of cycling may also occur as an already found integer feasible 

solution may be revisited after a certain number of iterations before optimality is reached. The main 

advantage of the canonical cut is to avoid such a repetition as it discards the current incumbent 
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solution along with all other inferior feasible solutions. Specifically, when mB t  holds true, it 

implies that all the facilities would contribute to make the products. Hence, due to the fact that the 

facilities can produce one type of product only, the canonical cut can be replaced by 1- 
)(

t

Bi,k

ik By
t




. 

     In summary, the LR heuristic, which we call LR2, adheres to the framework elaborated in Fig. 1 

except that Tight-Sub2 is used instead of Re-Sub2. 

 

Illustrative Example-  

A small example with 3 potential sites, 2 customers and 2 types of products is given in the appendix 

to illustrate the above LR heuristic. For simplicity we provide one full cycle of the method and the 

optimal solution, see Appendix A for details. 

 

4. Strengthening the upper bounds within the search   

Local search methods have been widely used to improve the quality of the solutions, see for 

instance Agar and Salhi (1998), and  Ahuja et al. (2004). In this section, we develop three local 

searches that are integrated into the proposed LR heuristic. These are used to improve the upper 

bounds by exploring the neighborhood of these obtained solutions. These local searches are the 

modified version of some well-known classical local searches (see, Cortinhal and Captivo (2003)) 

wherein multi products are taken into account. Here, a composite heuristic consisting of these three 

local searches is devised. In Figs 2 to 4, the location of the facilities and customers are shown by 

squares and black points respectively, and each color is represented by one type of products.   

(i) In the first local search, ‘swap’, an open facility, i1, is removed and a closed facility, i2, with 

the same product type is opened. Obviously, all products assigned to facility i1 should be 

assigned to facility i2. All closed facilities are tested one at a time and the one (if any) with 

the least cost is chosen to replace one of the open facilities, see Fig. 2. The complexity of 

this local search is ))(( 00 mmmO  where om represents the number of open facilities. 

 

 

 

 

 

 

 

Fig. 2. The swap move. 

 

i1 

 
i2 

 

i4 

 

i3 

 
i5 

 

i1 

 

i2 

 

i4 

 

i3 

 
i5 
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(ii) The second local search is ‘exchange’.  Here we assume that product type k1 is produced in 

facility i1 and product k2 is produced in facility i2. Then, we assign all customers from 

facility i1 to facility i2 and vice versa. To maintain feasibility, facility i1 should produce 

product k2 and vice versa, see Fig. 3. This is tested for all combinations leading to a time 

complexity for this local search of )( 2
0mO . 

 

 

 

 

 

 

 

Fig. 3. The exchange move. 

 

(i) In the third local search known as ‘add’, a closed facility is opened, and the best type of 

products (if any) which can be produced in this new open facility is selected. Moreover, 

the corresponding demand of those customers that are closer to this new facility are 

assigned accordingly, see Fig. 4. Here, all closed facilities as well as all types of products 

are tested to find the best alternative for the opening of the new facility. The complexity of 

this local search is ))(( 0mmnpO  .  

 

 

 

 

 

 

 

Fig. 4. The add move. 

Based on this composite heuristic, when a better solution is found by a given local search, this is 

considered as the incumbent solution and the same local search is repeated until there is no 

improvement where the next local search starts. After applying all the three local searches, the 

resulting y  is then fed into the feasibility problem (FP) to determine the best corresponding x . The 

cycle reverses back to the first local search and the process continues till there is no improvement 

 

i2 

 

i4 

 

i3 

 
i5 

 

i2 

 

i4 

 

i3 

 
i5 

 

 

i1 

 

i2 

 

i4 

 

i3 

 

i5 
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i2 

 

i4 

 

i3 

 
i5 
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after one full cycle of the application of all the three local searches. In order to speed up the process, 

this composite heuristic is used when a better upper bound is obtained in Step 2b of Fig. 1 only.  

 

5. Computational experiments 

  To the best of our knowledge, there are no instances publicly available for the proposed problem. 

We therefore base the construction of our data sets on modifying instances found in related studies. 

We generated 3 data sets which are used as a platform to assess the performance of our LR heuristics. 

We refer to these sets as three classes where the first one has 17 instances and the remaining two 

consist of 15 instances each. These well-known data sets are available at mpi-inf (2013).   

The proposed algorithms were coded in MATLAB 7 and the programs were run on a Core 2 Due 

@2.4 GHZ Notebook with 2 GB RAM. In order to solve Re-Sub2, and Tight-Sub2, we employed the 

dual simplex and the branch and cut algorithm of CPLEX with all default options for linear 

programming and integer programming methods. In our experiments we set the values of the 

following parameters: 20  , 00 α , 00010. , 1500Maxtime seconds of CPU time, 

1000Maxiter  iterations and 50MaxL .  

We solved the original problem IP by the branch and cut algorithm of CPLEX with automatic cut 

generation capability. To accelerate the computational performance of CPLEX, the barrier algorithm 

was chosen to solve the linear programming relaxation at the root node instead of the dual simplex 

algorithm. Based on our experimental results, the barrier algorithm has a much better performance 

when compared to the dual simplex algorithm especially for large scale location type instances. A 

reduction of approximately tenfold in computation time was observed when solving the initial 

relaxation. For CPLEX, we used default options but to expedite the performance, the optimality gap 

( ) is set to 0.0001 and the maximum solution time is set to 2000 seconds.  

 

5.1. Generation of the data sets 

 

Class I test instances 

    In class I instances, the  number of  potential facilities, the number of customers with their 

respective coordinates and demand of customers were extracted from  the well-known data sets 

provided by Barreto et al. (2007). These are originally used for location-routing problems where 

jd represents the demand of customer j and ijdist
 
indicates the Euclidian distance between facility i 

and customer j. There are 17 instances varying in size from 21 to 117 customers, 5 to 15 potential 
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facilities and 2 to 12 products. We have generated the necessary data for the proposed model using the 

following formulas: 

            ,...,pk,...,nj,...,midist.c ijkijk 1  ; 1  ; 1     0010    

      

 

            
,...,pk,...,mi ik

ki

ki
ik 1  ; 1       )log(

)( 22





















 

                   

 

               
)log(0101 kk.k  for p,...,k 1  ( k is in radian)  

                  ,...,pk,...,miαFf ikik 1   ; 1           )1(   

                  ,...,pk,...,miαSp ikik 1   ; 1           )1(   

                
  ,...,pk,...,njjkdq jjk 1   ;  1    )cos(1( 

  
 

where 

                   

    and 2  , 10
1 1 1

000
mnp

c

FFSFF

m

i

n

j

p

k

ijk
  



  
  

.
 

Class II test instances 

With regard to class II, we have modified two well-known sets of instances originally constructed 

for the uncapacitated FLP. The first one is the data sets presented by Bilde and Krarup (1977). Here, 

the fixed cost values vary from 1000 to 10000.  For most problems, the fixed costs are set to unity for 

all facilities whereas the connection costs are randomly and uniformly generated from a chosen range.  

In the second one, the instances are generated by Kochetov and Ivanenko (2005) and known as the 

Euclidian instances. Here, the customer points are randomly chosen in a square with a side of 7000. 

There are 15 instances having 80 to 100 customers, 30 to 100 potential sites and 15 to 40 products. 

The opening costs are denoted by 3000iF  for m,...,i 1 . The other parameters are generated based 

on the following formulas  

 
p,...,kk.k 1)log(00 

  

(k in radian) 

 
8 1,..., ; 1,..., ; 1,...,ijk k ijc dist i m j n k p    

   

              ,...,pk,...,mik/iF.f iik 1   ; 1       )cos(10    

 
  ,...,pk,...,mikiFp iik 1   ; 1       )/sin(1.0    

 
8(5 cos( )) 1,..., ; 1,...jkq jk j n k p      

where )(  , are non-negative control parameters related to the proportions of fixed cost, 

production cost and transportation cost. 

Through our empirical examination, we found that both the fixed cost and the production cost have 

a substantial impact on the complexity of the problem. This observation has inspired us to generate 

other instances by testing several values of   
and  . In this class, we set  and   in a well chosen 
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range so to produce relatively more difficult instances as will be shown by their respective high 

optimality gap values.  

 

Class III test instances 

In this class, we modified the 15 instances of class II to assess the impact of the parameters on the 

optimality gap (i.e., GAP), and to find out whether or not LR2 is more effective than LR1. These 

generated instances are made available at CLHO (2013).  

 

        ,...,pkm,...,iFf ik 1  ; 1    0    

        ,...,pk,...,miFpik 1   ; 1    0   

 
,...,pk,...,njjk.q jk 1  ; 1    ))sin(15(12010   

               where     
mnp

c

F

m

i

n

j

p

k

ijk
  


1 1 1

0  

 

 

5.2. Computational Results 

Let LB (LR1) and UB (LR1) denote the lower and upper bounds of the first Lagrangian relaxation 

(LR1) respectively whereas LB (LR2) and UB (LR2) refer to LR2. In a similar way, LB (CPLEX) and 

UB (CPLEX) represent the lower and upper bounds found by CPLEX. Similarly, LB (LR1+), UB 

(LR1+), LB (LR2+) and UB (LR2+) represent the lower and upper bounds for LR1 and LR2 with the 

addition of local search. The best upper bound among all the proposed methods including CPLEX is 

denoted by UB (BEST).  For small size instances this refers to the optimal solution found by CPLEX. 

Let GAP(X) represents the gap in (%) for method X between its best upper and lower bounds 

denoted by UB(X) and LB(X) respectively (X refers to CPLEX, LR, or LR+ where LR denotes either 

LR1 or LR2).  

)UB(

)LB(-)UB(
100)GAP(

X

XX
X 

 

   

 
 

Similarly Dev(X) represents the deviation in % between the upper bound found by method X and the 

overall best upper bound UB (BEST). This is defined as 

 

UB( ) - UB(BEST)
Dev( ) 100

UB(BEST)

X
X 

 

 

Tables 1-3 summarize the computational results for the three classes but detailed information is 

available based on request. In each table, the last five rows show the number of best solutions, the 
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average of each column, the standard deviation, the number of solutions with a deviation less than 

0.1%, and the number of solutions with a deviation of less than 1%.  

 

Class I results 

In Table 1, we have compared the results of Lagrangian heuristics as well as CPLEX for class I. 

The results indicate that CPLEX reaches the optimal solution in all instances with an average time of 

1.32 seconds. This shows that CPLEX is efficient to handle this set of small size instances. Regarding 

LR1 with and without local searches, the average optimality gaps are 0.021 and 0.022 only with an 

average deviation of 0.001 for both. With regard to LR2 and LR2 with local search, the average 

optimality gaps are 0.024 and 0.022 but the average deviations are only 0.001 and 0.000 respectively 

showing that LR2 with local search achieved optimality in all the 17 instances except in one instance 

where a negligible deviation is observed (i.e., instance # 10). This reinforces the idea that 

incorporating local searches within LR does improve the upper bound. It was also observed that those 

good quality solutions can be generated at the beginning of the search which could be used as a guide 

for controlling the number of iterations if necessary. In summary, the performance of LR2 with local 

search is superior in comparison to the other LR heuristics. However, for these instances though it 

obtains the optimal solutions, it requires relatively more CPU time than CPLEX. This feature of 

CPLEX, as will be demonstrated in the next two classes, will not be maintained.  

 

Class II results 

The obtained results in Table 2 show that CPLEX is not capable of dealing with this set of 

instances in a reasonable amount of computation time. This deficiency is reflected by the weak upper 

bound found in some cases though the lower bound of CPLEX remains relatively tighter than ours. 

The average optimality gap and deviation of CPLEX are 7.45, and 0.76 respectively. LR1 without and 

with local searches produce average optimality gaps of 8.38 and 8.25 with corresponding average 

deviations of 1.05 and 0.77, respectively. Concerning LR2 without and with local search, the average 

optimality gaps are 8.44 and 8.21, and the average deviations are 1.1 and 0.74, respectively. It is 

shown that the increase in the number of products drastically impacts the practical difficulty in 

solving the problem. This is illustrated by the sharp increase in the optimality gap. As in class I, the 

performance of LR2 with local search outperforms other heuristic methods in terms of the average 

optimality gap as well as the percentage deviation. It can be observed that this method also 

outperforms CPLEX in terms of average deviation but CPLEX has a better performance in terms of 

average optimality gap which is mainly due to the tighter lower bound of CPLEX. In this class, we 
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can observe not only a sharp increase in the computation time required by CPLEX but also a 

deterioration in the quality of its upper bound.  

 

Class III results 

We have presented the class III instances to assess the impact of the parameters on the level of 

difficulty in solving the problem. The obtained results in Table 3 indicate that the average optimality 

gap of CPLEX is 8.90 with a corresponding average deviation of 3.81, respectively. The average 

optimality gaps of LR1 without and with local searches are 7.77 and 6.24 and the average deviations 

are 2.12 and 0.16. Similarly LR2, without and with local search, produces average optimality gaps of 

7.69 and 6.79, and average deviations of 2.02 and 0.84, respectively.  

This class underlines the fact that the classical formulation using CPLEX becomes less and less 

appropriate when solving difficult instances especially in terms of determining good upper bounds. In 

some cases, CPLEX cannot even reach a feasible solution within the maximum allowed time of 2000 

seconds. Again here, the results reinforce the idea that incorporating local searches can have a positive 

impact on improving the quality of the solutions in terms of optimality gap as well as the percentage 

deviations. All the LR heuristics outperform CPLEX in terms of both the average optimality gap and 

the average deviation. LR2 provides better results than LR1 indicating that the canonical cuts are 

effective. Nevertheless, according to these results, LR1 combined with the local search has shown to 

be slightly better than the other proposed LR heuristics in terms of both optimality gap and average 

deviation. However, LR2 with local search still dominates CPLEX and the other LR heuristics in 

terms of the number of best upper bounds.  

Another observation is that the decrease in the variance of the fixed cost parameters leads to 

generating powerful cuts for LR2 as this aims to avoid exploring already considered facilities due to 

the canonical cuts. This is mainly because Re-Sub2 is converted equivalently to an integer program in 

which the Lagrange multipliers guide the search toward the neighborhood of the optimal solution. 

Such a case may exert a repetition after a number of successive iterations.  

Also, it can be noted that the duality gap increases when the values of the parameters   and  are 

reduced. On the other hand when  and   
increase, the fixed cost becomes relatively high and as a 

result the number of open facilities will systematically and relatively be smaller and hence easier to 

find optimally. It can also be noted that by decreasing the production costs, the number of product 

types increases which makes it harder for the search to reach the optimal product assignment. 
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  Table 1  

The computational results for class I instances.  
 

    
  CPLEX +     LR1   LR1+   LR2   LR2+ 

# n m P 
 

UB CPU(s)  
 

GAP Dev CPU(s) 
 

GAP Dev CPU(s) 
 

GAP Dev CPU(s) 
 

GAP Dev CPU(s) 

1 21 5 2 
 

48760.68 0.05  
 

0.010 0.000 1.04 
 

0.010 0.000 0.51 
 

0.009 0.000 0.97 
 

0.009 0.000 0.67 

2 22 5 3 
 

22440.72 0.19  
 

0.010 0.000 1.25 
 

0.010 0.000 1.19 
 

0.009 0.000 0.94 
 

0.010 0.000 1.69 

3 29 5 4 
 

55761.30 0.08  
 

0.008 0.000 0.79 
 

0.010 0.000 1.82 
 

0.008 0.000 0.86 
 

0.010 0.000 1.84 

4 32 5 5 
 

114349.69 0.17  
 

0.008 0.000 16.82 
 

0.010 0.000 19.23 
 

0.008 0.000 11.88 
 

0.010 0.000 11.43 

5 36 5 5 
 

3582.29 0.22  
 

0.010 0.000 1.96 
 

0.010 0.000 3.97 
 

0.009 0.000 3.54 
 

0.009 0.000 4.27 

6 50 5 5 
 

3161.75 0.26  
 

0.009 0.000 2.51 
 

0.010 0.000 4.56 
 

0.010 0.000 3.47 
 

0.010 0.000 4.12 

7 75 10 8 
 

12075.28 2.02  
 

0.009 0.000 15.02 
 

0.010 0.000 28.63 
 

0.010 0.000 23.67 
 

0.013 0.000 66.08 

8 100 10 9 
 

13135.73 3.01  
 

0.009 0.000 39.49 
 

0.010 0.000 48.71 
 

0.009 0.000 17.90 
 

0.010 0.000 66.72 

9 12 2 2 
 

524.43 0.01  
 

0.007 0.000 0.49 
 

0.007 0.000 0.32 
 

0.000 0.000 0.18 
 

0.000 0.000 0.10 

10 55 15 12 
 

13143.04 2.36  
 

0.004 0.001 50.66 
 

0.023 0.019 63.95 
 

0.007 0.002 49.91 
 

0.010 0.001 24.67 

11 85 7 6 
 

10128.93 0.70  
 

0.009 0.000 5.43 
 

0.010 0.000 6.12 
 

0.009 0.000 4.53 
 

0.010 0.000 13.71 

12 318 4 4 
 

31146511.76 0.90  
 

0.005 0.000 6.21 
 

0.005 0.000 6.24 
 

0.003 0.000 3.99 
 

0.003 0.000 4.02 

13 27 5 2 
 

26699.36 0.11  
 

0.010 0.000 1.30 
 

0.010 0.000 1.03 
 

0.010 0.000 0.46 
 

0.010 0.000 0.38 

14 34 8 6 
 

89316.89 1.21  
 

0.010 0.000 14.95 
 

0.010 0.000 49.60 
 

0.010 0.000 27.37 
 

0.010 0.000 50.92 

15 88 8 8 
 

380294636.11 1.38  
 

0.092 0.000 71.68 
 

0.119 0.000 67.88 
 

0.118 0.000 84.82 
 

0.082 0.000 109.40 

16 150 10 10 
 

5312709655.55 4.25  
 

0.134 0.023 130.12 
 

0.088 0.000 154.01 
 

0.148 0.010 175.52 
 

0.121 0.000 180.80 

17 117 14 12 
 

24546.82 5.49  

 
0.017 0.000 149.73 

 
0.030 0.000 147.72 

 
0.037 0.000 225.01 

 
0.044 0.000 176.56 

      
  

                
# Best solutions 

   
17   

  
15 

   
16 

   
15 

   
16 

 
Ave.         1.32    0.021 0.001 29.97   0.022 0.001 35.62   0.024 0.001 37.35   0.022 0.000 42.20 

Std.     1.62   0.035 0.005 46.2  0.031 0.004 49.25  0.041 0.002 65.78  0.032 0.000 60.18 

Prob. (0.1%) *         17    17    17    17  

Prob. (1%) **         17    17    17    17  
+ CPLEX guarantees the optimal solution for all instances. 

* The number of instances whose deviations dip below 0.1%. 
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** The number of instances whose deviations dip below 1%. 

* The number of instances whose deviations dip below 0.1%. 

** The number of instances whose deviations dip below 1%. 

 

 

 

 

 

 

 

Table 2 

The computational results for class II instances. 
 

         
CPLEX 

 
LR1 

 
LR1+ 

 
LR2 

 
LR2+ 

# n m p Ƞ ν UB(BEST) LB(BEST) 
 

GAP Dev CPU(s) 
 

GAP Dev CPU(s) 
 

GAP Dev CPU(s) 
 

GAP Dev CPU(s) 
 

GAP Dev CPU(s) 

B1.2 100 50 20 4 5 4646350.02 4204368.18 
 

9.69 0.19 2000 
 

10.15 0.00 270.08 
 

10.34 0.19 330.25 
 

10.15 0.00 322.00 
 

10.34 0.19 324.84 

B1.4 100 50 25 1 4 7252438.01 6659568.29 
 

10.16 2.21 2000 
 

9.65 0.43 384.94 
 

8.98 0.00 406.13 
 

9.65 0.43 387.84 
 

8.98 0.00 416.88 

B1.6 100 50 30 0 3 10338547.73 9853587.03 
 

4.78 0.09 2000 
 

5.23 0.00 394.12 
 

6.15 0.85 496.57 
 

5.99 0.57 476.32 
 

5.94 0.74 457.40 

                            
C1.1 100 50 25 3 4 6751291.49 5645216.66 

 
16.38 0.00 2000 

 
20.38 3.92 283.55 

 
20.28 3.38 316.39 

 
20.38 3.92 397.16 

 
20.28 3.38 437.35 

C1.3 100 50 30 0.3 3 9865435.37 8413468.82 
 

15.76 1.23 2000 
 

15.76 0.17 373.13 
 

15.89 0.00 440.81 
 

15.76 0.17 407.82 
 

15.89 0.00 457.09 

C1.5 100 50 35 0 2 13434197.00 12129724.10 
 

10.19 0.54 2000 
 

12.09 1.52 419.43 
 

11.54 0.40 477.22 
 

12.13 1.59 477.17 
 

11.13 0.00 603.1 

                            
D1.1 80 30 27 5 2 8740157.655 8466238.63 

 
3.18 0.05 2000 

 
4.21 0.10 298.60 

 
4.11 0.00 305.99 

 
4.21 0.10 320.66 

 
4.11 0.00 326 

D5.5 80 30 28 2 1 17434782.03 17434782.03 
 

0.00 0.00 33.43 
 

0.36 0.06 245.54 
 

0.63 0.11 270.41 
 

0.50 0.12 303.28 
 

0.63 0.11 327.7 

D10.10 80 30 29 0.01 1 48574841.16 48574841.16 
 

0.00 0.00 31.12 
 

0.10 0.01 292.62 
 

0.53 0.21 280.78 
 

0.11 0.01 349.07 
 

0.53 0.21 367.85 

                            
E1.2 100 50 30 4 5 9779846.02 7815656.61 

 
24.18 5.40 2000 

 
21.39 0.00 399.11 

 
22.67 1.38 424.01 

 
21.39 0.00 432.22 

 
22.67 1.38 519.180 

E5.4 100 50 35 0.2 4 14071557.74 13014296.45 
 

8.62 1.22 2000 
 

8.18 0.00 427.78 
 

8.41 0.30 459.22 
 

8.18 0.00 523.48 
 

8.41 0.30 574.380 

E9.8 100 50 40 0.01 3 21850868.66 21523697.46 
 

1.50 0.00 2000 
 

2.42 0.67 645.38 
 

2.40 0.55 659.30 
 

2.42 0.67 534.09 
 

2.40 0.55 626.38 

                            
511EuclS 100 100 25 5 4 28650738.26 27544949.18 

 
3.86 0.00 2000 

 
9.72 6.13 596.24 

 
7.42 3.39 730.00 

 
9.72 6.13 711.47 

 
7.42 3.39 847.48 

1511EuclS 100 100 20 0.8 3 18276778.59 17734127.61 
 

3.48 0.53 2000 
 

5.72 2.64 431.63 
 

3.38 0.00 391.65 
 

5.72 2.64 407.24 
 

3.38 0.00 562.77 

2511EuclS 100 100 15 0.2 2 10754899.72 10754464.04 
 

0.00 0.00 209.312 
 

0.29 0.09 329.22 
 

1.05 0.80 386.41 
 

0.29 0.09 362.47 
 

1.05 0.80 380.78 

                            
#  Best solutions 

       
12 6 

  
2 4 

  
0 4 

  
3 3 

  
0 5 

 
Ave. 

        
7.45 0.76 1618.26 

 
8.38 1.05 386.09 

 
8.25 0.77 425.01 

 
8.44 1.10 427.49 

 
8.21 0.74 481.95 

Std.         7.10 1.43 791.22  6.84 1.82 113.41  6.95 1.13 130.87  6.81 1.80 106.14  6.94 1.14 143.70 

Prob. (0.1%) *          8    8    4    6    5  

Prob. (1%) **          11    11    12    11    12  
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Table 3 

The computational results for class III instances.  
 

         
CPLEX 

 
LR1 

 
LR1+ 

 
LR2 

 
LR2+ 

# N M p Ƞ ν UB(BEST) LB(BEST) 
 

GAP Dev CPU(s) 
 

GAP Dev CPU(s) 
 

GAP Dev CPU(s) 
 

GAP Dev CPU(s) 
 

GAP Dev CPU(s) 

B1.2 100 50 30 2 1 80752.62 73469.17 
 

10.01 1.10 2000  
9.65 0.36 322.76 

 
9.31 0.00 437.80 

 
9.90 0.64 368.38 

 
9.81 0.30 425.84 

B1.2 100 50 30 2 0.8 73074.29 65431.66 
 

11.10 0.72 2000  
11.93 0.96 349.89 

 
11.12 0.37 399.34 

 
10.88 0.04 388.77 

 
11.07 0.00 403.07 

B1.2 100 50 30 2 0.4 56723.46 49356.62 
 

14.20 1.41 2000  
14.61 1.35 353.07 

 
14.32 0.94 346.99 

 
13.70 0.00 350.78 

 
14.36 1.01 421.09 

           
 

                
C1.3 100 50 30 5 10 451939.79 446545.10 

 
- - 2000  

1.36 0.09 293.97  
1.24 0.00 370.21 

 
1.34 0.10 365.81 

 
1.27 0.00 444.76 

C1.3 100 50 30 5 1 92852.55 87457.87 
 

- - 2000  
6.42 0.46 285.62  

6.03 0.00 356.26 
 

6.64 0.62 372.00 
 

6.04 0.00 360.32 

C1.3 100 50 30 5 0.1 56943.82 51549.14 
 

- - 2000  
10.45 0.77 338.27 

 
10.07 0.00 335.27 

 
10.43 0.74 380.01 

 
9.84 0.00 371.58 

           
 

                
D10.10 80 30 25 0.1 20 517245.50 515108.76 

 
0.48 0.07 2000  

0.53 0.04 164.25 
 

0.49 0.03 168.91 
 

0.49 0.03 178.70 
 

0.46 0.00 205.28 

D10.10 80 30 25 0.1 1 47142.96 44984.60 
 

5.18 0.63 2000  
5.44 0.28 183.60 

 
5.55 0.14 176.82 

 
5.38 0.28 226.99 

 
5.12 0.00 225.27 

D10.10 80 30 25 0.1 0.05 23441.75 21517.07 
 

10.10 2.10 2000  
10.30 1.01 175.64  

10.16 0.00 173.70 
 

11.33 1.34 198.06 
 

10.97 1.06 203.36 

           
 

                
E1.2 100 50 25 10 5 210948.44 210174.66 

 
8.71 9.14 2000  

0.48 0.05 312.36  
0.46 0.00 340.18  

0.51 0.04 377.07 
 

0.73 0.00 360.95 

E1.2 100 50 25 1 5 183596.21 177656.94 
 

3.62 0.40 2000  
3.65 0.32 379.90  

3.56 0.27 389.15  
3.88 0.57 356.86 

 
3.29 0.00 329.48 

E1.2 100 50 25 0.1 5 179858.91 173421.51 
 

3.71 0.14 2000  
3.68 0.00 358.12 

 
3.72 0.04 479.93 

 
3.69 0.01 319.74 

 
3.93 0.19 420.11 

           
 

                
1511EuclS 100 100 20 20 0.1 396809.87 396809.87 

 
0.00 0.00 173.83  

0.79 0.02 390.89 
 

0.92 0.00 348.16  
0.12 0.04 383.59 

 
0.26 0.00 408.94 

1511EuclS 100 100 20 1 0.1 135738.68 124200.30 
 

22.05 17.38 2000  
15.25 7.76 399.10 

 
9.28 0.65 563.93 

 
14.69 6.93 499.89 

 
8.69 0.00 519.14 

1511EuclS 100 100 20 0.05 0.1 79008.11 73320.75 
 

17.64 12.68 2000  
21.99 18.26 412.96 

 
7.40 0.00 584.45 

 
22.41 18.85 501.77 

 
15.96 10.07 508.41 

                                

# Best solutions 
        

1 1 
  

1 1 
  

6 7 
  

3 1 
  

5 7 
 

Ave. 
        

8.90+ 3.81+ 1878.25 
 

7.77 2.12 314.69 
 

6.24 0.16 364.74 
 

7.69 2.02 351.23 
 

6.79 0.84 373.84 

Std.         6.8 5.88 471.51  6.41 4.86 81.28  4.41 0.28 125.54  6.41 4.97 92.32  5.16 2.57 98.301 

Prob. (0.1%)*          2    5    10    7    10  

Prob. (1%) **          6    11    15    12    12  

+ The average is given for the instances with known upper bound. 

- Indicates that no integer solution was found within 2000 seconds. 

* The number of instances whose deviations dip below 0.1%. 

** The number of instances whose deviations dip below 1%.  
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6.  Conclusions and Suggestions 

In this paper, we investigated the uncapacitated single-source multi-product 

production/distribution facility location problem with setup cost. Two LR heuristics are developed and 

strengthened by the introduction of new cuts to improve the bounds. In addition, we incorporated 

some local searches to improve the upper bounds which in turn speed up the search process. The 

proposed algorithms are tested on a large set of instances with various characteristics. Computational 

results indicate that the proposed LR heuristics are capable of dealing with this difficult location 

problem efficiently. Encouraging results are obtained when tested against ILP formulation using 

CPLEX. Our numerical results suggest that the inclusion of the canonical cuts improve the bounds on 

LR2 though not always tight enough to dominate LR1.   This study reinforces the idea that LR based 

heuristics can be a powerful tool for tackling hard combinatorial problems in general and complex 

variants of FLPs in particular. As a by-product of this study, our approaches also provide, for this 

particular class of FLP, competitive results for a large set of instances well suited for future 

benchmarking purposes.  

The following research avenues are, in our view, worth highlighting. It can be noted that further 

reduction in computational time could be achieved in the implementation of our local searches if 

reduced neighborhoods were used instead of the entire neighborhoods. The extraction of strong valid 

integer cuts, derived from the problem formulation, within the Lagrangian relaxation can also be an 

interesting research direction. One exciting research avenue would be to design and analyze a hybrid 

search where meta-heuristics such as variable neighborhood search or GRASP are used as our local 

search operators within the LR approaches. As these powerful meta-heuristics usually require 

relatively more execution time, identifying when to use them and for how long can be one of the 

questions that need answering. In terms of related location problems, the proposed approaches can be 

extended to cater for the case where the facilities have a limited capacity or when the firm is restricted 

by budget constraints.  
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Appendix A.    A simple illustrative example using LR 

     The following small example is used to illustrate the use of our LR algorithm. We 

consider 3 potential sites, 2 customers and 2 product types whose parameters are given 

below: 

3m , 2 pn  ; 300323122211211  ffffff  

96  38  78  69 78 29 323122211211 .p,.p,.p,.p, .p, .p   

5  10 26 25 22211211  q,q, q, q  

796  98 9 25 122121112111 .c,.c, c, .c   

515  511 512 719 222221212211 .c,.c, .c, .c   

56  410 419 817 322321312311 .c,.c, .c, .c   

The LR algorithm 

Step 0: Initialization 

     Set  00 α , 20  , 00010. , 000010. , LBDZ and UBDZ  and 0t . 

Step 1 

a)  Solve the first sub-problem (Sub1): 

                         

  21;21  ; 321                           0,1

21   21            1

     

Min

321

33221

2

1

2

1

1

,  k ,j,,.ix

,.k,.jxxx

.t.s

xxx

ijk

jkjkjk

jkjkjkjkjk

j k

jk






 



 

     According to the multiple choice approach, the optimum solution is: 021076)0(Sub1 .Z    

     0  1 1 1 0
122

0
121

0
112

0
111  x̂,x̂, x̂, x̂        00

222
0
221

0
212

0
211  x̂x̂x̂x̂     1 0 0

322
0
321

0
312

0
311  x̂,x̂x̂x̂  

b) Solve the second sub-problem (Re-Sub2): 

                         

  21  ; 321           0,1

21           1

         321            1

     

Min
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     The optimal solution is equal to 600)0(Sub2-Re Z and 1  0 0
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0
22

0
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0
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0
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0
11  yy,yyyy  
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c) At this point, the Lagrangian relaxation obtains 021676600021076)0(LR ..Z  as the 

lower bound:  

d)   021676021676max ..,ZZ LBDLBD   

Step 2
 

    a) To obtain a feasible integer solution and thus an upper bound, given 0
y , tackle the 

feasibility problem FP: 

                          

  2121  ; 3,21             0,1

  21  0, 1 , 1 , 0 , 0, 0

21   21            1

     ..     

Min

231322122111

321

312233221

2

1

2

1

1

, ;  k,j,ix

 ,jxxxxxx

,.k,.jxxx

ts

ffxxx

ijk

jjjjjj

jkjkjk

jkjkjkjkjk

j k

jk








 



 

     Using the multiple choice approach, the optimum solution of the feasibility problem is  

     212117)( 0
FP .yZ   and 00

122
0
121

0
112

0
111  xxxx ;  1  0 0

222
0
212

0
221

0
211  xx,xx ;         

      0  1 0
322

0
312

0
321

0
311  xx,xx  

b) The upper bound value is modified as   212117212117min ..,ZZ UBDUBD  . 

Step 3 

In this step, the stopping criterion is checked. Since 0001020 ..
Z

ZZ

UBD

LBDUBD 


and 

0.0000120   holds, the algorithm continues and Step 4 follows. 

Step 4 

     Update the Lagrange multipliers using Eqs. (9) to (11) as follows: 

      0  3110 1
122

1
121

1
112

1
111   ,.  ; 01

222
1
221

1
212

1
211   ; 

      3110  0 1
322

1
321

1
312

1
311 .,    

     Set 1.982/1.011  , 1 tt   and go back to Step 1. 

     The process continues for 7 iterations where the optimum solution is obtained with   

    081819.ZUBD  and 081819.ZLBD  . 

  


