
1

Solving Large p-Median Problems
by a Multistage Hybrid Approach
Using Demand Points Aggregation
and Variable Neighbourhood
Search*

Chandra A. Irawan • Said Salhi

Abstract A hybridisation of a clustering-based technique and of a Variable Neighbourhood

Search (VNS) is designed to solve large-scale p-median problems. The approach is based on a

multi-stage methodology where learning from previous stages is taken into account when

tackling the next stage. Each stage is made up of several subproblems that are solved by a fast

procedure to produce good feasible solutions. Within each stage, the solutions returned are put

together to make up a new promising subset of potential facilities. This augmented p-median

problem is then solved by VNS. As these problems used aggregation, a cost evaluation based on

the original demand points instead of aggregation is computed for each of the ‘aggregation’-

based solution. The one yielding the least cost is then selected and its chosen facilities included

into the next stages. This multi-stage process is repeated several times until a certain criterion is

met. This approach is enhanced by an efficient way to aggregate the data and a neighbourhood

reduction scheme when allocating demand points to their nearest facilities. The proposed

approach is tested, using various values of p, on the largest data sets from the literature with up

to 89,600 demand points with encouraging results.

Keywords Variable neighbourhood search • Location problem • Aggregation • p-median

Chandra A. Irawan • Said Salhi

Centre for Logistics and Heuristic Optimisation (CLHO)

Kent Business School

University of Kent, United Kingdom

Chandra: e-mail: ca259@kent.ac.uk

Said: s.salhi@kent.ac.uk

*This research has been partially supported by the Ministry of Science and Innovation of Spain
under the research project ECO2011-24927, in part financed by the European Regional
Development Fund (ERDF), and the Fundacion Seneca under the research project 15254/PI/10,
and also by the Algerian Ministry of Education (Sciences Fondamentales), under research project
PNR 8/U160/64.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/16268414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ca259@kent.ac.uk
mailto:s.salhi@kent.ac.uk

2

1. Introduction

The objective of the p-median problem, which is also known as the minisum problem,

is to find the location of p facilities among n discrete potential sites in such a way to

minimise the sum of the distances between customers and their associated facilities. In

certain circumstances, p-median problems may consist of a large number of demand

points. These problems arise, for example, in urban or regional areas where the demand

points are individual private residences. Francis et al. [7] stated that it may be

sometimes impossible and time consuming to solve optimally the location problems

involving a large number of demand points. It is quite common to aggregate demand

points when solving large scale location problems. The idea behind the aggregation is to

reduce the number of demand points to be small enough that an optimiser can be used.

In this case, the original location problem is partitioned into smaller problems which can

be solved within a reasonable amount of computing time. However, this aggregation

may introduce errors in the data used by location models and models output. In the next

section, we review those researchers that have studied the effects of aggregation on the

solution of location problems.

The p-median problem is originally formulated by ReVelle and Swain [16] as follows:

Minimise
 Ii Jj

ijiji Ydw (1)

Subject to

IiY
j

ij 1 (2)

Jj

j pX (3)

jiXY jij ,,0 (4)

jX j }1,0{ (5)

jiYij ,}1,0{ (6)

Where

(I,J) : set of customers }),...,1{(nIi and set of potential sites }),...,1{(MJj

 (ie : In and JM) respectively

iw : demand or weight of customer i;

ijd : distance between customer i and potential site j;

p : number of facilities to locate;

3

ijY = 1, if customer i is fully served by a facility at site j and = 0 otherwise;

jX = 1, if a facility is opened at potential site j and = 0 otherwise;

The objective function is to minimise the total demand-weighted distance. Constraint

(2) ensures that each customer i is assigned to one facility only. Constraint (3)

guarantees that the number of facilities to be located is equal to p facilities. Constraint

(4) states that the demand at customer i can only be allocated to a facility j (Yij = 1) only

if a facility is opened at site j (Xj = 1).

In this paper, we establish a method that dynamically solves the large scale p-median

problems tested in the literature using a multistage approach. This is based on

aggregating demand points and using a powerful meta-heuristic such as Variable

Neighbourhood Search (VNS). The paper is organized as follows. Section 2 describes a

brief review of the related literature. The proposed methodology is presented in Section

3. In Section 4, the computational results are given. Our conclusion is summarised with a

highlight of some suggestions in the last section.

2. Literature Review

This section provides an overview of aggregation techniques for large scale p-median

problems, see Francis et al. [7] for an excellent review on this topic. The authors

described aggregation error measurements and surveyed some of the principal papers

about aggregation errors. They also classified the review into two main categories,

namely median problems and centre/covering problems.

Table 1 describes our notation in location models which are focused on an

aggregation approach, with BSU and ASU being short for Basic Spatial Unit and

Aggregate Spatial Unit respectively.

Aggregation error was first formally defined by Hillsman and Rhoda [11] where three

types of aggregation errors, namely source A, B, and C errors are proposed. These errors

are also usually used in many papers to measure the aggregation scheme performance.

Source A error appears when the distance between an ASU and a facility is used to solve

a facility location problem, instead of the true average distance between a BSU and a

facility. Source B error occurs when a facility is located at an ASU whereas source C error

happens when a BSU is assigned to the wrong facility.

4

Table 1 Notation in location model

Notation Description

N = {1,2,3,...,n}

C = (ncccc ,...,,, 321)

M = {1,2,3,...,m}

C’ = (mcccc ,...,,, 321)

Nk

p

F

F’

),(jid

),(ˆ jkd

),(),(
~

kcidkid

the set of all BSUs

the list of BSUs (ci = i for simplicity)

the set of all ASUs

the list of ASUs (rc : representative point of the r
th

 ASU)

the set of BSU in the k
th

 ASU, k = {1,2,3,...,m} with NN
m

k k
 1

the number of facilities to be located

the optimal locations of the p facilities found with the original model

(i.e., full model)

the optimal locations of the p facilities found with the aggregated

location model

the distance between the i
th

 BSU and the j
th

 BSU

the distance between the k
th

 ASU and the j
th

 potential facility

(in our study, each ASU acts as a potential facility)

the distance between the i
th

 BSU and the k
th

 ASU

):(CFf

):(CFf

):(CFf

objective function evaluated using F based on the original problem

objective function evaluated using F‘ based on the original problem

objective function evaluated using F‘ based on the aggregated

problem

A method for eliminating source A and source B errors is introduced by Current and

Schilling [3]. The method emphasized the way to measure the weighted travel distances

in the p-median problem. To eliminate source A errors, a distance between the kth ASU

and the jth facility is set as),(ˆ jkd = kNi i jidw),(instead of),(
~

 kjdNk with Nk being the

set of aggregated BSUs in the kth ASU. The former equation measures the true weighted

travel distance to the potential facility from all BSUs. This measurement method can also

eliminate source B errors. Note that this method cannot eliminate source C errors.

Casillas [2] showed that the A, B, and C errors cause two types of errors, namely the

cost error)):():'((CFfCFfce and the optimality error)):():((CFfCFfoe . It

is found that the optimality error was small for small p, but increased when the values of

p and m were large. Hodgson and Neuman [13] introduced a Geographical Information

System (GIS) method for eliminating source C error. The method spatially disaggregates

data as needed during the solution procedure (“on the fly”) using Voronoi polygon. A

median row-column aggregation method was given by Francis et al. [6] to find an

aggregation which gives a small error bound. Hodgson et al. [14] studied the aggregation

error effects on the discrete-space p-median model and introduced source D error in

addition to the A, B, and C errors. This new error appears when a BSU is also a potential

facility location. An earlier review on the issue of aggregation errors for the p-median

5

problem was provided by Erkut and Bozkaya [5]. Data surrogation error in p-median

models was studied by Hodgson [12]. This error occurs when an inappropriate variable is

used to stand in for a target population’s demand.

Hansen et al. [9] developed a primal-dual VNS metaheuristic for solving large p-

median datasets directly without recourse to any type of sampling. The authors used a

Reduced VNS to get good initial solutions which are then used in their VNS with

decomposition which is aimed to tackle large problems. Qi and Shen [17] studied the

worst-case analysis of demand point aggregation for the Euclidean p-median problem

on the plane. They utilised a “honeycomb heuristic” algorithm introduced by

Papadimitriou [15] to develop a “multi-pattern tiling” to obtain smaller worst-case

aggregation error bounds. Garcia et al. [8] investigated large p-median problems using a

model based on covering formulation which has a small subset of constraints and

variables. This method is very efficient due to an efficient branch-and-bound framework

based on dynamic reliability branching within CPLEX. Their experiments showed that the

method is able to solve large problems especially for large values of p due to the

formulation reduction they proposed. Very recently, an aggregation heuristic was

proposed by Avella et al. [1] where they used a heuristic approach based on Lagrangean

relaxation to deal with large-scale median problems. The core heuristic is defined by a

subset of the most promising variables found according to the Lagrangean reduced costs

associated with the open facilities as well as those associated with the allocation

variables. As this heuristic was failing for small values of p, an aggregation heuristic was

introduced to solve the original problem with a much larger value of open facilities that

are then considered as centres for aggregation. Their results were encouraging when

compared to the ones given in [9].

3. Solution Approach

In this section, we propose an adaptive search method to solve the large scale p-

median problems tested in the literature [1]. The method uses a clustering procedure to

aggregate n BSUs (Basic Spatial Units) into m ASUs (Aggregated Spatial Units), where m

<< n. This is a multistage approach where in each stage (called batch) a number of

aggregated sub-problems of m ASUs each is solved using a fast local search which we

call the “Mini VNS”. This generates a number of ‘promising’ facilities that are put

together as potential sites. This augmented p-median problem is then solved with VNS

6

using still the aggregated problem. All the obtained solutions are re-evaluated for the

original problem (i.e. all demand points) by incorporating an efficient reduction scheme.

The best solution is then fed into the next stage. The process is repeated for future

stages while adding the location of previously chosen facilities as potential sites. Once

the process is stabilised (no improvement), a local search using the original problem is

then carried out. An illustration of our methodology is presented in Fig. 1. The main

steps of this method are given in Fig. 2 but more details are presented in the subsequent

subsections. These include the mini VNS, the full VNS, the reduction scheme, and the

local search. We refer to this method as the Hybrid Multistage Heuristic (HMH).

Fig. 1 An Illustration of the Hybrid Multistage Heuristic (HMH)

Batch 1 Batch 2 Batch 3

. . .
Batch B

1

2

3

.

.

.

T

An aggregated problem (m demand points)

Solving the aggregated p-median problem using “Mini VNS (m, p)”

The obtained facilities location (tF) found by “Mini VNS (m, p)”, t=1,…,T

Allocating all demand points in C to the nearest point in tF

The objective function ():(CFft) calculated using tF based on the original problem

An aggregated problem made up of all solutions (Lb =
T
t tF

1
)

Solving the aggregated p-median problem using a full VNS (|Lb|, p) with |Lb| potential sites

The obtained facilities location (bF) found by the full VNS (|Lb|, p)

Allocating all demand points in C to the nearest point in bF

The objective function ():(CFfb) calculated using bF based on the original problem

The selected facilities from the solution with the smallest):(CFf

Feeding the facilities found in to the next batches

7

Fig. 2 The main steps of the Hybrid Multistage Heuristic (HMH)

3.1. Determining the initial parameters (Step 1 of Fig. 2)

Firstly, we need to determine the number of batches (B). We assume that learning

from previous batches will enhance the solution quality as extra ‘useful’ information are

fed into the next batches. However, note that at some point, learning may not be very

effective as the quality of solution may not necessarily get considerably better any more.

Secondly, we also need to choose the number of ASUs (m). The quality of the

solution is affected by m. The higher the value of m is, the higher is the chance in getting

a better solution. However, a higher value increases the computing time and requires a

larger computer memory.

Step 1. Set the number of batches (B), the number of ASUs (m), and the number of
samples for each batch (T). Set Lb = Ø, b = (1, …, B), where Lb denotes a list
of distinct facilities obtained in batch b. Set S = Ø, where S is a list of
promising facility locations.

Step 2. Construct Cells covering all demand points based on m.

Step 3. For each batch, say b = (1, …, B).

Step 3a For each sample, say t = (1, …, T)

(i). Aggregate BSUs into m ASUs including the already found |S| facility
locations, construct m clusters, and calculate the distance),(ˆ jkd ,

k=1,..,m; j=1,…,m.

(ii). Solve the aggregated p-median problem using a “Mini VNS (m, p)”. Let
):(CFf t be the cost and store the obtained facility locations (tF)

into Lb, where
T

t tb FL
1

 and),...,,(21
t
p

tt
tF . All duplicate

locations are obviously discarded when using

Step 3b Construct |Lb| clusters around the facilities in Lb, and calculate the
distance),(ˆ jkd , k=1,.., |Lb|; j=1,…, |Lb|. Solve the p-median problem

with VNS (|Lb|, p). Let):(CFfb be the cost and bF the obtained

facility locations.

Step 3c Add the promising facilities location into S. If):(CFfb <

},...,1),:({ TtCFfMin t then set bFSS U else * U tFSS with

)) , ((* CFfMinArgt tt
t

 .

Step 4. Starting from the obtained solution, solve the original p-median problem
using a new local search (n, p) to be explained later.

8

Finally, the number of samples (T) per batch also influences the quality of the

solution. If T is high, the opportunity to get a good solution may increase as well due to

diversification but at the expense of a longer computing time.

3.2. The construction of the cells (Step 2 of Fig. 2)

In this section, we describe a procedure to construct cells which will cover all demand

points. We call this the Basic Cell Approach (BCA). The information of these cells will be

used for determining m ASUs. The BCA is adopted from Salhi and Gamal [18]. The aim of

constructing these cells is to overcome the weakness of the random process in dealing

with clustered demand points. Here, we enhance their method in the following three

ways. Firstly, BCA constructs cL x cW square cells that cover the entire study area and

records the cumulative probability distribution of the number of demand points in the

cells. In [18], c0 x c0 rectangular cells are constructed and the number of cells in column

and row are the same. In our method, we construct cL x cW square cells and the number

of cells in column and row are not necessary the same. Secondly, we pseudo randomly

choose m cells based on the cumulative probability distribution. Thirdly, in each of the

selected cell, we choose randomly a demand point as an ASU. The following are the

main steps of the BCA:

 Construct cL x cW square cells of length and determine the number of cells (we aim

to have more or less m cells). The following formula is used to compute .

minmax

minmax

minmax

yy

xx
m

xx
 (7)

Proof:

As
WL c

yy

c

xx minmaxminmax

 (8)

and our aim is to have m cells, therefore m = cL . cW cW = m / cL

Hence,
m

cyy

c

xx L

L

)(minmaxminmax

minmax

minmax

yy

xx
mcL (9)

Substituting (9) into (8) leads to (7).

The cL and cW can be obtained by /)(minmax yycW and /)(minmax xxcL .

A cell is defined by its bottom-left corner. Let (Xz, Yz), z = 1,…,(cL.cW), denote the

coordinates of the bottom-left corner of the zth cell. The cells are recorded as

9

follows: cell 1 has its bottom-left corner minmin11 ,, yxYX and successive cells,

say cell z as follow:

)mod(,)mod(, minmin WLzz czyczxYX

 Record the number of demand points in each cell, (say cell z) as Nz and determine

its corresponding probability distribution, say Pz = Nz / n, z = 1,…,(cL.cW).

 Generate randomly (0,1) and choose)(~ ~ 1
)(zFzstz with

z
tz ztPF

1)()(.

3.3. The location of the ASUs and the aggregation of the demand points

(Step 3a(i) of Fig. 2)

This section will explain how the m ASUs are determined and the way the distance

),(ˆ jkd k=1,..,m; j=1,…,m, is calculated. The following steps summarise this mechanism.

 Store all the elements of S in C’. Note that in the first batch, |S| = 0.

 Repeat until there are m points in C’.

(a) Choose a random number between 0 and 1, and then determine the

corresponding cell z based on the cumulative probability distribution. Note that

cell z is not the cell that has a point in S as its member.

(b) Choose randomly a demand point in the cell z and store this point in C’.

Duplicated points in C’ are removed.

 Construct m clusters by allocating all demand points (C) to the nearest points in C’.

Record the number of demand points in each cluster, ok , k = 1, …, m, where

no
k k .

 Calculate the approximate distance between all the ASUs using),(
~

),(ˆ kjdojkd k

with j denoting the facility representing the jth ASU acting as a potential site and k

refers to the kth ASU (k, j=1,…,m). To reduce the computing time, we use such

approximate distance measure instead of the real distance as proposed by Current

and Schilling [3].

3.4. The allocation of demand points

We propose an efficient procedure to allocate all demand points (n points) to the

nearest points in C’ (m points). The following two steps constitute our fast procedure:

10

(a) An efficient recording of the Euclidian distance

The way to calculate the Euclidian distance is based on Zoubi and Rawi [20] where

they developed an efficient way for computing silhouette coefficients when

identifying ‘good’ clusters. Note that, the Euclidian distance,

222)()(),(jiji yyxxjid , can also be rewritten as

jijijjii yyxxyxyx 222222 . The terms 22
iii yx and 22

jjj yx

are based on i or j but not both. The authors observe that for each i (i=1,…,n), i

can be computed only once at the outset. It means that when we calculate the

distance, the formulation jijiji yyxxjid 22),(2 is used instead,

yielding a saving in computing time as O(n2) operations are reduced to O(n) only.

However, there is a small fixed cost to compute the i which is negligible

especially when a large number of calls to the distance matrix is needed.

(b) An efficient allocation of points to ASU

Firstly, we need to find the nearest ASU from the kth ASU. Instead of searching for

all points, we limit our search to a smaller subset only. We define the covering

radius as)(kd

, where mkmjjkjkdMinkd ,...,1},,...,1,),,(ˆ{ *5.0)(

. We

allocate all demand points in C to the nearest ASU in C’ using the following rule. If

)(),(
~

kdkid

 then the demand point i is allocated to ASU k, otherwise the point i

will be assigned to its nearest ASU using the classical allocation method. This

reduction scheme will avoid the need for checking all the remaining ASUs. This rule

also guarantees that a wrong allocation of the demand points is not possible.

An Illustrative Example

Fig. 3 illustrates the method of our efficient allocation method where there are 20

BSUs which will be aggregated into 3 ASUs by allocating each BSU to the nearest

ASU. For example, when finding the nearest ASU, BSU 1, 2, …, 5 can be allocated to

(aggregated into) ASU 1 directly without the need for checking all the remaining

ASUs. This is because those BSUs are within the covering area of ASU 1

(5,...,2,1),1()1,(
~

 idid

). On the other hand, BSU 6, 7, 11, 12, 18, 19, and 20 need

the checking of all ASUs as these BSUs are outside the covering area of all ASUs. It

means that those BSUs are allocated to their nearest ASU by the classical allocation

11

method. In other words, we avoided checking 13 out of the 20 BSUs when assigning

them to their nearest ASUs (i.e. a 65% time reduction).

Fig. 3 Illustration of our efficient allocation method

A Small Experiment

We conducted a small experiment to test the performance of our allocation

algorithm. In this experiment, m clusters are built by allocating n demand points to the

nearest ASU location (there are m ASUs). The BIRCH instances, varying in size from n =

25,000 to 89,600, are used. The details of these instances will be given in the

Computational Study section. The results show that our allocation algorithm is much

faster than the traditional one, requiring around 40% (with at most 50%) of the original

time. The summary results are given in Table 2. Bold refers to the solution with the

highest deviation value. These show that our algorithm is more than twice faster than

the traditional one with an average of 111.8%. This saving in computing time is made

significant as our method is an iterative-based approach which avoids to re-compute

already computed parts of the distance function namely the i , i=1,…,n. The %

deviation is defined as:

EM

EMTM
Deviation 100(%) where TM and EM refer to the Traditional and the

Enhancement methods respectively.

ASU

1

ASU

2

ASU

3

BSU

1 BSU

2

BSU

3

BSU

4

BSU

5

BSU

6

BSU

7

BSU8

BSU

9
BSU

10

BSU

11 BSU

12

BSU

13

BSU

14

BSU

15

BSU

16

BSU

17

BSU

18

BSU

19

BSU

20

The nearest ASU

from the k
th

 ASU

The covering

radius ()(kd

)

The covering

area

12

Table 2 Comparison between the Traditional and the Enhancement Methods

Case of BIRCH instances of type 1 Case of BIRCH instances of type 3

TM EM TM EM

25,000 2,500 2,744 1,372 100.00 25,000 2,500 2,811 1,366 105.78

36,000 3,600 6,191 2,979 107.82 36,000 3,600 6,450 3,062 110.65

49,000 4,900 11,748 5,509 113.25 49,000 4,900 12,541 5,770 117.35

64,000 6,400 20,657 9,684 113.31 64,000 6,400 21,494 10,081 113.21

30,000 3,000 4,115 1,996 106.16 30,000 3,000 4,230 1,941 117.93

43,200 4,320 9,125 4,282 113.10 43,200 4,320 9,438 4,393 114.84

58,800 5,880 17,284 8,064 114.34 58,800 5,880 18,092 8,352 116.62

76,800 7,680 29,889 14,269 109.47 76,800 7,680 32,003 14,519 120.42

35,000 3,500 5,753 2,752 109.05 35,000 3,500 6,107 2,881 111.98

50,400 5,040 12,640 5,826 116.96 50,400 5,040 13,464 6,134 119.50

68,600 6,860 22,888 11,015 107.79 68,600 6,860 25,108 11,512 118.10

89,600 8,960 43,883 21,474 104.35 89,600 8,960 44,103 21,941 101.01

TM : Traditional Method

EM : Enhancement Method

Allocating Time

(millisecond)
Deviation

(%)

Allocating Time

(millisecond)n m
Deviation

(%)
n m

3.5. Solving the aggregated problem by the Mini VNS (Step 3a(ii) of Fig. 2)

We solve the aggregated p-median problem with the following local search which we

call “Mini VNS (m, p)”. Here, we reduce the demand points and the potential facility

locations from n points to m points. In this step, we do not use the full VNS procedure to

solve the aggregated problem as there is no guarantee that the solution with a good

objective function in the aggregated problem will also provide a good objective function

value in the disaggregated (original) problem. Moreover, finding the best solution with a

full VNS in the aggregated problem for all samples t = 1,…,T and all batches b = 1,…,B will

be too time consuming. In this study, we adopted a mini VNS made up of one

neighbourhood only. This could obviously be considered as a perturbation enhanced by

a local search. The full VNS will be presented later as it will be used in Step 3b of Fig. 2.

In the Mini VNS, our local search is based on the fast interchange heuristic proposed

by Whitaker [19]. We adapted the algorithm to reduce the computing time further at

the expense of a small loss in quality. Here, when finding the best demand point to be

inserted and to replace facility j, we just look for the demand point served by facility j. In

other words, we restrict the search to the allocated demand points to j only. Moreover,

when calculating the saving from this swapping process, we just include the demand

points served by the neighbouring facilities which we consider to be the α nearest

13

facilities from facility j. In this case, we use α = max{0.1p, 10} which was found

empirically using a small sample. In other words, we opt for such a neighbourhood

reduction as we assume that it is not necessarily worthwhile to swap facility j with a

demand point which is far from facility j. The procedure to find the best demand point

to be swapped with facility j is given in Fig. 4 which we refer to as “FindBestCustomer”.

Fig. 4 The local search procedure “FindBestCustomer”

The Mini VNS algorithm is given in Fig. 5. The shaking is performed by swapping a

randomly chosen facility (say facility j) with a demand point served by facility j which is

obtained by the procedure “FindBestCustomer”. In this mini VNS, for the first batch, p

points from C’ (m demand points) are chosen randomly as the initial solution, but for the

second batch and onward, we use the best solution from the previous batches. The

open facilities (tF) are obtained from the tth sample problem, where

),...,,(21
t
p

tt
tF . The objective function,):(CFft , is calculated using tF on the

original problem and then tF is stored into Lb. All duplicate locations are discarded. This

set of ‘potential’ facility locations can be defined as T
t tb FL 1

 .

Procedure FindBestCustomer (IndexFout, xnow, α, call, a1, a2, loss, BestIndex, BestFins)

 Find the α nearest facilities from facility IndexFout in xnow (do not include facility
IndexFout) and store those facilities in xnear.

 Determine the demand points in call served by xnear and store them into cnear.
Determine the customers served by facility IndexFout, and then store them into
cfacj.

 Find the customer in cnear to be swapped by using the following procedure.
For each demand point i in cfacj do the following:

If (i xnow[IndexFout]) then
Set w = 0 and g = 0 (loss due to the swapping process; negative value =
saving)
For each demand point z in cfacj do the following:

If (d(z,i) < d(z, a1(z))) Set w = w + d(z,i) - d(z, a1(z))
Else

If (d(z,i) < d(z, a2(z))) Set g = g + d(z,i) - d(z, a1(z))
Else g = g + d(z, a2(z)) - d(z, a1(z))

End If
End for z
For each demand point z in cnear

If (d(z,i) < d(z, a1(z))) Set w = w + d(z,i) - d(z, a2(z))
w = w + g
If (w < loss) Set loss = w, BestFins = i, and BestIndex = IndexFout

End If
End for i

 Return loss, BestIndex, BestFins.

14

Fig. 5 The “Mini VNS” (Step 3a(ii) of Fig. 2)

3.6. Solving the aggregated p-median problem with the full VNS (Step 3b

of Fig. 2)

At the end of each batch made up of T samples (T solutions/problems), we take all

obtained facilities from all solutions (Lb). Note that at the beginning of each batch, the

list is empty (i.e. Lb = {Ø}). Each point in Lb acts as an ASU totalling |Lb| ASUs. We then

construct |Lb| clusters by allocating all demand points in C to the nearest points in Lb.

We calculate the distance between each point in Lb using Current and Schilling [3].

The corresponding p-median problem is solved by VNS (|Lb|, p) introduced by

Hansen and Mladenovic [10]. We can afford to use a full VNS here as, in total, we will be

Step 1 Initialization
(a) For the first batch, p points from C’ are chosen randomly as the initial solution.

For the second batch and onward, we use the best solution from the previous
batches. The initial solution is set as xbest.

(b) Calculate the objective function fbest using the aggregated data and find arrays a1
(the nearest facility in xbest from each demand point in C’) and a2 (the second
nearest facility) by allocating all demand points in C’ to the nearest facility in
xbest.

(c) Set xnow = xbest , a1now = a1 , a2now = a2 , fnow = fbest , and α = max{0.1p, 10}.

Step 2 Shaking
(a) Randomly remove a facility from xnow facility xnow[IndexFout]
(b) Set loss = a big positive number (current best loss; negative value = saving)
(c) Find a facility to be inserted (BestFins) by using the procedure

“FindBestCustomer (IndexFout, xnow, α, C’, a1now, a2now, loss, BestIndex, BestFins)”
which is described in Fig. 4.

(d) Set xnow[IndexFout] = BestFins
(e) Calculate the objective function fnow and find arrays a1now (the nearest facility in

xnow from each demand point) and a2now (the second nearest facility) by
allocating all demand points in C’ to the nearest facility in xnow.

Step 3 Local Search

Do the following steps until Imp=false (i.e. No Improvement)

(a) Set Imp = false and loss = big number
(b) For j=1 to p, remove facility j from xnow (facility xnow[j]) and find facility to be

inserted (BestFins) by using the procedure “FindBestCustomer (j, xnow, α, C’,
a1now, a2now, loss, BestIndex, BestFins)”.

(c) Select BestIndex and BestFins as the swapped facilities (i.e. xnow[BestIndex] =
BestFins)

(d) Calculate fnow and find arrays a1now and a2now as in Step 2(e).
(e) If (fnow < fbest) then set Imp = true, xbest = xnow , a1 = a1now , a2 = a2now , fbest = fnow.

End Loop Do

15

needing B runs of VNS only, with |Lb| varying from one batch to another due to

duplications. We use the simple VNS version as the size of the p-median problem (|Lb|,

p) is relatively small. Let bF be the obtained facility locations and):(CFfb the

objective function evaluated using bF on the original problem. In those experiments,

we limit the computing time for solving the problem by VNS to Tvns seconds which we

found empirically to be 1000/20 5.05.025.0 mpnTvns . In this study, we use kmax = p.

In Hansen and Mladenovic [10], the set of neighbourhood structures (Nk), k = 1, 2, …,

kmax is induced by swapping k times a randomly chosen facility with the one in the

current solution obtained by the move procedure of the interchange heuristic

introduced by Whitaker [19]. In local search, the interchange heuristic was applied. Note

that, in [10], they used a best improvement strategy instead of a first improvement as

suggested in [19].

3.7. Local Search for the original problem (Step 4 of Fig. 2)

This step acts as an additional post optimisation to solve the disaggregated problem

(original problem) starting from the best solution found in the previous batches. This

local search is similar to the one in Step 3a(ii) of HMH, except that we do not construct

the distance matrix for all demand points, but those points used in the

“FindBestCustomer” procedure only. In other words, we do not require a large amount

of memory capacity. The procedure of our local search for the disaggregated problem is

given in Fig. 6.

Fig. 6 The Local Search Procedure for Solving the Original Problem

Initialization
 Take the best solution from the previous batches as the initial solution, and store it as

xbest.
 Calculate the objective function fbest and find arrays a1 (the nearest facility in xbest from

each demand point) and a2 (the second nearest facility) by allocating all demand points
(C) to the nearest facility in xbest.

 Set xnow = xbest , a1now = a1 , a2now = a2 , fnow = fbest , and α = max{0.1p, 10} .

Local Search
Apply the local search of Step 3 in Fig. 4, but using C (original demand points) instead of C’
(aggregated demand points).

16

4. Computational Study

A computational study to assess our solution method was conducted. The project

developed to solve the problems is written in C++ .Net 2010. The specification of the

computer used to execute all problems is a PC Intel Core i5 CPU 650@ 3.20GHz of

processor, 4.00 GB of RAM and under Windows 7(32bit). In our computational study, we

use m = 0.1n, B = 5, and T = 10. Those parameters were chosen based on a small

preliminary study. The value of m is found to be large enough to represent the original

problem while being small enough to be solved. This choice provides an acceptable

performance for both the quality of the solution and the computational effort. The value

of B and T are also chosen to produce a reasonable number of runs and batches. Also, in

our preliminary study it was observed that the improvement of the solution was getting

relatively small from the 5th batch onward. For instance, on the 2nd batch onward, the

rate of improvement of the solution starts to reduce. A larger value of T (T ≥ 10) though

may increase the chance in obtaining a better solution in each batch but requires an

increase in the computing time while making the use of the full VNS less attractive due

to the excessive time required. An extensive testing using a statistical analysis could be

conducted to provide better estimates for m, B, and T if necessary. In this study, to be

consistent when repeating the experiments, the seed for the random generator is set to

a constant, here we set it to m.

Two types of instances are used in our computational experiments. The first set

consists of the BIRCH instances kindly provided by Avella et al. [1] in

http://iv.icc.ru/Papers.hatml (n ranges from 25,000 to 89,600). According to [1], these

instances are the largest instances tested in the literature. The second set contains the

TSP instances from http://www.tsp.gatech.edu/world/countries.html. The instances of

Italy, Sweden, Burma, and China (n ranges from 16,862 to 71,009) are used in our

testing. The results in both cases are summarised in Tables 3 and 4 respectively. For

completeness, we also report the solution with and without Step 4 of Fig. 2.

Case 1: BIRCH instances

The performance of our method is compared with the one of AH short for Avella et

al. [1] and the VNSH short for the VNS of Hansen et al. [9]. The computational results of

both AH and VNSH methods are taken from [1]. Computational experiments for AH and

VNSH were carried out by Avella et al. on an Intel Core 2Quad CPU 2.6 GHz, 4.00 GB of

http://iv.icc.ru/Papers.hatml
http://www.tsp.gatech.edu/world/countries.html

17

RAM and under Windows XP64. To provide a fair comparison in terms of CPU, we use

the following transformation as given by Dongarra [4] with
2

1
12

Nf

Nf
TT , where T1

represents the reported time in Machine 1 and T2 the estimated time in Machine 2. Nf1

and Nf2 denote the number of Mflops in Machines 1 and 2 respectively. The software

used to record the values of Nf1 and Nf2 can be downloaded from

http://www.roylongbottom.org.uk. As we could not obtain precisely the number of

Mflops of the computer used by Avella et al. [1], we provide an approximation based on

a slightly slower but similar computer available to us namely a PC Intel Core 2Duo

2.6GHz, 4 GB of RAM.

Table 3 shows the computational results for our method (HMH) on the BIRCH

instances. The first three columns refer to the problem name, the number of demand

points, and the number of medians. The next three blocks of 4 columns each refer to the

objective function value (Z), the CPU time in seconds and the deviation (in %). The latter

measure is defined as:

b

bc

Z

ZZ
Deviation 100 , where Zc and Zb correspond to the Z value for the

corresponding method ‘c’ and the best Z value respectively.

Method ‘c’ refers to VNSH, AH, HMH, and HMH- (i.e. HMH without the post

optimisation, Step 4 of Fig. 2). ‘Bold’ shows the new best solutions. The results

demonstrate that HMH provides better solutions compared to AH on all these instances.

HMH and VNSH produce similar objective function values on the BIRCH instances of type

1, but HMH yields a slightly better deviation (0.0113%). The proposed approach also

produces 22 out of 24 new best solutions in these BIRCH instances. Note that our

heuristic still outperforms the others even without the post optimisation step (Step 4 of

Fig. 2, i.e. HMH-).

In Avella et al. [1] the upper bound of VNSH on the BIRCH instances of type 3 are not

reported. On these instances, our method (with and without using the post

optimisation) is better than AH. The post optimisation in HMH only improves slightly on

the solution quality (0.0028%) while requiring a lot of extra computing time

(100(827.15-740.52)/740.52 = 11.7%).

http://www.roylongbottom.org.uk/

18

Table 3 Computational Results for the HMH method on BIRCH instances

VNSH AH HMH HMH
_

VNSH AH HMH HMH
_

VNSH AH HMH HMH
_

BIRCH instances of type 1

1 25,000 25 31,363.6 31,282.6 31,229.3 31,229.4 206 447 157 147 0.430 0.171 0.000 0.000

2 36,000 36 45,115.6 45,226.3 45,115.6 45,115.6 590 780 373 366 0.000 0.245 0.000 0.000

3 49,000 49 61,384.1 61,569.7 61,384.1 61,385.7 818 1,216 612 582 0.000 0.302 0.000 0.003

4 64,000 64 79,987.3 80,337.4 80,053.9 80,054.1 1,527 2,258 1,110 1,078 0.000 0.438 0.083 0.083

5 30,000 25 37,564.1 37,617.1 37,563.6 37,563.6 321 559 223 215 0.001 0.142 0.000 0.000

6 43,200 36 54,191.4 54,305.8 54,191.4 54,192.5 767 1,003 434 403 0.000 0.211 0.000 0.002

7 58,800 49 73,626.8 73,854.7 73,626.8 73,627.4 1,454 1,691 792 748 0.000 0.310 0.000 0.001

8 76,800 64 95,989.1 96,393.4 96,039.4 96,040.1 2,931 2,834 1,510 1,414 0.000 0.421 0.052 0.053

9 35,000 25 43,902.1 43,972.1 43,902.1 43,902.1 569 768 353 342 0.000 0.159 0.000 0.000

10 50,400 36 63,169.2 63,329.2 63,169.2 63,169.2 1,185 1,472 645 629 0.000 0.253 0.000 0.000

11 68,600 49 85,833.6 86,082.0 85,833.5 85,833.6 1,787 2,441 1,149 1,083 0.000 0.289 0.000 0.000

12 89,600 64 112,059.2 112,485.2 112,059.2 112,059.2 3,678 4,501 2,069 2,002 0.000 0.380 0.000 0.000

9 0 10 5 Average 1,319.42 1,664.17 785.62 750.87 0.0360 0.2769 0.0113 0.0119

BIRCH instances of type 3

21 25,000 25 17,718.6 17,696.2 17,696.2 527 125 120 0.127 0.000 0.000

22 36,000 36 27,476.1 27,423.0 27,423.1 913 365 350 0.193 0.000 0.000

23 49,000 49 44,282.5 44,202.3 44,202.4 1,760 526 496 0.181 0.000 0.000

24 64,000 64 58,991.5 58,902.3 58,903.0 2,624 1,049 919 0.151 0.000 0.001

25 30,000 25 21,865.1 21,829.9 21,829.9 832 454 447 0.161 0.000 0.000

26 43,200 36 32,391.6 32,339.4 32,339.8 1,873 492 428 0.161 0.000 0.001

27 58,800 49 50,985.1 50,857.9 50,857.9 2,692 899 885 0.250 0.000 0.000

28 76,800 64 66,944.7 66,741.8 66,759.0 4,393 1,892 1,441 0.304 0.000 0.026

29 35,000 25 24,833.7 24,811.0 24,811.5 972 288 257 0.091 0.000 0.002

30 50,400 36 38,162.3 38,102.7 38,102.7 2,297 611 581 0.157 0.000 0.000

31 68,600 49 62,007.4 61,882.4 61,882.5 3,556 1,035 1,015 0.202 0.000 0.000

32 89,600 64 79,245.3 78,777.5 78,779.2 5,779 2,189 1,948 0.594 0.000 0.002

0 12 4 Average 2,351.50 827.15 740.52 0.2145 0.0000 0.0028

T1 2,351.50 827.15 740.52

CPU (Mflops) 3,545.00 4,415.00 4,415.00 using 32 bit SSE MFLOPS

T2 1,888.12 827.15 740.52

HMH
_
 : HMH without post optimisation (i.e. solving the diaggreged p-median problem by local search)

Deviation (%)

best Z

File

Name
n p

Z Time

best Z

19

Table 3 also shows that HMH is a rather fast hybrid multi-stage heuristic. Based on

Dongarra's approach, the computer used to execute our method is more or less 25%

faster than the one used by Avella et al. [1]. Based on the transformed computing time

(T2 in Table 3), our method is found to be more than twice as fast as the one by Avella

et. al. [1] while generating relatively better results.

Case 2: TSP instances

Table 4 shows the computational results for the HMH method on the TSP instances.

Each instance is solved with p varying from 25 to 100 with an increment of 25, totalling

16 instances. When p is large, the problem becomes more complex and hence HMH

needs more time to solve the problem. There is even a more serious handicap when p is

very large and gets closer to the number of ASU (m). Further research is needed to find

the best ratio between m and p. Conducting the local search on the original problem

also improves the objective function value by a tiny fraction of 0.0971% on average at

the expense of a massive average extra computing time (37.29%). However, this extra

step seems to produce better solutions on all the 16 instances which can be used for

further benchmarking if necessary.

Table 4 Computational Results for the HMH method on TSP instances

HMH HMH
_ Deviation (%) HMH HMH

_ Deviation (%)

41 Italy Data 16,862 25 7,411,193.07 7,412,970.62 0.0240 96.82 67.36 43.7277

41 Italy Data 16,862 50 5,110,772.87 5,119,564.37 0.1720 119.01 82.97 43.4384

41 Italy Data 16,862 75 4,088,051.12 4,095,381.98 0.1793 233.80 183.17 27.6422

41 Italy Data 16,862 100 3,492,806.69 3,501,633.36 0.2527 350.33 280.84 24.7415

42 Sweden Data 24,978 25 14,098,813.68 14,124,941.97 0.1853 348.43 177.92 95.8308

42 Sweden Data 24,978 50 9,667,897.85 9,674,202.31 0.0652 278.59 197.02 41.4023

42 Sweden Data 24,978 75 7,783,165.38 7,794,498.86 0.1456 450.64 333.29 35.2096

42 Sweden Data 24,978 100 6,677,281.78 6,691,055.51 0.2063 637.66 472.94 34.8287

43 Burma Data 33,708 25 18,227,047.70 18,228,677.34 0.0089 418.36 346.53 20.7278

43 Burma Data 33,708 50 12,603,717.78 12,607,345.85 0.0288 479.49 354.08 35.4174

43 Burma Data 33,708 75 10,205,835.93 10,212,849.31 0.0687 651.47 452.53 43.9639

43 Burma Data 33,708 100 8,748,238.35 8,757,631.56 0.1074 1,107.66 770.33 43.7913

44 China Data 71,009 25 113,812,852.56 113,816,994.15 0.0036 2,227.85 1,942.25 14.7043

44 China Data 71,009 50 78,633,618.28 78,656,979.00 0.0297 2,901.61 1,929.33 50.3948

44 China Data 71,009 75 64,026,411.05 64,056,314.76 0.0467 3,217.66 2,217.52 45.1019

44 China Data 71,009 100 54,870,043.92 54,885,909.63 0.0289 4,030.75 2,975.09 35.4832

Average 26,216,109.25 26,227,309.41 0.0971 1,096.88 798.95 37.2908

HMH
_
 : HMH without post optimisation (i.e. solving the diaggreged p-median problem by local search)

File

Name
Description n p

Z CPU Time (seconds)

20

5. Conclusion

In this paper, we propose an approach to solve the largest p-median problems from

the literature based on data aggregation and the use of an efficient implementation of

VNS. This is a multi-stage hybrid approach that uses sampling based on aggregation, a

fast procedure to find good solutions, a powerful VNS used on the promising facilities,

and a learning process that feeds information from one stage to another. The

computational results show that our approach performs considerably well as it produces

relatively very good solutions, finds a large number of best solutions (22 out of 24), and

runs quite fast.

The proposed approach was tested on the BIRCH instances (n = 25,000 to 89,600)

and compared to the ones by Avella et al. [1] and Hansen et al. [9]. The results show that

our method gives better solutions compared to the ones by Avella et al. [1] and

relatively similar to the ones by Hansen et al. [9]. In addition, we also assess our method

on several new large TSP instances (n = 16,862 to 71,009) that were not tested before.

Each instance is solved with p varying from 25 to 100 with an increment of 25 with

encouraging results. These can be used for benchmarking purposes in the future.

The proposed methodology of aggregation and optimisation can be extended to

include, in certain steps, more powerful VNS implementations and exact methods based

on reduced formulation whenever found possible. This study could be adapted to

explore other related location problems such as large multisource Weber problems and

also large p-center problems both in the continuous and in the discrete spaces.

Acknowledgment

The authors would like to thank both referees for their useful suggestions that improved both the

content as well as the presentation of the paper.

References

1. Avella, P., Boccia, M., Salerno, S., Vasilyev, I.: An aggregation heuristic for large scale p-

median problem. Comput. Oper. Res. 39(7), 1625-1632 (2012)

2. Casillas, P.: Aggregation problems in location-allocation modeling. In: Gosh, A., Rushton, G.

(eds.) Spatial analysis and location-allocation models, pp. 327-344. Van Nostrand Reinhold,

New York (1987)

21

3. Current, J. R., Schilling, D. A.: Elimination of source A and B errors in p-median location

problems. Geogr. Anal. 19, 95-110 (1987)

4. Dongarra, J. J.: Performance of various computers using standard linear Equation software.

http://www.netlib.org/benchmark/performance.pdf (Accessed online 15 April 2013)

5. Erkut, E., Bozkaya, B.: Analysis of aggregation errors for the p-median problem. Comput.

Oper. Res. 26, 1075-1096 (1999)

6. Francis, R. L., Lowe, T. J., Rayco, M. B.: Row-column aggregation for rectilinear distance p-

median problems. Transp. Sci. 30, 160-174 (1996)

7. Francis, R. L., Lowe, T. J., Rayco, M. B., Tamir, A.: Aggregation error for location models:

survey and analysis. Ann. Oper. Res. 167, 171-208 (2009)

8. Garcia, S., Labbe, M., Marin, A.: Solving large p-median problem with a radius formulation.

INFORMS J. Comput. 23, 546-556 (2010)

9. Hansen, P., Brimberg, J., Urosevic, D., Mladenovic, N.: Solving large p-median clustering

problems by primal-dual variable neighborhood search. Data Min. Knowl. Discov. 19, 351-

375 (2009)

10. Hansen, P., Mladenovic, N.: Variable neighbourhood search for the p-median. Locat. Sci. 5,

207-225 (1997)

11. Hillsman, E. L., Rhoda, R.: Errors in measuring distances from populations to service centers.

Ann. Reg. Sci. 12, 74-88 (1978)

12. Hodgson, M. J.: Data surrogation error in p-median models. Ann. Oper. Res. 110, 153-165

(2002)

13. Hodgson, M. J., Neuman, S.: A GIS approach to eliminating source C aggregation error in p-

median models. Locat. Sci. 1, 155-170 (1993)

14. Hodgson, M. J., Shmulevitz, F., Körkel, M.: Aggregation error effects on the discrete-space p-

median model: The case of Edmonton, Canada. Can. Geogr. 41, 415-428 (1997)

15. Papadimitriou, C. H.: Worst-case and probabilistic analysis of a geometric location problem.

SIAM J. Comput. 10, 542-557 (1981)

16. ReVelle, C.S., R. Swain.: Central Facilities Location. Geogr. Anal. 2, 30–42 (1970)

17. Qi, L., Shen, Z. M.: Worst-case analysis of demand point aggregation for the Euclidean p-

median problem. Eur. J. Oper. Res. 202, 434-443 (2010)

18. Salhi, S., Gamal, M. D. H.: A genetic algorithm based approach for the uncapacitated

continuous location–allocation problem. Ann. Oper. Res. 123, 203-222 (2003)

19. Whitaker, R. A.: A fast algorithm for the greedy interchange for large-scale clustering and

median location problems. INFOR 21, 95-108 (1983)

20. Zoubi, M. B., Rawi, M.: An efficient approach for computing silhouette coefficients. J.

Comput. Sci. 4, 252-255 (2008)

http://www.netlib.org/benchmark/performance.pdf

