
IJDC | Peer-Reviewed Paper

Citations for Software: Providing Identification, Access

and Recognition for Research Software

Laura Soito

University of New Mexico

Lorraine J. Hwang

University of California, Davis

Abstract

Software plays a significant role in modern academic research, yet lacks a similarly

significant presence in the scholarly record. With increasing interest in promoting

reproducible research, curating software as a scholarly resource not only promotes

access to these tools, but also provides recognition for the intellectual efforts that go

into their development. This work reviews existing standards for identifying, promoting

discovery of, and providing credit for software development work. In addition, it shows

how these guidelines have been integrated into existing tools and community cultures,

and provides recommendations for future software curation efforts.

Received 11 February 2016 ~ Revision received 15 September 2016 ~ Accepted 8 November 2016

Correspondence should be addressed to Laura Soito, University Libraries, MSC05 3020, 1 University of New

Mexico, Albuquerque, NM 87131. Email: lsoito@unm.edu

The International Journal of Digital Curation is an international journal committed to scholarly excellence and

dedicated to the advancement of digital curation across a wide range of sectors. The IJDC is published by the

University of Edinburgh on behalf of the Digital Curation Centre. ISSN: 1746-8256. URL: http://www.ijdc.net/

Copyright rests with the authors. This work is released under a Creative Commons Attribution

(UK) Licence, version 2.0. For details please see http://creativecommons.org/licenses/by/2.0/uk/

International Journal of Digital Curation

2016, Vol. 11, Iss. 2, 48–63

48 http://dx.doi.org/10.2218/ijdc.v11i2.390

DOI: 10.2218/ijdc.v11i2.390

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Digital Curation

https://core.ac.uk/display/162675866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:lsoito@unm.edu
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://creativecommons.org/licenses/by/2.0/uk/
http://www.ijdc.net/

doi:10.2218/ijdc.v11i2.390 Soito and Hwang | 49

Introduction

From simple data processing scripts to complex databases and modelling packages,

software and related digital products permeate scholarly research. In surveys,

researchers indicate that using and developing scientific software is important to their

work (Hannay et al., 2009) and that it would be difficult or impossible to conduct

research without these tools (Hettrick et al., 2014). While software is used for many

purposes, research software can be identified as the tools that uniquely assist

compilation, transformation, analysis or modelling, rather than those tools that simply

facilitate communication and presentation of information. Research software includes

commercially available resources as well as free or open software, and may be installed

locally or used on remote systems. There has been research interest in software

produced in academic environments and the mechanisms to promote discoverability,

reuse, and research reproducibility, as well as standards of academic rigor and credit for

these works (Morin et al., 2013; National Science Foundation, 2012; Peng, 2011;

Stodden, Guo and Ma, 2013).

Curation of research software aids in its discoverability and accessibility, which

reduces duplication of effort when developing or using similar research methods. These

practices work hand in hand with scholarly citation to ascribe value to, and provide

recognition for research software. While sharing code creates efficiencies and

robustness, researchers are often hesitant and resist sharing their code due to perceived

issues of code quality, intellectual property rights, and fears of providing user support or

creating undue competition (Barnes, 2010; Cannam, Figueira and Plumbley, 2012;

Millman and Pérez, 2014). Funder, publisher, and institutional policies can help to set

expectations for more open software and analogous data sharing practices, but there is

also recognition that current mechanisms to provide academic credit typically do not

incentivize software development, documentation, or sharing (Morin et al., 2012).

Traditionally, software has been viewed as a technical work or invention, rather than

a scholarly or creative work. Many organizations maintain intellectual property rights to

software, rather than allowing ownership to its creators, as would be the case for journal

articles or books. However, software has many functions in the research process. It can

be developed as a tool that provides utility in a workflow, such as an instrument. It can

also be developed to study a specific research problem. Either way it is an intellectual

contribution to the creative process of research. This contrast between technical and

creative work is also reflected in cases where software support staff, such as developers

and engineers, are often considered technical support rather than researchers. They are

sometimes recognized for authorship of articles or technical reports documenting the

creation of new software, but the significance of their role amongst a long list of authors

is murky. A lack of citation culture and standards for software make it difficult for

individuals and software development groups to receive credit for their contributions.

As a digital resource, software also poses challenges for being cited in a

bibliocentric, or publication-based, citation system. Software may be developed over

decades, with hundreds of people contributing directly or indirectly to its creation. The

potential for determining software provenance is growing as the use of version control

and collaborative software development systems become more prevalent, but in many

cases software development contributions and revision histories have been poorly

documented. Modern software commonly has dependencies and thus relies upon code

IJDC | Peer-Reviewed Paper

50 | Citations for Software doi:10.2218/ijdc.v11i2.390

libraries written by others. When not included in a distribution package these

dependencies lead to unclear software boundaries and questions about what exactly

should be cited. In addition, research software may not be formally published, but rather

made available on websites or only by request. This leads to challenges in finding code

as researchers change institutions, code is abandoned, or collections fall into disarray.

In academic research, software makes significant contributions towards the

development of new knowledge; however, its sometimes complex creation process and

ephemeral nature pose challenges for curation and appropriately crediting software

development efforts. In an effort to better understand and improve practices that support

open sharing of research software, this work seeks to identify existing approaches for

identification, access, and recognition of these resources. More specifically, the aim is to

provide software users, developers, and curators with answers to the following

questions:

1. What are recommended practices or standards for citing or acknowledging

software?

2. What tools have been developed to help software users more easily and

accurately track and indicate how software is used in their work?

3. How have research communities encouraged recognition of software

development and adoption of documentation practices?

Roles for Citations

Citations are used to serve many intertwined roles in the scholarly landscape (Ayers,

2016; Bonazzi et al., 2015; Goble, Allen, Sands and Cruse, 2016; Jones, Matthews,

Gent, Griffin and Tedds, 2016; Smith, Katz, Niemeyer and FORCE11 Software Citation

Working Group, 2016). The following list summarizes ways that citation roles connect

to software and provides a framework for analysing the effectiveness of approaches

identified in the remainder of this paper:

 Identification – Uniquely distinguish a work from others. For software this may

include identifying an algorithm, and the environment in which it is

implemented, compiled and executed.

 Discovery – Guide readers to related works and help identify resources that

fulfil specific needs. While discovery can be facilitated by references to other

works, descriptive metadata located elsewhere can also play a significant role

selecting new tools.

 Access – Provide the necessary information to obtain and use a work. Beyond

providing a place to download or purchase software, this may entail providing

information about licensing, platform requirements, configuration, and

execution.

 Credit – Recognition for the creators, contributors, and originators of a work.

Beyond a code’s developers, recognition may be necessary for entities that

funded or provided leadership for software development, as well as those who

help to maintain and preserve its continued availability.

IJDC | Peer-Reviewed Paper

doi:10.2218/ijdc.v11i2.390 Soito and Hwang | 51

 Appraisal – Evaluate the quality and reliability of a work. The use of citation

and other metrics signal how much attention a work has received. Beyond

simple citation, appraisal may include other processes to provide peer-review or

document the usability and usefulness of software.

 Provenance – Provides a record of the history of the work, including how it was

created, as well as its maintenance, use, and evolution. For software this may

include developer identification, commit and change logs, and documentation.

 Connection – Illustrate and capture relationships between different works.

Software often draws upon other works in its creation and use.

Standards for the Citation of Software

Approaches for the description and acknowledgement of software come from different

information sectors, such as libraries, publishers, professional societies, and software

developers. Metadata schemas for software applications
1
 and source codes

2
 have been

established by Schema.org. The Software Ontology
3
 was developed for describing

software used in biomedical research (Malone et al., 2014) and the EarthCube

Initiative’s OntoSoft
4
 project has emphasized guiding geoscience researchers through

creating metadata for discovery and reuse (Gil, Ratnakar and Garijo, 2015). Software is

accounted for in more general standards, for example as the software resource type in

the DataCite Metadata Schema (DataCite Metadata Working Group, 2015) and

computer program content type in the Resource Description and Access (RDA)

cataloguing standard (Joint Steering Committee, 2013). The reuse of software is also

supported by metadata that capture and allow easy sharing of software licensing terms,

such as those found in the Software Package Data Exchange Specification (SPDX,

2016).

Across disciplines and contexts, there is a lack of consistency in software citation

practices. Howison and Bullard (2016) found a wide range of citation forms including

references to publications, user manuals, project websites, and informal mentions of the

tools in their study of the biological literature. Inconsistency is also reflected in

recommendations that may include referencing articles that discuss the software, direct

citation of the software itself, or simply providing a link to where it can be downloaded

(Figure 1). For example, the Publication Manual of the American Psychological

Association (APA, 2010) suggests book or website-like entries in the reference list for

specialized software and in-text descriptions of the software for standard tools. The

IEEE Editorial Style Manual (2014) bases its approach to software on APA and ISO

guidelines, but provides examples of citing software manuals rather than software as its

own entity. Not all software will have a publication or even an associated manual, thus

guides may recognize and accommodate variations in available information. The ACS

Style Guide provides five different forms for citation for software that can be used on a

case-by-case basis. For example, software that has been published might be cited more

like a book or technical report, while software with minimal information available could

be cited by providing an author or program name (Coghill and Garson, 2006). The

1 Software Application Schema: https://schema.org/SoftwareApplication

2 Software Source Code Schema: https://schema.org/SoftwareSourceCode

3 The Software Ontology: http://theswo.sourceforge.net/

4 OntoSoft: http://www.ontosoft.org/

IJDC | Peer-Reviewed Paper

http://www.ontosoft.org/
http://theswo.sourceforge.net/
https://schema.org/SoftwareSourceCode
https://schema.org/SoftwareApplication

52 | Citations for Software doi:10.2218/ijdc.v11i2.390

American Astronomical Society software policy
5
 suggests two approaches: one based

on the paper describing the software and one using an associated Digital Object

Identifier (DOI). Citations can include both forms of citation along with links to any

appropriate repositories. In addition to the style guidelines provided by many sources,

there are also formalized standards for creating references like ANSI/NISO Z39.29-

2005 (R2010) and ISO 690:2010.

Figure 1. Conflicting citation guidelines are illustrated in examples of citations for the image

processing software ImageJ as recommended by the software documentation,
6
 the

following publishing style guides: APA (American Psychological Association, 2010),

IEEE (IEEE Periodicals, 2014), PhysRev (American Physical Society, 1993) and

software collection guidelines: ASCL (Astrophysics Source Code Library),
7
 eagle-I,

8

RRID (Resource Identification Portal).
9

One feature of software citation that is increasingly recommended is the use of

unique and persistent identifiers, such as DOI. This recommendation is consistent with

the best practices recommended in the Guidelines for Transparency and Openness

Promotion (TOP) in Journal Policies and Practices (TOP Guidelines Committee, 2015)

and Joint Declaration on Data Citation Principles (Data Citation Synthesis Group, 2014).

Force11’s Software Citation Principles also emphasis the use of identification that is

“machine actionable, globally unique, interoperable, and recognized by … researchers”

(Smith et al., 2016). As an alternative to DOI, software associated with disciplinary

databases may be associated with more specific community handles, such as ASCL used

by the Astrophysics Source Code Library (Allen and Schmidt, 2015) or RRID proposed

by Force11’s Resource Identification Initiative (Bandrowski et al., 2015).

5 American Astronomical Society Policy Statement on Software:

http://journals.aas.org/policy/software.html

6 ImageJ, Citing: http://imagej.net/Citing

7 Astrophysics Source Code Library, Citing ASCL code entries: http://ascl.net/wordpress/?page_id=351

8 Citing an eagle-i resource: https://www.eagle-i.net/get-involved/for-researchers/citing-an-eagle-i-

resource/

9 Resource Identification Portal: https://scicrunch.org/resources

IJDC | Peer-Reviewed Paper

https://scicrunch.org/resources
https://www.eagle-i.net/get-involved/for-researchers/citing-an-eagle-i-resource/
https://www.eagle-i.net/get-involved/for-researchers/citing-an-eagle-i-resource/
http://ascl.net/wordpress/?page_id=351
http://imagej.net/Citing
http://journals.aas.org/policy/software.html

doi:10.2218/ijdc.v11i2.390 Soito and Hwang | 53

While there may not be full agreement on how to implement citation standards,

there is reason to exhibit caution and avoid creating new standards for specific projects

or yet another ‘unifying’ standard. Given the existing diversity in software description

standards, projects to connect different standards or extend existing standards to be

more compatible with software are most helpful. CodeMeta,
10

 an extension of the

Mozilla Science Lab’s Code as Research Object project, is working to create a minimal

metadata set for software that can be used to connect popular software repositories, such

as Zenodo and figshare. Similarly, the Research Data Alliance’s Persistent Identifier

Information Types Working Group has created a framework to identify and support

harmonization among different types of persistent identifiers (Weigel, DiLauro and

Zastrow, 2014).

Another issue with using standard citation practices is that acknowledging software,

especially open source tools developed by many people over long periods of time, may

bring into question who should receive credit. The use of version control systems (such

as Git, Subversion, or Mercurial) in software development allows for the tracking of

individual contributions but not necessarily their intrinsic value. Recognition for

software development introduces a discontinuity in that what is a valued product in the

software community (i.e. open, readable, well-documented code) is not equivalent to a

valued product in the academic community (i.e. peer-reviewed publication) (Millman

and Pérez, 2014). Authorship of software development articles poses another challenge

in whether all contributors, no matter how minor their role, should be authors or even

acknowledged or if there should be a threshold (Crusoe et al., 2015). One emerging

approach is to allow article authors to better identify their roles, for example the Paper

Badger
11

 project builds upon the Contributor Roles Taxonomy (CRediT)
12

 and allow

authors of papers to identify research contributions, including those related to software

using digital badges.

Tools to Support Software Citation

Given the complex and conflicting standards for citing software, there has been an

emergence of what might be called metasoftware, that is, software to support software

use. These tools are slowly beginning to help researchers capture information that can

be used to cite or otherwise document how software was used in their work, and to more

thoroughly document the processes used to develop new functionality in software. They

also provide new opportunities for measuring the impact of software in others’ work in

contexts like tenure and promotion review. Wider adoption of these tools will support

many goals of software citation in the academic environment.

At a fundamental level, software developers can take steps to suggest preferred

citations for their code in readme files, license agreements, landing pages, user manuals

or other documentation. To streamline this, some software tools and programming

languages allow users and developers to run code that outputs citation information. For

example, the PETSc numerical libraries embeds code that can identify which portions of

the library are used and outputs appropriate citation information (Knepley, Brown,

McInnes and Smith, 2013). The statistical programming language R supports functions

to assist in compiling citations, as well as information about contributors and their roles

10 CodeMeta: https://github.com/codemeta/codemeta

11 Mozilla Science Lab, Contributorship Badges:

https://www.mozillascience.org/projects/contributorship-badges

12 CRediT: http://casrai.org/CRediT

IJDC | Peer-Reviewed Paper

http://casrai.org/CRediT
https://www.mozillascience.org/projects/contributorship-badges
https://github.com/codemeta/codemeta

54 | Citations for Software doi:10.2218/ijdc.v11i2.390

(Hornik, Murdoch and Zeileis, 2012). These practices are particularly helpful for

recognizing modular pieces of code or libraries with many contributors and

acknowledging software that was built upon to create a new product.

To incorporate these suggestions into required style guidelines, researchers may use

templates or reference management software. The use of flexible citation templates

accommodates the existing variation in mechanisms to cite software, but does not

necessarily guide users to provide all the necessary information to ensure that others can

consistently locate and use cited materials. In alignment with style manuals, many

reference management programs
13

 (e.g. EndNote, Zotero) allow users to create

references to software. Templates for software mirror those for more traditional book

and article sources, but may rename or add fields to account for different roles or

practices, such as using ‘programmer’ rather than ‘author’ or adding fields for system

and version information. Reference management packages like BibTeX and BibLaTeX

do not include an explicit software style, but rather more generic ‘misc’ style format can

be used to cite software (Lehman, Kime, Boruvka and Wright, 2015).

Some bibliographic management tools are capable of automatically capturing

citation related information from source files and resource databases. General

repositories, like Zenodo and figshare, provide suggested citations for software and

other resources. While these approaches allow users to download some information

about these resources to their citation management programs, structured metadata are

not consistently available within software or from the sources where it is obtained.

Repositories may also incorporate tools to help researchers find and export citations for

software, such as AppCiter which is embedded in the SBGrid Consortium’s collection

of supported applications (Socias, Morin, Timony and Sliz, 2015). Given the variation

in guidelines, these tools may provide citations that point to related works like journal

articles and manuals rather than, or in addition to, the software as a discrete research

object.

Indexing of computer software began in the mid-1960s and was taken online in the

early 1980s (Rorvig, 1988). Over the years there have been numerous attempts to

capture and index software products ranging from early efforts, like the Computer

Physics Communications Program Library,
14

 to the recently established Software

Heritage
15

 project. There has also been recent interest in incorporating code and

software into generalized data repositories. For example, GitHub users are encouraged

to make their code citable by obtaining a DOI and archiving their code in Zenodo,
16

whilst Dryad Digital Repository
17

 facilitates software archiving during the journal

submission process. Increasingly, these tools facilitate workflows which allow

researchers to capture and preserve discrete versions of their software alongside their

data and publications.

Going beyond citation, metasoftware can provide both greater documentation of

context for computational research and new opportunities to express scholarship. The

ICERM Workshop on Reproducibility in Computational and Experimental Mathematics

identified tools to help integrate code into documents and e-notebooks, track code

provenance, track versions and collaboration, and capture the computational

environment (Stodden, Bailey et al., 2013). For example, embedding executable code

13 Wikipedia, Comparison of Reference Management Software:

https://en.wikipedia.org/wiki/Comparison_of_reference_management_software

14 Computer Physics Communications Program Library: http://cpc.cs.qub.ac.uk/

15 Software Heritage: https://www.softwareheritage.org/

16 GitHub Guides, Making Your Code Citable: https://guides.github.com/activities/citable-code/

17 Dryad Repository, Submission Integration: http://datadryad.org/pages/submissionIntegration

IJDC | Peer-Reviewed Paper

http://datadryad.org/pages/submissionIntegration
https://guides.github.com/activities/citable-code/
https://www.softwareheritage.org/
http://cpc.cs.qub.ac.uk/
https://en.wikipedia.org/wiki/Comparison_of_reference_management_software

doi:10.2218/ijdc.v11i2.390 Soito and Hwang | 55

and data into research papers not only helps make these resources more accessible to

readers, but also to lower barriers for reviewers to evaluate software as an aspect of the

research.
18

 Similarly, the use of interactive notebooks, like the Jupyter Notebook,
19

allow computational researchers to capture code and contextual resources like input data

or output visualizations. Provenance tracking tools, like Sumatra,
20

 provide automation

in recording details about the software environment. Going further, virtual machines and

cloud computing can be used to capture and give others access to the same

computational environment (Howe, 2012). Docker, a tool for creating software

containers, can be used to not only capture dependent files, but also to capture how the

software was installed and configured (Boettiger, 2015).

While not perfect, there are metrics that can serve as proxies for quantity and quality

of software development, and tools can be used to collect these values for appraisal

purposes. Examples of these metrics include: number of lines of code, number of

downloads, project forks, and ratings (like other scholarly metrics these too can be

gamed). Metrics can be collected via a variety of tools that interact with software,

including GitHub or other software repositories that include rating systems like the

MathWorks File Exchange.
21

 In addition these data can be incorporated into tools such

as ImpactStory,
22

 which collect metrics beyond traditional citation, otherwise known as

altmetrics. Depsy
23

 has also emerged as a prototype for collecting data on software use

and prevalence in social media. These tools help to bring software to a similar visibility

as other more traditional research outputs.

Community Approaches and Practices

Many research communities, such as those centred around a discipline, funding source,

research technique or programing language, have created mechanisms to help promote

software development efforts. Many of these communities have established repositories

or indexes to bring code developed or used in the community to one place. Some host

conferences, workshops, and online forums or mailing lists to promote networking and

exchange of ideas. They may also provide training and work to set standards or

guidelines for work produced by community members. While helpful in bringing people

together to tackle the challenges of software development, these efforts can be inhibited

for reasons like those identified in the astrophysics community: lack of awareness,

unwillingness to contribute, loss of project funding, and need for ongoing updates and

curation (Allen and Schmidt, 2015).

Some communities have developed software collections or registries to promote

more open sharing of code. To build awareness of these collections and encourage

contributions, some repositories are closely tied to journals in the discipline. Journals

may require or encourage that code be deposited as a condition of publication, for

example, agent-based models associated with articles published in Ecology and Society

must be archived in OpenABM,
24

 the computational model library for The Network for

Computational Modeling for SocioEcological Science (CoMSES Net) (Rollins, Barton,

18 Executable Paper Grand Challenge: http://www.executablepapers.com/

19 Project Jupyter: http://jupyter.org/

20 Sumatra: http://neuralensemble.org/sumatra/

21 MathWorks File Exchange: https://www.mathworks.com/matlabcentral/fileexchange/

22 ImpactStory: https://impactstory.org/

23 Depsy: http://depsy.org/

24 OpenABM: https://www.openabm.org

IJDC | Peer-Reviewed Paper

https://www.openabm.org/
http://depsy.org/
https://impactstory.org/
https://www.mathworks.com/matlabcentral/fileexchange/
http://neuralensemble.org/sumatra/
http://jupyter.org/
http://www.executablepapers.com/

56 | Citations for Software doi:10.2218/ijdc.v11i2.390

Bergin, Janssen and Lee, 2014). Another practice to build awareness involves mining

the scholarly literature for software used or developed in the community and adding

these to the software collection, rather than relying solely on voluntary contributions, as

is done with the Astrophysics Source Code Library (Allen and Schmidt, 2015). This

form of active curation is a promising model for tying together an otherwise disjointed

archival system.

Another way to make software easier to cite is to share the software through a

familiar article-like format, often called a software article. Rather than describe a

research problem that was studied using the software, software articles are short reports

containing structured metadata and description connected to code or executable

programs. These articles can be used by researchers to more directly point to the tool or

algorithms used, especially in cases where software would otherwise be treated as an

unpublished work that is not citable. Structured metadata may include details similar to

those found in citations, such as code title, developer names, software license,

programming language used, and system requirements. Narrative sections may contain

context as to why the code was developed, what functionalities it provides, and how the

code has been tested. Source code and executable files are archived by the article

publisher or connected via a persistent identifier link to a software repository. The

Software Sustainability Institute provides examples of both general and discipline-

specific journals for publishing software,
25

 such as Journal of Open Research

Software,
26

 SoftwareX27
 and BMC Source Code for Biology and Medicine.28

 In addition

to providing venues for sharing software, this approach allows software to be indexed in

the same tools that promote discoverability of other academic works.

There are also efforts to establish standards of academic rigor and procedures for

evaluating code. For example, the Advanced Research Consortium has created

guidelines and identifies qualified reviewers to be called upon to evaluate digital

projects in terms of scholarly content and technical standards (Grumbach and Mandell,

2014). CoMSES Net incentivizes creation of high quality metadata and documentation

through a peer-review process leading to certification in the OpenABM library as an

alternative to formal publishing. In this process the code and documentation are

reviewed for adherence to documentation guidelines and it is verified that the model can

be run given provided instructions (Rollins et al., 2014). These efforts pave the way for

researchers working on digital projects to obtain scholarly credit for their work.

While there are many projects and groups considering issues related to software,

there are also efforts to bring people and initiatives together. Force11’s Software

Citation Working Group
29

 and events like the Workshops on Sustainable Software for

Science: Practice and Experiences (WSSSPE)
30

 or the Software Sustainability Institute’s

Collaborations Workshops
31

 involve people from many domains and disciplines. The US

National Institutes of Health hosted a workshop to explore the creation of a Software

Discovery Index to help researchers find, cite, and reuse software (Bonazzi et al., 2015).

The US National Science and Sloan Foundations have brought together researchers

working on software projects through workshops to actively engage and design pilots or

25 Software Sustainability Institute, In which journals should I publish my software?

http://www.software.ac.uk/resources/guides/which-journals-should-i-publish-my-software

26 Journal of Open Research Software: http://openresearchsoftware.metajnl.com/

27 SoftwareX: http://www.journals.elsevier.com/softwarex

28 Source Code for Biology and Medicine: http://www.scfbm.org/

29 Force11 Software Citation Working Group: https://www.force11.org/group/software-citation-working-

group

30 WSSSPE: http://wssspe.researchcomputing.org.uk/

31 Software Sustainability Institute Workshops: http://www.software.ac.uk/community/workshops

IJDC | Peer-Reviewed Paper

http://www.software.ac.uk/community/workshops
http://wssspe.researchcomputing.org.uk/
https://www.force11.org/group/software-citation-working-group
https://www.force11.org/group/software-citation-working-group
http://www.scfbm.org/
http://www.journals.elsevier.com/softwarex
http://openresearchsoftware.metajnl.com/
http://www.software.ac.uk/resources/guides/which-journals-should-i-publish-my-software

doi:10.2218/ijdc.v11i2.390 Soito and Hwang | 57

experiments to address software issues like discoverability and attribution (Ahalt et al.,

2015; Timmes et al., 2015).

Analysis and Recommendations for

Achieving Citation Goals

As illustrated in the previous sections there are many mechanisms that can be utilized to

provide recognition and support curation of research software. However, these

mechanisms do not universally or equally address citation goals. Moving forward in the

support of curated software collections there are a variety of issues stakeholders should

be aware of and many techniques that could be deployed to improve support for

software as an essential research tool.

Identification

The use of unique, persistent, actionable identifiers is essential for capturing and

distinguishing software products. While identifiers are increasingly required by style

guides, these guidelines do not consistently recommend how to address different

versions or instances of software and associated code. References that provide more

specific information, such as version or platform details benefit research reproducibility,

but using identifiers that more generally direct users to a software project provide

greater context, improved flexibility for users, and the ability to capture collective

metrics. Requiring that metadata capture relationships between software entities, such as

[Software B] is a [new Version] of [Software A], is one approach to improving clarity

(Jones et al., 2016). Designating software entities through the use of identifier suffixes

that allow users to select a more specific or broader access point (e.g.

softwareID:1234/v3) provides more flexibility, but may not fully accommodate the

needs of code with many variants or an otherwise complex development history. The

creation of a system that allows users to verify whether they are using the newest

version of software and to alert users to known issues, similar to the information the

service CrossMark
32

 provides for articles, could be indispensable to those seeking

citation metadata and code updates, especially as code is reused further from its original

context.

Access and Discovery

Identifiers are not necessarily sufficient to provide consistent access to software. There

are diverse options in identifiers and standards for citing software, which leads to a lack

of consistency in describing and finding these resources. This can be exacerbated when

software is used across disciplinary boundaries (e.g. the image analysis tool ImageJ

noted in Figure 1) and tools acquire different identifiers and conflicting metadata from

different access points. Community and publisher efforts to mandate the use of

standardized repositories, as is the case for other research products (e.g. the Protein Data

Bank
33

 for macromolecular structural data) would be a starting point for greater and

more consistent access. As software evolves, providing stable points of access through

archives, registries, or (less desirably) software article approaches allows software to be

32 CrossMark: http://www.crossref.org/crossmark/

33 Worldwide Protein Data Bank: http://www.wwpdb.org/

IJDC | Peer-Reviewed Paper

http://www.wwpdb.org/
http://www.crossref.org/crossmark/

58 | Citations for Software doi:10.2218/ijdc.v11i2.390

connected to something less ephemeral and more readily accessed. These systems

support discovery and metadata consistency, and improve understanding and usability

via the capture of software context.

Credit and Appraisal

Credit for software relies not only on standards and technology for supporting software

citation, but also acceptance from multiple communities of stakeholders. Enacting

citation practices is hindered by academic publishers, research review committees, and

other components of the academic landscape that do not yet have systems to recognize

research formats, including software, that fall outside what can be traditionally

published. Creating systems that facilitate the critical evaluation and review of code,

both as technical and intellectual research products, bring greater acceptance of these

works as scholarship. Organizations such as universities and professional societies

should consider investment in software infrastructure that parallels what these

organizations once provided in terms of scholarly presses for publications. Publishers

have already begun this process in the creation of quasi-new formats, such as the

software article. However, by taking advantage of altmetrics or other methods to

measuring software diffusion it becomes possible to bypass the use of journal article

proxies for software. This will require a cultural shift, one that reimagines software as

scholarship, rather than a mere tool to facilitate scholarship.

Provenance and Connection

Capturing provenance and connection can be assisted by metasoftware that incorporates

citation activities into researcher workflows. Learning to do research in new ways can

have a learning curve, and especially with competing demands upon researchers there

may not be significant motivation to change practices that have worked in the past.

Incorporating software citation into existing workflows, such as providing full templates

for citation in reference managers and styles, helps researchers to begin to adapt

practices that are already familiar. The machine executable nature of software and the

ability for it to draw from external libraries, also uniquely positions these resources to

be incorporated into automated workflows. Systems are already being used to capture

the history of a code’s development and can also be used to connect code to metadata

for contributors, their associated institutions and roles, as well as funders, and support

the collection of usage metrics. Future versions of programing languages and software

development tools should better incorporate functions that assist automatic extraction of

citations from software that is used. It might also be possible to create systems that

facilitate the logging of software use, rather than simply registering its existence. This

approach would help stakeholders better understand how software is being used, even if

the results of its use are never formally published.

Conclusions

It should not be surprising that there have been challenges in capturing software within

a bibliographic model, especially given the fundamental differences in publishing, use

of citation, and indexing of scholarly works across disciplinary communities. One of the

greatest barriers to software citation is not a lack of standards that could be used, but

IJDC | Peer-Reviewed Paper

doi:10.2218/ijdc.v11i2.390 Soito and Hwang | 59

rather a lack of knowledge of these standards and agreement on how to use them.

Improvements to software citation systems will be facilitated by developing

metasoftware that lowers thresholds to using software in a research ready state, without

complex installation and configuration processes, to the community as a whole. As

these tools become more incorporated into researcher workflows, they will also help to

facilitate greater access, more comprehensive peer evaluation, and indirectly,

understanding of software development as a scholarly process. Software development

for research is inherently interdisciplinary, and communities that are willing to

recognize and accept diversity of approach in the generation of new knowledge will be

more successful in fostering collaborative development of new software to support their

work. These communities will also recognize software as a legitimate contribution to

research, and support opportunities for career advancement for researchers who chose to

pursue this path.

Acknowledgements

This material is based upon work supported in part by the National Science Foundation

under Grant No. SMA-1448633. The authors would like to thank additional members of

the Software Attribution for Geoscience Applications (SAGA) project team: Louise

Kellogg, Joe Dumit, MacKenzie Smith, Allison Fish, and Eric Heien, as well as Phoebe

Ayers, Karl Benedict, Sever Bordeianu, Brian Kolb, and Plato Smith for helpful

suggestions.

References

Ahalt, S., Carsey, T., Couch, A., Hooper, R., Ibanez, L., Idaszak, R., … Robinson, E.

(2015). NSF workshop on supporting scientific discovery through norms and

practices for software and data citation and attribution. Retrieved from

http://dl.acm.org/citation.cfm?id=2795624

Allen, A. & Schmidt, J. (2015). Looking before leaping: Creating a software registry.

Journal of Open Research Software, 3(1). doi:10.5334/jors.bv

American Physical Society. (1993). Physical review style notation and guide – June

2011 revision. Waldron, A., Judd, P., & Miller, V. (Eds.). Ridge, NY: American

Physical Society. Retrieved from https://journals.aps.org/files/styleguide-pr.pdf

American Psychological Association. (2010). Publication manual of the American

Psychological Association (6th ed). Washington, DC: American Psychological

Association.

Ayers, P. (2016). What’s a citation good for, anyway? Medium. Retrieved from

https://medium.com/@phoebeayers/whats-a-citation-good-for-anyway-

e7585bb003d#.z1t6k6sx6

IJDC | Peer-Reviewed Paper

https://medium.com/@phoebeayers/whats-a-citation-good-for-anyway-e7585bb003d#.z1t6k6sx6
https://medium.com/@phoebeayers/whats-a-citation-good-for-anyway-e7585bb003d#.z1t6k6sx6
https://journals.aps.org/files/styleguide-pr.pdf
http://dx.doi.org/10.5334/jors.bv
http://dl.acm.org/citation.cfm?id=2795624

60 | Citations for Software doi:10.2218/ijdc.v11i2.390

Bandrowski, A., Brush, M., Grethe, J.S., Haendel, M.A., Kennedy, D.N., Hill, S., …

Vasilevsky, N. (2015). The resource identification initiative: A cultural shift in

publishing. F1000Research, 4, 134. doi:10.12688/f1000research.6555.2

Barnes, N. (2010). Publish your computer code: It is good enough. Nature, 467, 753.

doi:10.1038/467753a

Boettiger, C. (2015). An introduction to Docker for reproducible research. Operating

Systems Review, 49(1), 71–79. doi:10.1145/2723872.2723882

Bonazzi, V., Bourne, P., Brenner, S., Brown, R., Chandramouliswaran, I., Couch, J., …

White, O. (2015). Software Discovery Index workshop report. Retrieved from

https://nciphub.org/resources/885

Cannam, C., Figueira, L. A., & Plumbley, M.D. (2012). Sound software: Towards

software reuse in audio and music research. In 2012 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2745–2748).

doi:10.1109/ICASSP.2012.6288485

Coghill, A.M., & Garson, L.R. (Eds.). (2006). The ACS style guide: Effective

communication of scientific information (3rd ed). Washington, DC: Oxford ; New

York: American Chemical Society; Oxford University Press.

Crusoe, M.R., Alameldin, H.F., Awad, S., Boucher, E., Caldwell, A., Cartwright, R., …

Brown, C.T. (2015). The khmer software package: Enabling efficient nucleotide

sequence analysis. F1000Research, 4, 900. doi:10.12688/f1000research.6924.1

Data Citation Synthesis Group. (2014). Joint declaration of Data Citation Principles.

(M. Martone, Ed.). San Diego, CA: FORCE11. Retrieved from

https://www.force11.org/datacitation

DataCite, Metadata Working Group. (2015). DataCite metadata schema for the

publication and citation of research data. Version 3.1. doi:10.5438/0010

Gil, Y., Ratnakar, V., & Garijo, D. (2015). OntoSoft: Capturing scientific software

metadata. In Proceedings of the Eighth ACM International Conference on

Knowledge Capture (Article 32). doi:10.1145/2815833.2816955

Goble, C., Allen, A., Sands, A., & Cruse, P. (2016). CodeMeta software use cases

working document. Retrieved from https://github.com/codemeta/codemeta

Grumbach, E., & Mandell, L. (2014). Meeting scholars where they are: The Advanced

Research Consortium (ARC) and a social humanities infrastructure. Scholarly and

Research Communication, 5(4). Retrieved from http://www.src-

online.ca/index.php/src/article/view/189

IJDC | Peer-Reviewed Paper

http://www.src-online.ca/index.php/src/article/view/189
http://www.src-online.ca/index.php/src/article/view/189
https://github.com/codemeta/codemeta
http://dx.doi.org/10.1145/2815833.2816955
http://dx.doi.org/10.5438/0010
https://www.force11.org/datacitation
http://dx.doi.org/10.12688/f1000research.6924.1
http://dx.doi.org/10.1109/ICASSP.2012.6288485%20
https://nciphub.org/resources/885
http://dx.doi.org/10.1145/2723872.2723882
http://dx.doi.org/10.1038/467753a
http://dx.doi.org/10.12688/f1000research.6555.2

doi:10.2218/ijdc.v11i2.390 Soito and Hwang | 61

Hannay, J.E., MacLeod, C., Singer, J., Langtangen, H.P., Pfahl, D., & Wilson, G.

(2009). How do scientists develop and use scientific software? In Proceedings of

the 2009 ICSE Workshop on Software Engineering for Computational Science and

Engineering (pp. 1–8). doi:10.1109/SECSE.2009.5069155

Hettrick, S., Antonioletti, M., Carr, L., Chue Hong, N., Crouch, S., De Roure, D., …

Sufi, S. (2014). UK Research Software Survey 2014. Zenodo.

doi:10.5281/zenodo.14809

Hornik, K., Murdoch, D., & Zeileis, A. (2012). Who did what? The roles of R package

authors and how to refer to them. The R Journal, 4(1), 64–69.

Howe, B. (2012). Virtual appliances, cloud computing, and reproducible research.

Computing in Science Engineering, 14(4), 36–41. doi:10.1109/MCSE.2012.62

Howison, J., & Bullard, J. (2016). Software in the scientific literature: Problems with

seeing, finding, and using software mentioned in the biology literature. Journal of

the Association for Information Science and Technology, 67(9), 2137-2155.

doi:10.1002/asi.23538

IEEE Periodicals. (2014). IEEE Editorial Style Manual. Piscataway, NJ: IEEE.

Retrieved from https://www.ieee.org/documents/style_manual.pdf

Joint Steering Committee. (2013). RDA: Resource Description and Access: 2013

revision. Chicago, IL: American Library Association.

Jones, C.M., Matthews, B.M., Gent, I., Griffin, T., & Tedds, J.A. (2016). Persistent

identification and citation of software. Presented at the 16th International Digital

Curation Conference (IDCC16), Amsterdam, The Netherlands. Retrieved from

http://purl.org/net/epubs/work/24496942

Knepley, M.G., Brown, J., McInnes, L.C., & Smith, B. (2013). Accurately citing

software and algorithms used in publications (ANL/MCS-P5010-0913). Presented

at the Workshop on Sustainable Software for Science: Practice and Experiences,

Denver, CO. Retrieved from http://www.mcs.anl.gov/papers/P5010-0913_1.pdf

Lehman, P., Kime, P., Boruvka, A., & Wright, J. (2015). The Biblatex package:

Programmable bibliographies and citations, Version 3.0. Retrieved from

http://mirror.ctan.org/macros/latex/contrib/biblatex/doc/biblatex.pdf

Malone, J., Brown, A., Lister, A. L., Ison, J., Hull, D., Parkinson, H., & Stevens, R.

(2014). The Software Ontology (SWO): A resource for reproducibility in

biomedical data analysis, curation and digital preservation. Journal of Biomedical

Semantics, 5(1), 25. doi:10.1186/2041-1480-5-25

Millman, K.J., & Pérez, F. (2014). Developing open-source scientific practice. In

Stodden, V., Leisch, F., & Peng, R.D. (Eds.), Implementing Reproducible Research

(pp. 149-184). Boca Raton: CRC Press. Retrieved from

http://www.crcnetbase.com/doi/abs/10.1201/b16868-9

IJDC | Peer-Reviewed Paper

http://www.crcnetbase.com/doi/abs/10.1201/b16868-9
http://dx.doi.org/10.1186/2041-1480-5-25
http://mirror.ctan.org/macros/latex/contrib/biblatex/doc/biblatex.pdf
http://www.mcs.anl.gov/papers/P5010-0913_1.pdf
http://purl.org/net/epubs/work/24496942
https://www.ieee.org/documents/style_manual.pdf
http://dx.doi.org/10.1002/asi.23538
http://dx.doi.org/10.1109/MCSE.2012.62
http://dx.doi.org/10.5281/zenodo.14809
http://dx.doi.org/10.1109/SECSE.2009.5069155

62 | Citations for Software doi:10.2218/ijdc.v11i2.390

Morin, A., Eisenbraun, B., Key, J., Sanschagrin, P.C., Timony, M.A., Ottaviano, M., &

Sliz, P. (2013). Collaboration gets the most out of software. eLife, 2.

doi:10.7554/eLife.01456

Morin, A., Urban, J., Adams, P. D., Foster, I., Sali, A., Baker, D., & Sliz, P. (2012).

Shining light into black boxes. Science, 336(6078), 159–160.

doi:10.1126/science.1218263

National Science Foundation. (2012). A vision and strategy for software for science,

engineering, and education: Cyberinfrastructure framework for the 21st century

(No. nsf12113). Retrieved from

http://www.nsf.gov/pubs/2012/nsf12113/nsf12113.pdf

Peng, R.D. (2011). Reproducible research in computational science. Science, 334,

1226–1227. doi:10.1126/science.1213847

Rollins, N.D., Barton, C.M., Bergin, S., Janssen, M.A., & Lee, A. (2014). A

computational model library for publishing model documentation and code.

Environmental Modelling & Software, 61, 59–64.

doi:10.1016/j.envsoft.2014.06.022

Rorvig, M.E. (1988). Bibliographic control of microcomputer software. In Kent, A.

(Ed.), Encyclopedia of Library and Information Science Vol. 43, Supplement 8.

New York: Marcel Dekker.

Smith, A.M., Katz, D.S., Niemeyer, K.E., & FORCE11 Software Citation Working

Group. (2016). Software citation principles. PeerJ Computer Science, 2, e86.

doi:10.7717/peerj-cs.86

Socias, S.M., Morin, A., Timony, M.A., & Sliz, P. (2015). AppCiter: A web application

for increasing rates and accuracy of scientific software citation. Structure, 23(5),

807–808. doi:10.1016/j.str.2015.04.005

SPDX. (2016). Software Package Data Exchange (SPDX®) Specification (No. v. 2.1).

Linux Foundation. Retrieved from https://spdx.org/spdx-specification-21-web-

version

Stodden, V., Bailey, D.H., Borwein, J., LeVeque, R.J., Rider, W., & Stein, W. (Eds.).

(2013). Setting the default to reproducible: Reproducibility in computational and

experimental mathematics. Report of the ICERM Workshop on Reproducibility in

Computational and Experimental Mathematics, December 10-14, 2012. Retrieved

from https://icerm.brown.edu/tw12-5-rcem/

Stodden, V., Guo, P., & Ma, Z. (2013). Toward reproducible computational research: An

empirical analysis of data and code policy adoption by journals. PLoS ONE, 8(6),

e67111. doi:10.1371/journal.pone.0067111

IJDC | Peer-Reviewed Paper

http://dx.doi.org/10.1371/journal.pone.0067111
https://icerm.brown.edu/tw12-5-rcem/
https://spdx.org/spdx-specification-21-web-version
https://spdx.org/spdx-specification-21-web-version
http://dx.doi.org/10.1016/j.str.2015.04.005
http://dx.doi.org/10.7717/peerj-cs.86
http://dx.doi.org/10.1016/j.envsoft.2014.06.022
http://dx.doi.org/10.1126/science.1213847
http://www.nsf.gov/pubs/2012/nsf12113/nsf12113.pdf
http://dx.doi.org/10.1126/science.1218263
http://dx.doi.org/10.7554/eLife.01456

doi:10.2218/ijdc.v11i2.390 Soito and Hwang | 63

Timmes, F., Ahalt, S., Turk, M., Idaszak, R., Schildhauer, M., Brower, R., … Gustafson,

K. (2015). Workshop report 2015 Software Infrastructure for Sustained Innovation

(SI 2) principal investigators workshop. Retrieved from

http://cococubed.asu.edu/si2pimeeting2015/ewExternalFiles/Final_Report_2015_SI

2_Workshop.pdf

TOP Guidelines Committee. (2015). Guidelines for transparency and openness

promotion (TOP) in journal policies and practices version 1.0.1. Center for Open

Science. Retrieved from https://osf.io/ud578/

Weigel, T., DiLauro, T., & Zastrow, T. (2014). PID information types: Final report.

Retrieved from https://rd-alliance.org/system/files/PIT%20final%20report.pdf

IJDC | Peer-Reviewed Paper

https://rd-alliance.org/system/files/PIT%20final%20report.pdf
https://osf.io/ud578/
http://cococubed.asu.edu/si2pimeeting2015/ewExternalFiles/Final_Report_2015_SI2_Workshop.pdf
http://cococubed.asu.edu/si2pimeeting2015/ewExternalFiles/Final_Report_2015_SI2_Workshop.pdf

	Introduction
	Roles for Citations
	Standards for the Citation of Software
	Tools to Support Software Citation
	Community Approaches and Practices
	Analysis and Recommendations for Achieving Citation Goals
	Identification
	Access and Discovery
	Credit and Appraisal
	Provenance and Connection

	Conclusions
	Acknowledgements
	References

