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andrew.pickering@urjc.es pilar.gordoa@urjc.es

2School of Mathematical Sciences, University of Nottingham,

University Park, Nottingham NG7 2RD, UK

Jonathan.Wattis@nottingham.ac.uk

Abstract

In this paper we consider the matrix nonautonomous semidiscrete (or lattice) equation
d
dt

Un = (2n − 1)(Un+1 − Un−1)−1, as well as the scalar case thereof. This equation was recently

derived in the context of auto-Bäcklund transformations for a matrix partial differential equa-

tion. We use asymptotic techniques to reveal a connection between this equation and the

matrix (or, as appropriate, scalar) first Painlevé equation. In the matrix case, we also discuss

our asymptotic analysis more generally, as well as considering a component-wise approach.

In addition, Hamiltonian formulations of the matrix first and second Painlevé equations are

given, as well as a discussion of classes of solutions of the matrix second Painlevé equation.
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• solutions of matrix PII are elucidated using combinations of autoBacklund Transforms
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1. Introduction

There has been, over the last twenty years or so, a surge in interest in Painlevé hierarchies

and their properties. In [1], Gordoa, Pickering and Zhu introduced the first examples of matrix

Painlevé hierarchies, these being matrix versions of the first and second Painlevé (PI and PII)

hierarchies. Amongst other results presented in [1], they gave auto-Bäcklund transformations

(aBTs) for their matrix PII hierarchy and, for the particular case of the matrix PII equation

as presented in [1], used these auto-Bäcklund transformations to derive a discrete matrix PI

equation; these results for the matrix PII equation generalized their previous reults given in

[2, 3].

The matrix PII equation presented in [1] has the form

uxx − 2u3
+ c0u + uE0 + E0u + 2g0xu − αI = 0, (1.1)

where u = (ui j) is an m × m matrix of functions ui j(x), E0 = (ei j) is an arbitrary constant m × m

matrix, and c0, g0 and α are arbitrary scalar constants. As noted in [1], the term c0u can be

absorbed in the terms uE0 + E0u, but we prefer not to do so: this then means that in the

reduction to the scalar case we take E0 = 0 rather than E0 to be a multiple of the identity

matrix. In the case g0 , 0 we may assume without loss of generality (using a change of

independent and dependent variables) that g0 = −1/2, and so may take our equation in the

form

uxx − 2u3
+ c0u + uE0 + E0u − xu − αI = 0. (1.2)

In the special case where E0 = 0 or is a multiple of the identity matrix, this last equation is

equivalent (using a shift on x) to the matrix PII equation given in [4, 5], that is

uxx = 2u3
+ xu + αI. (1.3)

In a recent paper [6], Gordoa and Pickering presented a matrix partial differential equation

(PDE) whose structure mirrors that of the matrix PII equation and to which it has a simple

reduction, and which admits aBTs of a form similar to those of matrix PII. They then used

these aBTs to derive the nonautonomous semidiscrete matrix equation

d

dt
Un = (2n − 1)(Un+1 − Un−1)−1. (1.4)

That aBTs for ordinary differential equations (ODEs) may be used to derive discrete equations

was shown in [7, 8]. It is worth noting, however, that in contrast to [7, 8], in [6] these ideas

were used within the context of aBTs for PDEs, and moreover the result was a semidiscrete

equation as opposed to a purely discrete equation. It is to this last equation, i.e., (1.4), as well

as the scalar version thereof, that the greater part of this paper is devoted.

Equation (1.4) can also be derived from the aBTs of the matrix PII equation with g0 , 0

(it is this case which is the matrix analogue of the second Painlevé equation). It is perhaps

this more familiar context, rather than its derivation from PDE aBTs, which explains the sig-

nificance of (1.4). The technique published in [7, 8], whereby aBTs of integrable ODEs are

used to derive new integrable discrete equations, has led to the discovery of a number of new
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discrete equations which have proved to be of considerable interest. The interest in the lattice

equation (1.4) is due to its novel derivation within the context of Painlevé equations and their

aBTs. This context immediately brings to mind questions such as that of its continuum limits,

a question studied for similarly-derived purely discrete equations.

Semidiscrete equations have of course been well-studied in the literature, with the integra-

bility of such equations being a topic that stretches back to the beginnings of soliton theory,

e.g., with the discovery of the Toda lattice. Many different aspects of integrable lattice equa-

tions have been explored over the last half-century, far too many to mention here. These

include for instance inverse scattering, Hirota bilinear form, continuum limits and exact solu-

tions. Also for example, non-isospectral terms in lattice equations, as considered for instance

in [9, 10, 11, 12], have proved to be of particular interest due to the relationship with discrete

Painlevé equations. In addition, we note the presentation of a procedure to find solutions of

lattice equations via the Casoratian technique in [13], where the derivation of rational solutions

— as noted therein, a class of solutions that Painlevé equations may also have — as well as

of mixed rational-soliton solutions was considered. In the study of semidiscrete equations it is

of course natural to seek similar results to those known for continuous systems. Thus we con-

sider the possibility of general results for lump solutions, in continuous systems, as discussed

in [14] (see also [15]), and in semidiscrete equations (see, e.g., [16]).

The derivation of (1.4) from the aBTs of matrix PII is explained in [6], though not completely

explicitly. This derivation is worth considering, as it is somewhat curious, and so — given also

that (1.4) and the scalar version thereof together form the main topic of this paper — we briefly

describe it here. We begin by writing matrix PII with g0 = −1/2, i.e., equation (1.2), as the

system

uxx − uyx − yxu + c0u + uE0 + E0u − xu − αI = 0, yx = u2, (1.5)

this being the corresponding ODE reduction of the matrix PDE considered in [6]. We then

observe that this system has the aBTs

u = −v + 1
2
(α + α̃)

(
vx − zx +

1
2
c0I + E0 − 1

2
Ix

)−1
, (1.6)

y = z − 1
2
(α + α̃)

(
vx − zx +

1
2
c0I + E0 − 1

2
Ix

)−1
, (1.7)

α = α̃ − 1, (1.8)

and

û = −v + 1
2
(α̂ + α̃)

(
−vx − zx +

1
2
c0I + E0 − 1

2
Ix

)−1
, (1.9)

ŷ = z + 1
2
(α̂ + α̃)

(
−vx − zx +

1
2
c0I + E0 − 1

2
Ix

)−1
, (1.10)

α̂ = α̃ + 1, (1.11)

which map from solutions (v, z, α̃) to solutions (u, y, α) of (1.5), and from solutions (v, z, α̃) to

solutions (̂u, ŷ, α̂) of (1.5), respectively. (We note that if in equation (1.5), we were to write

Y instead of yx, the transformations from Z (= zx) to Y obtained by differentiating (1.7) and

(1.10) would be more complicated, and would still involve a derivative of the function Z on
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their right-hand-sides.) From (1.7) we obtain

2
(
vx − zx +

1
2
c0I + E0 − 1

2
Ix

)
= (α + α̃)(z − y)−1, (1.12)

and from (1.10) we get

2
(
−vx − zx +

1
2
c0I + E0 − 1

2
Ix

)
= (α̂ + α̃)(̂y − z)−1. (1.13)

Setting α̃ = n so that z = zn(x), y = zn−1(x) and ŷ = zn+1(x) (as well as v = vn(x), u = vn−1(x)

and û = vn+1(x)), these last two equations then give

−2

(
2

d

dx
zn − c0I − 2E0 + Ix

)
= (2n + 1)[zn+1 − zn]−1

+ (2n − 1)[zn − zn−1]−1. (1.14)

Setting now

zn(x) = (E + 1)rn(x) + 1
2

(
c0xI + 2E0x − 1

2
x2I

)
, (1.15)

where E is the shift operator defined as Efn(x) = fn+1(x), we obtain

−4
d

dx
rn = (2n − 1)[rn+1 − rn−1]−1

+ a(x)(−1)n, (1.16)

for some matrix a(x). Finally, the substitution

rn(x) = Un(t) − 1
4
b(x)(−1)n, t = −1

4
x, where

d

dx
b = a, (1.17)

yields
d

dt
Un = (2n − 1)(Un+1 − Un−1)−1, (1.18)

that is, equation (1.4). We note that in the case of the scalar PII equation

uxx = 2u3
+ xu + α, (1.19)

the same manipulations lead to the scalar nonautonomous semidiscrete equation for un(t) [6],

dun

dt
=

2n − 1

un+1 − un−1

. (1.20)

Let us recall that the usual application of the ideas in [7, 8] to the aBTs of matrix PII leads

to a discrete matrix PI equation [1] (see also [3] for a special case), i.e., a discrete matrix

equation having as a continuum limit the matrix PI equation

ωxx = 6ω2
+ xI + A, (1.21)

an equation given in [4, 5] (here A is an arbitrary constant matrix). This leads naturally to

the question of the link between (1.18) and the matrix PI equation (1.21). This is one of the

questions that we address in this paper. A further question addressed here is that of whether
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the matrix PI and PII equations can be put into Hamiltonian form. It is of course well-known

that this can be done for the scalar first and second Painlevé equations. We also discuss

classes of solutions of the matrix PII equation. We recall that the scalar second Painlevé

equation has, for certain values of the parameter appearing therein, rational solutions and

solutions expressible in terms of Airy functions. Here we extend these results to the matrix

case. These results are also completely new. Indeed, even though the matrix PII equation

(1.3) was presented some twenty years ago, it is only with the work in [1, 2, 3] that aBTs —

which may be used to succesively generate solutions by iterating from some initial solution —

were discovered for the matrix PII equation.

The layout of the paper is as follows. In Section 2 we give a Hamiltonian formulation of the

general m × m matrix first and second Painlevé equations. In Section 3 we begin our study of

the relationship between the above semidiscrete equations and corresponding first Painlevé

equations. Motivated by the derivation given in [7] of PI from the alternative discrete first

Painlevé equation, we first consider the scalar semidiscrete equation (1.20) and show that it

has as a limiting case the scalar first Painlevé equation. In Section 4 we extend our approach

to the matrix case, and show how matrix PI can be obtained from the matrix semidiscrete

equation (1.18). Also in Section 4 we consider our asymptotic analysis more generally in

order to explore the sort of results that can be obtained using this approach. Section 5 is

different, since we consider therein a component-wise approach to the asymptotic analysis of

the matrix semidiscrete equation (1.18). In Section 6 we discuss various classes of solutions of

the matrix PII equation, and how they may be obtained by iteration from certain initial solutions.

The paper concludes with a summary of our results and a discussion of their implications in

Section 7.

2. Hamiltonian formulations of matrix PI and matrix PII

Let us begin by considering the matrix equation [1]

wxx + 3w2
+ c0w + 1

2
c−1I +H + g1xI = 0, (2.1)

where w = (wi j) is an m ×m matrix of functions wi j(x), H = (hi j) is an arbitrary constant m ×m

matrix, and c0, c−1 and g1 are arbitrary scalar constants. In the case g1 , 0, a change of

independent and dependent variables allows us to transform this equation to the form (1.21).

Here we do not assume g1 , 0. With a view to future work on the PI hierarchy, neither do we

assume — even though we may do so without loss of generality — that c0 = c−1 = 0. We now

show that equation (2.1) can be put into Hamiltonian form, as given by the following result:

For any m = 1, 2, 3, . . ., define

Hm(wi j, pi j, x) = 1
2

m∑

q,r=1

pqr prq +

m∑

q,r,s=1

wqrwrswsq +
1
2
c0

m∑

q,r=1

wqrwrq +
1
2
c−1

m∑

q=1

wqq

+

m∑

q,r=1

hqrwrq + g1x

m∑

q=1

wqq. (2.2)
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Then the m × m matrix equation (2.1) can be written in Hamiltonian form

dwi j

dx
=
∂Hm

∂pi j

,
dpi j

dx
= −∂Hm

∂wi j

. (2.3)

In order to see this, we note that (2.2) and (2.3) imply

d2wi j

dx2
=

d

dx

(
∂Hm

∂pi j

)
=

dp ji

dx
= −∂Hm

∂w ji

= −
3

m∑

q=1

wiqwq j + c0wi j +
1
2
c−1δi j + hi j + g1xδi j

 , (2.4)

so that equation (2.1) holds.

We remark that for the above Hamiltonian to be a constant of the motion we must have that

∂Hm

∂x
= g1

m∑

q=1

wqq = 0. (2.5)

Thus, in the general case where the matrix equation (2.1) defines m2 second order ODEs (so

that 2m2 initial conditions may be freely imposed), the above Hamiltonian is a constant of the

motion if and only if g1 = 0, that is, if and only if equation (2.1) is autonomous. In the scalar

case with g1 , 0 the above results lead us (after a change of independent and dependent

variables) to a well-known Hamiltonian formulation of the first Painlevé equation ωxx = 6ω2
+ x

[17].

Let us now consider the matrix equation (1.1) [1]

uxx − 2u3
+ c0u + uE0 + E0u + 2g0xu − αI = 0. (2.6)

As noted earlier, we prefer not to absorb the term c0u in the terms uE0 + E0u. Neither do we

assume here that g0 , 0. We now show that equation (2.6) can be put into Hamiltonian form.

We give the following result:

For any m = 1, 2, 3, . . ., define

Km(ui j, pi j, x) = 1
2

m∑

q,r=1

pqr prq − 1
2

m∑

q,r,s,t=1

uqrursustutq +
1
2
c0

m∑

q,r=1

uqrurq +

m∑

q,r,s=1

uqrersusq

+g0x

m∑

q,r=1

uqrurq − α
m∑

q=1

uqq. (2.7)

Then the m × m matrix equation (2.6) can be written in Hamiltonian form

dui j

dx
=
∂Km

∂pi j

,
dpi j

dx
= −∂Km

∂ui j

. (2.8)
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In order to see this, we note that (2.7) and (2.8) imply

d2ui j

dx2
=

d

dx

(
∂Km

∂pi j

)
=

dp ji

dx
= −∂Km

∂u ji

= −
−2

m∑

q,r=1

uiquqrur j + c0ui j +

m∑

q=1

(uiqeq j + eiquq j) + 2g0xui j − αδi j

 , (2.9)

so that equation (2.6) holds.

We remark that for the above Hamiltonian to be a constant of the motion we must have that

∂Km

∂x
= g0

m∑

q,r=1

uqrurq = 0. (2.10)

Thus, in the general case where the matrix equation (2.6) defines m2 second order ODEs (i.e.,

such that 2m2 initial conditions may be freely imposed), the above Hamiltonian is a constant

of the motion if and only if g0 = 0, i.e., if and only if equation (2.6) is autonomous. In the scalar

case with g0 , 0 the above results lead us (after a change of independent and dependent

variables) to a well-known Hamiltonian formulation of the second Painlevé equation uxx =

2x3
+ xu + α [17].

3. The scalar case

We begin our asymptotic analysis of semidiscrete equations by considering first of all the

scalar equation (1.20) [6], that is

dun

dt
(un+1 − un−1) = 2n − 1. (3.1)

We define

un(t) =
√

2 û(x, t), where x = n − 1
2
, (3.2)

where this variable x is different from that used in Sections 1 and 2; and we immediately

neglect the hats so that

x = ut(x, t)∆u(x, t), where ∆ f (x) = f (x + 1) − f (x − 1). (3.3)

Whilst u = x
√

t and u = 1
4
x2
+ t are solutions of equation (3.1), we consider the dynamics

in the far-field where x ≫ 1. Hence we introduce the small parameter h ≪ 1 and new space

and time variables, y, τ via the substitution

x =
a

h1+α
+

y

h
, t = h−στ, u(x, t) = hδu0(y, τ) + hδ+βu1(y, τ) + hδ+2βu2(y, τ), (3.4)

with α ≥ 0, β > 0. This corresponds to an expansion in the far field region (x = ah−1−α) with

the new independent variable (y) ranging over many lattice sites: when x is increased by one,
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y only increases by a little (O(h)); in order for y to be increased by an O(1) amount, x needs to

increase by O(h−1).

Substituting the expressions (3.4) into (3.3) leads to

a

hα+1
+

y

h
= h2δ+σ+1

(
u0,τ + hβu1,τ + h2βu2,τ

)
×

(
2u0,y + 2hβu1,y + 2h2βu2,y +

h2u0,yyy

3
+

hβ+2u1,yyy

3
+

h4u0,yyyyy

60

)
. (3.5)

The leading order terms on each side balance when 2δ+σ+1 = −1−α leading to the equation

a = 2u0,yu0,τ, (3.6)

for u0(y, τ), which is solved by

u0 = ky +
aτ

2k
. (3.7)

We choose β = 2, α = 4, δ = 0 so that σ = −6; β = 2 is required for the third derivative term

obtained from hβ+2u0,τu1,yyy to balance the quadratic first derivative terms h2βu1,τu1,y. For the

magnitude of the displacements u in (3.4) to be O(1), we have δ = 0 and the timescale for the

evolution of such displacements is rather fast, being given by t = h6τ (σ = −6). This choice of

asymptotic scaling is also used for the matrix problem considered later — see the text following

equation (4.3), as well as the component-wise analysis following equations (5.6)–(5.7). The

governing equations below would be generated by other choices for δ, σ: for example, if we

choose σ = 0 and δ = −3, then we find large amplitude disturbances (u = O(h−3)) which

evolve on the standard timescale τ = O(1).

The equations obtained at the next two orders of h in (3.5) are

0 = 2u0,yu1,τ + 2u0,τu1,y +
1
3
u0,τu0,yyy, (3.8)

y = 2u0,yu2,τ + 2u1,τu1,y +
1
3
u1,τu0,yyy +

1
3
u0,τu1,yyy + 2u0,τu2,y +

1
60

u0,τu0,yyyyy. (3.9)

With the solution (3.7), equation (3.8) is a first-order travelling wave equation

0 = 2ku1,τ +
a

k
u1,y, (3.10)

which implies

u1(y, τ) = u1(z), z = y − aτ

2k2
. (3.11)

Noting the solution (3.7) for u0, eq. (3.9) becomes

y = 2ku2,τ + 2u1,τu1,y +
a

6k
u1,yyy +

a

k
u2,y. (3.12)

Transforming this into the travelling wave variables u1 = u1(z), u2 = u2(z, τ) yields

z +
aτ

2k2
=

au1,zzz

6k
+ 2ku2,τ −

a

k2
u2

1,z. (3.13)
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We note that the terms involving u2,z cancel, leaving just the u2,τ term. If we now take u2 =

aτ2/8k3 and define f (z) as f (z) = u1,z(z), we obtain the equation

6k2z

a
= k

d2 f

dz2
− 6 f (z)2, (3.14)

which is PI in f (z). As remarked earlier, this derivation of PI from equation (3.1) is motivated

by the derivation given in [7] of PI from the alternative discrete first Painlevé equation. We

now turn to the matrix form of (3.1).

4. The matrix case

The matrix form of (3.1) is equation (1.4) [6], which is

d

dt
Un = (2n − 1)(Un+1 − Un−1)−1, (4.1)

where Un is a square (m × m) matrix. This we rewrite as

Ut =
d

dt
U = x(∆U)−1, (4.2)

using a change of variables analogous to (3.2). We analyse this equation in two ways: firstly

by considering the matrix form, to find connections between this and the matrix PI equation;

and secondly in Section 5 by taking example matrices and analysing the coupled equations

component by component. In both approaches, we focus on the dynamics in the far-field

asymptotics.

4.1. Asymptotic analysis of the matrix equation

We use the scalings given in (3.4) with α = 4, β = 2, δ = 0, σ = −6, together with an

asymptotic ansatz for the series expansion of the solution as

U(x, t) = U0(x, t) + h2U1(x, t) + h4U2(x, t) + . . . , (4.3)

to express the matrix problem xI = Ut∆U as

ah−5I + yh−1I = h−5
(
U0,τ + h2U1,τ + h4U2,τ

) (
2 U0,y + 2h2U1,y + 2h4U2,y

+
1
3
h2U0,yyy +

1
3
h4U1,yyy +

1
60

h4U0,yyyyy

)

= 2h−5U0,τU0,y + h−3
(
2U1,τU0,y + 2U0,τU1,y +

1
3
U0,τU0,yyy

)

+h−1
(
2U0,τU2,y + 2U1,τU1,y + 2U2,τU0,y +

1
3
U0,τU1,yyy

+
1
3
U1,τU0,yyy +

1
60

U0,τU0,yyyyy

)
+ O(h). (4.4)

The leading order expression comes from terms of O(h−5) from (4.4), namely

aI = 2U0,τU0,y, (4.5)
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which has the solution

U0 = yK + 1
2
aτK−1, (4.6)

for any arbitrary nonsingular constant matrix K.

At next order, that is, O(h−3), we have

0 = U1,τU0,y + U0,τU1,y, (4.7)

which, using (4.6), implies

0 = 2 KU1,τK + aU1,y. (4.8)

Imposing the travelling wave ansatz U1 = U1(z) with z = y − cτ in this equation leads to

KU1,zK = γU1,z, γ =
a

2c
, (4.9)

which is a deceptively simple equation for U1,z given K.

In the next subsection, we consider a special case of K which simplifies the solution of

(4.9) and allows us to derive the general case of the matrix PI equation in U1,z. In Section

4.3.1 we return to a more general form of K, which leads to a restricted equation for U1,z.

4.2. Derivation of the matrix PI equation

Here, we consider the particular form of (4.6) with K being a multiple of the identity matrix,

that is, K = kI so that

U0 =

(
ky +

aτ

2k

)
I. (4.10)

This solution simplifies later calculations, since U0, in addition to satisfying U0,yyy = 0 = U0,yyyyy,

also commutes with all other matrices.

At O(h−3), from which (4.9) is derived, we now have

k2U1,z = γU1,z, (4.11)

hence c = a/2γ = a/2k2. Whilst this calculation provides the speed (c) of the solution, the

shape of the wave remains undetermined provided this specific value of c is chosen; there

are no conditions on the elements of U1,z from (4.11), and, in particular, no restriction on

the number of nonzero elements. Therefore, we need to proceed to higher order terms to

determine an equation for the profile U1.

At O(h−1), after substituting for U0, we have

yI =
a

k
U2,y + 2 U1,τU1,y + 2k U2,τ +

a

6k
U1,yyy. (4.12)

Transforming this equation into the moving coordinate frame (z, τ), and setting U1 = U1(z) with

U2 = U2(z, τ), we obtain

zI +
aτ

2k2
I = 2k U2,τ −

a

k2
U2

1,z +
a

6k
U1,zzz, (4.13)

10



(again the terms in U2,z cancel). We then choose

U2(z, τ) =
aτ2

8k3
I + τB + C, (4.14)

where B and C are arbitrary constant matrices. The matrix C can be neglected; however, the

introduction of the arbitrary matrix B into the ensuing equations is significant. With the above

choice of U2, and setting F = U1,z, we obtain from (4.13) the equation

zI =
a

6k
Fzz −

a

k2
F2
+ 2kB, (4.15)

which is the matrix form of PI. If the size of these matrices is given as m × m, then (4.15),

constitutes a set of m2 coupled second-order odes. We remark that in the scalar case, the

inclusion of additive terms bτ + c in u2 does not lead to a generalized equation, since an

additional constant term in (3.14) can be removed using a shift on z.

Whilst the above derivation started from Ut(∆U) = xI, we note that (4.2) is also equivalent

to xI = (∆U)Ut. A similar derivation from this latter equation also yields (4.15).

4.3. Asymptotic analysis: further considerations

4.3.1. Second order terms

We continue with our asymptotic analysis but with a more general form for K in equations

(4.6) and (4.9). In order to illustrate the kind of results that may be obtained, let us consider the

construction of a solution U1,z of (4.9) in the case where K has a full set of distinct eigenvalues

{λ j} and so is diagonalisable; we write K = PDP−1 with D = diag{λ j}. We also introduce

Q = P−1U1,zP so that U1,z = PQP−1. Hence the problem (4.9) can be written as: given D, find

Q such that

DQD = γQ. (4.16)

This problem is similar to the previously studied discrete Lyapunov equation [18, 19].

We solve this by considering the effect of each side on the unit vectors e j. Since D is

diagonal, these unit vectors are eigenvectors with corresponding eigenvalues λ j: De j = λ je j.

It follows from (4.16) that Qe j (if nonzero) is also an eigenvector of D since we have

λ jD(Qe j) = γ(Qe j), (4.17)

and the corresponding eigenvalue is γ/λ j. There are two cases to consider, depending on

Q e j, namely

• Q e j = f j(z) e j, then γ = λ2
j
so c = a/2γ = a/(2λ2

j
). This case provides diagonal elements

to the matrix Q.

• Q e j = fk(z) ek with k , j, then λ jλk = γ so that c = a/2γ = a/(2λ jλk). This case provides

off-diagonal elements to the matrix Q.

11



(Of course, the same choice of γ has to be obtained, a condition which may then restrict the

possible combinations of the above cases.) We see from this construction that in the case of

m×m matrices, Q will depend on m functions f j(z). We also note in passing that consideration

of the case where Q e j = 0 for some j, that is, where one column of Q is entirely composed of

zeros — and (4.17) is automatically satisfied with γ undetermined — leads to an inconsistency,

as explained in Section 4.3.3.

We now consider two 2 × 2 examples, one to illustrate each of the above two cases.

4.3.2. Examples in the 2 × 2 case

Case 1: Q e j = f j(z) e j

To illustrate Case 1, where γ = λ2
1 = λ

2
2, we take γ = 1 with λ1 = +1, λ2 = −1, and

K =

(
7 −4

12 −7

)
, D =

(
1 0

0 −1

)
, P =

(
2 1

3 2

)
, P−1

=

(
2 −1

−3 2

)
,

(4.18)

so that the solution is given by

Q =

(
f1(z) 0

0 f2(z)

)
, U1,z =

(
4 f1 − 3 f2 −2 f1 + 2 f2

6 f1 − 6 f2 −3 f1 + 4 f2

)
= f1

(
4 −2

6 −3

)
+ f2

(
−3 2

−6 4

)
.

(4.19)

Even though the 2 × 2 matrix U1,z has four elements, the solution has only two degrees of

freedom, f1(z), f2(z). Consideration of higher order terms may impose further constraints on

the system of equations for f1(z), f2(z). In this example, Q has nonzero elements only on the

leading diagonal.

Case 2: Q e j = fk(z) ek with j , k

For Case 2, where γ = λ1λ2, we take γ = 2 with λ1 = 1, λ2 = 2 and

K =

(
−2 2

−6 5

)
, D =

(
1 0

0 2

)
, P =

(
2 1

3 2

)
, P−1

=

(
2 −1

−3 2

)
,

(4.20)

so that the solution is given by

Q =

(
0 f1(z)

f2(z) 0

)
, U1,z =

(
−6 f1 + 2 f2 4 f1 − f2

−9 f1 + 4 f2 6 f1 − 2 f2

)
= f1

(
−6 4

−9 6

)
+ f2

(
2 −1

4 −2

)
.

(4.21)

As in the previous example, the solution derived thus far has only two degrees of freedom,

f1(z), f2(z), rather than the four which may be expected from a 2×2 matrix problem, and further

constraints may be imposed on the system when we consider higher order terms. In this case,

Q has nonzero elements only in off-diagonal locations and only one nonzero element in each

column.
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4.3.3. Third order terms

At O(h−1), which is the final order that we consider, we obtain from (4.4) the equation

yI = 2U0,τU2,y + 2U1,τU1,y + 2U2,τU0,y +
1
3
U0,τU1,yyy +

1
3
U1,τU0,yyy +

1
60

U0,τU0,yyyyy,

(4.22)

which, substituting from (4.6), simplifies to

yK = aU2,y + 2KU1,τU1,y + 2KU2,τK +
1
6
aU1,yyy. (4.23)

Now transforming to travelling wave coordinates, U1 = U1(z) and U2 = U2(z, τ), yields

zK + cτK = aU2,z − 2cKU2
1,z + 2K(U2,τ − cU2,z)K +

1
6
aU1,zzz, (4.24)

(we note that in this case the terms in U2,z do not cancel). However, if we now choose

U2 =
1
4
cτ2K−1

+ τB + C, (4.25)

where B and C are arbitrary constant matrices, then we obtain (noting that U2,z = 0)

zI = 1
6
aK−1U1,zzz − 2cU2

1,z + 2BK, (4.26)

which is equivalent to

zI = 1
6
aD−1Qzz − 2cQ2

+ 2B̃D, (4.27)

where B̃ = P−1BP and, as above, U1,z = PQP−1. This equation, together with (4.26) are both

variants of the matrix PI equation. We note, as mentioned earlier, that the case where Q has

a column (say, the jth column) entirely composed of zeros leads to an inconsistency, since

the jth column of Q2 will also be entirely composed of zeros and the ( j, j)-element of equation

(4.27) then gives z = const.

In Case 1 of §4.3.2, we note from (4.18)–(4.19) that D,Q, I are diagonal, and so B̃ in (4.27)

should also be diagonal. Thus in this case the components of the matrix PI equations (4.26)

and (4.27) decouple into two copies of the scalar PI equation.

Case 2 of §4.3.2 differs. Whilst (4.20) –(4.21) result in D, Q2, I being diagonal, Q is not.

Thus the off-diagonal elements of (4.27) result in equations f ′′j (z) = const, j = 1, 2, and the

diagonal elements result in −2c f1(z) f2(z) = z + const. These equations result in the solutions

f j(z) = α jz + β j, j = 1, 2, subject to α1α2 = 0 and with B̃ in (4.27) chosen appropriately.

If, instead of considering the far field asymptotics of xI = Ut(∆U), which led to (4.26)–

(4.27), we performed a similar analysis on xI = (∆U)Ut, then the outcome differs only slightly.

We still obtain the equation (4.16) from the second order terms, but in place of (4.26) we obtain

zI = 1
6
aU1,zzzK

−1 − 2cU2
1,z + 2KB, (4.28)

which is equivalent to

zI = 1
6
aQzzD

−1 − 2cQ2
+ 2DB̃, (4.29)
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where D = P−1KP, Q = P−1U1,zP, and B̃ = P−1BP. In contrast with section 4.2, where the

special leading order solution (4.10) results in the two originating equations xI = Ut(∆U) and

xI = (∆U)Ut both leading to the full matrix first Painlevé equation (4.15), the more general

ansatz (4.6) for U0 leads to apparently different matrix first Painlevé equations given by the

pairs (4.26)–(4.27) and (4.28)–(4.29). We refer to (4.15) as the full matrix first Painlevé equa-

tion since there are no restrictions on F or B.

In the next section we consider the asymptotic reduction in more detail, taking a component-

by-component approach to allow the exploitation of special properties of the system.

5. Component-wise analysis

Instead of considering the matrix U as a single entity, we take a particular example of a

2 × 2 system and consider each component. The matrix equation (4.2) implies both

(∆U)(Ut) = xI, and (Ut)(∆U) = xI. (5.1)

Taking the difference of these two equations implies that the commutator, [Ut,∆U] = 0, where

[M,N] = MN − NM. One class of 2 × 2 matrices which enjoys the property that all elements

commute is the set of matrices of the form

M =

(
a λ(a − d)

µ(a − d) d

)
, N =

(
p λ(p − q)

µ(p − q) q

)
, (5.2)

with the same λ, µ in both matrices, and a, d, p, q all being arbitrary. To illustrate a particular

example, we take, for simplicity, λ = µ = 1
2
, a, p = u + v, d, q = u − v, so that the matrix U is

given by

U(x, t) =

(
u(x, t) + v(x, t) v(x, t)

v(x, t) u(x, t) − v(x, t)

)
. (5.3)

Using the latter equation in the second equation of (5.1), we obtain

xI =

(
ut + vt vt

vt ut − vt

) (
∆u + ∆v ∆v

∆v ∆u − ∆v

)
. (5.4)

Although this constitutes a system of four equations, there are only two independent equations

contained in (5.4), which can be expressed as

x = ut∆u + 2vt∆v, 0 = ut∆v + vt∆u. (5.5)

These can be obtained by taking the sum and difference of the equations on the leading

diagonal.

In section 5.1 we analyse nontrivial solutions of this coupled system. There are two trivial

solutions which we note here and do not mention again: (i) v = 0, u , 0, which leads to a

diagonal matrix for U which is simply U = u(x, t)I, and which returns us to the scalar case; (ii)

u = 0 and v , 0, which again leads to an equation similar to the scalar case but now with U

non-diagonal. In the following analysis, we assume u , 0 , v.
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5.1. Far-field asymptotics for the (u, v) system

Following the derivation of PI from the scalar difference equation in Section 3, we pursue

a similar asymptotic analysis of the independent component equations (5.5) of the matrix

equation (5.4),correponding to a particular 2×2 system for the choice (5.3). There is a degree

of arbitrariness in the scaling of time and the magnitudes of u, v. Provided 2δ + σ + 6 = 0, the

leading order balance is non-trivial and the following analysis holds. We follow the scalings

(3.4) and introduce

x =
a

h5
+

y

h
, t = h6τ, (5.6)

where a is a constant, y, τ are the new independent variables, describing the rapid kinetics in

the far field, where the dependent variables are assumed to be O(1) and are expanded in the

asymptotic series

u(x, t) = u0(y, τ) + h2u1(y, τ) + h4u2(y, τ), v(x, t) = v0(y, τ) + h2v1(y, τ) + h4v2(y, τ).

(5.7)

Keeping terms of the three largest magnitudes, (5.5) yields

a

h5
+

y

h
=

2

h5

[(
u0,τ+h2u1,τ+h4u2,τ

) (
u0,y+h2u1,y+h4u2,y+

1
6
h2u0,yyy+

1
6
h4u1,yyy+

1
120

h4u0,yyyyy

)

+2
(
v0,τ+h2v1,τ+h4v2,τ

) (
v0,y+h2v1,y+h4v2,y+

1
6
h2v0,yyy+

1
6
h4v1,yyy+

1
120

h4v0,yyyyy

)]
,

0 =
2

h5

[(
u0,τ+h2u1,τ+h4u2,τ

) (
v0,y+h2v1,y+h4v2,y+

1
6
h2v0,yyy+

1
6
h4v1,yyy+

1
120

h4v0,yyyyy

)

+

(
v0,τ+h2v1,τ+h4v2,τ

) (
u0,y+h2u1,y+h4u2,y+

1
6
h2u0,yyy+

1
6
h4u1,yyy+

1
120

h4u0,yyyyy

)]
.

(5.8)

We now expand these expressions and consider terms at each power of h in turn.

Terms of O(h−5) in (5.8) are leading order and imply

a = 2u0,τu0,y + 4v0,τv0,y, 0 = u0,τv0,y + v0,τu0,y, (5.9)

which can be solved by the linear functions

u0 = k (y + θτ) , v0 = kφ (y − θτ) , θ =
a

2k2(1 − 2φ2)
, (5.10)

where k, φ are arbitrary constants, with φ , ±1/
√

2, and θ is given by (5.10). We remark that

in terms of the matrix derivation discussed in Section 4, we have

K = k

(
1 + φ φ

φ 1 − φ

)
, (5.11)

which is singular only if φ = ±1/
√

2. Thus the existence of a solution of the form (4.6) is related

to the existence of a solution here of the form (5.10).
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5.2. Second order terms

At the next order, namely O(h−3), equation (5.8) provides the equations

0 = 2u1,τu0,y + 4v1,τv0,y + 2u0,τu1,y + 4v0,τv1,y +
1
3
u0,τu0,yyy +

2
3
v0,τv0yyy, (5.12)

0 = 2u1,τv0,y + 2v1,τu0,y + 2u0,τv1,y + 2v0,τu1,y +
1
3
u0,τv0,yyy +

1
3
v0,τu0,yyy, (5.13)

which, on using (5.10), give

0 = u1,τ + 2φv1,τ + θu1,y − 2θφv1,y, (5.14)

0 = φu1,τ + v1,τ − θφu1,y + θv1,y. (5.15)

If we assume this system of linear equations has travelling wave solutions for both u1 and v1,

that is

u1 = u1(z), v1 = v1(z), with z = y − cτ, (5.16)

we find

M

(
u′1(z)

v′
1
(z)

)
=

(
0

0

)
, where M =

(
θ − c −2θφ − 2φc

−θφ − φc θ − c

)
. (5.17)

In order for nontrivial solutions to exist, that is, (u′1, v
′
1) , (0, 0), we require det(M) = 0, which

implies

(θ − c)2
= 2φ2(θ + c)2, (5.18)

and so the two characteristic speeds c1, c2 are given by the ‘generalised eigenvalues’

c1 =
θ(1 + φ

√
2)

(1 − φ
√

2)
=

a

2k2(1 − φ
√

2)2
, c2 =

θ(1 − φ
√

2)

(1 + φ
√

2)
=

a

2k2(1 + φ
√

2)2
. (5.19)

Since c1c2 = θ
2, the velocities c1, c2 have the same sign, and in each of the limits φ→ ±1/

√
2,

one of the characteristic velocities c1, c2 → ±∞. Later calculations are simplified by noting

c2 − c1 =
−4
√

2φθ

(1 − 2φ2)
, θ − c1 =

−2θφ
√

2

(1 − φ
√

2)
, θ − c2 =

2θφ
√

2

(1 + φ
√

2)
,

θ + c1 =
2θ

(1 − φ
√

2)
, θ + c2 =

2θ

(1 + φ
√

2)
. (5.20)

The degenerate case c = c1 = c2 corresponds to φ = 0 and although the eigenvalue is

repeated, there remain two distinct eigenvectors. In this case, the leading order solution van-

ishes, that is, v0 = 0, from (5.10); however, a nontrivial first correction term remains possible,

that is, v1 , 0.

Corresponding to each characteristic speed there is a ‘generalised eigenvector’

f1 =

(
u′

1

v′1

)
=

(√
2

−1

)
, and f2 =

(
u′

1

v′1

)
=

(√
2

1

)
, (5.21)
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respectively, each satisfying Mf j = 0. At this point it is convenient to transform from the

independent variables (y, τ) to the two travelling wave coordinates, one for each of the char-

acteristic velocities (5.19). We define

z = y − c1τ, w = y − c2τ, τ =
z − w

c2 − c1

, y =
c2z − c1w

c2 − c1

, (5.22)

which implies the derivatives transform according to ∂y = ∂z + ∂w, and ∂τ = −c1∂z − c2∂w.

The dependent variables u1, v1 are replaced by new variables q1(z), q2(w) so that our solu-

tion of (5.14)–(5.15) is expressed as
(
u1(y, τ)

v1(y, τ)

)
= q1(z)

(√
2

−1

)
+ q2(w)

(√
2

1

)
. (5.23)

In component form, this is written

u1(y, τ) =
√

2q1(z) +
√

2 q2(w), v1 = −q1(z) + q2(w), (5.24)

and the transformations in derivatives explicitly as

u1,τ = −
√

2(c1q′1(z) + c2q′2(w)), v1,τ = c1q′1(z) − c2q′2(w),

u1,y =
√

2(q′1(z) + q′2(w)), v1,y = −q′1(z) + q′2(w).
(5.25)

Having this form for our solution of (5.14) and (5.15) but with the profiles q1(·) and q2(·) still un-

determined, we proceed to the highest order terms considered here in order to find equations

which involve higher derivatives to provide the shape of these functions.

5.3. Third order terms

At O(h−1), we obtain the following terms from (5.8):

y = 2u2,τu0,y + 2u1,τu1,y +
1
3
u1,τu0,yyy + 2u0,τu2,y +

1
3
u0,τu1,yyy +

1
60

u0,τu0,yyyyy

+4v2,τv0,y + 4v1,τv1,y +
2
3
v1,τv0,yyy + 4v0,τv2,y +

2
3
v0,τv1,yyy +

1
30

v0,τv0,yyyyy,

0 = 2u2,τv0,y + 2u1,τv1,y +
1
3
u1,τv0,yyy + 2u0,τv2,y +

1
3
u0,τv1,yyy +

1
60

u0,τv0,yyyyy

+2v2,τu0,y + 2v1,τu1,y +
1
3
v1,τu0,yyy + 2v0,τu2,y +

1
3
v0,τu1,yyy +

1
60

v0,τu0,yyyyy. (5.26)

Since the first derivatives of u0, v0 are constants and higher derivatives vanish, using the solu-

tion (5.10) simplifies (5.26) to

y

2k
= u2,τ +

u1,τu1,y

k
+ θu2,y +

1
6
θu1,yyy + 2φv2,τ +

2v1,τv1,y

k
− 2φθv2,y − 1

3
φθv1,yyy,

0 = φu2,τ +
u1,τv1,y

k
+ θv2,y +

1
6
θv1,yyy + v2,τ +

v1,τu1,y

k
− θφu2,y − 1

6
θφu1,yyy. (5.27)

Using (5.24) to eliminate u1, v1 in favour of q1(z), q2(w), significantly simplifies (5.27) to

c2z − c1w

2k(c2 − c1)
=

1
6
θ
√

2[(1 + φ
√

2)q′′′1 (z) + (1 −
√

2φ)q′′′2 (w)] − 4

k

(
c1q′1(z)2

+ c2q′2(w)2
)

+(θ − c1)u2,z + (θ − c2)u2,w − 2φ(θ + c1)v2,z − 2φ(θ + c2)v2,w,

0 =
1
6
θ[(1 −

√
2φ)q′′′2 (w) − (1 +

√
2 φ)q′′′1 (z)] +

2
√

2

k

(
c1q′1(z)2 − c2q′2(w)2

)

−φ(θ + c1)u2,z − φ(θ + c2)u2,w + (θ − c1)v2,z + (θ − c2)v2,w. (5.28)
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These equations retain partial derivatives of the higher-order correction terms u2, v2, which are

also now considered as functions of z,w.

We treat (5.28) as a pair of coupled third-order ordinary differential equations for q1(z) and

q2(w), writing them as

1
6
θM

(
q′′′1 (z)

q′′′
2

(w)

)
= r, where M =

(√
2(1 + φ

√
2)
√

2(1 − φ
√

2)

−(1 + φ
√

2) 1 − φ
√

2

)
, and (5.29)

r =



(c2z−c1w)

2k(c2−c1)
+

4

k
(c1q′21 +c2q′22 ) − u2,z(θ−c1) − u2,w(θ−c2) + 2φv2,z(θ+c1) + 2φv2,w(θ+c2)

−2
√

2

k
(c1q′21 − c2q′22 ) − v2,z(θ − c1) − v2,w(θ − c2) + φu2,z(θ + c1) + φu2,w(θ + c2)


.

(5.30)

Inverting the matrix M and calculating M−1r, from (5.29)–(5.30), using (5.20) we obtain

1
3
θ
√

2(1−2φ2)

(
q′′′

1
(z)

q′′′2 (w)

)
=

(1−2φ2)(c1w − c2z)

8
√

2 kφθ

(
(1−φ

√
2)

(1+φ
√

2)

)
+

8

k

(
c1q′

1
(z)2(1 − φ

√
2)

c2q′
2
(w)2(1 + φ

√
2)

)

+
4
√

2 θφ

(1 − 2φ2)

(
(
√

2 v2,w − u2,w)(1 − φ
√

2)2

(
√

2 v2,z + u2,z)(1 + φ
√

2)2

)
. (5.31)

Note that the expression for q′′′
1

(z) only involves a quadratic term q′
1
(z)2, with no dependence

on q′2(w); similarly, the expression for q′′′2 (w) only involves a quadratic term q′2(w)2, with no

dependence on q′
1
(z). However, the equation in q1(z) has terms which apparently depend also

on w, and the equation in q2(w) has terms apparently dependent also on z: as we now see,

this cannot in fact be the case. Let us write these equations as

1
3
θ
√

2(1−2φ2)

(
q′′′1 (z)

q′′′
2

(w)

)
=

(
A

Ã

)
(c1w− c2z)+

8

k

(
c1q′1(z)2(1 − φ

√
2)

c2q′2(w)2(1 + φ
√

2)

)
+

(
B(
√

2 v2,w − u2,w)

B̃(
√

2 v2,z + u2,z)

)
, (5.32)

where

A =
(1−2φ2)(1−φ

√
2)

8
√

2 kφθ
, Ã =

(1−2φ2)(1+φ
√

2)

8
√

2 kφθ
, (5.33)

B =
4
√

2 θφ(1 − φ
√

2)2

(1 − 2φ2)
, B̃ =

4
√

2 θφ(1 + φ
√

2)2

(1 − 2φ2)
. (5.34)

Differentiating the first component equation of (5.32) with respect to w yields

√
2 v2,ww − u2,ww = −

c1A

B
, (5.35)

and differentiating the second component equation of (5.32) with respect to z yields

√
2 v2,zz + u2,zz =

c2Ã

B̃
, (5.36)

18



and thus we obtain

√
2 v2 − u2 = −

c1A

2B
w2
+ d1(z)w + d0(z), (5.37)

√
2 v2 + u2 =

c2Ã

2B̃
z2
+ d̃1(w)z + d̃0(w). (5.38)

Elimination between these equations yields u2 and v2, although it is the above combinations

that are of relevance here. Substituting into (5.32) then gives the following system, the first

equation of which does not in fact depend on w, and the second equation of which does not

in fact depend on z:

1
3
θ
√

2(1−2φ2)

(
q′′′

1
(z)

q′′′2 (w)

)
=

8

k

(
c1q′

1
(z)2(1 − φ

√
2)

c2q′2(w)2(1 + φ
√

2)

)
+

(
Bd1(z) − c2Az

B̃d̃1(w) + c1Ãw

)
. (5.39)

Choosing d1(z) and d̃1(w) to be linear in z and w respectively then gives rise to a pair of

uncoupled first Painlevé equations, but in the distinct independent variables z and w.

6. Solution classes of matrix PII

It is well-known that the scalar PII equation has rational solutions for integer values of

the parameter therein, as well as solutions expressible in terms of Airy functions for half-odd-

integer values of this parameter. This then leads naturally to the question of the classes of

solutions which can be obtained for matrix PII (we note that the scalar PI equation does not

have any solutions expressible in terms of classical functions, and so we do not consider

matrix PI here). As in the case of scalar PII, we seek to provide an answer to this question by

obtaining initial solutions of matrix PII and using aBTs to generate further solutions. We begin

with a general discussion of the aBTs of matrix PII, and then discuss possible initial solutions

and their iteration using aBTs. We remark that no results on solution classes of matrix PII

have previously been published.

6.1. Auto-Bäcklund transformations

Equation (1.1) has the following aBTs:

f : u = v + 1
2
(α − α̃)

(
vx − v2

+
1
2
c0I + F0 + g0Ix

)−1
, α = −α̃ − 2g0, E0 = F0, (6.1)

g : u = −v, α = −α̃, E0 = F0, (6.2)

k : u = vT , α = α̃, E0 = FT
0 , (6.3)

which map from equation (1.1) in (v, α̃,F0) to the same equation in (u, α,E0). The aBTs f (6.1)

and g (6.2) correspond to the aBTs f and g given in [1] for the matrix hierarchy of which (1.1)

is the first member. The aBT k (6.3) corresponds to a generalization of the transformation h —

for which F0 was assumed to be symmetric — given in [1] for this matrix hierarchy. The above
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transformation k in fact also holds for this matrix hierarchy and not just for equation (1.1).1

(The aBTs (6.1)—(6.3) correspond similarly to the aBTs F and G and a generalization of the

aBT H, for which the matrix coefficent E was assumed to be symmetric, given for a matrix

PDE in [6].)

The group of aBTs (of (1.1) and its hierarchy) generated by f , g and k has the presentation

G = 〈 f , g, k ; f 2
= g2

= k2
= ( f k)2

= (gk)2
= 1〉, (6.4)

and is isomorphic to the direct product of the affine Weyl group of type A
(1)

1
with the cyclic

group Z2, i.e., G � A
(1)

1
× Z2. We now define the transformations r = g f and s = f g. It follows

from the relations in (6.4) that any composition of f , g and k can be written either as

kǫ1 f ǫ2rn or kǫ1gǫ2 sn, where in either case ǫ1, ǫ2 ∈ {0, 1}, n ∈ {0, 1, 2, . . .}. (6.5)

This will prove useful later when we dicuss the iteration of solutions using aBTs.

Here we are interested in exact solutions of the matrix analogue of the second Painlevé

equation and so take g0 = −1/2 (the autonomous case g0 = 0 of (1.1) will be discussed

elsewhere). In order to simplify the discussion in the following subsection, we also make the

change of variable x = z + c0 and so will be dealing with the ODE

uzz − 2u3
+ uE0 + E0u − zu − αI = 0 (6.6)

for which we have the aBTs g (6.2) and k (6.3) as well as f , r and s, these last three now being

written

f : u = v + 1
2
(α − α̃)

(
vz − v2

+ F0 − 1
2
Iz

)−1
, α = −α̃ + 1, E0 = F0, (6.7)

r = g f : u = −v + 1
2
(α + α̃)

(
vz − v2

+ F0 − 1
2
Iz

)−1
, α = α̃ − 1, E0 = F0, (6.8)

s = f g : u = −v + 1
2
(α + α̃)

(
−vz − v2

+ F0 − 1
2
Iz

)−1
, α = α̃ + 1, E0 = F0, (6.9)

The last two of these aBTs (identifying x = z + c0, and noting that in both E0 = F0) correspond

respectively to the aBTs (1.6)—(1.8) and (1.9)—(1.11) for matrix PII in the form (1.5).

6.2. On the iteration of initial solutions

Let us now consider the question of obtaining initial and iterated solutions of the matrix PII

ODE

v̂zz − 2̂v3
+ v̂F̂0 + F̂0̂v − ẑv − β̂I = 0, (6.10)

where F̂0 is an arbitrary (in general complex) constant matrix. As a first step we note that,

since the transformation p given by

p : v̂ = PvP−1, β̂ = β, F̂0 = PF0P−1, (6.11)

1In general k changes F0, answering the question which arose in an intervention in A. Pickering’s talk at Group

Analysis of Differential Equations and Integrable Systems (Cyprus, 2018) of whether such an aBT might exist.
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where P is a nonsingular constant matrix, maps from

vzz − 2v3
+ vF0 + F0v − zv − βI = 0 (6.12)

to (6.10), we can always transform to an equation (6.12) with the matrix F0 being similar to F̂0.

The most obvious choice is to take F0 in Jordan canonical form. In particular, if F̂0 is a normal

matrix (i.e., F̂∗0 F̂0 = F̂0 F̂∗0, where F̂∗0 is the conjugate transpose of F̂0), then we may take F0 to

be diagonal. Normal matrices include Hermitian and real symmetric matrices (where for such

F̂0 the diagonal matrix F0 is real), and skew-Hermitian and real skew-symmetric matrices

(where for such F̂0 the diagonal matrix F0 is pure imaginary). However, F0 may in fact be

taken to be any matrix similar to F̂0, e.g., we may always assume F0 to be upper-triangular,

or symmetric. (Rather than think of p as an aBT which changes F̂0, we prefer to regard it

as allowing a form for F̂0 to be chosen; this form may be canonical or otherwise, essentially

unique or otherwise.)

Let us now observe that the transformation p (6.11) commutes with the aBTs g (6.2) and

f (6.7), and so also with the aBTs r = g f (6.8) and s = f g (6.9). This means that the effect

of acting with any composition of these four aBTs g, f , r and s can be calculated equally at

the level of equation (6.10) or at the level of equation (6.12). However, the transformation

p does not commute with the aBT k (6.3) unless PT P commutes with F0 and v, i.e., unless

PT P = γI , 0.

We may proceed as follows. Beginning with equation (6.10) we use the transformation p−1

to obtain an equivalent equation (6.12) with F0 similar to F̂0. We may use an ansatz for the

form of v to obtain a solution v0 of (6.12). If we take F0 to be in Jordan canonical form or simply

upper-triangular, then we may use as an ansatz that v0 is upper-triangular. If we take F0 to

be symmetric, then we may use as an ansatz that v0 is symmetric (the result of substituting

symmetric F0 and v0 into (6.12) is also symmetric). Given v0, we then have a solution v̂0 = pv0

of (6.10). However, instead of calculating the effect of one of the compositions of aBTs (6.5)

on v̂0 we iterate at the level of equation (6.12) and return to (6.10) via p, since we have that

kǫ1 f ǫ2rnv̂0 = kǫ1 p f ǫ2rnv0 and kǫ1gǫ2 snv̂0 = kǫ1 pgǫ2 snv0. (6.13)

In each case the action of k (if ǫ1 = 1) is calculated as the final step at the level of the original

equation (6.10). Using the procedure outlined here we expect to simplify the expressions

obtained when iterating solutions. Except possibly for k as the final step (if ǫ1 = 1), the actions

of the compositions of aBTs in (6.13) on v0 only involve F0 (in general expected to be simpler

than F̂0).

We note in passing that the same observations as made here for the matrix PII equation

also hold for the matrix PII hierarchy given in [1]: with g0 = −1/2 we can shift x to remove

c0 and then use the transformation p−1 to obtain an equation involving a matrix similar to

the constant matrix E in our matrix PII hierarchy, for which we obtain (e.g., via an ansatz) a

solution v0; since p commutes with the aBTs f and g given in [1] we then calculate the effect

of compositions of f , g and k on a solution v̂0 = pv0 of the original equation by iterating at the

level of the transformed equation and returning to the original equation via p as in (6.13). We

will consider this extension to the study of classes of solutions of the matrix PII hierarchy in a

later paper.
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6.3. Classes of initial solutions

Let us now consider the problem of finding initial solutions v0 of equation (6.12), F0 being

similar to some original F̂0. There are two obvious classes of initial solutions that we may

consider:

for parameter value β = 0, v0 = 0; (6.14)

for parameter value β = 1
2
, v0 general solution of vz − v2

+ F0 − 1
2
zI = 0. (6.15)

(Instead of the basic special integral in (6.15), we could take v0 to be the general solution of

−vz − v2
+ F0 − 1

2
zI = 0 for parameter value β = −1

2
. However, (6.15) will serve our purposes

here.) Corresponding to (6.14) and (6.15) we have solutions v̂0 = pv0 of (6.10), i.e., v̂0 =

pv0 = 0 for β̂ = 0, and v̂0 = pv0 the corresponding solution of v̂z − v̂2
+ F̂0 − 1

2
zI = 0 for β̂ = 1

2
.

Let us consider the first case (6.14). We assume without loss of generality that in equation

(6.12) F0 has been taken to be upper triangular or in Jordan canonical form. Since v0, F0 and Iz

are upper triangular, then so are the solutions f ǫ2rnv0 and gǫ2 snv0 of (6.12) given in (6.13). The

diagonal elements of these solutions are known rational solutions of scalar second Painlevé

equations,

vii,zz − 2v3
ii − (z − 2 fii)vii − β = 0, (6.16)

as given by the diagonal elements of (6.12) for upper triangular matrices v = (vi j) and F0 =

( fi j). These rational solutions are the result of corresponding iterations, with initial solutions

vii = 0 of (6.16) for β = 0, of the aBTs

uii = −vii, α = −α̃, (6.17)

and

{
uii = vii +

1
2
(α − α̃)G−1

ii
,

α = −α̃ + 1,

{
uii = −vii +

1
2
(α + α̃)G−1

ii
,

α = α̃ − 1,

{
uii = −vii +

1
2
(α + α̃)H−1

ii
,

α = α̃ + 1,
(6.18)

these aBTs being obtained as the diagonal elements of the aBTs (6.2) and (6.7)—(6.9) where

we have set

G = vz − v2
+ F0 − 1

2
Iz and H = −vz − v2

+ F0 − 1
2
Iz. (6.19)

Since in the iteration of rational solutions for scalar second Painlevé equations (6.16) we

always have that Gii , 0 and Hii , 0, it follows that det G =
∏m

i=1 Gii , 0 and det H =
∏m

i=1 Hii ,

0. Thus the inverse matrices in the aBTs (6.7)—(6.9) always exist and we can iterate to obtain

solutions f ǫ2rnv0 and gǫ2 snv0 of (6.12). The solutions rnv0 are solutions for parameter values

β = −n, and snv0 for parameter values β = n; the solutions f rn−1v0 and snv0 for parameter

values β = n are equal, as are the solutions rnv0 and gsnv0 for parameter values β = −n. In

this way we obtain using the aBTs f and g exactly one solution of (6.12) for each integer value

of β. We map back to solutions of (6.10) using the transformation (6.11), to which solutions

we can then apply the aBT k if we so wish. The solutions of (6.10) thus obtained are matrix

analogues of the well-known known rational solutions of scalar PII for integer values of its

parameter.
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Let us now consider the second case (6.15). Again we assume without loss of generality

that F0 in equation (6.12) has been taken to be upper triangular or in Jordan canonical form.

We iterate using the aBT s (6.9) in order to obtain solutions snv0 of (6.12) for parameter values

β = n + 1
2
, where v0 is the general solution of the basic special integral in (6.15) obtained by

linearizing this last equation via v = −yzy
−1 onto the matrix Airy equation

yzz =

(
F0 − 1

2
Iz

)
y. (6.20)

We note that at each step of this iteration using the aBT s the matrix H must be nonsingular,

since that is the case when v0, instead of being chosen to be the general solution of the basic

special integral in (6.15), is chosen to be the particular solution obtained from the solution y

of the above matrix Airy equation having all entries below the main diagonal equal to zero,

as we now explain. In this particular case, since v0, F0 and Iz are upper triangular, so are all

solutions snv0 of (6.12) given in (6.13): the diagonal elements of these solutions give known

solutions of scalar second Painlevé equations (6.16) expressible in terms of Airy functions.

These solutions of (6.16) are the result of corresponding iterations of the third aBT in (6.18),

with initial solutions of the scalar second Painlevé equations (6.16) obtained for β = 1
2

as

solutions of vii,z − v2
ii
+ fii − 1

2
z = 0, and so as vii = −yii,zy

−1
ii

where yii is the general solution of

yii,zz =

(
fii − 1

2
z
)

yii. Since in the iteration of such solutions for scalar second Painlevé equations

(6.16) we always have Hii , 0, it follows that det H =
∏m

i=1 Hii , 0. Thus, since for this

particular solution v0 the inverse matrix in the aBT (6.9) always exists, this must also be the

case when v0 is the general solution of the basic special integral in (6.15) and there is therefore

no obstacle to iterating from such a general solution v0 to obtain solutions snv0 of (6.12) for

parameter values β = n+ 1
2
. The aBT g then gives solutions gsnv0 of (6.12) for parameter values

β = −n− 1
2
. We note that we could also, if we define f v0 = v0 (note that if v0 satisfies (6.15) then

the matrix whose inverse appears in f is the zero matrix, but since the new parameter value

obtained using f is also β = 1
2

then the difference in parameters appearing in the expression

for the new solution in f is zero), iterate using r to obtain solutions rn+1v0 for parameter values

β = −n− 1
2
. The solutions rn+1v0 and gsnv0 of (6.12) for parameter values β = −n− 1

2
are equal,

as are the solutions f rnv0 and snv0 for parameter values β = n+ 1
2
. In this way we obtain using

the aBTs f and g exactly one solution of (6.12) for each half-odd-integer value of β. We then

map back to solutions of (6.10) using the transformation (6.11), to which solutions we can then

apply the aBT k if we so wish. The solutions of (6.10) thus obtained are matrix analogues of

the solutions of the scalar second Painlevé equation, expressible in terms of Airy functions,

for half-odd-integer values of its parameter.

Let us now consider two further classes of initial solutions v0 of equation (6.12). Again we

assume without loss of generality that F0 = ( fi j) in equation (6.12) has been taken to be upper

triangular or in Jordan canonical form. We consider here initial solutions v0 which generalize

cases considered above. Let us seek an initial solution v0 = (vi j) that is upper triangular.

Each element vii of the leading diagonal of v0 then satisfies a scalar second Painlevé equation

(6.16), and each element above the leading diagonal of v0, i.e., vi j with j > i, satisfies a linear
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differential equation,

vi j,zz − 2

l∑

k=i

j∑

l=k

vikvklvl j +

j∑

k=i

vik fk j +

j∑

k=i

fikvk j − zvi j = 0. (6.21)

We may therefore seek an upper triangular initial solution v0 having as diagonal elements

solutions of scalar second Painlevé equations (6.16) — taking into account that all of these

scalar PII equations have the same parameter β— and elements above the leading diagonal

solutions of the linear equations (6.21). These linear equations can be recursively solved for

the elements of v0 which lie along successive diagonals parallel to the leading diagonal, the

last linear equation to be solved being for the upper right-hand-corner element of v0. They are

in general non-homogeneous: the homogeneous part of (6.21) is

vi j,zz − 2(v2
ii + viiv j j + v2

j j)vi j + ( fii + f j j − z)vi j = 0. (6.22)

As initial solutions of (6.16) for the diagonal elements vii of v0 we may take:

for parameter value β = 0, vii = 0; (6.23)

for parameter value β = 1
2
, vii general solution of vii,z − v2

ii + fii − 1
2
z = 0. (6.24)

In the first case (6.23), the homogeneous part of (6.21), i.e., (6.22), reduces to

vi j,zz + ( fii + f j j − z)vi j = 0, (6.25)

and so the linear equations (6.21) are Airy equations. These Airy equations for vi,i+k are

homogeneous for k = 1, may be homogeneous for k = 2 (depending on F0), and are non-

homogeneous for k > 2 (due to contributions from the cubic term in (6.21)). Using the same

reasoning as used previously in our discussion of the case (6.14), we see that the inverse

matrices in the aBTs (6.7)—(6.9) always exist and we can iterate to obtain solutions f ǫ2rnv0

and gǫ2 snv0 of (6.12). The solutions rnv0 are solutions for parameter values β = −n, and the

solutions snv0 are solutions for parameter values β = n. The diagonal elements of these

solutions are the well-known rational solutions of scalar second Painlevé equations (6.16).

However, for this case (6.23), the solutions f rn−1v0 and snv0 for parameter values β = n are

different (except in the special case v0 = 0, i.e., (6.14)). Similarly, for this case (6.23), the

solutions rnv0 and gsnv0 for parameter values β = −n are different (except in the special case

v0 = 0, i.e., (6.14)). In this way we obtain using the aBTs f and g exactly two solutions of (6.12)

for each integer value of β. We then map back to solutions of (6.10) using the transformation

(6.11), to which solutions we can then apply the aBT k if we so wish. The solutions of (6.10)

thus obtained are generalizations of the matrix analogues of the rational solutions of the scalar

PII equation obtained above using the initial solution (6.14).

In the second case (6.24), the homogeneous part of the linear equation (6.21), i.e., (6.22),

is

vi j,zz − 2
(
y2

ii,zy
−2
ii + yii,zy

−1
ii y j j,zy

−1
j j + y2

j j,zy
−2
j j

)
vi j + ( fii + f j j − z)vi j = 0, (6.26)
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where each ykk is obtained as the general solution of ykk,zz =

(
fkk − 1

2
z
)

ykk (the linearization

of vkk,z − v2
kk
+ fkk − 1

2
z = 0 under vkk = −ykk,zy

−1
kk

). The linear equations (6.21) for vi,i+k may

be homogeneous for k = 1 (depending on F0), and are non-homogeneous for k > 1 (due to

contributions from the cubic term in (6.21)). Using the same reasoning as used previously

in our discussion of (the upper triangular subcase of) the initial solution (6.15), we see that

the inverse matrices required for repeated application of the aBT (6.9) always exist and we

can iterate to obtain solutions snv0 of (6.12) for parameter values β = n + 1
2
. The diagonal

elements of these solutions are well-known solutions of scalar second Painlevé equations

(6.16) expressible in terms of Airy fuctions. The aBT g then gives solutions gsnv0 of (6.12)

for parameter values β = −n − 1
2
. As previously, if we define f v0 = v0 (v0 is such that the

matrix whose inverse appears in f has zero determinant, but since the new parameter value

obtained using f is also β = 1
2

then the difference in parameters appearing in the expression

for the new solution in f is zero), we may iterate using r to obtain solutions rn+1v0 = gsnv0 for

parameter values β = −n − 1
2
, and solutions f rnv0 = snv0 for parameter values β = n + 1

2
. We

thus obtain, using the aBTs f and g, exactly one solution of (6.12) for each half-odd-integer

value of β. We then map back to solutions of (6.10) using the transformation (6.11), to which

solutions we can then apply the aBT k if we so wish. The solutions of (6.10) thus derived are

generalizations of the matrix solutions of (6.10) obtained from the previously-mentioned upper

triangular solutions of (6.12) generated by iterating using f and g from an initial solution (6.15)

in the particular case where v0 is obtained from an upper triangular solution of the matrix Airy

equation (6.20). That is, they are extensions of a particular case of the matrix analogues of

the solutions of the scalar second Painlevé equation expressible in terms of Airy functions

obtained above using the initial solution (6.15).

We have thus seen that several extensions to the matrix case of known solutions — ra-

tional, expressible in terms of Airy functions — of scalar PII are possible. Perhaps the most

natural are those solution classes found by iteration using aBTs from the initial solutions (6.14)

and (6.15). However, it is also possible to seek extensions of these scalar PII solutions to the

matrix case by iterating from (6.23) and (6.24). In this way we find for example solutions of

matrix PII whose elements involve rational and Airy functions. In a later paper we will consider

the question of further solution classes, and also extend our results to the case of the matrix

PII hierarchy.

7. Conclusions

In this paper we have given an asymptotic reduction from the matrix nonautonomous

semidiscrete equation (1.4) to matrix PI, as well as corresponding results in the scalar case,

that is, a reduction from (1.20) to scalar PI. We have also given in Section 4 a more general

discussion of our asymptotic analysis, and in Section 5 a component-wise approach. This

then extends our earlier papers, where we have explored connections between various inte-

grable systems [20, 21, 22]. In addition, we have given Hamiltonian formulations of the matrix

first and second Painlevé equations. Given the results presented in [6] and also in the current

paper, we expect in the future to be able to derive further examples of semidiscrete equations

using auto-BTs for PDEs and ODEs, and also to be able to obtain asymptotic reductions of
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such new semidiscrete equations to Painlevé equations. Also in the future we will extend our

results obtained in Section 6, on classes of solutions of the matrix PII equation, to the general

case of the matrix second Painlevé hierarchy.
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