View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Repository@Nottingham

Bank-Laine functions, the Liouville transformation
and the Eremenko-Lyubich class

J.K. Langley
November 30, 2018

For Larry Zalcman, on the occasion of his retirement from Journal d’Analyse Mathématique

Abstract

The Bank-Laine conjecture concerning the oscillation of solutions of second order ho-
mogeneous linear differential equations has recently been disproved by Bergweiler and Ere-
menko. It is shown here, however, that the conjecture is true if the set of finite critical
and asymptotic values of the coefficient function is bounded. It is also shown that if E is
a Bank-Laine function of finite order with infinitely many zeros, all real and positive, then
its zeros must have exponent of convergence at least 3/2, and an example is constructed
via quasiconformal surgery to demonstrate that this result is sharp. MSC 2000: 30D35.

1 Introduction

If fis a non-constant entire function, let

log™ T loe™ N(r, 1
p(f) = limsup 08 f\nJ) (r.f) . A(f) = limsup og” N(r.1/f)
r—s-+00 log r r——00 logr

< pn(f),

denote its order of growth and the exponent of convergence of its zeros [11]. In their landmark
paper [1], Bank and Laine proved the following results on the oscillation of solutions of

Y+ Alz)y = 0. (1)

Theorem 1.1 ([1]) Let A be an entire function, let fi, fo be linearly independent solutions of
(1) and let E = f1 fo, so that A(E) = max{A(f1), \(f2)}.

(i) If A is a polynomial of degree n > 0 then A\(E) = (n +2)/2.

(i) If \(E) < p(A) < 400 then p(A) e N={1,2,...}.

(iii) If A is transcendental and p(A) < 1/2 then A\(E) = +oc.

The case where 1/2 < p(A) < 1 was considered by Rossi [22] and Shen [23].
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Theorem 1.2 ([22, 23]) Let A be an entire function of order p(A) and let E = fi fo, where
f1, f2 are linearly independent solutions of (1). If p(A) = 1/2 then A\(E) = +o0, while

1 1 .
Mergz if1/2 < p(A) < 1. (2)

In particular, if 1/2 < p(A) < 1 then p(E) > 1.

The methods of [1] focused on the product £ = f; f» of linearly independent solutions f; of (1),
and in particular on the equation

E 2 B 2
4A:<E>—Zf—é@ c=W(fi fo). (3)

linking £ and A, in which the Wronskian W ( f1, fo) = f1f5 — fif2 is constant by Abel’s identity.
The paper [1] inspired much subsequent activity concerning the zeros of solutions of (1) and, more
generally, linear differential equations with entire coefficients [16], and gave rise to the Bank-Laine
conjecture — let A be a transcendental entire function of finite order p(A) and let fi, fo be linearly
independent solutions of (1): if \(f1f2) is finite then p(A) € N. However, two remarkable recent
papers of Bergweiler and Eremenko [5, 6] show via quasiconformal constructions not only that
the Bank-Laine conjecture is false, but also that the inequality (2) is sharp.

When A is a non-constant polynomial in (1), satisfying A(z) = a,z"(1 + o(1)) as z — o0,
there are n + 2 critical rays given by arg z = 6%, where a,e™*t2%" is real and positive, and the
Liouville transformation

Y(2) =A@y, 2= [ Awa ®
zZ1
may be applied in sectors symmetric about these rays. This reduces (1) to a sine-type equation

Y O(l)
ﬁ+ <1+ 7 )Y—O,

for which solutions asymptotic to e**“ on a sectorial region in the Z plane are delivered by
Hille's method [14, 15]. On one side of the critical ray, one of the corresponding solutions
A(2) 42 (1 + o(1)) of (1) is large while the other is small, and these roles are reversed as
the critical ray is crossed.

In contrast, for transcendental entire A, although a local analogue of Hille's method was
developed in [17], applying on small neighbourhoods of maximum modulus points of A, the
analytic continuation and estimation of Z in (4) present substantial difficulties. However, it turns
out that for a certain class of entire functions A the transformation (4) may be adapted so as to
be readily applicable on components where |A(z)] is large.

The Eremenko-Lyubich class B plays a key role in complex dynamics [3, 9, 25] and consists of
those transcendental meromorphic functions A with the following property: there exists a positive
real number M = M(A) such that all finite critical and asymptotic values of A have modulus
less than M. Now suppose that A € B is entire. Then, by standard results from [21, p.287]
(see also [4]), all components Uy, of the set {z € C : |A(2)| > M} correspond to logarithmic



singularities of A~! over oo; in particular, v = log A(z) maps each such U,; conformally onto
the half-plane H given by Rev > log M. Under the change of variables

Az) dv 1

A(z) =€, z=0¢(v), A) —dz ) (5)

in which z = ¢(v) is the inverse mapping from H to Uy, a solution y(z) of (1) on Uy, transforms
to a solution w(v) = y(z) on H of

W)
&)

and the second formula in (4) becomes, for a suitable choice of z; = ¢(vy),

w”(v) w'(v) + €'/ (v)*w(v) = 0, (6)

Z = /v ¢/ (u) du. (7)

The fact that ¢’ varies relatively slowly on H, by classical theorems on conformal mappings [13],
makes it possible to prove the following theorem.

Theorem 1.3 Suppose that A is a transcendental entire function in the Eremenko-Lyubich class
B, and let E = f, f, where fi, fo are linearly independent solutions of (1). Then exactly one of
the following holds.

(A) The functions A and E satisfy p(A) = p(E) =1 and

T(r,A)+T(r,E)=0(r) as r— +oc. (8)
(B) There exists d > 0 such that the zeros of E satisfy

n(r,1/E) > exp (drl/2) as r — 400, 9)
and in particular p(E) = \(E) = +o0.

It follows from Theorem 1.3 that the Bank-Laine conjecture, despite being false in general [5],
is true when the coefficient A is entire and in the class B. An example going back to [1] shows
that each of conclusions (A) and (B) can occur: if A(z) = —e* — 1/4 then (1) has solutions

i) =ePexp(—=e), falz)=e*Pexp(e®), filz)falz) =7 plfif) =1,
as well as solutions
g1(z) = e */? sinh (€*), g2(2) = e */? cosh (€), Ag1g92) = +oo.

An example will be given in Section 4 to show that the exponent 1/2 in (9) is sharp.

The second main result of this paper concerns the location of zeros of Bank-Laine functions,
that is, entire functions E such that E(z) = 0 implies E’(z) = £1. By [2, Lemma (], an entire
function E is a Bank-Laine function if and only if E = f; f5, where f1, f5 are linearly independent
solutions of (1) with A entire and W (f;, fo) = 1. Although a Bank-Laine function with no
restriction on its growth may have an arbitrary sequence (a,) of zeros, subject only to a,, — oo
without repetition [24], the following result was proved in [7] concerning Bank-Laine functions
with real zeros.



Theorem 1.4 ([7]) Let E be a Bank-Laine function of finite order, with infinitely many zeros,
all real, and denote by n(r) the number of zeros of E lying in [—r,r]. Then n(r) # o(r) as
r — +o00. If, in addition, all zeros of E are positive, then n(r) # O(r) as r — +oo.

The first assertion of Theorem 1.4 is evidently sharp, because of sinz. The next theorem
will establish a sharp lower bound for A\(E) when E is a Bank-Laine function of finite order with
infinitely many zeros, all real and positive. Here it is sufficient to consider the case where E
is real entire, because otherwise it is possible to write £ = Ile”+*? where II is the canonical
product over the zeros of E, while P and () are real polynomials; thus ¢’?(*) = £1 at every zero
of E and F = Ile” is also a Bank-Laine function.

Theorem 1.5 Let E be a real Bank-Laine function of finite order, with infinitely many zeros,
all real and positive. Then the exponent of convergence A\(E) of the zeros of E is at least
3/2. Moreover, if \(E) = 3/2 then E and the associated coefficient function A have order

p(E) = p(A) = 3/2.

To demonstrate the sharpness of Theorem 1.5, quasiconformal techniques will be used in
Section 6 to construct a real Bank-Laine function E, with only positive zeros, such that F and
its associated coefficient function A satisfy \(E) = p(E) = p(A) = 3/2, so that A provides a
further counter-example to the Bank-Laine conjecture.

The author thanks the referee for an extremely careful reading of the manuscript and for
numerous helpful suggestions.

2 A refinement of Hille’s method

The following lemma is an extension of a method from [17], and provides bounds for the error
terms in Hille's method [14, 15].

Lemma 2.1 Let ¢ > 0 and 0 < ¢ < w. Then there exists d > 0, depending only on ¢ and ¢,
with the following properties. Suppose that the function A is analytic, with |1 — A(2)] < c|z| 72,
on a domain containing

N=0Qrs={2€C: 1<R<|2| <5< +o0, |argz| <71 —¢}.
Then the equation (1) has linearly independent solutions U(z),V (z) satisfying

U(z) = e ®(1+01(2)), U'(z)=—ie *(14 6(2)),

V(z) = e®(1+d3(2)), V'(2) =ie(1 + 64(2)), (10)
in which
10;(2)] < % for z€Qpe=0rs\{2€C: Re(z) <0, [Im(z)] < R}. (11)

Proof. Let X = Se'?, where ¢ = min{r/2, ™ — ¢}. Choose an analytic solution v on Q of

V' 4+ 20 — Fo=0, F=1-A, (12)
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such that v(X) = 1,0'(X) = 0, and write

L(z) =v(2)— 1—1—% Z(e2i(t_z)—1)F(t)v(t) dt, L'(z) :U’(z)—/ e2i(t_z)F(t)v(t) dt, (13)

z

L"(z) =v"(2) + 22'/ DRt (t) dt — F(2)v(z) = —2iL(2).

X

Since L(X) = L'(X) = 0, the existence-uniqueness theorem implies that L(z) = 0 on (2.

Now let 2 € 2% ¢ and let . describe the clockwise arc of the circle [t[ = .S from X to the
first point z of intersection with the line Im(¢) = Im(z), followed by the straight line segment
from x to z; then [e2(=?)| < 1 on v, C Q. Since L(z) = 0, (13) gives

—1|</ F(#)o(t)] |dt). |<1+/ (F(#)o(t)] |dt]. (14)

Now parametrize v, by ¢t = ((s), where s denotes arc length on .. Using (14), write

= 1+/ [E(C( (0)ldo,  H'(s) = [F(((s))o(C(s))] < [F(C(s))H (s),

and

0(C(s)) — 1] < H(s) — 1 = exp ( g da) Cl<exp ( | 1o da) .

o

which leads to
o)~ 1 Sexp (1)~ 1, L= [ |F(0)] el (15)

Let di,ds,... denote positive constants which depend only on ¢ and . The circle [t| =
contributes at most d; S~ < dy|z|7! to I, in (15), while the contribution J, from the horizontal
part of ~, satisfies:

+oo d
J, < / %dt:LS—Q if |argz| < 7/4;
Rezt Rez |Z|

C d3 d4 .
J < | —————dr< <t ifr/a< <m—e.
- /RxZ%—(Imz)? r= Im z| — |z| fr/ds]argzl sm—e

Since R > 1, (13) and (15) now deliver
de / ‘ dy
[v(2) = 1] < exp | ) olS i Sd WEIS [ IFOI0+dgldt] < 5

Now set V' (z) = v(z)e'*; then (12) implies that V solves (1), and the estimates (10) and (11) for
V follow at once. To obtain U it is only necessary to apply the above argument to the equation
solved by y(2) for every solution y(z) of (1). 0

Unbounded sectorial regions may be handled as follows.



Lemma 2.2 Suppose that ¢ > 0 and 0 < € < m, and that the function A is analytic, with
1—AR)| <clz|2 on QY ={2€C:1<R<|z| <+oo,|argz| <7 —¢c}. Then there exist
d > 0, depending only on ¢ and ¢, and solutions U,V of (1) on

Q"'={2€C:R<|z] < +oo,|argz| <7 —c} \ {z:Re(z) <0,|Im(z)| < R},
such that U and V' satisfy W (U, V') = 2i and (10), with |§;(z)| < d/|z|, on Q".

Proof. Taking a sequence S,, — o0 yields solutions U,, V,, of (1) on QF 5 , with corresponding
error terms 9;,(2),7 = 1,2,3,4. Here the functions 20,,(z) are uniformly bounded, since
the constant d is independent of S in (11). Thus, by normal families, it may be assumed
that the U, V,,d;, converge locally uniformly on Q”. The limit functions U,V satisfy (10),
with |9;(2)] < d/|z| on Q". Since W(U,V) is constant, by Abel’s identity, it follows that
W(U,V) = 2i. O

Finally, a change of variables = — —z shows that Lemmas 2.1 and 2.2 hold if {25 g and QRS,
and correspondingly Q" and Q”, are replaced by their reflections across the imaginary axis.

3 Estimates in a half-plane

Throughout this section let H = {v € C: Rev > 0} and let ¢ : H — C\ {0} be analytic and
univalent. For v,v; € H, define Z = Z(v,v;) as in (7) by

Z(v,v) = /U "2 (u) du = 2e*/%¢' (v) — 224/ (v1) — 2 /v e“2¢" (u) du. (16)

v1

Since 0 ¢ ¢(H) the image of H under log ¢ contains no disc of radius greater than ; thus
applying Bieberbach's theorem and Koebe's one quarter theorem [13, Theorems 1.1 and 1.2] to
¢ and log ¢ respectively gives, for u € H,

¢"(u) ¢'(u)
¢'(u) ¢(u)

The fact that the estimates (17) are independent of ¢ is the key to the results of this section
and the proof of Theorem 1.3.

4
~— Reu’

47
~ Reu’

(17)

Lemma 3.1 Lete be a small positive real number. Then there exists a large positive real number
Ny, depending on £ but not on ¢, with the following property.
Let vy € H be such that So = Rewvy > Ny, and define vy, vs,v3, Ky and K3 by

275,
v, =
7128

, : T T
+iTy, Ty = Imuwyg, Kj:{vj—l-ree:rzo,—ggﬁgg}. (18)

Then the following three conclusions all hold:
(i) Z = Z(v,v) satisfies, for v € K,

Z=Z(v,v) = /U 2 (u) du = 2e**¢'(v)(1 4 6(v)), |6(v)] < e. (19)

1



(i) ¥ = ¥(v,v1) = log Z(v,v1) is univalent on a domain containing K.
(i) There exists a domain D, with vo € D C K3, mapped univalently by Z onto a sectorial
region M3 satisfying

Zoy = Z(vg,v1) € M3 ={Z € C: |Zy|/8 < |Z| < +o0, |arg(nZ)| < 3r/4}, (20)
wheren =1 ifReZy >0 andn = —1 ifRe Zy < 0.

Proof. To prove (i) assume that Sy = Re vy is large and let v € K3, so that
So
S:Rev23—2:2Revl. (21)

Now v; may be joined to v by a straight line segment L, which is parametrised with respect to
s = Rew, and an elementary arc length estimate |du| < (secw/4)ds < 2ds holds on L,. Thus
(17) delivers, for u € L,,

sl < (2) Wl wwli<iivwi<] () ol (22)

S S S

which implies by (21) that

e/ 2¢ (vy) s \° 1 3 £
< - _0) ) < —S/4) < 2
T4 (o) ’ < (Revl) exp <2Re(v1 v)) < SPexp (—S5/4) < 1 (23)
provided S is large enough. Moreover, (22) leads to
1 v 858 S
w/2 41 < U _ / 5/2 ,—9 ) 2
TG /v1 e P" (u) du| < WU(S) o7 |, e*“s7 ds (24)

Since limg_, 1o, ¥(.S) = 0 by L'Hopital's rule, (21) implies that W(S) < e/4 if Sy is large enough.
Thus (19) follows from (16), (23) and (24), which proves (i).

Next, (19) gives, on K,

¥(v) = Y(v,v1) =log Z(v,v1) = g +1log2 +log ¢'(v) + 61 (v), [61(v)] < 2[6(v)] < 2.

Since ¢ is small and S is large, (17), (18) and Cauchy's estimate for derivatives now deliver

8 1
< <z,
~ Rev — 4

Y (v) — 3 (25)

|

and hence Re®/(v) > 0, on a convex domain containing K3, which proves (ii).

Now let
Ly ={ve K;s: Rev> Sy/8}.

Then, for v € L3, integration along the line segment from v, to Re v + 4T} followed by that from
Rewv + iT} to v yields, in view of (25),

UV — Vg

V(0) = b(wo) = 5

log M‘ + tan Z) . (26)
So

O :

7



Since Sy is large this implies that, for v € OL3 with Rev = S;/8,

750 m 1
_ < - —— — < —
Re (¢ (v) — ¥ (vg)) 16 +38 <10g8 + tan 8) log 16

On the other hand, all other v € JL; satisfy, by (18) and (26),

Im (v — vo)| > (Rev— 5

v

I () — b)) = 2o tan T 8 (

Moreover, Re (¢(v) — ¥ (vg)) — +00 as v — oo in K3, again by (26). Thus the strip
1
{¢(Uo)+0+i7’i o> logg, —2r <7< 2%}
lies in the interior of ¢(L3), which completes the proof of (iii) and the lemma. 0

Proposition 3.1 There exists a positive real number Ny, independent of ¢, with the following
property. If vy € H satisfies

min{Sy, |€"/2¢'(v)|} > N1, Sy = Rewy,
and if wy, wy are linearly independent solutions of (6) with
W(wy,wy) = £¢',  |wi(vo)wa(vg)| > 1, (27)
then wywy has a sequence of distinct zeros (,, — oo in H which satisfy
16(Cn)| = O (logm)®  as m — +o0. (28)

Proof. Observe first that, by Abel’s identity, the Wronskian of any two local solutions of (6)
is a constant multiple of ¢’. Fix a small positive ¢ and assume that vy € H, that wq,w, are
linearly independent solutions of (6) which satisfy (27), and finally that Sy and |e*/2¢/(vy)] are
both large. Let vy, v9,v3, Ko and K3 be as in (18), and define Z by (16). By Lemma 3.1,
Zo = Z(vg,v1) is large and there exist n € {—1,1} and a domain D C K3, both as in conclusion
(iii), so that M3 = Z(D) satisfies (20). The change of variables

w(v) = e W(Z), w;(v) = e /" W,;(2), (29)
transforms (6) on D to the equation on M; given by

W(Z)+ (1 +G(Z)W(Z) =0, G(Z)= m (1 14 (Z((;’D o 30)

Here the derivatives in the first equation are with respect to Z, and

1

G(Z)] < ZF

(31)

8



on My = Z(D), by (17), (19) and the fact that Sy = Revy is large. Now apply Lemma 2.2 with
Q' ={ZeC:|Z]|/4<|Z] < +o0, |arg(nZ)| < 57/8} C M,

and let My = Q”, so that Zy = Z(vg,v1) € My C €' C Mjs, by the choice of 7. Since |Zy| is
large, there exist solutions Uy(Z), Uy(Z) of (30) on My, which satisfy W (Uy, Us) = 2i and

d

U1(Z)e? = 1]+ |Us(Z)e? = 1| < %k

(32)

in which the positive constant d is independent of vy and Zy, by (31).
Suppose first that, on My,

Wi(Z) =oUi(Z), Wh(Z) =03Us(Z), o;€C\{0}.
Then (19), (27) and (29) give

dz
+¢' = W(wy, wy) = e~/>W (W, WQ)% = W (W, W)@’ = 2io102¢),

so that |o109| = 1/2. But Rewy and |Zy| are large, which implies, in view of (29) and (32), that
wl(Uo)UJQ(Uo) = 67UO/2W1(Z()>W2(Z0) = €7U0/20102U1(ZO)U2(Z0>

is small, a contradiction.
Because w; and wy are interchangeable, it now follows that at least one of W; and W5,
without loss of generality W7, is a non-trivial linear combination

Wi(Z) = A\UL(Z) — AUs(Z), Ay, Ay € C\ {0} (33)

of Uy, Us on My. Fix a small positive x and suppose that
1 Ay
Z* = —log —
9 %84, T
where n is an integer of large modulus and appropriate sign, depending on 7. Then Z* € M,
and (32) implies that, on |Z — Z*| = &,

1 AUy(2)
—log ———~ — =7 -7 A A )
2 S AU (z) +I@), E) <k

Hence W, has a zero Z** with |Z** — Z*| < k, by Rouché's theorem and (33).

It follows that W;(Z) has distinct zeros X7, X5, ..., which tend to infinity in M, and satisfy
| Xon| < co+ cym, where cg, c1, . .. denote positive constants which may depend on vy and ¢, but
not on m. By (19), these zeros X, satisfy, with (,, € K3 and ¢ small,

Xin = Z(Gn) = 2626/ (Cu) (1 +6(Gn)),  18(Gn))| < .
Using (17) to estimate |log |¢'(()|| then gives, in view of (18),

G|l < ot esReCn < ey +cslogh | Xn| + cslog |Gl

Gl < 7+ cslogh | X,,] < g + cilogm.

9



Now (28) is obtained by applying the Koebe distortion theorem [13, Theorem 1.3] with

1+ A 14 A
B = 6(0) v =170 WI<L Gu=
This yields, for large m, since (,,, tends to infinity in K3,
[Gnl* + 2Re G + 1|7
(G| = | Am)] < m =11 IReC, < c19|Cm|? < c13(logm)?.

4 Proof of Theorem 1.3

Let A, fi and f5 be as in the hypotheses, without loss of generality satisfying W ( f1, fo) = £1,
and set F = f; f5. Choose M > 0 such that |A(0)| and all finite critical and asymptotic values
of A have modulus at most M /2. It may be assumed that M < 1, because otherwise the f;
may be replaced by the functions g;(z) = M2 f;(2/M), which solve

'+ B(2)y =0, B(z)=M?2A(z/M).

If T'(r, E) = O(r) as r — o0, then (3) delivers (8), and Theorems 1.1 and 1.2 force p(A) =
p(E) =1.

Assume henceforth that 7'(r, E') # O(r) as r — 400 and, following standard notation of the
Wiman-Valiron theory [12], denote by p(r, E') the maximum term of the Maclaurin series of E,
and by v(r, E) the central index. Then inequalities from [12] give

v(t, F)

2r
T(r,E) <logt M(r,E) <log™ u(2r, E) +log2 < / dt + O(1), (34)
1
and so it may be assumed that v(r) = v(r, E) # O(r) as r — +oc.
Let 1/2 < 7 < 1. It follows from the Wiman-Valiron theory [12] that there exists a sequence
(z,) satisfying
. v(rn)
|zn| = 1 — 400, |E(2n)] = M(r,, E), lim = +00, (35)

n—-+4o0o Tn

such that, if z = z,¢?, |o] < v(r,)”", then

2\ (2 v(r "(z)  v(rp)?
E(Z)N(-) E(z), E'(z) w(m) E'(z) v(ra)

as well as, in view of (3),

10



Thus (35) delivers min{|E(z,)|, |A(z,)|} — +00 as n — +o00, while applying Cauchy’s estimate
for derivatives to A~1/2 yields

Alzn) A () = o( o ”WT) S0

v(ry) Tn
Take n so large that

A(Zn)?’/Q

A’(zn) > Ny, (36)

E()l > 2 log|A(z)| > N, ’

where N; is the positive constant from Proposition 3.1. Then z, lies in a component C of
{z € C: |A(z)| > 1}, and 0 & C since |A(0)| < 1. Because all finite critical and asymptotic
values of A have modulus at most 1/2, a change of variables (5) gives a conformal equivalence
between C' and the right half-plane Rev > 0. Choose o,,, with Re g, > 0, such that z, = ¢(0,,).
Then e’» = A(z,) and (5) and (36) imply that

A(Zn)3/2

2| > M (37)

Reoy > Mo, |62 (0,)| |

A solution y(z) of (1) transforms under (5) to a solution w(v) = y(z) of (6), and {fi, fo} to
a pair of solutions {wy,wy} of (6) with W (wy,wy) = £¢'. Use (37) to apply Proposition 3.1,
with vg = 0, = ¢71(2,,). Since |wy(vo)wa(vg)| = |E(2,)| > 2, by (36), the function E has a
sequence of distinct zeros ¢((,,) satisfying (28). But this gives ¢ > 0 such that, for all large
m € N, and for r satisfying c(logm)? < r < c(log(m + 1))?,

1 1
n(e(logm)? 1/E) > =, m

n(r,1/E) > > gexp ((7‘/0)1/2) ,

which establishes (9) and completes the proof of Theorem 1.3. O

The following example shows that the exponent 1/2 in (9) is sharp. Let A(z) = cos+/z,
which belongs to the Eremenko-Lyubich class B, and let f be a non-trivial solution of (1). Let
v(r, ) be the central index of f and apply to f the same results from the Wiman-Valiron theory
[12] as used in (34) and subsequently. If r is large and lies outside an exceptional set of finite

logarithmic measure, and if |z| = r and |f(2)| = M(r, f), then
2 "
AR T - ae). v < emtei)

for some positive constant c. This upper bound for the non-decreasing function v(r, f) then
holds for all large 7, possibly with a larger ¢, and so applying to f the inequalities of (34) gives
dy > 0 with

n(r,1/f) < N@Br,1/f) <T@r, f) + O(1) < exp(di/r)

as r — +00. Because p(A) = 1/2, conclusion (A) of Theorem 1.3 cannot hold in this case, and
so the exponent 1/2 in (9) is sharp. 0
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5 Proof of Theorem 1.5

Let E be as in the hypotheses, and assume that the zeros of £ have exponent of convergence
A < 3/2. Then the canonical product I, over these zeros has order A\, and E = Ilyexp(Fp),
with Py a real polynomial. If P, has degree at least 2, then the zeros of £/ have Nevanlinna
deficiency §(0, £/) = 1, which contradicts [7, Theorem 4.1] (see also [18, Theorem 2.1]). It may
therefore be assumed that E has order \ < 3/2.

There exist an entire function A and solutions fi, fo of (1) such that W (f, f2) = 1 and
E = fifs. Then f;(z) = 0 gives E'(z) = (—1)? and each f; has infinitely many zeros, as may
be seen by considering the graph of E on the real axis. Define U by

L U WA f) 1

U fifs E

Lemma 5.1 The coefficient function A in (1) has order at most \ but is transcendental.

U

Proof. The first assertion is an immediate consequence of the Bank-Laine equation (3). The
second may be deduced from a theorem of Steinmetz [26], or from a combination of Theorem 1.4
with the result of Edrei, Fuchs and Hellerstein [8] that if E is an entire function of finite order
and genus at least 1, all of whose zeros are positive, then 0 is a Nevanlinna deficient value of F,
from which the transcendence of A follows using (3). It may also be proved using Hille's method
as follows. Suppose that A is a polynomial. Since the f; have infinitely many positive zeros,
the positive real axis must be one of the 2 4 deg(A) critical rays for the equation, and each f;
must be large in both adjacent sectors. Let L be the first other critical ray encountered when
moving counter-clockwise from the positive real axis. Since the f; have only positive zeros, both
f; must change from large to small as this critical ray L is crossed. A contradiction then arises
from the fact that linearly independent solutions cannot be small in the same sector, because the
Wronskian is a non-zero constant. O

Because U’/U has order at most 3/2 and is never 0, while all zeros and poles of U are simple,
U has no critical values and finitely many asymptotic values [19]. Since U’/U s real, there exists
0 € Rsuch that U = f,/f1 = €*?Uj, with Uy real meromorphic. But replacing f; by fie and f;
by foe~% leaves E unchanged, and so it may be assumed that § = 0 and U is real meromorphic.

Take zeros xg, x1, x5 € R of f5, with zg < 27 < x2, and let R be the supremum of all » > 0
such that the branch of U~! mapping 0 to z; admits unrestricted analytic continuation in the
open disc B(0,r) of centre 0 and radius . Then R is finite, and U maps a simply connected
domain €2y, with z; € Qy, univalently onto B(0, R). Moreover, U~ has a singularity over some
a with |a] = R, and €, contains a path v which tends to infinity and is mapped by U onto the
half-open line segment [0, ). If «v is real then, because U is real meromorphic and univalent on
1, the path « must coincide with (—oo, x1] or [z1, +00), contradicting the fact that z, zo & 7.
Hence o € R and, since U has finitely many critical and asymptotic values, U~! has logarithmic
singularities over « and @.

Lemma 5.2 Let F(z) = (E(z) — E(0))/z. Then there exist My > 0 and disjoint non-empty
components 31, %y of the set {z € C: |F(z)| > My}.
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Proof. There exists M > 0 such that for each § € {a,a} there is a component €23 of the set
{z € C: |U(z) — B] < 1/M} mapped univalently by v =log 1/(U(z) — ) onto the half-plane
Hy given by Rev > log M. It may be assumed that M is so large that 23N B(0,1) = () and
QaNQz=0. Let ¢ : Hy — Qp be the inverse function and write

Ulz)=pF+e" z=¢{) e Qs veH,. (38)
frer UG) et ,
B) = gy = ot #(0) = ~(1L+ 50, (39)
and ¢ satisfies, on Hy, as in (17),
((Z)) Rew —4logM 92((;})) = Rew fﬁlogM. (40)
It follows from (38), (39) and (40) that there exists ¢; > 0 such that, as v — +o00 on R,

|2l = [p(v)] = o(v™) = o(e"|¢ (v)]) = o(|E(2)]), F(2) = oo,
whereas if Rev = 1+ log M then

¢'(v
B < 10+ [31Me) | S| < Bl + BlMeym, FE < 1+ |3lMe)tn -+ [EO)]
Hence there exist M, > 0 such that the set {v € Hy : |F(¢(v))| > My} has a component whose
closure with respect to the finite plane lies in H. O

The remainder of the proof follows lines fairly similar to [22, 23]. By (3) and well known
estimates for logarithmic derivatives [10], there exist positive integers M, M, such that

<P JAG) = e 4 O (J25) | (41)

" B

‘E’(z)
E(2)

‘ E"(2)
E(z)

for all z outside a union U; of countably many open discs, whose centres tend to infinity and
whose radii have finite sum. Choose a polynomial P, of degree at most M, such that

A(z) — P(2)

B(Z) - ZM2+1

(42)
is entire. For j = 1,2 define a subharmonic function u;(z) on C by w;(z) = log |F(z)/My| on
¥, with u;(2) = 0 on C\ X;, where M, and X4, ¥, are as in Lemma 5.2. Similarly, let ¥; be a
component of the set {z € C: |B(z)| > 1}, and set u3(z) = log |B(z)| on X3, with uz(z) =0
on C\ X3. These u; have orders satisfying p(u;) < p(F) = p(E) = A, for j = 1,2, while
pus) < p(B) = p(A) < .

For j =1,2,3 and t > 0 let 6;(t) be the angular measure of the intersection of ¥; with the
circle S(0,t) of centre 0 and rad|us t. If j = 1,2 and |z is large and z € £; N X3, then (42)
implies that z lies in the exceptional set U; of (41) Hence there exists a set FO C [1,400), of
finite linear measure, such that if € [1,4+00) \ Fj then the following all hold: (a) S(O ) does
not meet Uy; (b) X, N3, N S(0,7) =0 for j # j'; (c) no X; contains S(0,7).

13



Let S be large and positive: then a well known consequence of Carleman's estimate for
harmonic measure [27, pp.116-7] gives, as r — 400,

r 5 dt 01\ at
5 /[SM (Zl> 7 oW </sr]\FO (ZQ )(Z J<t>> 7 oW
22/

< 2 Z(,a(u]) +0(1))logr < (6A+o(1))logr < (9+ o(1)) logr.

IN

9log

IA

) < 2Zlog max{u;(z) : |z] = 2r}) +O(1)

[S,r\Fo te j=1

It follows at once that p(u;) = A = 3/2 for each j. O

6 A Bank-Laine function with positive zeros

The construction of an example demonstrating the sharpness of Theorem 1.5 will involve domains
Do, Dl, D2 and D3 defined by

Dy = {ueC:0<|ul <+o0,0<argu < 3m/2},

D, = EjU kB,

E, = {s+it: —1/2<5<0, —00 <t < +o0},

Ey, = {s+it: —m/2<s<7/2,0<t< 400},

Dy, = {veC:0<|v| <+o0, —7/2 < argv < 0},

Dy = DyU{CeC: (| <1, Re(¢ >0} (43)

Lemma 6.1 Let h : (—o0,1] — (—o0,0] be a continuous bijection, such that h(1) = 0 while
h' is continuous and has positive upper and lower bounds for —oco < y < 1 (that is, there exists
e > 0 such that ¢ < W (y) < 1/e for —oo < y < 1). Then there exists a homeomorphism 1)
from the closure of Ds to that of Ds, such that: (A) 1> maps D5 quasiconformally onto D, with
¥(z) = 0o and Y(z) = O(|z]) as z — oo in D3; (B) ¢ (iy) = ih(y) for —oo <y < 1, (C) ¥(2)
is real and strictly increasing as z describes the boundary of D3 clockwise from i to infinity.

Proof. Let ¢ : D3 — D5 be a conformal bijection such that ¢(i) = 0 and ¢(z) — oo as z — oo
in D3. Then ¢(z) is real and strictly increasing as z describes the boundary of D3 clockwise
from i to infinity. Moreover, there exists a continuous bijection k : (—oo, 1] — (—00,0] with
k(1) =0 and ¢(iy) = ik(y). It is clear from the reflection principle that £’(y) is continuous and
positive for —oo < y < 1, and it will be shown that &'(y) has positive upper and lower bounds
for —oo <y < 1.

Take the restriction of ¢ to {z € D5 : |z| > r1}, for some large positive 71, and reflect twice,
first across the imaginary axis and then across the real axis. This shows that

Ly = lim k(y) = lim ¢'(2)

Yy——00 z—00
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exists and is finite and positive, and gives ¢(z) = O(|z|) as z — oo in Ds.

Next, extend ¢ : D3 — Dy by reflection across the imaginary axis to a conformal mapping
onto the lower half-plane, and apply the reflection principle to ¢;(u) = ¢(e™) on the half-disc
{ueC: |u—m/2] <ry, Imu > 0}, for some small positive 5. This extended function has
¢ (m/2) # 0, which shows that Ly = lim,,;_ k’(y) exists and is finite and non-zero, and hence
positive by continuity.

The function H = hok™! is a continuous bijection from (—o0, 0] to itself, and so there exists
a homeomorphism 7 from the closure of Ds to itself given by n(x + iy) = x + ¢H(y) for x > 0
and y < 0. Furthermore, the chain rule shows that H'(y) is continuous, with positive upper and
lower bounds, for —oco < y < 0. Hence 1 is C* on D, with
on

:nz+iny:1_H/(y)v Q&Zm—z’ny:1+[{’(y),

I

il

0z

which ensures that 7 is quasiconformal on Dy, and that 7(z) = O(|z|) as z — oo in Ds.

It now follows that ©» = n o ¢ is a homeomorphism from the closure of D3 to that of D,
quasiconformal on Dj itself, and satisfies

Y(iy) = n(e(iy)) = n(ik(y)) = iH (k(y)) = ih(y) for —oco <y < 1.

Finally, 1(z) = O(|¢(2)|) = O(]z|) as z — oo in Ds. 0

Lemma 6.2 Let E be the closure of the domain Dy in (43), and define F' on Ey \ Dy by

) fi(s+1it) for —oco < s < —7m/2,t €R,

) = fa(s+it) form/2<s <400, 0<1t<+00,
filu) = —iexp(2e™),

)

— cot(u/2) = —i (1 i ew> . (44)

1 —ew

Then F extends to a mapping from E into the extended plane, continuous with respect to the
spherical metric, with the following properties.

(i) H = log F' maps Dy quasiconformally onto the quadrant D, with H(mw/2) = 0.

(ii) Let Ly be the path consisting of the line segment from 7 to O followed by the negative
imaginary axis in the direction of —ioo. Then F'(u) is real and strictly increasing as u describes
Ly, and each uy € Ly has sg > 0 such that Im F'(u) < 0 on Dy N B(ug, so).

(i) F is locally injective on Ey;

(iv) There exists ¢ > 0 such that |F(u)| < expexp(c|u|) for u € Dy lying on the circles
lul = (4n+ 1)w/2, n € N.

Proof. Using the principal argument and logarithm, set

h(y) = —g—i—Qy for —oo < y <0,
s 14y T 1+
(v) 2—|—arg(1_iy) 5 zog(l_iy) or0<y< (45)
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For 0 < y < 1 this gives

2
=1

h(y) = — g + 2arctany, h'(y) —2 asy— 0+,

and so h'(0) = 2. Thus h is a continuous bijection from (—o0, 1] to (—o0, 0] and & exists and
is continuous for —oco < y < 1, with 1 < A/(y) < 2 there. Lemma 6.1 gives a homeomorphism
1 from the closure of D3 to that of Ds, such that ¢» maps D3 quasiconformally onto D5, with
¥(z) = O(|z]) as z — oo in D3 and 9 (iy) = ih(y) for —oo < y < 1. Furthermore, ¢)(2) is real
and strictly increasing as z describes the boundary of D3 clockwise from ¢ to infinity, and so is
G = exp ob, which is continuous on the closure of D3 and satisfies, by (45),

G(v) = exp(ih(y)) = —iexp(2iy) = —iexp(2v) for v =1y, —oco <y <0,

Gv) = exp(ih(y)) —z(itiz):—z(it?ﬁ) forv—iy 0<y<l. (46)

The next step is to set F'(u) = G(e™) on the closure of D;. Now v = e™ maps D,
conformally onto D3, with v — 0 as Imu — +o00 and v — oo as Imu — —oo. Furthermore,
the boundary of D; is mapped by v = €™ as follows: the line Reu = —m/2 to the negative
imaginary axis; the half-line Reu = 7/2, 0 < Imwu < 400, to the segment v =iy, 0 <y < 1;
the real interval [0,7/2] to the arc of the unit circle from 1 to i; the negative imaginary axis
to the real interval (1,+400). Hence (44) and (46) imply that F' is well-defined and continuous
on Ejy, and that (i) and (ii) hold. Moreover, because ) is injective on D3 and (44) implies that
each log | f;(u)| is positive for —7/2 < Rew < /2 and negative for 7/2 < |Reu| < 37/2, the
function F is locally injective on Ej. Thus it remains only to prove (iv). By (44), it is enough to
bound the growth of F'(u) for u € Dy, and hence it suffices to consider the continuous function
G(v) on the closure of D3. But, as v = €™ — oo in Dj,

|[F(u)] = |G(v)] < exp(|(v)]) < exp(O(Jv])) = exp (O(|e™])) < expexp(2ful).
O

Now define V(z) on the open upper half-plane H* by V(2) = F(2%2), in which 2%/? is the
principal branch and F is as in Lemma 6.2. Then V' extends first to a (spherically) continuous
function from the closed upper half-plane into the extended plane, mapping R into R U {occ},
and then to the whole plane via V(Z) = V(2). The extended function V' is locally injective on
C, in view of Lemma 6.2, and quasimeromorphic, by [20, Ch. |, Theorem 8.3]. Lemma 6.2(iv)
delivers, as n — o0,

4n + 1)7T>2/3

log"log" [V (2)| = O(|z*/?) for |z|=m=(( 5 (47)

The remainder of the construction proceeds much as in [5]. Let D4 be the pre-image in H™
of the domain D; under u = z%/2, let E, be its closure, and F the union of E, and its reflection
across the real axis. Then V is meromorphic off F; and writing z = re¢?® and u = se™ shows
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that the complex dilatation py of V' satisfies, for some C7, Cs > 0,

/ LG PR / Larao
1<|z|<+00 z 1<|z|<+00,2€Dy T
= Cl/ 1dnds
1<|u|<+oo0,ueD; S
+oco 1
1

Let ¢ be the (unique) quasiconformal homeomorphism of the extended plane which solves the

Beltrami equation 5= py(2) 3, &€ and fixes each of 0, 1 and oo [20]. In view of (48) and
Z z
the Teichmiiller-Belinskii theorem [20, Ch. V, Theorem 6.1], there exists & € C\ {0} with

b(z) ~ az (49)

as z — 0o. Moreover, there exists a locally univalent meromorphic function U such that V' = Uo¢
on C. Let Uy(z) = U(2): then

U(6(2) = V(2) = V() = U(6(2) = U1 (4(3))

Hence ¢(z) and ¢(Z) have the same complex dilation a.e. and both fix 0, 1 and oo, which implies,
by uniqueness, that ¢ is real on R and U is real meromorphic. Furthermore, ¢([0,+0o0)) =
[0, +00) and all zeros and poles of U are real and positive, while E = U/U" is a real Bank-Laine
function with positive zeros.
Now U satisfies, by Lemma 6.2 and (49),
n(r,1/U) +n(r,U) = O(r*?) asr — +oc. (50)
Let II; and II, be the canonical products over the zeros and poles of U respectively, which have
order at most 3/2, by (50), and write
L, 1 v 1 I,
CETUTTmnL m "™ (51
where h is an entire function. For |z| = 1, where n is large, (47) and (49) yield
log™log™ [U(6(2))| = O(|2*”*) = O(|¢(2)*’?).
Thus the maximum principle delivers

log™ log™ [TIo(Q)U(¢)| = O(I¢[*?)

as ¢ — oo and hence
log T(r, IIL,U) = O(r®?) as r — +o0. (52)
Combining (52) with (51) and the lemma of the logarithmic derivative leads to

IL,U) IT]
m(r,h")y <m|(r, (L) +m(r =) +001)=0%?) asr — 4oo.
LU I,

Hence i’ and E have order of growth at most 3/2. Applying Theorem 1.5 then shows that E is a
real Bank-Laine function whose zeros are all real and positive and have exponent of convergence
3/2, and that E itself has order 3/2, as has the associated coefficient function A. O
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