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Abstract

The Bank-Laine conjecture concerning the oscillation of solutions of second order ho-
mogeneous linear differential equations has recently been disproved by Bergweiler and Ere-
menko. It is shown here, however, that the conjecture is true if the set of finite critical
and asymptotic values of the coefficient function is bounded. It is also shown that if E is
a Bank-Laine function of finite order with infinitely many zeros, all real and positive, then
its zeros must have exponent of convergence at least 3/2, and an example is constructed
via quasiconformal surgery to demonstrate that this result is sharp. MSC 2000: 30D35.

1 Introduction

If f is a non-constant entire function, let

ρ(f) = lim sup
r→+∞

log+ T (r, f)

log r
, λ(f) = lim sup

r→+∞

log+N(r, 1/f)

log r
≤ ρ(f),

denote its order of growth and the exponent of convergence of its zeros [11]. In their landmark
paper [1], Bank and Laine proved the following results on the oscillation of solutions of

y′′ + A(z)y = 0. (1)

Theorem 1.1 ([1]) Let A be an entire function, let f1, f2 be linearly independent solutions of
(1) and let E = f1f2, so that λ(E) = max{λ(f1), λ(f2)}.
(i) If A is a polynomial of degree n > 0 then λ(E) = (n+ 2)/2.
(ii) If λ(E) < ρ(A) < +∞ then ρ(A) ∈ N = {1, 2, . . .}.
(iii) If A is transcendental and ρ(A) < 1/2 then λ(E) = +∞.

The case where 1/2 ≤ ρ(A) < 1 was considered by Rossi [22] and Shen [23].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@Nottingham

https://core.ac.uk/display/162673696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Theorem 1.2 ([22, 23]) Let A be an entire function of order ρ(A) and let E = f1f2, where
f1, f2 are linearly independent solutions of (1). If ρ(A) = 1/2 then λ(E) = +∞, while

1

ρ(A)
+

1

λ(E)
≤ 2 if 1/2 < ρ(A) < 1. (2)

In particular, if 1/2 ≤ ρ(A) < 1 then ρ(E) > 1.

The methods of [1] focused on the product E = f1f2 of linearly independent solutions fj of (1),
and in particular on the equation

4A =

(
E ′

E

)2

− 2
E ′′

E
− c2

E2
, c = W (f1, f2), (3)

linking E and A, in which the Wronskian W (f1, f2) = f1f
′
2− f ′1f2 is constant by Abel’s identity.

The paper [1] inspired much subsequent activity concerning the zeros of solutions of (1) and, more
generally, linear differential equations with entire coefficients [16], and gave rise to the Bank-Laine
conjecture – let A be a transcendental entire function of finite order ρ(A) and let f1, f2 be linearly
independent solutions of (1): if λ(f1f2) is finite then ρ(A) ∈ N. However, two remarkable recent
papers of Bergweiler and Eremenko [5, 6] show via quasiconformal constructions not only that
the Bank-Laine conjecture is false, but also that the inequality (2) is sharp.

When A is a non-constant polynomial in (1), satisfying A(z) = anz
n(1 + o(1)) as z → ∞,

there are n + 2 critical rays given by arg z = θ∗, where ane
i(n+2)θ∗ is real and positive, and the

Liouville transformation

Y (Z) = A(z)1/4y(z), Z =

∫ z

z1

A(t)1/2 dt, (4)

may be applied in sectors symmetric about these rays. This reduces (1) to a sine-type equation

d2Y

dZ2
+

(
1 +

O(1)

Z2

)
Y = 0,

for which solutions asymptotic to e±iZ on a sectorial region in the Z plane are delivered by
Hille’s method [14, 15]. On one side of the critical ray, one of the corresponding solutions
A(z)−1/4e±iZ(1 + o(1)) of (1) is large while the other is small, and these roles are reversed as
the critical ray is crossed.

In contrast, for transcendental entire A, although a local analogue of Hille’s method was
developed in [17], applying on small neighbourhoods of maximum modulus points of A, the
analytic continuation and estimation of Z in (4) present substantial difficulties. However, it turns
out that for a certain class of entire functions A the transformation (4) may be adapted so as to
be readily applicable on components where |A(z)| is large.

The Eremenko-Lyubich class B plays a key role in complex dynamics [3, 9, 25] and consists of
those transcendental meromorphic functions A with the following property: there exists a positive
real number M = M(A) such that all finite critical and asymptotic values of A have modulus
less than M . Now suppose that A ∈ B is entire. Then, by standard results from [21, p.287]
(see also [4]), all components UM of the set {z ∈ C : |A(z)| > M} correspond to logarithmic
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singularities of A−1 over ∞; in particular, v = logA(z) maps each such UM conformally onto
the half-plane H given by Re v > logM . Under the change of variables

A(z) = ev, z = φ(v),
A′(z)

A(z)
=
dv

dz
=

1

φ′(v)
, (5)

in which z = φ(v) is the inverse mapping from H to UM , a solution y(z) of (1) on UM transforms
to a solution w(v) = y(z) on H of

w′′(v)− φ′′(v)

φ′(v)
w′(v) + evφ′(v)2w(v) = 0, (6)

and the second formula in (4) becomes, for a suitable choice of z1 = φ(v1),

Z =

∫ v

v1

eu/2φ′(u) du. (7)

The fact that φ′ varies relatively slowly on H, by classical theorems on conformal mappings [13],
makes it possible to prove the following theorem.

Theorem 1.3 Suppose that A is a transcendental entire function in the Eremenko-Lyubich class
B, and let E = f1f2, where f1, f2 are linearly independent solutions of (1). Then exactly one of
the following holds.
(A) The functions A and E satisfy ρ(A) = ρ(E) = 1 and

T (r, A) + T (r, E) = O(r) as r → +∞. (8)

(B) There exists d > 0 such that the zeros of E satisfy

n(r, 1/E) > exp
(
dr1/2

)
as r → +∞, (9)

and in particular ρ(E) = λ(E) = +∞.

It follows from Theorem 1.3 that the Bank-Laine conjecture, despite being false in general [5],
is true when the coefficient A is entire and in the class B. An example going back to [1] shows
that each of conclusions (A) and (B) can occur: if A(z) = −e2z − 1/4 then (1) has solutions

f1(z) = e−z/2 exp (−ez) , f2(z) = e−z/2 exp (ez) , f1(z)f2(z) = e−z, ρ(f1f2) = 1,

as well as solutions

g1(z) = e−z/2 sinh (ez) , g2(z) = e−z/2 cosh (ez) , λ(g1g2) = +∞.

An example will be given in Section 4 to show that the exponent 1/2 in (9) is sharp.
The second main result of this paper concerns the location of zeros of Bank-Laine functions,

that is, entire functions E such that E(z) = 0 implies E ′(z) = ±1. By [2, Lemma C], an entire
function E is a Bank-Laine function if and only if E = f1f2, where f1, f2 are linearly independent
solutions of (1) with A entire and W (f1, f2) = 1. Although a Bank-Laine function with no
restriction on its growth may have an arbitrary sequence (an) of zeros, subject only to an →∞
without repetition [24], the following result was proved in [7] concerning Bank-Laine functions
with real zeros.
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Theorem 1.4 ([7]) Let E be a Bank-Laine function of finite order, with infinitely many zeros,
all real, and denote by n(r) the number of zeros of E lying in [−r, r]. Then n(r) 6= o(r) as
r → +∞. If, in addition, all zeros of E are positive, then n(r) 6= O(r) as r → +∞.

The first assertion of Theorem 1.4 is evidently sharp, because of sin z. The next theorem
will establish a sharp lower bound for λ(E) when E is a Bank-Laine function of finite order with
infinitely many zeros, all real and positive. Here it is sufficient to consider the case where E
is real entire, because otherwise it is possible to write E = ΠeP+iQ, where Π is the canonical
product over the zeros of E, while P and Q are real polynomials; thus eiQ(z) = ±1 at every zero
of E and F = ΠeP is also a Bank-Laine function.

Theorem 1.5 Let E be a real Bank-Laine function of finite order, with infinitely many zeros,
all real and positive. Then the exponent of convergence λ(E) of the zeros of E is at least
3/2. Moreover, if λ(E) = 3/2 then E and the associated coefficient function A have order
ρ(E) = ρ(A) = 3/2.

To demonstrate the sharpness of Theorem 1.5, quasiconformal techniques will be used in
Section 6 to construct a real Bank-Laine function E, with only positive zeros, such that E and
its associated coefficient function A satisfy λ(E) = ρ(E) = ρ(A) = 3/2, so that A provides a
further counter-example to the Bank-Laine conjecture.

The author thanks the referee for an extremely careful reading of the manuscript and for
numerous helpful suggestions.

2 A refinement of Hille’s method

The following lemma is an extension of a method from [17], and provides bounds for the error
terms in Hille’s method [14, 15].

Lemma 2.1 Let c > 0 and 0 < ε < π. Then there exists d > 0, depending only on c and ε,
with the following properties. Suppose that the function A is analytic, with |1−A(z)| ≤ c|z|−2,
on a domain containing

Ω = ΩR,S = {z ∈ C : 1 ≤ R ≤ |z| ≤ S < +∞, | arg z| ≤ π − ε}.

Then the equation (1) has linearly independent solutions U(z), V (z) satisfying

U(z) = e−iz(1 + δ1(z)), U ′(z) = −ie−iz(1 + δ2(z)),

V (z) = eiz(1 + δ3(z)), V ′(z) = ieiz(1 + δ4(z)), (10)

in which

|δj(z)| ≤ d

|z|
for z ∈ Ω∗R,S = ΩR,S \ {z ∈ C : Re(z) < 0, |Im(z)| < R}. (11)

Proof. Let X = Seiσ, where σ = min{π/2, π − ε}. Choose an analytic solution v on Ω of

v′′ + 2iv′ − Fv = 0, F = 1− A, (12)
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such that v(X) = 1, v′(X) = 0, and write

L(z) = v(z)−1+
1

2i

∫ z

X

(e2i(t−z)−1)F (t)v(t) dt, L′(z) = v′(z)−
∫ z

X

e2i(t−z)F (t)v(t) dt, (13)

so that

L′′(z) = v′′(z) + 2i

∫ z

X

e2i(t−z)F (t)v(t) dt− F (z)v(z) = −2iL′(z).

Since L(X) = L′(X) = 0, the existence-uniqueness theorem implies that L(z) ≡ 0 on Ω.
Now let z ∈ Ω∗R,S and let γz describe the clockwise arc of the circle |t| = S from X to the

first point x of intersection with the line Im(t) = Im(z), followed by the straight line segment
from x to z; then |e2i(t−z)| ≤ 1 on γz ⊆ Ω. Since L(z) = 0, (13) gives

|v(z)− 1| ≤
∫ z

X

|F (t)v(t)| |dt|, |v(z)| ≤ 1 +

∫ z

X

|F (t)v(t)| |dt|. (14)

Now parametrize γz by t = ζ(s), where s denotes arc length on γz. Using (14), write

H(s) = 1 +

∫ s

0

|F (ζ(σ))v(ζ(σ))| dσ, H ′(s) = |F (ζ(s))v(ζ(s))| ≤ |F (ζ(s))|H(s),

and

|v(ζ(s))− 1| ≤ H(s)− 1 = exp

(∫ s

0

H ′(σ)

H(σ)
dσ

)
− 1 ≤ exp

(∫ s

0

|F (ζ(σ))| dσ
)
− 1,

which leads to

|v(z)− 1| ≤ exp (Iz)− 1, Iz =

∫ z

X

|F (t)| |dt|. (15)

Let d1, d2, . . . denote positive constants which depend only on c and ε. The circle |t| = S
contributes at most d1S

−1 ≤ d1|z|−1 to Iz in (15), while the contribution Jz from the horizontal
part of γz satisfies:

Jz ≤
∫ +∞

Re z

c

t2
dt =

c

Re z
≤ d2
|z|

if | arg z| ≤ π/4;

Jz ≤
∫
R

c

x2 + (Im z)2
dx ≤ d3

|Im z|
≤ d4
|z|

if π/4 ≤ | arg z| ≤ π − ε.

Since R ≥ 1, (13) and (15) now deliver

|v(z)− 1| ≤ exp

(
d5
|z|

)
− 1 ≤ d6

|z|
≤ d6, |v′(z)| ≤

∫ z

X

|F (t)|(1 + d6) |dt| ≤
d7
|z|
.

Now set V (z) = v(z)eiz; then (12) implies that V solves (1), and the estimates (10) and (11) for
V follow at once. To obtain U it is only necessary to apply the above argument to the equation
solved by y(z̄) for every solution y(z) of (1). 2

Unbounded sectorial regions may be handled as follows.
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Lemma 2.2 Suppose that c > 0 and 0 < ε < π, and that the function A is analytic, with
|1− A(z)| ≤ c|z|−2, on Ω′ = {z ∈ C : 1 ≤ R ≤ |z| < +∞, | arg z| ≤ π − ε}. Then there exist
d > 0, depending only on c and ε, and solutions U, V of (1) on

Ω′′ = {z ∈ C : R < |z| < +∞, | arg z| < π − ε} \ {z : Re(z) ≤ 0, |Im(z)| ≤ R},

such that U and V satisfy W (U, V ) = 2i and (10), with |δj(z)| ≤ d/|z|, on Ω′′.

Proof. Taking a sequence Sn → +∞ yields solutions Un, Vn of (1) on Ω∗R,Sn
, with corresponding

error terms δj,n(z), j = 1, 2, 3, 4. Here the functions zδj,n(z) are uniformly bounded, since
the constant d is independent of S in (11). Thus, by normal families, it may be assumed
that the Un, Vn, δj,n converge locally uniformly on Ω′′. The limit functions U, V satisfy (10),
with |δj(z)| ≤ d/|z| on Ω′′. Since W (U, V ) is constant, by Abel’s identity, it follows that
W (U, V ) = 2i. 2

Finally, a change of variables z → −z shows that Lemmas 2.1 and 2.2 hold if ΩR,S and Ω∗R,S,
and correspondingly Ω′ and Ω′′, are replaced by their reflections across the imaginary axis.

3 Estimates in a half-plane

Throughout this section let H = {v ∈ C : Re v > 0} and let φ : H → C \ {0} be analytic and
univalent. For v, v1 ∈ H, define Z = Z(v, v1) as in (7) by

Z(v, v1) =

∫ v

v1

eu/2φ′(u) du = 2ev/2φ′(v)− 2ev1/2φ′(v1)− 2

∫ v

v1

eu/2φ′′(u) du. (16)

Since 0 6∈ φ(H) the image of H under log φ contains no disc of radius greater than π; thus
applying Bieberbach’s theorem and Koebe’s one quarter theorem [13, Theorems 1.1 and 1.2] to
φ and log φ respectively gives, for u ∈ H,∣∣∣∣φ′′(u)

φ′(u)

∣∣∣∣ ≤ 4

Reu
,

∣∣∣∣φ′(u)

φ(u)

∣∣∣∣ ≤ 4π

Reu
. (17)

The fact that the estimates (17) are independent of φ is the key to the results of this section
and the proof of Theorem 1.3.

Lemma 3.1 Let ε be a small positive real number. Then there exists a large positive real number
N0, depending on ε but not on φ, with the following property.

Let v0 ∈ H be such that S0 = Re v0 ≥ N0, and define v1, v2, v3, K2 and K3 by

vj =
2jS0

128
+ iT0, T0 = Im v0, Kj =

{
vj + reiθ : r ≥ 0, − π

2j
≤ θ ≤ π

2j

}
. (18)

Then the following three conclusions all hold:
(i) Z = Z(v, v1) satisfies, for v ∈ K2,

Z = Z(v, v1) =

∫ v

v1

eu/2φ′(u) du = 2ev/2φ′(v)(1 + δ(v)), |δ(v)| < ε. (19)
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(ii) ψ = ψ(v, v1) = logZ(v, v1) is univalent on a domain containing K3.
(iii) There exists a domain D, with v0 ∈ D ⊆ K3, mapped univalently by Z onto a sectorial
region M3 satisfying

Z0 = Z(v0, v1) ∈M3 = {Z ∈ C : |Z0|/8 < |Z| < +∞, | arg(ηZ)| < 3π/4}, (20)

where η = 1 if ReZ0 ≥ 0 and η = −1 if ReZ0 < 0.

Proof. To prove (i) assume that S0 = Re v0 is large and let v ∈ K2, so that

S = Re v ≥ S0

32
= 2 Re v1. (21)

Now v1 may be joined to v by a straight line segment Lv which is parametrised with respect to
s = Reu, and an elementary arc length estimate |du| ≤ (sec π/4)ds ≤ 2 ds holds on Lv. Thus
(17) delivers, for u ∈ Lv,

|φ′(u)| ≤
(
S

s

)8

|φ′(v)|, |φ′′(u)| ≤ 4

s
|φ′(u)| ≤ 4

s

(
S

s

)8

|φ′(v)|, (22)

which implies by (21) that∣∣∣∣ev1/2φ′(v1)ev/2φ′(v)

∣∣∣∣ ≤ ( S

Re v1

)8

exp

(
1

2
Re (v1 − v)

)
≤ S8 exp (−S/4) <

ε

4
(23)

provided S0 is large enough. Moreover, (22) leads to∣∣∣∣ 1

ev/2φ′(v)

∫ v

v1

eu/2φ′′(u) du

∣∣∣∣ ≤ Ψ(S) =
8S8

eS/2

∫ S

1

es/2s−9 ds. (24)

Since limS→+∞Ψ(S) = 0 by L’Hôpital’s rule, (21) implies that Ψ(S) < ε/4 if S0 is large enough.
Thus (19) follows from (16), (23) and (24), which proves (i).

Next, (19) gives, on K2,

ψ(v) = ψ(v, v1) = logZ(v, v1) =
v

2
+ log 2 + log φ′(v) + δ1(v), |δ1(v)| ≤ 2|δ(v)| < 2ε.

Since ε is small and S0 is large, (17), (18) and Cauchy’s estimate for derivatives now deliver∣∣∣∣ψ′(v)− 1

2

∣∣∣∣ ≤ 8

Re v
≤ 1

4
, (25)

and hence Reψ′(v) > 0, on a convex domain containing K3, which proves (ii).
Now let

L3 = {v ∈ K3 : Re v ≥ S0/8}.
Then, for v ∈ L3, integration along the line segment from v0 to Re v+ iT0 followed by that from
Re v + iT0 to v yields, in view of (25),

ψ(v)− ψ(v0) =
v − v0

2
+ η(v), |η(v)| ≤ 8

(∣∣∣∣log
Re v

S0

∣∣∣∣+ tan
π

8

)
. (26)
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Since S0 is large this implies that, for v ∈ ∂L3 with Re v = S0/8,

Re (ψ(v)− ψ(v0)) ≤ −
7S0

16
+ 8

(
log 8 + tan

π

8

)
≤ log

1

16
.

On the other hand, all other v ∈ ∂L3 satisfy, by (18) and (26),

|Im (v − v0)| ≥
(

Re v − S0

16

)
tan

π

8
≥ Re v

2
tan

π

8
,

|Im (ψ(v)− ψ(v0))| ≥
Re v

4
tan

π

8
− 8

(∣∣∣∣log
Re v

S0

∣∣∣∣+ tan
π

8

)
≥ 4π.

Moreover, Re (ψ(v)− ψ(v0))→ +∞ as v →∞ in K3, again by (26). Thus the strip{
ψ(v0) + σ + iτ : σ ≥ log

1

8
, −2π ≤ τ ≤ 2π

}
lies in the interior of ψ(L3), which completes the proof of (iii) and the lemma. 2

Proposition 3.1 There exists a positive real number N1, independent of φ, with the following
property. If v0 ∈ H satisfies

min{S0, |ev0/2φ′(v0)|} > N1, S0 = Re v0,

and if w1, w2 are linearly independent solutions of (6) with

W (w1, w2) = ±φ′, |w1(v0)w2(v0)| ≥ 1, (27)

then w1w2 has a sequence of distinct zeros ζm →∞ in H which satisfy

|φ(ζm)| = O (logm)2 as m→ +∞. (28)

Proof. Observe first that, by Abel’s identity, the Wronskian of any two local solutions of (6)
is a constant multiple of φ′. Fix a small positive ε and assume that v0 ∈ H, that w1, w2 are
linearly independent solutions of (6) which satisfy (27), and finally that S0 and |ev0/2φ′(v0)| are
both large. Let v1, v2, v3, K2 and K3 be as in (18), and define Z by (16). By Lemma 3.1,
Z0 = Z(v0, v1) is large and there exist η ∈ {−1, 1} and a domain D ⊆ K3, both as in conclusion
(iii), so that M3 = Z(D) satisfies (20). The change of variables

w(v) = e−v/4W (Z), wj(v) = e−v/4Wj(Z), (29)

transforms (6) on D to the equation on M3 given by

W ′′(Z) + (1 +G(Z))W (Z) = 0, G(Z) =
1

16evφ′(v)2

(
1 + 4

φ′′(v)

φ′(v)

)
. (30)

Here the derivatives in the first equation are with respect to Z, and

|G(Z)| ≤ 1

|Z|2
(31)

8



on M3 = Z(D), by (17), (19) and the fact that S0 = Re v0 is large. Now apply Lemma 2.2 with

Ω′ = {Z ∈ C : |Z0|/4 ≤ |Z| < +∞, | arg(ηZ)| ≤ 5π/8} ⊆M3,

and let M4 = Ω′′, so that Z0 = Z(v0, v1) ∈ M4 ⊆ Ω′ ⊆ M3, by the choice of η. Since |Z0| is
large, there exist solutions U1(Z), U2(Z) of (30) on M4, which satisfy W (U1, U2) = 2i and

|U1(Z)eiZ − 1|+ |U2(Z)e−iZ − 1| ≤ d

|Z|
, (32)

in which the positive constant d is independent of v0 and Z0, by (31).
Suppose first that, on M4,

W1(Z) = σ1U1(Z), W2(Z) = σ2U2(Z), σj ∈ C \ {0}.

Then (19), (27) and (29) give

±φ′ = W (w1, w2) = e−v/2W (W1,W2)
dZ

dv
= W (W1,W2)φ

′ = 2iσ1σ2φ
′,

so that |σ1σ2| = 1/2. But Re v0 and |Z0| are large, which implies, in view of (29) and (32), that

w1(v0)w2(v0) = e−v0/2W1(Z0)W2(Z0) = e−v0/2σ1σ2U1(Z0)U2(Z0)

is small, a contradiction.
Because w1 and w2 are interchangeable, it now follows that at least one of W1 and W2,

without loss of generality W1, is a non-trivial linear combination

W1(Z) = A1U1(Z)− A2U2(Z), A1, A2 ∈ C \ {0}, (33)

of U1, U2 on M4. Fix a small positive κ and suppose that

Z∗ =
1

2i
log

A1

A2

+ πn,

where n is an integer of large modulus and appropriate sign, depending on η. Then Z∗ ∈ M4

and (32) implies that, on |Z − Z∗| = κ,

1

2i
log

A2U2(Z)

A1U1(Z)
− πn = Z − Z∗ + J(Z), |J(Z)| < κ.

Hence W1 has a zero Z∗∗ with |Z∗∗ − Z∗| < κ, by Rouché’s theorem and (33).
It follows that W1(Z) has distinct zeros X1, X2, . . ., which tend to infinity in M4 and satisfy

|Xm| ≤ c0 + c1m, where c0, c1, . . . denote positive constants which may depend on v0 and φ, but
not on m. By (19), these zeros Xm satisfy, with ζm ∈ K3 and ε small,

Xm = Z(ζm) = 2eζm/2φ′(ζm)(1 + δ(ζm)), |δ(ζm))| < ε.

Using (17) to estimate | log |φ′(ζm)|| then gives, in view of (18),

|ζm| ≤ c2 + c3Re ζm ≤ c4 + c5 log+ |Xm|+ c6 log |ζm|,
|ζm| ≤ c7 + c8 log+ |Xm| ≤ c9 + c10 logm.

9



Now (28) is obtained by applying the Koebe distortion theorem [13, Theorem 1.3] with

µ(λ) = φ(v), v =
1 + λ

1− λ
, |λ| < 1, ζm =

1 + λm
1− λm

.

This yields, for large m, since ζm tends to infinity in K3,

|φ(ζm)| = |µ(λm)| ≤ c11

(1− |λm|2)2
= c11

∣∣∣∣ |ζm|2 + 2Re ζm + 1

4Re ζm

∣∣∣∣2 ≤ c12|ζm|2 ≤ c13(logm)2.

2

4 Proof of Theorem 1.3

Let A, f1 and f2 be as in the hypotheses, without loss of generality satisfying W (f1, f2) = ±1,
and set E = f1f2. Choose M > 0 such that |A(0)| and all finite critical and asymptotic values
of A have modulus at most M/2. It may be assumed that M ≤ 1, because otherwise the fj
may be replaced by the functions gj(z) = M1/2fj(z/M), which solve

y′′ +B(z)y = 0, B(z) = M−2A(z/M).

If T (r, E) = O(r) as r → +∞, then (3) delivers (8), and Theorems 1.1 and 1.2 force ρ(A) =
ρ(E) = 1.

Assume henceforth that T (r, E) 6= O(r) as r → +∞ and, following standard notation of the
Wiman-Valiron theory [12], denote by µ(r, E) the maximum term of the Maclaurin series of E,
and by ν(r, E) the central index. Then inequalities from [12] give

T (r, E) ≤ log+M(r, E) ≤ log+ µ(2r, E) + log 2 ≤
∫ 2r

1

ν(t, E)

t
dt+O(1), (34)

and so it may be assumed that ν(r) = ν(r, E) 6= O(r) as r → +∞.
Let 1/2 < τ < 1. It follows from the Wiman-Valiron theory [12] that there exists a sequence

(zn) satisfying

|zn| = rn → +∞, |E(zn)| = M(rn, E), lim
n→+∞

ν(rn)

rn
= +∞, (35)

such that, if z = zne
σ, |σ| < ν(rn)−τ , then

E(z) ∼
(
z

zn

)ν(rn)
E(zn),

E ′(z)

E(z)
∼ ν(rn)

z
,

E ′′(z)

E(z)
∼ ν(rn)2

z2
,

as well as, in view of (3),

A(z) ∼ −ν(rn)2

4z2
, A(z)−1/2 ∼ ± 2iz

ν(rn)
.
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Thus (35) delivers min{|E(zn)|, |A(zn)|} → +∞ as n→ +∞, while applying Cauchy’s estimate
for derivatives to A−1/2 yields

A(zn)−3/2A′(zn) = O

(
rn

ν(rn)
· ν(rn)τ

rn

)
→ 0.

Take n so large that

|E(zn)| > 2, log |A(zn)| > N1,

∣∣∣∣A(zn)3/2

A′(zn)

∣∣∣∣ > N1, (36)

where N1 is the positive constant from Proposition 3.1. Then zn lies in a component C of
{z ∈ C : |A(z)| > 1}, and 0 6∈ C since |A(0)| < 1. Because all finite critical and asymptotic
values of A have modulus at most 1/2, a change of variables (5) gives a conformal equivalence
between C and the right half-plane Re v > 0. Choose σn, with Reσn > 0, such that zn = φ(σn).
Then eσn = A(zn) and (5) and (36) imply that

Reσn > N1,
∣∣eσn/2φ′(σn)

∣∣ =

∣∣∣∣A(zn)3/2

A′(zn)

∣∣∣∣ > N1. (37)

A solution y(z) of (1) transforms under (5) to a solution w(v) = y(z) of (6), and {f1, f2} to
a pair of solutions {w1, w2} of (6) with W (w1, w2) = ±φ′. Use (37) to apply Proposition 3.1,
with v0 = σn = φ−1(zn). Since |w1(v0)w2(v0)| = |E(zn)| > 2, by (36), the function E has a
sequence of distinct zeros φ(ζm) satisfying (28). But this gives c > 0 such that, for all large
m ∈ N, and for r satisfying c(logm)2 ≤ r < c(log(m+ 1))2,

n(c(logm)2, 1/E) ≥ m

2
, n(r, 1/E) ≥ m+ 1

3
>

1

3
exp

(
(r/c)1/2

)
,

which establishes (9) and completes the proof of Theorem 1.3. 2

The following example shows that the exponent 1/2 in (9) is sharp. Let A(z) = cos
√
z,

which belongs to the Eremenko-Lyubich class B, and let f be a non-trivial solution of (1). Let
ν(r, f) be the central index of f and apply to f the same results from the Wiman-Valiron theory
[12] as used in (34) and subsequently. If r is large and lies outside an exceptional set of finite
logarithmic measure, and if |z| = r and |f(z)| = M(r, f), then

ν(r, f)2

z2
∼ f ′′(z)

f(z)
= −A(z), ν(r, f) ≤ exp(c

√
r),

for some positive constant c. This upper bound for the non-decreasing function ν(r, f) then
holds for all large r, possibly with a larger c, and so applying to f the inequalities of (34) gives
d1 > 0 with

n(r, 1/f) ≤ N(3r, 1/f) ≤ T (3r, f) +O(1) ≤ exp(d1
√
r)

as r → +∞. Because ρ(A) = 1/2, conclusion (A) of Theorem 1.3 cannot hold in this case, and
so the exponent 1/2 in (9) is sharp. 2
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5 Proof of Theorem 1.5

Let E be as in the hypotheses, and assume that the zeros of E have exponent of convergence
λ ≤ 3/2. Then the canonical product Π0 over these zeros has order λ, and E = Π0 exp(P0),
with P0 a real polynomial. If P0 has degree at least 2, then the zeros of E have Nevanlinna
deficiency δ(0, E) = 1, which contradicts [7, Theorem 4.1] (see also [18, Theorem 2.1]). It may
therefore be assumed that E has order λ ≤ 3/2.

There exist an entire function A and solutions f1, f2 of (1) such that W (f1, f2) = 1 and
E = f1f2. Then fj(z) = 0 gives E ′(z) = (−1)j and each fj has infinitely many zeros, as may
be seen by considering the graph of E on the real axis. Define U by

U =
f2
f1
,

U ′

U
=
W (f1, f2)

f1f2
=

1

E
.

Lemma 5.1 The coefficient function A in (1) has order at most λ but is transcendental.

Proof. The first assertion is an immediate consequence of the Bank-Laine equation (3). The
second may be deduced from a theorem of Steinmetz [26], or from a combination of Theorem 1.4
with the result of Edrei, Fuchs and Hellerstein [8] that if E is an entire function of finite order
and genus at least 1, all of whose zeros are positive, then 0 is a Nevanlinna deficient value of E,
from which the transcendence of A follows using (3). It may also be proved using Hille’s method
as follows. Suppose that A is a polynomial. Since the fj have infinitely many positive zeros,
the positive real axis must be one of the 2 + deg(A) critical rays for the equation, and each fj
must be large in both adjacent sectors. Let L be the first other critical ray encountered when
moving counter-clockwise from the positive real axis. Since the fj have only positive zeros, both
fj must change from large to small as this critical ray L is crossed. A contradiction then arises
from the fact that linearly independent solutions cannot be small in the same sector, because the
Wronskian is a non-zero constant. 2

Because U ′/U has order at most 3/2 and is never 0, while all zeros and poles of U are simple,
U has no critical values and finitely many asymptotic values [19]. Since U ′/U is real, there exists
θ ∈ R such that U = f2/f1 = e2iθU0, with U0 real meromorphic. But replacing f1 by f1e

iθ and f2
by f2e

−iθ leaves E unchanged, and so it may be assumed that θ = 0 and U is real meromorphic.
Take zeros x0, x1, x2 ∈ R of f2, with x0 < x1 < x2, and let R be the supremum of all r > 0

such that the branch of U−1 mapping 0 to x1 admits unrestricted analytic continuation in the
open disc B(0, r) of centre 0 and radius r. Then R is finite, and U maps a simply connected
domain Ω1, with x1 ∈ Ω1, univalently onto B(0, R). Moreover, U−1 has a singularity over some
α with |α| = R, and Ω1 contains a path γ which tends to infinity and is mapped by U onto the
half-open line segment [0, α). If α is real then, because U is real meromorphic and univalent on
Ω1, the path γ must coincide with (−∞, x1] or [x1,+∞), contradicting the fact that x0, x2 6∈ γ.
Hence α 6∈ R and, since U has finitely many critical and asymptotic values, U−1 has logarithmic
singularities over α and α.

Lemma 5.2 Let F (z) = (E(z) − E(0))/z. Then there exist M0 > 0 and disjoint non-empty
components Σ1,Σ2 of the set {z ∈ C : |F (z)| > M0}.

12



Proof. There exists M > 0 such that for each β ∈ {α, α} there is a component Ωβ of the set
{z ∈ C : |U(z)− β| < 1/M} mapped univalently by v = log 1/(U(z)− β) onto the half-plane
H0 given by Re v > logM . It may be assumed that M is so large that Ωβ ∩ B(0, 1) = ∅ and
Ωα ∩ Ωα = ∅. Let φ : H0 → Ωβ be the inverse function and write

U(z) = β + e−v, z = φ(v) ∈ Ωβ, v ∈ H0. (38)

Then

E(z) =
U(z)

U ′(z)
=
β + e−v

−e−v
· φ′(v) = −(1 + βev)φ′(v), (39)

and φ satisfies, on H0, as in (17),∣∣∣∣φ′′(v)

φ′(v)

∣∣∣∣ ≤ 4

Re v − logM
,

∣∣∣∣φ′(v)

φ(v)

∣∣∣∣ ≤ 4π

Re v − logM
. (40)

It follows from (38), (39) and (40) that there exists c1 > 0 such that, as v → +∞ on R,

|z| = |φ(v)| = o(vc1) = o(ev|φ′(v)|) = o(|E(z)|), F (z)→∞,

whereas if Re v = 1 + logM then

|E(z)| ≤ |z|(1 + |β|Me)

∣∣∣∣φ′(v)

φ(v)

∣∣∣∣ ≤ |z|(1 + |β|Me)4π, |F (z)| ≤ (1 + |β|Me)4π + |E(0)|.

Hence there exist M0 > 0 such that the set {v ∈ H0 : |F (φ(v))| > M0} has a component whose
closure with respect to the finite plane lies in H0. 2

The remainder of the proof follows lines fairly similar to [22, 23]. By (3) and well known
estimates for logarithmic derivatives [10], there exist positive integers M1,M2 such that∣∣∣∣E ′(z)

E(z)

∣∣∣∣+

∣∣∣∣E ′′(z)

E(z)

∣∣∣∣ ≤ |z|M1 , |A(z)| = 1

4|E(z)|2
+O

(
|z|M2

)
, (41)

for all z outside a union U1 of countably many open discs, whose centres tend to infinity and
whose radii have finite sum. Choose a polynomial P , of degree at most M2, such that

B(z) =
A(z)− P (z)

zM2+1
(42)

is entire. For j = 1, 2 define a subharmonic function uj(z) on C by uj(z) = log |F (z)/M0| on
Σj, with uj(z) = 0 on C \Σj, where M0 and Σ1,Σ2 are as in Lemma 5.2. Similarly, let Σ3 be a
component of the set {z ∈ C : |B(z)| > 1}, and set u3(z) = log |B(z)| on Σ3, with u3(z) = 0
on C \ Σ3. These uj have orders satisfying ρ(uj) ≤ ρ(F ) = ρ(E) = λ, for j = 1, 2, while
ρ(u3) ≤ ρ(B) = ρ(A) ≤ λ.

For j = 1, 2, 3 and t > 0 let θj(t) be the angular measure of the intersection of Σj with the
circle S(0, t) of centre 0 and radius t. If j = 1, 2 and |z| is large and z ∈ Σj ∩ Σ3, then (42)
implies that z lies in the exceptional set U1 of (41). Hence there exists a set F0 ⊆ [1,+∞), of
finite linear measure, such that if r ∈ [1,+∞) \ F0 then the following all hold: (a) S(0, r) does
not meet U1; (b) Σj ∩ Σj′ ∩ S(0, r) = ∅ for j 6= j′; (c) no Σj contains S(0, r).
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Let S be large and positive: then a well known consequence of Carleman’s estimate for
harmonic measure [27, pp.116-7] gives, as r → +∞,

9 log
r

S
≤

∫
[S,r]\F0

(
3∑
j=1

1

)2

dt

t
+O(1) ≤

∫
[S,r]\F0

(
3∑
j=1

θj(t)

)(
3∑
j=1

1

θj(t)

)
dt

t
+O(1)

≤ 2
3∑
j=1

∫
[S,r]\F0

π

tθj(t)
dt+O(1) ≤ 2

3∑
j=1

log(max{uj(z) : |z| = 2r}) +O(1)

≤ 2
3∑
j=1

(ρ(uj) + o(1)) log r ≤ (6λ+ o(1)) log r ≤ (9 + o(1)) log r.

It follows at once that ρ(uj) = λ = 3/2 for each j. 2

6 A Bank-Laine function with positive zeros

The construction of an example demonstrating the sharpness of Theorem 1.5 will involve domains
D0, D1, D2 and D3 defined by

D0 = {u ∈ C : 0 < |u| < +∞, 0 < arg u < 3π/2},
D1 = E1 ∪ E2,

E1 = {s+ it : −π/2 < s < 0, −∞ < t < +∞},
E2 = {s+ it : −π/2 < s < π/2, 0 < t < +∞},
D2 = {v ∈ C : 0 < |v| < +∞, −π/2 < arg v < 0},
D3 = D2 ∪ {ζ ∈ C : |ζ| < 1, Re ζ > 0}. (43)

Lemma 6.1 Let h : (−∞, 1] → (−∞, 0] be a continuous bijection, such that h(1) = 0 while
h′ is continuous and has positive upper and lower bounds for −∞ < y < 1 (that is, there exists
ε > 0 such that ε < h′(y) < 1/ε for −∞ < y < 1). Then there exists a homeomorphism ψ
from the closure of D3 to that of D2, such that: (A) ψ maps D3 quasiconformally onto D2, with
ψ(z)→∞ and ψ(z) = O(|z|) as z →∞ in D3; (B) ψ(iy) = ih(y) for −∞ < y ≤ 1; (C) ψ(z)
is real and strictly increasing as z describes the boundary of D3 clockwise from i to infinity.

Proof. Let φ : D3 → D2 be a conformal bijection such that φ(i) = 0 and φ(z)→∞ as z →∞
in D3. Then φ(z) is real and strictly increasing as z describes the boundary of D3 clockwise
from i to infinity. Moreover, there exists a continuous bijection k : (−∞, 1] → (−∞, 0] with
k(1) = 0 and φ(iy) = ik(y). It is clear from the reflection principle that k′(y) is continuous and
positive for −∞ < y < 1, and it will be shown that k′(y) has positive upper and lower bounds
for −∞ < y < 1.

Take the restriction of φ to {z ∈ D3 : |z| > r1}, for some large positive r1, and reflect twice,
first across the imaginary axis and then across the real axis. This shows that

L1 = lim
y→−∞

k′(y) = lim
z→∞

φ′(z)
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exists and is finite and positive, and gives φ(z) = O(|z|) as z →∞ in D3.
Next, extend φ : D3 → D2 by reflection across the imaginary axis to a conformal mapping

onto the lower half-plane, and apply the reflection principle to φ1(u) = φ(eiu) on the half-disc
{u ∈ C : |u − π/2| < r2, Imu > 0}, for some small positive r2. This extended function has
φ′1(π/2) 6= 0, which shows that L2 = limy→1− k

′(y) exists and is finite and non-zero, and hence
positive by continuity.

The function H = h◦k−1 is a continuous bijection from (−∞, 0] to itself, and so there exists
a homeomorphism η from the closure of D2 to itself given by η(x + iy) = x + iH(y) for x ≥ 0
and y ≤ 0. Furthermore, the chain rule shows that H ′(y) is continuous, with positive upper and
lower bounds, for −∞ < y < 0. Hence η is C1 on D2 with

2
∂η

∂z
= ηx + iηy = 1−H ′(y), 2

∂η

∂z
= ηx − iηy = 1 +H ′(y),

which ensures that η is quasiconformal on D2, and that η(z) = O(|z|) as z →∞ in D2.
It now follows that ψ = η ◦ φ is a homeomorphism from the closure of D3 to that of D2,

quasiconformal on D3 itself, and satisfies

ψ(iy) = η(φ(iy)) = η(ik(y)) = iH(k(y)) = ih(y) for −∞ < y ≤ 1.

Finally, ψ(z) = O(|φ(z)|) = O(|z|) as z →∞ in D3. 2

Lemma 6.2 Let E0 be the closure of the domain D0 in (43), and define F on E0 \D1 by

F (s+ it) = f1(s+ it) for −∞ < s ≤ −π/2, t ∈ R,
F (s+ it) = f2(s+ it) for π/2 ≤ s < +∞, 0 ≤ t < +∞,

f1(u) = −i exp(2eiu),

f2(u) = cot(u/2) = −i
(

1 + eiu

1− eiu

)
. (44)

Then F extends to a mapping from E0 into the extended plane, continuous with respect to the
spherical metric, with the following properties.
(i) H = logF maps D1 quasiconformally onto the quadrant D2, with H(π/2) = 0.
(ii) Let L0 be the path consisting of the line segment from π to 0 followed by the negative
imaginary axis in the direction of −i∞. Then F (u) is real and strictly increasing as u describes
L0, and each u0 ∈ L0 has s0 > 0 such that ImF (u) < 0 on D0 ∩B(u0, s0).
(iii) F is locally injective on E0;
(iv) There exists c > 0 such that |F (u)| ≤ exp exp(c|u|) for u ∈ D0 lying on the circles
|u| = (4n+ 1)π/2, n ∈ N.

Proof. Using the principal argument and logarithm, set

h(y) = − π
2

+ 2y for −∞ < y ≤ 0,

h(y) = − π
2

+ arg

(
1 + iy

1− iy

)
= − π

2
− i log

(
1 + iy

1− iy

)
for 0 < y ≤ 1. (45)
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For 0 < y < 1 this gives

h(y) = − π
2

+ 2 arctan y, h′(y) =
2

1 + y2
→ 2 as y → 0+,

and so h′(0) = 2. Thus h is a continuous bijection from (−∞, 1] to (−∞, 0] and h′ exists and
is continuous for −∞ < y < 1, with 1 ≤ h′(y) ≤ 2 there. Lemma 6.1 gives a homeomorphism
ψ from the closure of D3 to that of D2, such that ψ maps D3 quasiconformally onto D2, with
ψ(z) = O(|z|) as z →∞ in D3 and ψ(iy) = ih(y) for −∞ < y ≤ 1. Furthermore, ψ(z) is real
and strictly increasing as z describes the boundary of D3 clockwise from i to infinity, and so is
G = exp ◦ψ, which is continuous on the closure of D3 and satisfies, by (45),

G(v) = exp(ih(y)) = −i exp(2iy) = −i exp(2v) for v = iy, −∞ < y ≤ 0,

G(v) = exp(ih(y)) = −i
(

1 + iy

1− iy

)
= −i

(
1 + v

1− v

)
for v = iy, 0 < y ≤ 1. (46)

The next step is to set F (u) = G(eiu) on the closure of D1. Now v = eiu maps D1

conformally onto D3, with v → 0 as Imu → +∞ and v → ∞ as Imu → −∞. Furthermore,
the boundary of D1 is mapped by v = eiu as follows: the line Reu = −π/2 to the negative
imaginary axis; the half-line Reu = π/2, 0 ≤ Imu < +∞, to the segment v = iy, 0 < y ≤ 1;
the real interval [0, π/2] to the arc of the unit circle from 1 to i; the negative imaginary axis
to the real interval (1,+∞). Hence (44) and (46) imply that F is well-defined and continuous
on E0, and that (i) and (ii) hold. Moreover, because ψ is injective on D3 and (44) implies that
each log |fj(u)| is positive for −π/2 < Reu < π/2 and negative for π/2 < |Reu| < 3π/2, the
function F is locally injective on E0. Thus it remains only to prove (iv). By (44), it is enough to
bound the growth of F (u) for u ∈ D1, and hence it suffices to consider the continuous function
G(v) on the closure of D3. But, as v = eiu →∞ in D3,

|F (u)| = |G(v)| ≤ exp(|ψ(v)|) ≤ exp(O(|v|)) = exp
(
O(|eiu|)

)
≤ exp exp(2|u|).

2

Now define V (z) on the open upper half-plane H+ by V (z) = F (z3/2), in which z3/2 is the
principal branch and F is as in Lemma 6.2. Then V extends first to a (spherically) continuous
function from the closed upper half-plane into the extended plane, mapping R into R ∪ {∞},
and then to the whole plane via V (z) = V (z). The extended function V is locally injective on
C, in view of Lemma 6.2, and quasimeromorphic, by [20, Ch. I, Theorem 8.3]. Lemma 6.2(iv)
delivers, as n→ +∞,

log+ log+ |V (z)| = O(|z|3/2) for |z| = rn =

(
(4n+ 1)π

2

)2/3

. (47)

The remainder of the construction proceeds much as in [5]. Let D4 be the pre-image in H+

of the domain D1 under u = z3/2, let E4 be its closure, and F4 the union of E4 and its reflection
across the real axis. Then V is meromorphic off F4 and writing z = reiθ and u = seiη shows
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that the complex dilatation µV of V satisfies, for some C1, C2 > 0,∫
1≤|z|<+∞

∣∣∣∣µV (z)

z2

∣∣∣∣ dxdy ≤ 2

∫
1≤|z|<+∞,z∈D4

1

r
dr dθ

= C1

∫
1≤|u|<+∞,u∈D1

1

s
dη ds

≤ C2

∫ +∞

1

1

s2
ds = C2. (48)

Let φ be the (unique) quasiconformal homeomorphism of the extended plane which solves the

Beltrami equation
∂φ

∂z
= µV (z)

∂φ

∂z
a.e. and fixes each of 0, 1 and ∞ [20]. In view of (48) and

the Teichmüller-Belinskii theorem [20, Ch. V, Theorem 6.1], there exists α ∈ C \ {0} with

φ(z) ∼ αz (49)

as z →∞. Moreover, there exists a locally univalent meromorphic function U such that V = U◦φ
on C. Let U1(z) = U(z): then

U(φ(z)) = V (z) = V (z) = U(φ(z)) = U1

(
φ(z)

)
.

Hence φ(z) and φ(z) have the same complex dilation a.e. and both fix 0, 1 and∞, which implies,
by uniqueness, that φ is real on R and U is real meromorphic. Furthermore, φ([0,+∞)) =
[0,+∞) and all zeros and poles of U are real and positive, while E = U/U ′ is a real Bank-Laine
function with positive zeros.

Now U satisfies, by Lemma 6.2 and (49),

n(r, 1/U) + n(r, U) = O(r3/2) as r → +∞. (50)

Let Π1 and Π2 be the canonical products over the zeros and poles of U respectively, which have
order at most 3/2, by (50), and write

U =
Π1

Π2

eh,
1

E
=
U ′

U
=

Π′1
Π1

− Π′2
Π2

+ h′, (51)

where h is an entire function. For |z| = rn, where n is large, (47) and (49) yield

log+ log+ |U(φ(z))| = O(|z|3/2) = O(|φ(z)|3/2).

Thus the maximum principle delivers

log+ log+ |Π2(ζ)U(ζ)| = O(|ζ|3/2)

as ζ →∞ and hence
log T (r,Π2U) = O(r3/2) as r → +∞. (52)

Combining (52) with (51) and the lemma of the logarithmic derivative leads to

m(r, h′) ≤ m

(
r,

(Π2U)′

Π2U

)
+m

(
r,

Π′1
Π1

)
+O(1) = O(r3/2) as r → +∞.

Hence h′ and E have order of growth at most 3/2. Applying Theorem 1.5 then shows that E is a
real Bank-Laine function whose zeros are all real and positive and have exponent of convergence
3/2, and that E itself has order 3/2, as has the associated coefficient function A. 2
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