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A B S T R A C T

In this paper, the phonon dispersion curves of several surface-based lattices are examined, and their energy
transmission spectra, along with the corresponding bandgaps are identified. We demonstrate that these band-
gaps may be controlled, or tuned, through the choice of cell type, cell size and volume fraction. Our results
include two findings of high relevance to the designers of lattice structures: (i) network and matrix phase gyroid
lattice structures develop bandgaps below 15 kHz while network diamond and matrix diamond lattices do not,
and (ii) the bandwidth of a bandgap in the network phase gyroid lattice can be tuned by adjusting its volume
fraction and cell size.

1. Introduction

Vibration can be a significant issue in precision engineering, con-
tributing to measurement uncertainties and limiting manufacturing
precision. When the amplitude is high enough, vibration can cause
physical damage, especially when the frequency of the incident wave is
at or close to the natural frequency of the mechanical system in ques-
tion. Conventional practice is to design the mechanical system to have a
natural frequency much greater than or lower than the frequencies of
the input waves [1–3]. Using the conventional practice, our previous
work has shown that additively manufactured (AM) lattice structures
can be used for vibration isolation in one degree of freedom (DOF) by
designing the lattice to have a resonant frequency lower than a parti-
cular frequency of interest [4]. Further to this, Wang et al. showed how
topology optimisation and density grading could be implemented with
AM lattice structures to provide isolation in a selected frequency region
[5].

One of the drawbacks of the conventional vibration isolation prac-
tice is that it does not guarantee complete elimination of vibration in
the frequency of interest. An alternative approach is to design structures
that exhibit phononic bandgaps. AM gives us the freedom to design and
manufacture these phononic bandgap structures and, more importantly,
to tailor the structural parameters and to tune the properties for specific
applications.

A phononic bandgap is a range of frequencies in which the propa-
gation of elastic waves is prohibited by Bragg scattering. The bandgap is
caused by the destructive interference of reflected waves of certain

frequencies as they propagate through a periodic medium [6,7].
Bandgap structures have been reported for use in a range of applica-
tions. Recent examples relevant to the aerospace sector include the
work of Ampatzidis et al. [8], who presented a bandgap structure to act
as an acoustic isolator. Design parameters of bandgaps have been stu-
died by Richards and Pines [9], who used the principles of stop-band/
pass-band for the reduction of vibration in a mesh of mechanical gears.
Sigmund and Jensus presented a design of a waveguide [10], Diaz et al.
designed a bandgap structure using non-structural masses as design
parameters to control features in the dispersion curves [11], Lucklum
et al. [12] presented additively manufactured lattice structures on the
millimetre-scale, Kruisova et al. [13] tested bandgaps in ceramic lat-
tices, and Wormser et al. [14] presented an approach for maximisation
of bandgaps through gradient optimisation. In addition, Maurin et al.
[15] presented a statistical analysis of the issues associated with re-
stricting the detection of bandgaps to the contour of the irreducible
Brillouin zone (IBZ) instead of the full IBZ. They have reported that
restricting the detection to only the contour of the IBZ provides accu-
rate results when the lattice is of high structural symmetry.

Recent studies that have investigated cellular structures for use as
bandgap structures include the work of Ruzzene et al. [16], who studied
grid cellular structures and presented a method for the guidance of
waves, Abueidda et al. [17], showed that primitive cell, IWP and
Neovious triply periodic minimal surface (TPMS) lattices can develop
three-dimensional (3D) bandgaps and presented a method for control-
ling them, Matlack et al. [18], presented structures that provide vi-
bration absorption at frequencies as low as 3 kHz–4 kHz using lattices of
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different stiffness [18], and Li et al. [19], examined the dispersion
curves of two-dimensional (2D) phononic crystals using a finite element
method.

The mechanical properties of TPMS lattices can be modified by
controlling their volume fraction [20]. TPMS lattices have complex
morphologies making their fabrication by conventional manufacturing
methods challenging, if not impossible. AM enables the fabrication of
TPMS lattices for a range of applications, but the literature to date has
focussed mainly on their load-bearing capability [20–22]. There exists a
wide range of TPMS lattice cell types [20,22,23]. In this paper, four
types of TPMS structures are considered for the development of 1D
phononic bandgaps under 15 kHz, which represents part of the acoustic
frequency range. The nature of the bandgaps presented in this work is
realised by the tessellations of the unit cells along one single direction
which form a beam-like lattice, hence the name ‘1D’. However, the
dispersion curves, from which the bandgaps will be extracted, rely on
three degrees of freedom of the nodes associated with the 3D unit cell
model; this ensures that the dispersion curves pick up the transverse
waves as well as the longitudinal waves in the structure. The TPMS
lattices examined in this paper are the network gyroid, network dia-
mond, matrix gyroid and matrix diamond. These lattice types have
proved to provide high resistance to compressive failure [23,24], have
higher manufacturability than other strut-based lattices due to less
stress concentration during AM [24,25], and provide high structural
stiffness for use in different applications [26]. To the authors’ knowl-
edge the phononic behaviour of the considered lattices has not been
studied before.

The novelty of the presented manuscript lies in the discovery of 1D
bandgaps in these surface-based structures, which has not been pre-
sented before, and in providing numerical results that can be used to
design an AM lattice structure with a desirable bandgap. Many appli-
cations in different industries are expected to exploit the ability of
TPMS structures to provide vibration bandgaps. For example, the
transport sector could make use of TPMS lattice structures for sound
absorption in vehicles, while benefitting from their inherently light-
weight nature. Structural frames for precision machines would also
benefit from TPMS lattices; they could be used to isolate environmental
vibration within certain frequency ranges; for example, those associated
with laboratory or workshop equipment.

This paper is structured as follows: Section 2 provides the theore-
tical background of the finite element method and introduces the TPMS
lattice unit cells used in the study. Section 3 presents the method of
obtaining the dispersion curves associated with each of the TPMS lat-
tices. Section 4 presents and discusses the dispersion curves of the
TPMS lattices. The dependance of the frequency and bandwidth of the
bandgaps on the cell size and volume fraction is presented in Sections
4.1 and 4.2, respectively, with the aim of providing a simple tool for
designing bandgaps at desired frequencies. Prototype structures are
fabricated with additive manufacturing to demonstrate the manu-
facturability of surface-based lattices; the results are reported on in
Section 4.3. Conclusions are provided in Section 5.

2. Mechanical bandgaps in phononic structures

2.1. The lattice unit cells

AM has enabled the design of structures with tailorable mechanical
properties using lattice structures. The properties of a lattice are not
solely dependent on its constituent material, but also on its cellular
geometry, the connectivity of features, unit cell size, number of cell
tessellations and volume fraction [1,27].

The lattice unit cells used in this study are the network and matrix
phases of the gyroid and diamond surface, as shown in Fig. 1. Network
phase cells have one void region and one solid region, both of which
retain their connectivity in every part of the structure. Matrix phase
lattices have two non-connected void regions separated everywhere by

a solid wall or sheet. In addition, matrix phase lattices are known to
have higher specific stiffness than their network phase equivalents [26].

The determination of phonon dispersion curves requires analysis of
a single lattice unit cell. The unit cells are designed using software
developed at University of Nottingham called the Functional Lattice
Package (FLatt Pack) [28]. The volume fraction and size of the cells
shown in Fig. 1 is 20% and 15mm (initial settings), respectively. These
values are based on the properties of unit cells that have provided vi-
bration isolation in previous work [1,4].

The geometrical specifications of the unit cells are shown in Table 1.
The minimum feature size of the matrix unit cells is the sheet thickness.
For network type unit cells, the thickness differs across the unit cell.

Fig. 1. Representations of the TPMS unit cells used in the study. (a) Network
gyroid, (b) network diamond, (c) matrix gyroid, and (d) matrix diamond.

Table 1
Geometric specifications of the unit cell used in this study. The parameter t
identifies the thickness of the minimum feature in each unit cell.

Unit cell Unit cell
size,
L/mm

Volume
fraction/%

t/mm t/L Schematic

Network
gyroid

15 20 3.8 0.25

Matrix gyroid 15 20 1.05 0.07

Network
diamond

15 20 2.55 0.17

Matrix
diamond

15 20 1.05 0.07
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The parameter t for the network unit cells is, therefore, defined as the
thickness in the slimmest regions. Design equations of gyroid and dia-
mond TPMS can be found in the AM work of Maskery et al. [20] and
chemistry work of Gandy et al. [29], respectively.

2.2. Finite element method

The finite element method used in this paper relies on Bloch the-
orem, which governs the displacement of the element nodes. Floquet
boundary conditions are used, which simulate an infinite tessellation of
the unit cell [30]. The work uses 3D lattice models with three DOF at
each node to capture all the possible modes of vibration. This technique
is common in the analysis of 1D dispersion characterisation, including
the prediction of bandgap formation in elastic mechanical structures
[8,18,31,32].

Bandgaps always appear within the boundaries of the first Brillouin
zone (BZ) [15,33,34]. The 1D BZ of a square lattice spans from 0 to 2
π L/ , where L is the lattice parameter of the unit cell. The propagation of
the wave across the 1D BZ can be understood by studying the motion of
the wave in a single 3D unit cell. This provides time savings in the
analysis of wave propagation in periodic structures.

The motion of a structure without an external driving force can be
described as

+ =M K qq̈ 0s s (1)

where Ms, Ks and q represent the mass matrix, the stiffness matrix and
the displacement vector of the structure of interest, respectively. The
effect of damping is not included in this paper, but the reader is referred
to the work of Belle et al. [35] for information on the effect of damping
on the dispersion curves.

The Bloch theorem for 1D wave propagation without attenuation
gives

= −q qe ,ikL
r l (2)

where qr and ql denote the DOFs of the right and left nodes of the 3D
unit cell respectively (see Fig. 3) and k is the wave number of a specific
wave in the first BZ. The displacement vector q can be projected to a

reduced vector d

that denotes the displacement of the nodes in reduced

coordinates using the following Bloch’s transformation:

=

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ⎡
⎣

⎤
⎦

q T

q
q
q
q

T
q
q

d

I 0
Ie 0

0 I
d

,

, ,
,l

i

r

l

i
−ikL





(3)

where I denotes an identity matrix of proper size and T is a transfor-
mation matrix. To obtain the governing equations in the new reduced
coordinates, Bloch’s transformation of Eq. (3) can be substituted into

Eq. (1) and multiplied by TT to ensure equilibrium in both sets of co-
ordinates. This gives

= ≡ −T DT D K MωD T 2


(4)

where TT is the Hermitian transpose of the matrix T and D is the dy-
namic stiffness matrix that contains the mass matrix M and the stiffness
matrix K [30]. The eigenvalue problem is then obtained in the form

=Dd 0
 

(5)

By solving Eq. (5), frequency modes for each wave vector in the first
BZ can be obtained.

3. Methodology

3.1. Calculation of the dispersion curve

Voxel models of the TPMS unit cells are assigned the properties of
selectively laser sintered Nylon-12, which has a density of 0.95 g/cm3

and a Young’s modulus of 1500MPa [36]. The voxelised network gy-
roid cell is shown in Fig. 2, in which the leftmost and rightmost nodes
are highlighted. A finite element method is used for modelling the
structure and Periodic Structure Theory (PST) is used for correlating the
displacements [18,19]. The modelling assumes an infinite tessellation
of lattice cells along the −x direction.

The mass and stiffness matrices of the unit cells are rearranged with
the help of the nodes numbering obtained from a commercial finite
element package. The mass and stiffness matrices are then arranged in
the form shown in Eq. (3). The generalised eigenvalue problem of
Equation (5) is constructed. The frequency eigenvalue problems are
solved for 100 equally spaced wave numbers spanning the first BZ of
the TPMS unit cells. All wavebands below 15 kHz in each lattice were
included in the analyses.

3.2. Bandgap tuning method

The properties of lattice structures that can be tuned to potentially
induce a phononic bandgap include cell size, volume fraction and cell
geometry. Here, the four unit cells identified in Section 2.1 will be
analysed first, with the most promising candidate for bandgap devel-
opment then being chosen for bandgap tuning. The characteristic wa-
vebands for the initial settings of the chosen cell found under 15 kHz
are examined under different volume fractions and cell sizes. The range
of volume fractions used in this study extends from 20% to 40%, while
the examined cell sizes are of 15mm, 20mm, 25mm, 30mm and
40mm.

Fig. 2. Hexahedral mesh of a gyroid unit cell used in this work. The highlighted areas illustrate the nodes of the right and left edges of the cells which need to be
identified for application of the finite element method.
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4. Results and discussion

The mass and stiffness matrices on which the phonon dispersion
curves depend were found to have converged with respect to the mesh
density. The bandgap dispersion curves for the network gyroid lattice,
shown in Fig. 3, show a total of four bandgaps in the sub-15 kHz region.
The broadest is formed between the 6th and 7th wavebands, is 1047 Hz
wide and starts from 7905 Hz A bandgap of similar width spans 978 Hz
from 11,349 Hz to 12,327 Hz and is formed by the 9th and 10th wave-
bands. A bandgap narrower in width than the previous two appears in
the range of 9340 Hz to 9506 Hz, and another one appears in the range
of 10,134 Hz to 10,238 Hz.

The scattering of the mechanical waves in a structure relies on the
impedance mismatch between two adjacent geometrical features [37].
As shown in Figs. 3 and 4, the network gyroid lattice possesses pho-
nonic bandgaps below 15 kHz while the network diamond lattice does
not. This can be explained by considering the differing internal geo-
metries of the respective cells. As a wave travels from a thicker to a
thinner solid region of the cell, or from the solid phase to the void
phase, it is partially reflected, owing to the change in local impedance.
This process is repeated for each reflected wave, giving rise to complex
dispersion curves such as those in Figs. 3 and 4.

The lowest frequency bandgap is usually formed by one acoustic
waveband (a waveband cutting-on at 0 Hz) and one optical waveband
(a waveband cutting-on at nonzero frequency) [30]. Although Bragg
bandgaps can also be formed by two optical wavebands, which is the
case of all the bandgaps in this paper, it is impossible for a Bragg
bandgap to be formed before the cut-off frequency of acoustic wave-
bands. We compare the ability of the network diamond and the matrix
diamond lattices to form bandgaps by examining the cut-off frequency
of their acoustic wavebands. As can be seen in Figs. 4 and 6, respec-
tively, the acoustic wavebands cut-off at a higher frequency in the
matrix diamond cell (around 14,000 Hz) while they cut off at a much
lower frequency (around 9000 Hz) in the network diamond cell. The
network diamond lattice also showed a larger number of wavebands
within the tested frequency region. However, similar to its matrix
counterpart, the network diamond cell did not possess bandgaps within

the examined frequency range.
Similar behaviour is observed by the network gyroid and the matrix

gyroid cells; the cut-off frequency of acoustic wavebands of the network
gyroid cell is around 7000 Hz while the corresponding frequency in the
matrix gyroid cell is around 9600 Hz. The matrix gyroid formed a
bandgap spanning from 12,952 Hz to 13,220 Hz. This bandgap is higher
in terms of the starting frequency and narrower in terms of width than
the lowest frequency bandgap observed in the gyroid network cell. In
addition, matrix type lattices have almost constant wall thickness across
the inner parts of the cell. This suggests that matrix cells would have
reduced capacity to hinder wave propagation from one end of the cell to
the other than in the network type lattices. This is because wave re-
flection, which is the mechanism by which Bragg induced bandgaps are
formed, is expected to be higher when there is a large difference in
densities; or large difference in wall thickness.

The dispersion curves of the matrix lattices support the claim pre-
sented by Kapfer et al. [26] in that matrix type lattices have higher
stiffness than network type lattices. The examined lattices are of iden-
tical volume fraction and cell size and, therefore, identical mass. Thus,
the natural frequency of a matrix type lattice is higher than its corre-
sponding network counterparts. In wave reflection by Bragg scattering,
the bandgap does not appear at frequencies lower than the natural
frequency of the structure. Thus, the high natural frequency of matrix
gyroid lattice, as can be seen from Fig. 7, prohibits the opening of
bandgaps at lower frequencies than the network gyroid lattice. This is
seen in Fig. 3 and 5, where one bandgap appears in the matrix gyroid
dispersion curves, while several appear within the same frequency
range using the network gyroid lattice. The reader is referred elsewhere
[23] for more information on matrix and network type TPMS lattices.

4.1. Tuning lattice bandgaps through cell size selection

The network gyroid lattice represents a suitable candidate to ex-
amine the control of bandgaps, because we have established that it
supports multiple bandgaps at a practical cell size and volume fraction,
as demonstrated in Section 4. The absolute bandgaps frequencies
arising from the network gyroid lattice with cell sizes of 15mm, 20mm,
25mm, 30mm and 40mm, at constant volume fraction of 20%, are
calculated. Fig. 8 shows the dependency of the absolute bandgaps fre-
quencies on the cell size of Nylon-12. The bandgap with the largest
bandwidth was seen for the 15mm cell, where the bandgap spanned

Fig. 3. Phonon dispersion curves for the network gyroid lattice with 15mm cell
size and 20% volume fraction as modelled with the properties of AM Nylon-12.
Shaded zones represent the bandgaps. Wavebands are numbered from the 1st to
the 11th waveband. The top axis shows the frequency f normalised to the lattice
unit cell size L and the speed of the wave v in the material, while the right axis
shows the wavenumber normalised to the lattice unit cell size.

Fig. 4. Phonon dispersion curves for the network diamond lattice with 15mm
cell size and 20% volume fraction.
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approximately 1048 Hz from 7905 Hz to 8953 Hz.
Of the examined network gyroid cell sizes, the 40mm lattice

showed a bandgap of the lowest frequency. This bandgap is formed
between wavebands 6 and 7. The starting frequency of this bandgap is
around 60% lower than the corresponding band gap in the 15mm cell.

Since the bandgap analyses assumes infinite tessellations of the
lattice cell along the x -direction, we have chosen settings of nine unit
cells to examine the harmonic response of this network gyroid cell.
According to Chen et al. [38], any number of unit cells higher than
seven is enough to spot the bandgap with harmonic response analysis;
this is to determine whether a wave would propagate or not. The
number of unit cells which we chose, nine, is an arbitrary one that fits
the criteria of Chen et al. The analyses were carried on the 40mm
network gyroid cell structure by exciting one of its faces with an os-
cillating load. The load was 1 N and was applied in the −x direction to

all the leftmost nodes in the structure. The movement of the rightmost
nodes in −x , −y and −z directions are depicted. From Fig. 9, it can be
seen that the bandgaps of 40mm network gyroid, presented in Fig. 8,
correspond to attenuation in the harmonic response diagram. The finite
length of the structure can be the cause of resonances in the frequency
regions of some bandgaps. From our previous work [1,4], we assert that
40mm cells are less stiff than 15mm cells of similar configurations due
to higher dominance of bending behaviour in larger cells. This lower
stiffness, of the 40mm gyroid cell compared to the 15mm cell, is
translated into lower bandgap frequency.

4.2. Tuning lattice bandgaps through volume fraction selection

Phonon dispersion curves for the network gyroid lattices with vo-
lume fractions of 20%, 25%, 30%, 35% and 40% were simulated at a
constant cell size of 15mm. The unit cell information, including the t L/
ratio for the network gyroid unit cells at different volume fraction, are
shown in Table 2.

The phonon dispersion curves of these lattices are presented in
Figs. 3 and 10. Fig. 11 shows the dependence of the bandgaps on the
volume fraction of the 15mm cell.

The width of the bandgap between the 9th and the 10th wavebands
was the largest at a volume fraction of 25% and spanned a frequency
range of around 1900 Hz. Increasing the volume fraction above this
value reduced the width of this bandgap. In addition, the starting fre-
quencies of all bandgaps increased with the increase in volume fraction,
except between wavebands 9 and 10, where the starting frequency
showed a reduction of approximately 1% over that of 20% volume
fraction network gyroid.

The bandgap between the 8th and 9th wavebands disappeared when
the volume fraction went from 20% to 25%, but it returned when the
volume fraction was 30%, 35% and 40%. Similar behaviour is observed
by the bandgap of wavebands 6 and 7; this one does not appear in the
35% and 40% volume fraction dispersion curves. Thus, the bandgap
formed by the 9th and the 10th wavebands and the bandgap formed by
the 7th and the 8th wavebands are the only bandgaps that sustained the
variation of the volume fraction and the cell size.

The network gyroid cell with 40% volume fraction shows a bandgap
between wavebands 9 and 10 which appears at a starting frequency
45% greater than that of the 20% volume fraction cell. These results
indicate a means to control the frequency and width of phononic
bandgaps in lattice structures by controlling their volume fraction.

Similar to the harmonic analyses carried on the 40mm network
gyroid cell structure, harmonic response analyses were carried on the
40% volume fraction network gyroid cell, with nine tessellations along
the −x direction, by exciting one of its faces with an oscillating load.
The load was 1 N and was applied in the −x direction to all the leftmost
nodes in the structure. The movement of the rightmost nodes in −x , −y
and −z directions are depicted. From Fig. 12, it can be seen that the
bandgaps present in 40% volume fraction cell’s dispersion curve, which
are shown in Fig. 11(d), correspond to vibration attenuation in the
harmonic response diagram. In addition, it is observed that the TPMS
structure has the ability to provide attenuation at non-bandgap fre-
quencies. The results suggest that development of wide bandgaps is
possible with the network gyroid lattice. The starting frequency of the
bandgaps can be reduced for specific applications by reducing the vo-
lume fraction of the lattice.

The bandgap behaviour of AM surface-based lattice structures has
not received much attention. Of relevance to our investigation is the
work of Matlack et al. [18], who used internal resonators lattices, al-
lowing the development of bandgaps with starting frequencies of
3000 Hz–4000 Hz. Our work shows that TPMS structures have the
ability to open up bandgaps at similar starting frequencies with the
potential to go even lower by choosing an appropriate cell size and
volume fraction.

Using multi-material unit cells can result in large differences in

Fig. 5. Phonon dispersion curves for matrix gyroid lattice with 15mm cell size
and 20% volume fraction.

Fig. 6. Phonon dispersion curves for matrix diamond lattice with 15mm cell
size and 20% volume fraction.
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impedance and ultimately a wider bandgap than those reported in this
work; Ampatzidis et al. [8] presented a structure of Nylon-12 glued to a
composite panel that provided a 1D bandgap. The normalised bandgap
frequency of their structure was from 0.24 to 0.27. In comparison to the
first bandgap of 20% volume fraction gyroid examined in this work, the
structure of Ampatzidis et al. is higher by 160% in terms of the starting
normalised bandgap frequency and wider by 50%. Lucklum et al. [12]
presented a bandgap of normalised frequency between 0.15 to 0.25. In
this work, the normalised frequency of the first bandgap formed by the
20% gyroid unit cell is from 0.09 to 0.11. This bandgap is lower by 40%
in terms of the starting frequency and narrower by 90% in terms of
width than the bandgap presented by Lucklum et al.

However, single material designs are more easily made with ad-
ditive manufacturing than multi-material designs. Single material
structures are reported by Kruisove et al. [13] who presented four
bandgap structures of lattice unit cell sizes as low as 200. Kruisove et al.
used an extrusion based additive manufacturing technology to manu-
facture these strut-based micro lattices with bandgaps from 3MHz. The
closest bandgap structure, reported by Kruisova et al., to the bandgap
structures in this work, in terms of equal lattice constants in 3D is their
“SS model”. The SS model had dimensions of 308 μm, 219 μm and 261
μm in −x , −y , and −z directions with a starting bandgap frequency of
9MHz. Normalising this bandgap with the average lattice constant of
262 μm and the speed of the wave in SiC material to compare with the
network gyroid bandgap gives a normalised starting bandgap frequency
of 0.26. This starting bandgap frequency is higher by 180% than the
normalised starting frequency of the first bandgap formed by 20% vo-
lume fraction gyroid reported here.

4.3. Fabrication with additive manufacturing

Network gyroid prototype samples were fabricated on a selective
laser sintering (SLS) system using a 21W laser of a scan speed and hatch
spacing of 2500mm·s−1 and 0.25mm, respectively. The nominal spot
size of the laser is 0.3 mm and the layer thickness is 0.1mm. Nylon-12
material is used to fill a 1320mm×1067mm×2204mm powder bed
at a temperature of 173 °C.

The theoretical size threshold below which the network gyroid
would be fabricated with major defects (i.e. deviations from the nom-
inal or CAD geometry) is determined by the accuracy of the SLS system
and the geometry of the network gyroid cell. The SLS properties af-
fecting precision include the laser spot size, layer thickness, powder
size, and laser scanning strategy. The network gyroid cell properties are
the cell size L, and the volume fraction VF , which together determine
the minimum feature thickness t . Features of sizes close to the laser spot
size and below 0.8mm are expected to be fabricated with significant
losses in mechanical properties; this is because higher amount of un-
melted or partially melted powder exists in features of sizes below

Fig. 7. 1st natural frequency of the same resonance mode for four types of TPMS lattices unit cells as modelled in FE with the initial settings of 15mm cell size and
20% volume fraction. A matrix TPMS has higher 1st natural frequency than its corresponding network counterpart.

Fig. 8. Dependence of network gyroid bandgaps on the cell size.

Fig. 9. Harmonic response of 40mm network gyroid cell with nine tessellations
along the −x direction in longitudinal (solid line), −y transverse (dashed line),
and −z transverse (dotted line) directions.

Table 2
Network gyroid unit cells specification at different volume fractions.

Unit cell size
L/mm

Volume fraction/
%

t/mm t L/ Schematic

15 20 3.8 0.25
15 25 4.35 0.29
15 30 4.9 0.33
15 40 5.95 0.4
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0.8 mm, in comparison to thicker features [39].
Fig. 13 shows the dependency of t on the volume fraction and cell

size of the unit cell. The lower SLS manufacturing limit is set to 0.8 mm
to ensure minimal loss of mechanical properties [39]. The t L/ ratio was
obtained from CAD models at volume fractions between 0% to 40%
using a step of 5%. The relationship between t, L and VF as obtained by
plotting the data from the CAD models is

= × × +t L VF(0.0075 0.1) (6)

By substituting =t 0.8 mm, and =VF 0.2 while solving for L, we
theoretically obtain the lowest achievable cell size at 20% volume

Fig. 10. Phonon dispersion curves for the network gyroid lattice with 15mm cell size at different volume fractions of (a) 25%, (b) 30%, (c) 35%, and (d) 40%.

Fig. 11. Dependence of network gyroid bandgaps on the volume faction.

Fig. 12. Harmonic response of 40% volume fraction gyroid cell with nine tes-
sellations along the −x direction in longitudinal (solid line), −y transverse
(dashed line), and −z transverse (dotted line) directions.
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fraction which is 7.8mm. More generally, Eq. (6) can be used to de-
termine the minimum value of VF or L for the gyroid lattice produced
once the other is specified.

SLS is employed to fabricate 20% volume fraction lattices of four
tessellations along the −x axis, with cell sizes of 15mm, 25mm and
40mm. These will be referred to as lattice 1, 2 and 3, respectively. Two
copies of each lattice were fabricated and they are shown in Fig. 14.
Table 3 shows the nominal and average length and mass properties. The
nominal values were extracted from the CAD models.

The measured values are measured using a vernier caliper for length
and a mass balance for mass. Each measurement was repeated four
times and the standard error of the measurements are shown alongside
the mean properties in Table 3. The measured volume fraction is cal-
culated as the ratio between the measured mass and the mass of a solid
structure of dimensions identical to the measured lattice assuming a
950 kg˖m−3 density (that of SLS Nylon 12) [36].

The differences between the properties of copies of the lattice
structures were insignificant, as they all fell within the standard error of
the measurements of each property. Comparing the measured proper-
ties to the nominal properties, the mass of the fabricated lattices was
lower by 4.9%, 2.1%, and 0.3% in lattice 1, lattice 2, and lattice 3,

respectively. The difference in the mass translated into a reduction of
10% and 2.4% from the nominal volume fraction of lattice 1 and lattice
2, respectively. The length measurements showed a 3.2% decrease in
the t values of lattice 1. For lattice 2, the deviation from the nominal t
value was lower, 1.52%. The measured cell size showed deviations of

Fig. 13. (a) Minimum thickness t of network gyroid unit lattice at different volume fractions and unit cell sizes L, and (b) zoomed in view with labeled fabricable and
not fabricable design spaces.

Fig. 14. Prototype samples of network gyroid lattice of 15mm, 25mm, and 40mm unit cell sizes, all in 4×1×1 tessellations. The size of the single unit cell is
indicated in the front view. Fabrication is made with SLS using Nylon-12 powder.

Table 3
Nominal and measured properties of 4× 1×1 network gyroid lattice fabri-
cated with SLS. The standard error is provided for each measured property.

Property Lattice 1 Lattice 2 Lattice 3

Nominal L / mm 15 25 40
Measured L / mm 15.26 ± 0.03 25.03 ± 0.02 39 .98 ± 0.03
Nominal mass / g 2.56 11.88 48.712
Measured mass /

g
2.43473 ± 4
×10−5

11.6314 ± 5
×10−5

48.56755 ± 2
×10−5

Nominal t / mm 3.75 6.25 10
Measured t / mm 3.63 ± 0.04 6.16 ± 0.03 10.01 ± 0.03
Nominal volume

fraction / %
20 20 20

Measured volume
fraction / %

17.99 ± 0.06 19.52 ± 0.02 19.99 ± 0.02
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1.8%, and 0.11% from the corresponding nominal values of lattice 1,
and lattice 2, respectively. However, the measured deviations in the
minimum thickness, cell size and volume fraction from the nominal
values of lattice 3 are insignificant as they are smaller than the standard
error of their measurements. All length deviations are below the laser
spot size in SLS.

Future advances in the accuracy and minimum feature sizes of SLS
systems are expected to reduce the gap between the nominal and fab-
ricated lattices. These improvements may also push the theoretical cell
size limit for gyroid lattices below the fabrication limits which are set in
Fig. 13, for example, below 7.8mm for 20% volume fraction gyroid
cells. This will provide an opportunity to open bandgaps at higher
frequencies by manufacturing unit cells of lower cell sizes.

5. Conclusions

We demonstrated that TPMS lattice structures can induce mechan-
ical bandgap behaviour which can be tailored for vibration isolation
purposes. The novelty of the presented work lies in predicting the 1D
bandgaps of beam-like surface-based lattices, which have not been
studied before. Our analysis showed that:

• At reasonable cell sizes and volume fractions for AM capabilities, the
network gyroid and the matrix gyroid lattices have bandgaps, while
other examined lattice types do not.

• Changing the lattice cell size and volume fraction of surface-based
lattices can alter the width of a pre-existing bandgap, the starting
frequency, or both. In addition, the potential to open up bandgaps
that did not exist previously between two wavebands was demon-
strated.

• The network gyroid and the matrix gyroid TPMS lattices have sev-
eral bandgaps under 15 kHz when their volume fraction is 20% and
cell size is 15mm.

• Bandgaps at frequency regions as low as 3000 Hz are demonstrated
to be achievable using a cell size of 40mm and 20% volume frac-
tion.

Fabrication of prototype lattice structures was done using SLS
system which fabricated 4× 1×1 lattices of cell sizes of 15mm,
25mm, and 40mm. The SLS system fabricated the lattices with a
maximum deviation of 1.8% and 10% from the nominal cell sizes and
volume fractions, respectively. The measured minimum feature t
showed a maximum difference of 3.2% from the nominal value. All the
differences between measured and nominal values are below the laser
spot size in SLS which is 0.3 mm.

Introduced here are new design factors for tuning bandgaps of
phononic structures which are realised by the nature of TPMS lattices
and the manufacturing freedom of AM. The designer of lattice struc-
tures can now use these results to design and fabricate structures with
AM that exhibit inherent vibrational isolation properties for the use in
different engineering applications. More work, including the control of
more TPMS parameters for tuning mechanical bandgaps, will follow.
Additional work for opening bandgaps in more propagation directions
and at lower frequencies using AM lattice structures is also in progress.
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