
A neural network approach for determining spatial
and geometry dependent Green’s functions for

thermal stress approximation in power plant header
components

J.P. Rousea,∗, C.J. Hydea, A. Morrisb

aDepartment of Mechanical, Materials and Manufacturing Engineering, University of Nottingham,
Nottingham, Nottinghamshire, NG7 2RD, UK

bEDF Energy, West Burton Power Station, Retford, Nottinghamshire, DN22 9BL, UK

Abstract

The trend in power generation to operate plant with a greater frequency of
on/partial/off load conditions creates several concerns for the long term struc-
tural integrity of many high temperature components. The Green’s function
method has been used for many years to estimate the thermal stresses in com-
ponents such as steam headers by attempting to solve the un-coupled thermal
stress problem for a unit temperature step. Once a Green’s function for a unit
temperature step has been determined, realistic or actual component temperat-
ure profiles can be discretised and the time dependent stress profile reconstruc-
ted using Duhamel’s theorem. Stress fluctuations can therefore be estimated
and damage due to fatigue mechanisms can be quantified. A potential difficulty
with this method is that Green’s function approximations are determined for a
single analysis point in a structure. This is because Green’s functions are approx-
imated by fitting a trial function to the results of finite element (FE) simulations.
While a user can make some judgement on which point in a structure will
give the ”worst case“ (or life limiting) conditions, it is foreseeable that points
of interest will be dependent on the specific analysis conditions, such as the
stub penetration geometry and the loading condition considered. The neural
network approach described in this paper provides a means where transient
thermal stress models of complex components (here taken to be steam headers)
can be generated relatively quickly and used pro-actively to assess and modify
plant operation. A range of header geometries have been considered to make the
network applicable over an industry relevant envelope. Coefficients of determ-
ination (R2) are typically above 0.92 when reconstructed (from neural network
results) unit temperature step stress profiles are compared against “true” FEA
results. Mean errors in the stress profiles are, for the majority of cases, less than
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10%. Suggestions are also made on possible future improvements to the method
through the use of additional constraints on the reconstructed stress profiles.

Keywords: Power plant, Header, Green’s Function, Thermal Stress, Neural
Network

1. Introduction

Pressure is mounting on power plant operators to generate electricity in
an efficient and economical manner. Unit loads will fluctuate with higher fre-
quencies and steeper ”ramp up and down“ rates as drivers attempt to match
market demands. As steam pressures and temperatures vary with time, po-
tentially large thermal stresses will develop in thick walled components such
as steam headers. These thermal stresses will be necessarily time dependent
and, should constant operation be maintained for a sufficient period of time,
will tend to zero as the component reaches a homogeneous temperature. The
fluctuation of total stress in components makes fatigue an important structural
integrity concern in power plant components; a problem which is significantly
complicated by the transient nature of thermal stresses. Large conventional
power stations were originally designed for limited thermal cycling, however in
response to the commercial environment it is not uncommon now to find these
large stations operated with up to 250 Unit starts per year, which results in the
regular occurrence of fatigue cracking and creep-fatigue cracking.

Many novel monitoring systems have been developed for assessing the
structural integrity of at risk power plant components, including “on line”
management systems that monitor power station load characteristics (such as
main steam temperature and pressure) and estimate component degradation
using generalised finite element models and creep/fatigue damage fraction
rules[1, 2, 3, 4]. An example of one of these products is Areva’s fatigue mon-
itoring system FAMOSi[5, 6], where thermal loads are recorded using on site
thermocouples and converted to thermal stresses using FEA models at critical
points in a system. Alternatively, accurate stress histories in a component may
be estimated through bespoke analyses utilising complex visco-plastic material
models[7], however this is commonly computationally intensive and is typic-
ally impractical for on line component assessment. In the UK, the approach to
managing the integrity of boiler steam headers is based primarily on an Inspec-
tion Based Assessment (IBA). This approach is implemented using a range of
non-destructive inspection based assessment techniques during the four-yearly
statutory outages. The extent/scope of site outage inspections for boiler steam
headers is prescribed in various industry guidelines, and threats to the integrity
of boiler steam headers can arise from, erosion damage, creep rupture, thermal
fatigue, creep fatigue and corrosion fatigue.

While these advances have shown some success, established design codes
and analysis procedures are still by far the most commonly used tools in in-
dustry for component fitness assessment, along with frequent inspection during
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outage periods[8]. In the UK, the R5[9, 10] procedure is commonly used for high
temperature assessment and the R6[11] procedure for low temperature fracture
assessment of power plant components. These step by step methods usually
involve decomposing a loading history into cycles. The likelihood of failure by
various mechanisms, such as plastic collapse, creep and fatigue, is calculated by
estimating damage accumulation and mechanism interaction factors.

The Green’s function method provides a general approach to estimate the
transient linear elastic thermal stress responses at a point in a structure by
integrating the response due to a unit thermal load change. In the context of
steam headers, thermal stress histories may be estimated at a point of interest for
any bulk steam temperature history. While limited to linear analysis, the Green’s
function method is still of use in component failure assessment, particularly
where damage is suspected to be localised. The Green’s function method (see
section 2) has been shown to be a useful tool in predicting transient thermal
stresses by several authors. In particular, the technique has been applied to
fatigue analysis problems in the nuclear power industry[12, 13, 14].

Boiler header systems transfer and distribute water/steam between various
boiler stages, hence operate at temperatures both below and above the creep
limit for typical conventional plant materials, which is approximately 400°C.
Maximum design conditions for these header systems on large conventional
power stations are typically 568°C and 170 bar. Typical areas for inspection on a
boiler header during an outage includes the following:

• End cap welds regions

• Stub-to-Shell fillet welds and stub pipes

• Branch connection welds

• Header body internals (by remote visual inspection)

• Shell construction butt welds (in larger header components)

• Any attachment welds on the header shell (support connections, for ex-
ample)

• Header shell parent material and inter-stub pipe ligament positions

• Header shell diametral measurements (for creep strain monitoring)

Operational steam temperatures are usually used to provide an initial as-
sessment of the rate of creep life consumption, which is often supplemented
later in life by the installation of surface mounted thermocouples on the header
shell and selected stub tube locations. Clearly as the components age the extent
of invasive assessments during a statutory outage increases and a significant
amount of metallurgical data on header condition can be accumulated. This
metallurgical data is not specifically used in a forward life prediction however;
it is usually used to provide confidence that the next 4-year operating period
can be safely navigated before repeat inspections. It is clearly advantageous if
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more predictive models of life consumption can be used, moreover, as a means
of directing the plant operators to adjust operation and hence reduce the rate of
header life consumption where needed. The neural network approach described
in this paper provides a means where transient thermal stress models of these
complex components can be generated relatively quickly and used pro-actively
to assess and modify plant operation.

2. Background to the Thermoelastic Problem and Neural Networks

2.1. The Linear Thermoelastic Problem and Coupling
The governing equations for a linear coupled thermoelastic problem may be

derived from the fundamental principles of mechanics and thermodynamics.
When loads applied to a body give rise to variations in strain within the body,
variations in temperature are also observed. This causes heat flow and therefore
an increase in entropy for the body (this irrecoverable mechanical dissipation
is known as thermoelastic dissipation). There is an internal generation of heat
due to mechanical deformation that will affect the temperature field within a
body in addition to any thermal boundary conditions. Deformation however is
not only controlled by the application of, say, body forces. Temperature fields
cause thermal expansion within elements of the body, generating additional
internal surface forces between the elements. There exists therefore a coupling
between the solutions for temperature and displacement fields, T(P, t) and
u(P, t) respectively (where P is a point within the body specified by coordinates
using the coordinate system x1, x2, x3 = x and t is time). For a linear coupled
thermoelastic problem, it can be shown that a unique solution may be found
(for a given set of initial and boundary conditions) using the heat equation with
mechanical coupling (equation (1)), the equilibrium condition (equation (2),
noting the inclusion of an inertia term), the strain-displacement relations (equa-
tion (3)), and the stress-strain relations (equation (4))[15]. Note the use of indicial

notation (
δgi
δxj

= gi,j, where gi is a vector component in the ith direction and

xj is the basis vector in the jth direction of the coordinate system, i, j = 1, 2, 3)
and the Einstein summation convention. Note also that dots are used to denote
derivatives with respect to time.

kT ,mm = ρcṪ + (3λ + 2µ) αT0ε̇kk (1)

σij,j + fi = ρüi (2)

εij =
1
2
(
ui,j + uj,i

)
(3)

σij = δijλεkk + 2µεij − δij (3λ + 2µ) αT (4)
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where ε, σ, and f are the small strain tensor, stress tensor and body force
vector field, respectively. T0 is a reference temperature at which, in the absence
of body forces, the material will be in a stress free state. Material dependent
parameters are thermal conductivity (k), density (ρ), specific heat capacity at
constant deformation (c), and the thermal expansion coefficient (α). Lamé’s
first and second parameter are defined in terms of Young’s modulus (E) and
Poisson’s ratio (ν) in equation (5). It has been assumed in the present work that
any temperature dependency in these material parameters is negligible. δij is
the Kronecker delta (δij = 1 if i = j, else δij = 0).

λ =
Eν

(1 + ν) (1− 2ν)

µ =
E

2 (1 + ν)

(5)

The existence of the coupling term in the energy equation (equation (1))
greatly complicates the solution process for the thermoelastic problem (clearly
temperature and displacement field solutions must be found simultaneously
to satisfy equations (1) to (4) and the problem specific initial and boundary
conditions). In general, temperature variations due to mechanical deformations
are small (particularly if small strain theory is being implemented). Similarly,
differences between heat transfer solutions in deformed and undeformed bod-
ies are also small (deformations from either thermal expansion or external
mechanical agencies do not change the dimensions of the structure to such an
extent that heat transfer is significantly affected). If thermoelastic dissipation
can be neglected (conditions for this are given in section 3.3), an uncoupled
formulation may be derived for the thermoelastic problem. In this case, internal
heat generation due to deformation is ignored and temperature fields can be
found first by solving the well know heat equation (equation (6)), where κ is the
thermal diffusivity (κ = k/ρCp). Once the temperature field has been determ-
ined, the corresponding displacement field (dependent on thermal expansion
and mechanical deformation) may be found.

If the rate of change of the deformation rates are small (as is the case in
many engineering applications) inertia effects may be neglected and the for-
mulation is termed quasi-static. In this case (with the absence of body forces)
the equilibrium equation simplifies to Equation (7). Strain-displacement and
stress-strain relations given in equations (3) and (4), respectively, are still valid
in the uncoupled formulation.

κT ,mm = Ṫ (6)

σij,j = 0 (7)

2.2. The Green’s Function Method for Estimating Transient Thermal Stresses
The thermoelastic problem has been defined in section 2.1. Solutions for

even the uncoupled formulation with the component geometry used in the
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present work (power plant steam header) are very complex and generally
require numerical methods (such as finite element analysis, FEA) to estimate
a solution. A practical problem with this analysis strategy is that temperature,
displacement, and consequently stress fields are required for each new operating
condition. It is not feasible to perform full FEA simulations of the header
components for each change to the bulk steam temperature or pressure. A
solution to this dilemma however exists through the use of Green’s functions.

It can be seen from section 2.1 that the thermal stress solution is based on
the temperature field solution, both of which are unique and dependent upon
the particular initial and boundary conditions of the problem. This uniqueness
allows the use of a Green’s function that finds the thermal stresses based on the
boundary conditions. It is therefore possible to determine the thermal stress
distribution without direct knowledge of the temperature or displacement
fields. As the present work is concerned with a power plant header application,
the bulk internal steam temperature may be used as a “driving” term for the
thermal stress field (it shall be assumed that external surfaces of the header are
insulated and attention is restricted to the uncoupled formulation). Thermal
stresses at a point P in the header structure can be found by the integral in
equation (8), where G(P, t− τ) is the Green’s function, ψ(t) is the bulk internal
steam temperature, and τ is the time integration variable.

σ(P, t) =
∫ t

0
G (P, t− τ)

dψ(τ)

dτ
dτ (8)

Numerical integration of equation (8) can be achieved using equation (9),
where GSS(P) = lim

t→inf
G(P, t). Note that in the present work, with a steady state

constant bulk steam temperature and in the absence of mechanical body forces,
the asymptotic value of G is 0. A characteristic time (tCH) is used in equation (9)
to specify a limit for the time integral. It is defined as the point at which the
stress contribution predicted by G (P, t) decays to a value which is considered
to be negligible. Here, tCH is taken as the time when G (P, t) is 5%[14] is the
maximum value (σ̂). An exponential sum of terms (see equation (10)) is used in
the present work to estimate unit temperature step stress responses.

σ(P, t) = GSS(P)ψ(τ) +
t

∑
t−tCH

Ḡ (P, t− τ)∆ψ(τ) (9)

Ḡ(P, t) = exp

(
7

∑
m=1

Cm(P) (ln(t))m−1

)
(10)

2.3. An Overview of Neural Networks
Neural networks were first proposed by McCulloch and Pitts in 1943[16] and

have been implemented in literature to determine patterns and trends in data
where some correlation exists but controlling functions are either unknown or
too complex to implement[17, 18]. Multiple authors have used neural networks

6



for structural integrity assessments of specific materials and/or components.
For example, Venkatesh and Rack used a back propagation neural network for
the prediction of service life of the Nickel based alloy INCONEL 690 operating
under creep fatigue interaction conditions[19]. Strucutral integrity assessments
have also been approximated by trained neural networks for specific component
types, including fatigue damage in trabecular bone structures[20] and contact
fatigue in alloy cast steel rollers [21]. More recently, Kao and Yeh have used
neural networks to improve the integration between strucutral solvers (FEA
packages, for example) and optimisation routines[22] by determining character-
istic responses for simple two truss element structures. Stress analysis in steel
catenary risers was studied using neural networks in the work of Quéau et al.
in order to inform fatigue calculations[23].

Artificial neural networks are mathematical representations of biological
central nervous systems[24]. A brief overview of neural networks will be
given here, with detailed descriptions available from numerous sources[24, 25].
Fundamentally, a neural network neuron takes a group of inputs (or signals in
a vector X), multiplies them by weighting values (Wi) and pass them through
mathematical functions (S(Xi, Wi, θ)), giving rise to the effective input S. This
function is known as the propagation rule and, while many variants exist, the
most simple and applicable is the weighted summation rule in equation (11)
(shown for a single neuron fed by i inputs). External inputs (or biases, b) may
be used to distinguish certain neurons in a network. The effective input is used
in an activation function F(S) to determine the neuron’s output Y.

Weights and biases used in a particular network are determined in a process
called training. In effect, this is a form of optimisation and similar methods (such
as a least squares evaluation of the Gauss-Newton method[26]) may be used
for this purpose. Sets of inputs with corresponding known (“true”) outputs
are collected and fed into the neural network. From a usually randomised
initial state, the training algorithm will iteratively alter the network’s weights
and biases to minimise the difference between approximated outputs from the
network (Y) and the corresponding true values. Typically, a validation sequence
would also be required for the approval of a network. In some cases, neural
networks can “overfit” the training data set. This means that while errors in
the training set are small, predicted values for inputs outside the training set
(where clearly a predictive neural network has the greatest value) show very
large errors.

S =
n

∑
i=1

XiWi + θ (11)

For all but the simplest systems, fully connected neural networks will com-
prise of multiple layers of neurons that are linked together (see figure 1). Back
propagated neural networks are simple examples of these feed forward net-
works. An array of inputs X (length m) will form the input layer. These inputs
are fed to the first “hidden” layer of neurons (numbering n in figure 1). Each
neuron is fed by all of the inputs (weighted in some way, depending on the
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prorogation rule used) and the effective input is determined by the neuron’s
function S1j (1 ≤ j ≤ n). An output for that neuron is determined from the
effective input using the activation function. The outputs of the neurons from
this first hidden layer are fed as inputs into the neurons of the next hidden layer.
Commonly, local outputs from the last hidden layer of inputs are summed in
an output neuron, giving rise to the network’s output Ŷ[25]. Y is therefore the
local output from a neuron and Ŷ is the global output from the neural network.

Figure 1: A 2 layer feed forward fully connected neural network[24].

Training is completed for a neural network in order to determine the mag-
nitude of the weights and biases for each neuron. This is done for a sample
training set of data. In back propagation networks, data flows uni-directionally
from the input nodes to the output. During training, errors (E) between the
outputs predicted by a neural network (with a particular set of weight and bias
values) and the true training values are compared using the sum of squares ap-
proach (or similar). Using a gradient descent optimisation method, the change
to a weight is determined by a multiplier term and the rate of change in E with
respect to the weight Wi (see equation (12)). If training is undertaken for a
specific data set only, it is termed supervised learning. Un-supervised learning
results in weights and biases being continuously updated as new information is
made available. While supervised learning is considered more relevant to the
present work as the intended application demands a deterministic capability,
unsupervised learning may be applicable in the future to update networks as
new data (either from additional FEA or plant inspections) becomes available.

∆Wi = −η
δE

δWi
(12)

The example neural network shown above is an example of a fully con-
nected network. This is not an accurate representation of a biological neural
network and tends to lead to significant redundancy in the network (i.e. stor-
age, computation and training requirements are far greater for fully connected
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networks[27]). Customised networks can be developed that connect only spe-
cified neurons, meaning that the network can (potentially) be more efficient.
While only feed forward neural networks are described here, recurrent topo-
logies have been used in literature[24], such as the Boltzmann and Hopfield
networks. In these cases, information does flow in one direction only but can
cycle on a local basis, potentially allowing for more complex functions to be ana-
lysed. These aspects are considered outside the scope of the present work but
could be implemented in the future for more sophisticated analysis networks.

Initial values for the weights and biases used in the network must be found
before the training procedure begins in order to provide a “starting point”.
Initialisation is a critical step in the development of any neural network and
determining appropriate methods has been the subject of several investigations
by many authors[28, 29, 30]. Improper initialisation can lead to numerical diffi-
culties which can dramatically affect the performance of a neural network. For
example, premature saturation occurs when activation functions output satur-
ated values (0 or 1) in the early stages of training. This has the effect of trapping
the network at a non-optimised state, potentially severely increasing training
time and reducing the likelihood convergence[31]. Alternatively, solutions may
converge on a local minimum[32].

In the present work, randomised initial conditions were assumed for all
neuron layers using the Nguyen-Widrow algorithm. Using this method, initial
values for weights and biases take a random value (generated between the
limits -1 and 1). The factors β and norm (equations (13) and (14), respectively)
are then calculated and used to determine a revised weight and bias (based on
the randomised value, see equation (15))[33].

Note that in equations (13), (14) and (15), h is the number of hidden neurons
for a particular layer, I is the total number of inputs to that layer, wi is the
ith weight (or bias as the two are initiated simultaneously) determined by a
random number generator and w′i is the weight (or bias) wi that has been
adjusted by the Nguyen-Widrow algorithm. If the values of the weights and
biases were plotted on a histogram for a suitably large network, a distribution
would be observed with higher frequencies of weights and biases at certain
values and very low frequencies at the limits of the range. During training,
the high frequency regions may shift and redistribute, however by localising
them to begin with a faster training rate is observed than if a “hard” (uniform)
or Gaussian distribution had been implemented. For the remainder of the
neuron layers, zero initial values for the weights and biases were assumed
(meaning that these neurons are not active, at least initially). During the training
procedure, non-zero values are quickly determined in these neurons. The
initialisation procedure described is not dissimilar to that used by Yoon et. al
[34], whereby weights on some input nodes were artificially increased before
training to emphasise those inputs the authors suspected would particularly
influence a results.

β = 0.7h1/I (13)
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norm =

√√√√i=I

∑
i=0

w2
i (14)

w′i =
βwi

norm
(15)

3. Methodology overview

3.1. Unit response critical parameters and profile reconstruction
As would be expected, general features are observed for all thermal stress

responses due to unit temperature steps. The precise shape of the thermal stress
profile at a given point is dependent upon a structure’s geometry and material,
however stresses will typically quickly increase (non-linearly) to a maximum
value (σ̂) before decaying to an asymptotic value (zero if the boundary condi-
tions are such that a homogeneous temperature field is permitted and in the
absence of body forces). With a view to generalising the thermal stress profile
so that the effect of a structure’s geometry can be accounted for, three so-called
“critical parameters” will now be defined. These critical parameters are values
determined from the thermal stress profile and characterise its shape (see fig-
ure 2). Knowledge of these parameters will allow for the reconstruction of an
approximate unit thermal stress profile (see figure 3). The critical parameters are
defined as the maximum stress value (σ̂, with units of MPa in the present work),
the time at which the maximum stress is achieved (tσ̂, units of s here), and a
characteristic time (tCH , taken to be the time at which the instantaneous stress
value is 5% of σ̂ and having units of s here). It has been noted that defining
an asymptotic value for the Green’s function approximation can reduce the
computational effort required to implement the method[14]. It is these critical
parameters that will be used as outputs for the developed neural network. In
order to achieve this, true values for the critical parameters are required from
FEA simulations (discussed in section 3.3). Values for the critical parameters
can be easily determined from FEA profiles using a spline approximation.
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Figure 2: Critical parameters definition on the thermal stress response due to
a unit temperature step, namely maximum stress σ̂ (MPa), time to maximum
stress tσ̂ (s), and characteristic time tCH (s).

Once the values of the critical parameters have been determined from a
trained neural network, the unit thermal stress response and Green’s function
approximation must be determined so that stress histories due to arbitrary bulk
steam temperature profiles can be determined. In the present work, this is
achieved by creating a set of intermediate points to approximate the unit stress
response based on the critical parameters (see figure 3). Quadratic curves are fit-
ted to the “ramp up” and “ramp down” regions to generate these intermediate
points, with a linear approximation used in the asymptotic region. For clarity,
the quadratic approximations are summarised in equations (16) and (17), where
A, B and C are used as place holders for fitting coefficients (clearly it is trivial
to determine these once the critical parameters are known). After intermediate
points have been generated the Green’s function approximation (in the present
work taken as equation (10)) can be fitted (here using a Levenberg-Marquardt
algorithm through LSQNONLIN in MATLAB[35]); acting as a smoothing func-
tion to remove discontinuities in the piecewise approximation and returning
the reconstructed stress profile.

Three points are required to define the quadratic functions used to generate
intermediate points. Two limits for each function can be found directly from the
critical parameters themselves, however the third (midpoint) must be estimated.
Stresses at the times tσ̂/2 and tσ̂ + (tσ̂ − tCH/2) would be tσ̂/2 and 0.475tσ̂,
respectively, if a linear relationship was assumed. These values are multiplied
by the factors f1 and f2, respectively. It can be shown that the limits of the
quadratic curve factors are 1 ≤ f1 < 2 and 1 ≥ f2 > (2/19). By analysing
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coefficients of determination between a random set of true (FEA) thermal stress
responses and corresponding neural network derived reconstructions, values of
f1 = 1.9 and f2 = 0.48 were determined for the reconstruction curve factors.[ tσ̂

4
1
2

tσ̂ 1

]
tσ̂

[
A
B

]
=

[ f1

2
1

]
σ̂ (16)


σ̂2 σ̂ 1(

tσ̂ +
tσ̂ − tCH

2

)2
tσ̂ +

tσ̂ − tCH
2

1

tCH
2 tCH 1


A

B
C

 =

 1
0.475 f2

0.05

 σ̂ (17)

Figure 3: The stress reconstruction method, showing the definition of the curve
factors f1 and f2.

3.2. Neural network estimation of critical parameters
The neural network architecture used in the present work is summarised

in figure 4. In essence, three networks are used in parallel to approximate the
critical parameter outputs σ̂, tσ̂, and tCH . It can be proven, using the universal
approximation theorem, that only one layer of hidden neurons is sufficient to
approximate any function with a finite number of discontinuities (providing
activation functions of the hidden units are non-linear)[25]. To this end, only
one layer neural networks have been implemented for each critical parameter
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in the present work through the MATLAB neural network toolbox[36]. One
additional layer of hidden neurons is implemented for the calculation of tσ̂

in order to combine input sources as both geometrical parameters and other
critical parameter (σ̂ and tCH) approximations are used. Inputs for the neural
networks are largely derived from the geometry of the header and the spatial
coordinates of a point of interest. Header geometry is defined by the diameter
and thickness of the shell and stub sections (φSHELL, tSHELL, φSTUB and tSTUB,
respectively). Assuming the Cartesian coordinate system shown in figure 6 with
its origin on the axis of the shell section, the Cartesian spatial coordinates (x, y
and z) of points around the stub penetrations may be transformed into fractions
through the stub wall thickness based on a cylindrical coordinate system. These
fractions fully define the location of a point of interest for a particular header
geometry and are designated r f , θ f and z f (see equation (18), equation (19) and
equation (20)). It is generally advisable to normalise inputs prior to processing
in neural networks to ensure accurate representation of the true behaviour[25],
therefore all inputs have been normalised against the maximum values observed
in the tested range (note r f and z f are normalised through their definition in
equations (18) and (20)).

r f =
2
√

x2 + z2

φSTUB
(18)

θ f =
∣∣∣tan−1 z

x

∣∣∣ (19)

z f =
2y

φSHELL
(20)

It has been observed in the present work that, for a particular header geo-
metry, correlations exist between tσ̂, σ̂ and tCH (example plots that demonstrate
this are given in section 4.3). This is exploited in the present work by determ-
ining two critical parameters (σ̂ and tCH) using only header geometry data
first and then using these with the geometry data to predict the final critical
parameter (tσ̂). 30 hidden neurons with a hyperbolic tangent sigmoid transfer
function (see equation (21) where n is the input of the neuron) and logarithmic
sigmoid transfer function output neurons (see equation (22)) were found to be
sufficient for the prediction of σ̂ and tCH . σ̂ and tCH are then used as inputs
(along with the header geometry data) in a separate network to predict tσ̂. 30
hidden hyperbolic tangent sigmoid transfer function neurons are used in this
network with a single logarithmic sigmoid transfer function output neuron.
Training was achieved through back-propagation using a Levenberg-Marquardt
algorithm and sum of square error metric[36]. Logarithmic sigmoid transfer
functions were used for all output neurons as, by definition, all critical para-
meters presented here are positive. This will always be the case for tσ̂ and tCH ,
however it is clear that the choice of stress component considered for σ̂ may
necessitate negative values. Equivalent von Mises stresses are the focus of the
present work therefore this concern is not relevant here, however it should
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be revisited if a more general analysis method is sought. Although strategies
and optimisation methods for the construction of neural networks have been
proposed (such as the procedure detailed by Weymaere and Martens[28] which
utilises a quantification of network complexity), neuron distributions in the
present network were determined using a trial and error approach. Initial
values for the number of hidden neurons were determined by initialising a net-
work with a set number of neurons, training for a limited number of iterations
(100), and observing trends in mean squared error values in each of the three
critical parameter predictions. Mean squared error (MSE) may be expressed
by equation (23), where xi is one of n reference/true observations and x̂i is
the corresponding prediction. It is clear that training for a fixed number of
iteration will not yield an optimum set of network weights and biases, however
this was not the aim of the initial investigation. The motivation here was to
gain some understanding of how the number of neurons affects the predictive
capability of the network without undertaking lengthy studies. MSE values
were determined for the training data set only. The network architecture is such
that tσ̂ evaluations depend upon predicted values for the other two critical para-
meters. Consequently, when neuron numbers were varied for the hidden layer
associated with tσ̂, neuron numbers in the σ̂ and tCH hidden layers were fixed
at 20. It should of course be noted that this method is not deterministic as initial
values for the neuron weights and biases are random (as discussed previously).
While the results (given in figure 5) are not strictly monotonically decreasing,
a general trend may be observed and a plateau in the data emerges for all
critical parameters at 20-30 neurons. As such, hidden layers were initial given
20 neurons each, with final values (given in figure 4) determined by observing
when consistent total network performance across all critical parameters was
achieved.

2
1 + e−2n − 1 (21)

1
1 + e−n (22)

MSE =
1
n

n

∑
i=1

(xi − x̂i)
2 (23)
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Figure 4: The neural network architecture applied in the present work, showing
neuron quantities and transfer function assignments. Note input parameters
(φSHELL, tSHELL, φSTUB, tSTUB, r f , θ f , and z f ) are summarised by the vector X

.Outputs are designated by circled symbols.

Figure 5: A summary of the (normalised) mean square errors (MSE) determined
in initial neuron number investigation. Results for all critical parameters (σ̂, tσ̂,
and tCH) are presented.

3.3. FEA models
FEA models must be generated in order to determine the coefficients in

equation (10) and thus define the Green’s functions. FEA has be conducted
in the present work using the commercially available code ABAQUS. The ef-
fects of multiple stub penetrations are not considered here (although future
work may look to include these effects through additional inputs). A simplified
header geometry is therefore assumed that consists of a single stub penetra-
tion (see figure 6, noting the plane of symmetry assumed through the stub
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penetration). Dimensions of the shell (diameter and wall thickness, φSHELL
and tSHELL, respectively) and the stub (diameter and wall thickness, φSTUB and
tSTUB, respectively) are varied in the present work to determine the effects of
header geometry on spatially dependent Green’s functions. A summary of the
dimensions used in the present work (with labels) are given in tables 3 and 4.

Despite the simplified geometry, shell and stub dimensions are similar to
those found in industry for P91 header components. Uncoupled thermoelastic
analysis was conducted by first determining a temperature field from a heat
transfer simulation. An insulated exterior boundary condition was assumed
(q̇ = 0) to allow temperature fields in the model to reach equilibrium after the
bulk steam temperature experiences a step change. Heat conduction on the
inside surface of the header is controlled by convection (see figure 6 (b)), where
the heat transfer coefficient h is taken to be a temperature independent constant
0.002W/mm2K (this value is similar to that used in the work of Farraghera et
al.[7]). Once the transient temperature field has been determined it can be used
as an input in mechanical analyses to estimate thermal stress histories. Boundary
conditions for the mechanical analysis can be seen in figure 6 (c). Tetrahedral
quadratic elements where used, namely DC3D10 for thermal analyses and
C3D10 for mechanical analyses (see figure 6 (a) for an example mesh)[37].

A single material is assumed for the FEA model in the present work (vari-
ations in material properties at the stub weld are not considered). Temperature
dependent material parameters are required in order to calculate transient
thermal stresses within the header models. Values for Young’s modulus (E) and
the thermal expansion coefficient (α) have been determined from monotonic
tests performed on an Instron 8862 thermomechanical fatigue machine (operat-
ing under isothermal conditions) utilising radio frequency induction heating
and using a TA instruments Q400 thermomechanical analyser, respectively (see
table 1). Tested temperature ranges were chosen to represent the typical bounds
of operation for thermal power plant components. The remainder of material
constants have been taken from the work of Yaghi et al.[38] (table 2). A neg-
ligible dependency is assumed in density (ρ) and Poisson’s ratio (ν) over the
tested temperature range. As such values for these quantities are taken to be
7.76x10−6kg/mm3 and 0.3, respectively[38].
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(a)

(b)
(c)

Figure 6: Finite element analysis (FEA) models, showing (a) the tetrahedral
mesh, exploiting the plane of symmetry through the stub penetration, (b) bound-
ary conditions in the thermal analyses and (c) boundary conditions in the mech-
anical analyses.

Table 1: A summary of the temperature dependent material parameters (rep-
resentative of a P91 chrome steel), determined through experimental analysis,
used in the FEA modelling.
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Table 2: A summary of the temperature dependent material constants (repres-
entative of a P91 chrome steel), taken from the work of Yaghi et al.[38], used in
the FEA modelling.
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Table 3: A summary of the header dimensions used to generate FEA models for
training and validation of the neural network.

Header
Model Label φSHELL (mm) tSHELL (mm) φSTUB (mm) tSTUB (mm)

A1 322.22 56.15 50 7
C1 435.19 41.54 50 7
E1 357.41 31.15 50 7
F1 183.33 31.15 50 7
G1 522.22 25 50 7
H1 357.41 25 50 7
D1 300 41.54 50 7
D2 300 41.54 38 6
D3 300 41.54 50 8
D4 300 41.54 70 16
D5 300 41.54 51 5
D6 300 41.54 76 8
B1 522.22 45.38 50 7
B2 522.22 45.38 38 6
B3 522.22 45.38 50 8
B4 522.22 45.38 70 16
B5 522.22 45.38 51 5
B6 522.22 45.38 76 8
I1 183.33 25 50 7
I2 183.33 25 38 6
I3 183.33 25 50 8
I4 183.33 25 70 16
I5 183.33 25 51 5
I6 183.33 25 76 8
A7 322.22 56.15 65 12
B7 522.22 45.38 65 12
C7 435.19 41.54 65 12
D7 300 41.54 65 12
E7 357.41 31.15 65 12
F7 183.33 31.15 65 12
G7 522.22 25 65 12
H7 357.41 25 65 12
I7 183.33 25 65 12
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Table 4: A summary of the header dimensions used to generate FEA models for
example application/extrapolation of the neural network.

Header
Model Label φSHELL (mm) tSHELL (mm) φSTUB (mm) tSTUB (mm)

T1 436.99 47.08 42.89 6.44
T2 210.35 37.66 73.78 14.19
T3 282.47 54.44 39.48 9.91
T4 324.5 45.36 64.81 15.14
T5 420.48 28.22 67.1 13.47
T6 260.97 49.32 64.64 7.37
T7 454.1 46.73 53 6.55
T8 441.16 28.36 71.95 6.24
T9 298.81 31.43 55.85 7.47

T10 261.62 54.08 61.39 7.44

4. Results

4.1. Header models
Crack initiation and growth at the inner bore of a header penetration or at

the ligament region between penetrations is a concern when operating thick
walled components and has been observed in industry[39]. The behaviour of
the region around the stub penetration is therefore of far more interest (both
industrially and analytically) due to the localised thermal stress concentrations.
Behaviour remote from the stub penetration is largely uniform and uncoupled
thermoelastic analysis can be conducted analytically. With these considerations
in mind, the neural network presented here looks to model the region of the
header in the vicinity of the stub penetration (see figure 7).

For each header geometry, a random selection of 350 spatial coordinates
were selected from the sampling region (see figure 8). Readers should note that
figure 8 is presented here to illustrate general trends in the critical parameters
between simulation cases. Transient thermal stress profiles were extracted from
FEA output databases and critical parameters determined (see figure 8). It is
these results that are used to train and validate the developed neural network.
Spatial distributions of the critical parameters (for all header geometries given
in table 3) are illustrated in figure 9 by plotting tσ̂, σ̂, and tCH (figure 9 (a), (b),
and (c) respectively) against the normalised coordinates r f , θ f , and z f (given in
equations (18) to (20)). These plots demonstrate the wide range thermal stress
responses recorded and verify that, while there are some general trends visible,
critical parameter values are dependent on header geometry and analysis point
coordinates.
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Figure 7: Illustration of the sample region in the vicinity of the stub penetration
(highlighted in red).

(a) (b)

(c)

Figure 8: Critical parameters determined from FEA results (note alternating
colours are used to distinguish different header geometries only), showing (a)
tσ̂, (b) σ̂ , and (c) tCH .
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(a) (b)

(c)

Figure 9: Variation of critical parameters ((a) tσ̂, (b) σ̂ , and (c) tCH) with normal-
ised coordinates r f , θ f , and z f (determined from FEA results).

4.2. Neural network results
The process of training a neural network is an attempt to optimise the weight

and bias values associated with each neuron in the network. The inherent
danger in using approximate functions to describe a behaviour is that, given
enough complexity, any response can be estimated without actual trends being
recognised. In order to guard against this “over fitting”, validation cases are
often considered. The performance of the network is therefore judged not
only against results used to train the network, but also against results that the
network has never “seen”. Header models used for training and validation were
determined from the total set randomly (the models used for each purpose may
be determined from figures 10 to 12, noting validation models are highlighted).

The predictive capability of the developed network is generally very good.
Figures 10 to 12 illustrate this for the tσ̂, σ̂, and tCH critical parameters, respect-
ively. Sub-figures (a) and (c) compare the absolute critical parameter values
determined from FEA (true) and the neural network method (predicted, desig-
nated neural network) for the training and validation processes, respectively. In
the interest of clarity, sparse and randomly sampled versions of sub-figures (a)
and (c) are presented in sub-figures (b) and (d), respectively. Entire data sets
are reported in sub-figures (a) and (c) in order to illustrate general trends in
the data, with discernible example observed/predicted data pairs presented
in sub-figures (b) and (d). Sub-figures (e) and (f) demonstrate the frequency of
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errors recorded between FEA (true) values for the critical parameters and the
associated neural network predictions. For training cases, at least 70% of the
results of have an error of 5% or less, with approximately 90% of cases have
errors of 10% or less. Comparatively for the validation cases, at least 55% of
the results of have an error of 5% or less, with approximately 80% of cases have
errors of 10% or less.
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Neural network performance for prediction of tσ̂, showing (a) the
prediction of absolute values for the training cases, (b) a random sample of
observed and predicted values for the training set, (c) the prediction of absolute
values for the validation cases, (d) a random sample of observed and predicted
values for the validation set, (e) error frequency distributions for the training
cases, and (f) error frequency distributions for the validation cases.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Neural network performance for prediction of σ̂, showing (a) the
prediction of absolute values for the training cases, (b) a random sample of
observed and predicted values for the training set, (c) the prediction of absolute
values for the validation cases, (d) a random sample of observed and predicted
values for the validation set, (e) error frequency distributions for the training
cases, and (f) error frequency distributions for the validation cases.
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Neural network performance for prediction of tCH , showing (a) the
prediction of absolute values for the training cases, (b) a random sample of
observed and predicted values for the training set, (c) the prediction of absolute
values for the validation cases, (d) a random sample of observed and predicted
values for the validation set, (e) error frequency distributions for the training
cases, and (f) error frequency distributions for the validation cases.
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4.3. Stress profile reconstruction and example applications
To demonstrate the application of the developed network beyond the cases

used for training and validation, ten additional header models were created
(as shown in table 4, hereafter refereed to as “test” cases). Reconstructed stress
profiles for these test cases are considered here (examples may be seen in
figure 13). It was mentioned previously that broad relationships between critical
parameter values may be observed (see section 3.2). These relationships provide
a concise summary of the critical parameters and examples are provided for
cases T4, T9, and T10 in figures 14 to 16, respectively.

Cracks initiating at the internal bore surface (see figure 7) of the stub pen-
etration is a significant concern for thick walled components such as headers.
Thermal stresses tend to be highest at the inner shell location of this surface (for
monotonic thermal loads). In order to demonstrate the predictive capability of
the developed network for a typical application, thermal stress contour plots
are compared on this surface for three example headers from the test set (see
figure 17). Results are taken from unit temperature step analyses using both the
“true” FEA and “approximate” neural network approaches. Good predictions
for these cases suggest that good estimations will be achieved once Green’s
functions are integrated for arbitrary thermal loads. Time instances are chosen
such that peak thermal stresses are the highest observed in the analyses.
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Figure 13: Example reconstructed stress profiles.
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Figure 14: The relationships between critical parameters for test case T4, show-
ing true (FEA) and predicted (neural network - NN) results.
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Figure 15: The relationships between critical parameters for test case T9, show-
ing true (FEA) and predicted (neural network - NN) results.
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Figure 16: The relationships between critical parameters for test case T10, show-
ing true (FEA) and predicted (neural network - NN) results.
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(a)

(b)

(c)

Figure 17: Predicted stress contour plots (using the “true” FEA and “approx-
imate” neural network approaches) on the internal bore surfaces for header
models (a) T4, (b) T9, and (c) T10.

5. Discussion

The performance of the neural network approach will be quantified in the fol-
lowing section. Several parameters are determined for the training/validation
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and test model sets in figures 18 and 19, respectively. Calculated parameters
are mean coefficients of determination R2 (averaged over all reconstructed
unit temperature step stress profile, shown in sub-figure (a))[40], mean peak
stress difference (sub-figure (b)), mean error (sub-figure (c)), and the standard
deviation of R2 (sub-figure (d)). Mean error values are determined by compar-
ing integrals of the stress functions for the true (FEA) and predicted (neural
network) methods.

Generally, training, validation and test results return similar R2, stress dif-
ference and error values, suggesting that over fitting has been avoided in the
network. R2 values are typically high (over 0.92) with small standard deviations
(≈ 0.1). Mean peak stress differences for the reconstructed stress profiles are also
commonly small at 0.14MPa compared to maximum thermal stresses which
are usually greater than 2MPa. Mean errors confirm this observation, being
typically less than 10%. Comparatively large errors (≈ 18%) and low R2 (≈ 0.8)
are noted in some cases, namely H1 (training set), G7 (validation set), and T3
and T4 (test set). Figure 20 illustrates the distribution of the modelled header
geometries using the ratios φSTUB/tSTUB and φSHELL/tSHELL and highlights a
particular model’s function in the network development (training, validation or
testing). It can be seen from this plot that the four models mentioned previously
lie on the edges of the simulated range. Future work should therefore look to
extend results for φSHELL/tSHELL > 14. For a large section of the industrially rel-
evant dimensions however, the developed neural network can be demonstrated
to provide excellent estimates of unit thermal stress profiles.

The accuracy of the neural network method may be further investigated
using the results given in table 5, wherein mean squared errors (MSE, see equa-
tion (23)) are determined for the training, validation, test data sets. It is noted
here that magnitudes of MSE are compatible to the average critical parameter
values for tσ̂ and tCH . Given that good levels of agreement were suggested by
the alternative metrics, this result suggest that several significant errors exist in
the predictive data set. Future work will look to minimise these, however the
general predictive ability of the neural network method reported in the results
section should still be noted. It is possible that future implementations of this
method will implement constraints (such as continuity) on the predicted stress
field in order to identify outliers. A simple non-linear regression model is also
presented here in order to establish what level of predictive capability can be
achieved with a minimal amount of effort. The regression model takes the form
of equation (24), where y is a predicted parameter (tσ̂, σ̂, or tCH), xi is one of
seven input parameters (φSHELL, tSHELL, φSTUB, tSTUB, r f , θ f , and z f ), and bk is
a set of 15 fitting parameters (determined against the training data set using
the MATLAB function f itnlm, resulting R2 values are reported for comparison).
MSE values are orders of magnitude greater for all critical parameters in table 5.
While correlations of course exist between the input and output parameters,
fining an expression of similar form to equation (24) is likely to be a laborious
task. The advantage the neural network method may be further examined
by considering the level of correlation between the input parameters and the
outputs. Spearman’s rank correlation coefficient (see equation (25), where rs is
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the correlation coefficient, d is a difference between parameter pairs, and n is
the number of parameter pairs) is applicable for non-normal distributions and
can indicate the existence of non-linear correlations. Correlation parameters
and p-values were determined for the entire population of FEA results using
the MATLAB function corr and are given in table 6. Almost all correlations are
statistically significant (p-values are typically less than a standard 0.05 signific-
ance level), however many of the correlations are evaluated as being weak (i.e.
a small rs values are observed).

y ≈ b0 +
7

∑
i=1

b2i−1xb2i
i (24)

rs = 1− 6Σd2

n3 − n
(25)

Table 5: Mean square error (MSE) evaluations for the developed neural network
method and a simple non-linear regression model.

Data Set NN-MSE N-L Regression - MSE N-L Regression - R2

Training tσ̂ 2.88 891.03 0.23
σ̂ 7.52×10−4 4.70×10−2 0.62

tCH 415.50 5.81×103 0.89
Validation tσ̂ 122.65 1.14×103 -

σ̂ 1.80×10−3 5.01×10−2 -
tCH 767.03 5.42×103 -

Test tσ̂ 322.23 1.67×103 -
σ̂ 1.01×10−2 6.65×10−2 -

tCH 3.03×103 9.48×103 -

Table 6: Spearman’s rank correlation coefficient evaluations and associated
p-values, showing the significance of correlations found between the “input”
parameters (from the neural network’s perspective, namely φSHELL, tSHELL,
φSTUB, tSTUB, r f , θ f , and z f ) and the “output” parameters (tσ̂, σ̂, and tCH)..

tσ̂ σ̂ tCH
rs/p-value rs/p-value rs/p-value

φSHELL 0.16/5.38×10−88 0.13/1.38×10−58 0.24/2.75×10−194

tSHELL 0.50/0.00 0.26/2.43×10−234 0.88/0.00
φSTUB -0.07/1.72×10−18 -0.03/1.45×10−4 -0.13/2.81×10−56

tSTUB -0.02/4.26×10−2 -0.11/3.70×10−45 0.01/7.15×10−1

r f 0.22/2.99×10−166 -0.21/5.49×10−150 0.08/8.42×10−22

θ f -0.49/0.00 -0.28/5.78×10−270 -0.24/2.82×10−199

z f 0.15/1.14×10−78 -0.54/0.00 0.03/8.15×10−4
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(a) (b)

(c) (d)

Figure 18: Comparative performance of the developed neural network for the
training and validation header sets (validation cases are highlighted), showing
(a) mean coefficients of determination, (b) mean peak stress differences, (c) mean
error, and (d) the standard deviation of the coefficient of determination.
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(a) (b)

(c) (d)

Figure 19: Comparative performance of the developed neural network for the
test header set, showing (a) mean coefficients of determination, (b) mean peak
stress differences, (c) mean error, and (d) the standard deviation of the coefficient
of determination.

Figure 20: The distribution of modelled header geometries, expressed through
the ratios φSTUB/tSTUB and φSHELL/tSHELL.

A good level of agreement is observed between stress contour plots gener-
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ated through uncoupled thermal stress FEA analyses and using the approximate
neural network approach for a wide range of header geometries (see figure 17
for example predictive contour plots). The predictive capability of the network
developed here may be demonstrated by considering statistical measures of the
training/validation/test data sets and observing how these differ for the FEA
(“true”) and neural network (predicted) results. Histogram distributions are
presented for the critical parameters tσ̂, σ̂, and tCH in figures 21 to 23, respect-
ively. In each case the entire population (all available data), training, validation,
and test data sets are considered in order to establish any similarities between
the data sets. Weibull probability density functions (PDFs), expressible for
positive x values by equation (26), have also been fitted to each distribution.
PDF parameters, namely the scale factor λ and the shape factor k, are reported
in tables 7 to 9 for tσ̂, σ̂, and tCH , respectively. While the Weibull distribu-
tion may not be appropriate for the description of tCH (see figure 23) as the
distribution is clearly not uni-modal, it is applied nether the less so that com-
parisons between the four data sets may be made. In all cases, distributions
observed in the FEA data sets are usually accurately reproduced in the neural
network equivalents, further suggesting that the large MSE values reported
in table 5 are due to outliers rather than some systematic error in the neural
network analysis method. Of particular interest is the differences between the
test data set distributions and the training/validation sets. Such observations
support the suggestion made previously that larger errors in the test data set
are due to the consideration of a different region of parameter space. Future
work should look to perform such distribution comparisons prior to assigning
training/validation/test identities.

f (x; λ, k) =
k
λ

( x
λ

)k−1
e−(x/λ)k

(26)
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Figure 21: Probability density functions calculated for distributions of tσ̂, show-
ing results for the full population and the training, validation, and test subsets.
FEA (“true”) and neural network predicted results are presented.

Figure 22: Probability density functions calculated for distributions of σ̂, show-
ing results for the full population and the training, validation, and test subsets.
FEA (“true”) and neural network predicted results are presented.
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Figure 23: Probability density functions calculated for distributions of tCH ,
showing results for the full population and the training, validation, and test
subsets. FEA (“true”) and neural network predicted results are presented.

Table 7: Weibull distribution parameters calculated for the tσ̂ data sets, see
figure 21.

Data Set FEA NN
λ k λ k

Population 57.65 1.52 57.76 1.50
Training 54.76 1.51 54.65 1.51

Validation 56.49 1.52 56.98 1.49
Test 66.35 1.60 66.88 1.54

Table 8: Weibull distribution parameters calculated for the σ̂ data sets, see
figure 22.

Data Set FEA NN
λ k λ k

Population 0.74 1.83 0.74 1.85
Training 0.73 1.82 0.73 1.83

Validation 0.70 1.81 0.71 1.84
Test 0.79 1.90 0.79 1.92
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Table 9: Weibull distribution parameters calculated for the tCH data sets, see
figure 23.

Data Set FEA NN
λ k λ k

Population 731.12 2.88 728.49 2.94
Training 691.61 2.82 691.45 2.84

Validation 701.29 3.69 704.84 3.60
Test 848.98 3.18 836.81 3.34

The developed technique is of interest to industry and will be used to inform
the future operation of simulated components. Advancements may be made
in several areas however. Typically, fatigue analysis will depend upon study
of the complete stress tensor. Only von Mises stresses are presented in the
present work by way of example, however other stress components (steam
chests, for example) typically have similar thermal stress profiles to the ones il-
lustrated, suggesting that the method may be easily extended to predict all stress
components. In order to aid in reader comprehension, an example itemised
implementation of the analysis method alluded to here is presented:

• Historic data (steam temperatures and pressures) is extracted from power
plant records for the analysis component.

• Historic data is sampled to create a discrete time series.

• Component geometry data (pressure vessel diameters and wall thick-
nesses, for example) are used as inputs to generate, from a trained neural
network, a set of Green’s functions for that component. Separate Green’s
functions are generated for different spacial positions in the component
(the frequency of which depending on the level of detail required in the
analyses).

• For each spatial position in the analysis component, unit thermal stress
responses (given by the Green’s functions) are scaled for each temperature
increment in the discrete time series and summed, giving an approxima-
tion of the transient thermal stress response at that spatial position.

• Transient thermal stress responses are superimposed on stress fields re-
lated to internal pressure (which may be easily approximated) and correc-
ted using, say, Neuber’s rule.

• Cycle counting methods are implemented over the time series in order to
determine the total number of closed loading cycles in the transient stress
history and remnant fatigue life is estimated.

To limit the complexity of the analysis, a simple single stud penetration
header model has been assumed. This is not truly representative of real world
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components which will typically contain several penetrations on a particular
“row”, however it does provided useful first estimates of the stress field (which
may be all that is required). The effects of multiple stub penetrations and the
angles between these penetrations will be investigated in the future. Several
developments could also be made in the stress profile reconstruction method. At
present, single values are chosen for the parameters f1 and f2 (used to estimate
intermediate stress values based on critical parameter values). These could
however be functions of the estimated critical parameters, potentially provid-
ing more representative intermediate points prior to smoothing. Alternatively,
conditions for smooth and continuous stress/temperature fields may be trans-
lated into the predicted surfaces through appropriate constraints. In this way,
perturbations due to errors in the approximate neural network method may be
minimised. The general methodology applied in the present work may also be a
extended to other components where geometry may be simplified/generalised.

6. Conclusions

Determining transient thermal stress magnitudes is important for the safe
operation of thick walled components due to the potentially life limiting effects
of thermal fatigue. Estimating these stresses can be expensive however due
to the wide variety of thermal and mechanical loads that may be applied to a
component. While mechanical loads can be accounted for with relative ease
for linear elastic cases by scaling results from some reference case, thermal
loads (as a result of their transient nature) typically require a time dependent
temperature field to be found which is then used to estimate thermal expansion
and the generation of internal forces (in uncoupled simulations). The Green’s
function method allows reference unit temperature step stress solutions to be
integrated over time at a particular analysis point in a structure to estimate
thermal stress distributions. This removes the need for bespoke analyses for a
particular structure geometry, however Green’s functions will be necessarily
dependent upon the structure’s geometry and the position of the analysis point.
The present work generalises the effects of geometry and analysis point position
through the use of a neural network. This allows reference Green’s functions to
be generated from geometry data alone (assuming a reference material) for thick
walled header components that are typically employed in the power industry.
Multiple component geometries have been tested in the present work, including
several that were not originally considered in the development/training of
the network (thus providing protection against over fitting). Transient stress
profiles typically have coefficients of determination greater than 0.92 and error
less than 10%. Future work should look to extend the range of geometries
suitable for analysis using the neural network method by increasing the data
available for φSHELL/tSHELL > 14. Of particular note in the present work is the
identification three “critical parameters” which may be used to construct an
approximation of the thermal stress Green’s function. This greatly simplifies the
parametrisation of the Green’s function and enables techniques such as neural
network approximation to be employed effectively.
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