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Abstract: Frost heave can have a very destructive impact on infrastructure in permafrost regions. The complexity of nanoscale ice-mineral 

interactions and their relation to the macroscale frost heave phenomenon make ice lens growth modelling an interesting but challenging 

task. Taking into account the limiting assumption of the constant segregation temperature in the segregation potential model, we propose 

here a new quasi-static model for ice lens growth under a time varying temperature based on the water activity  criterion. In this model, the 

conventional pressure potential gradient in Darcy’s law is replaced by a water activity based chemical potential gradient for the calculation 

of water flow velocity, which provides a better prediction of ice lens growth and is useful to describe the ice nucleation and the state of 

water at a specific temperature. Moreover, based on the analysis of the new developed model, a mathematical description of the segregation 

potential is provided here. The modified Kozeny-Carman equation is applied to determine the water permeability of a given soil. In our new 

model, the effects of the equivalent water pressure are taken into account to modify the freezing characteristic function. Hence, the 

temperature- and equivalent water pressure- dependent hydraulic permeability in the frozen fringe is mathematically determined and 

improved. By coupling the quasi-static model with the modified hydraulic permeability function, the numerical calculation of ice lens  

growth is validated based on the experimental data of the temperature of the ice lens measured in the laboratory. The prediction of ice lens  

growth using the proposed method contributes and facilitates the simplified calculation of frost heave in the field and/or laboratory 

scenarios at a quasi-static state, and thus enables a better understanding of phase change and fluid flow in partially frozen granular media 

(soils). 

Keywords: Water activity; Quasi-static process; Kozeny-Carman equation; Phase change; Nucleation. 

 

1 Introduction 

Frost heave in cold regions causes significant damage to infrastructure such as railways, pipelines, and buildings 

(Palmer and Williams, 2003; Zhang et al., 2014; Li et al., 2017).This phenomenon, which has been described not only 

on Earth, but also on Mars (Sizemore et al., 2015), is mainly caused by the initiation and growth of ice lenses during 

freezing. The underlying phys icochemical mechanisms involve molecular interactions at interfacial contacts, 

fundamental in our understanding of a wide range of processes of crystallization, nucleation, phase changes, and 

mineral replacement. When a freezing front propagates in fine-grained granular media, the unfrozen liquid films are 

absorbed onto particle surfaces and remain in their liquid state in equilibrium at temperatures that are below the 

freezing temperature (Dash et al., 1995). Premelting dynamics reveals that long-range intermolecular forces will drive 
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the external water to the freezing front (Rempel et al., 2004), which feeds the accumulation of ice particles and results 

in the formation of a horizontal soil-free ice lens and frost heave (Rempel, 2007; Sheng et al., 2013; Lai et al., 2014; 

Zhou and Zhou, 2012; Ji et al., 2018). Mass transfer via water migration is a key mechanism during frost heaving 

(Konrad and Morgenstern, 1982; Woster and Wettlaufer; 1999; Zhou and Li, 2012; Ji et al., 2017). Accurate prediction 

of ice lens growth is critical in the stability assessment of construction engineering in cold regions since frost heave 

mainly results from the growth of an ice lens associated with water flow in the frozen fringe. 

In recent decades, research on the coupled thermal-hydro-mechanical (THM) theory has gained increasing 

attention in the development of frost heave models. Depending on the application, frost heave models have been 

established with differing types. Generally, mathematical models for the freezing process can be classified into: (i) the 

mechanistic frost heave model (Gilpin, 1980; O’Neil and Miller, 1985; Nixon, 1991; Rempel et al., 2004; Michalowski 

and Zhu, 2006; Lai et al., 2017), (ii) the physical field model (Harlan, 1973; Fremond and Mikkola, 1991; Zhang et al., 

2016), and (iii) the growth model of a single ice lens (Konrad and Morgenstern, 1980, 1981). For the theoretical models 

of the frozen soil, some governing equations are necessarily solved, either in coupled or uncoupled ways, and some 

material parameters must be included, depending upon the complexity and the accuracy of the model itself. Moreover, 

the physical field models focus on the prediction of the moisture field, mechanical field, and temperature field. The 

mechanistic frost heave models explain the mechanism of frost heave and describe the evolvement of the ice lenses in 

freezing soil. 

The segregation potential model, which was first proposed by Konrad and Morgenstern (1980), is a typical growth 

model of a single ice lens. The simplified model is established based on frost heave characteristics near thermal steady 

state. The segregation potential model indicates that water flux is proportional to thermal gradient in the frozen fringe. 

Furthermore, the proportionality is defined as the segregation potential.  Previous studies have demonstrated the 

applicability of the model to predict frost heave in the field and under laboratory conditions (Nixon, 1982; Konrad and 

Shen, 1996; Tiedje and Guo, 2012). 

In most laboratory and field scenarios, external water continuously migrates into the frozen fringe after the active 

zone (Fig. 1) reaches a thermal steady state, and significant growth of the ice lens can then be observed. Hence, upon 

the evaluation of the limitation of the segregation potential model in this paper, we develop a water activity based 

quasi-static model for ice lens growth, and assume liquid f low is driven by a chemical potential gradient. The modified 

Kozeny-Carman equation is applied to determine the water permeability of a given soil. Additionally, the effect of 

matrix particles on modifying the phase behavior of pore water is taken into account. In fine-grained granular media, 

the high surface curvature induced by small pore sizes and particles causes decreases in the phase change temperature 
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(Scherer, 1999). Moreover, in our new model, the equivalent water pressure is taken into account to determine the 

unfrozen water content. Subsequently, the temperature- and equivalent water pressure- dependent hydraulic 

permeability in the frozen fringe is then mathematically determined and improved. By coupling the quasi-static model 

with the modified hydraulic permeability function, a quantitative evaluation of frost heave is performed by examining 

the process of ice lens growth using experimental data of the temperature of an ice lens measured in the laboratory. The 

observed consistency between the numerical and experimental results validates the new model. 

2 The segregation potential model 

The assumptions made in the segregation potential model (Konrad and Morgenstern, 1980) are as follows: (i) the 

thermal permeability is a constant in the frozen fringe, the difference of thermal permeability in the frozen fringe and 

unfrozen zone is negligible s ince the segregation temperature is close to the freezing temperature, Akagawa (1988) has 

proven the validity of this assumption; (ii) after the onset of formation of the warmest ice lens, i.e. near thermal steady 

state, the particular segregation temperature Ts, and the overall hydraulic permeability k̅f are both a constant. 

The analysis above shows, that the growth of warmest ice lens and the water intake flux V, is proportional to the 

thermal gradient gradT in the frozen fringe. This proportionality is defined as the segregation potential SP, and the 

velocity of water flow can be written as follows: 

g radV S P T                                         (1) 

The segregation potential theory indicates that water flow is continuous across the frozen fringe at steady-state 

condition. However, as discussed more below, the segregation temperature is not a constant, it varies with time during 

freezing, which will further affect the segregation potential and water flow velocity.  Hence, the steady-state based 

solution for the growth of ice lens limits the application of this model. Hence, further research is required to obtain a 

better understanding of the growth of an ice lens during unsteady-state freezing. 

3 A water activity based quasi-static model for the growth of ice lens 

3.1 Governing equations describing the growth of a single ice lens 

After the appearance of the warmest ice lens, the soil column is distinguished into two zones near the warm end of 

the ice lens (Fig. 1), i.e. the passive zone (x>xs) and the active zone (x<xs). The zone for the frozen fringe is between the 

warm side of the active ice lens and the freezing front (x=xf). 
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Fig. 1. Schematic of soil column after the appearance of the warmest ice lens. 

Tc, Tw , Ts , and  Tf  shown in Fig. 1 represent the cold end temperature, the warm end temperature, the 

temperature of the ice lens, and the freezing temperature respectively. The active zone experiences a coupled process of 

heat and mass transfer during freezing. The active zone reaches a thermal steady state rapidly due to the slow variation 

of temperature of the ice lens. Therefore, we assume that the active zone experiences a quasi-static process during 

freezing. 

The heat transport equation in the active zone can be written as follows: 

( )
( ) ( )

w w x

c T
T c v T

t


 


    


                                 (2) 

where λ, vx, and cρ̅  are thermal permeability, fluid flow velocity in x-direction, and volumetric specific heat capacity; 

cw, and ρ
w

 stand for bulk specific heat capacity and density of water respectively. 

The thermal convection at the left-hand side of Eq. (2) is very small, and it is generally negligible (Nixon, 1991). 

Based on the assumption of a quasi-static state for the active zone, the term on the right-hand side is negligible. Thus, 

the heat transport equation can be simplified: 

( ) 0T                                            (3) 

The boundary conditions for the active zone can be written as: 

0 :

: ( )

w

s s

x T T

x x T T t

 


 

                                       (4) 

From Eq. (3) and (4), it can be found that the temperature field in the active zone is entirely determined by the 

temperature of the ice lens Ts. In addition, the frozen fringe thickness a, is also determined by the temperature of the 

ice lens since the freezing temperature can be considered as a constant value. 

Koop et al. (2000) suggested that the kinetic process of ice nucleation is dominated entirely by water activity and 
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reported the ‘water activity criterion’ for homogeneous ice nucleation. Subsequently, the heterogeneous ice freezing 

experiments were conducted by Zobrist et al. (2008), and the results strongly suggest that the water activity criterion is 

also applicable to heterogeneous ice nucleation. Wu et al. (2015) regarded the water activity aw as an inducing factor 

for ice-water phase change, which is a function of temperature: 

1 p p
H ( ) ln ( / )1 1

ln ( )( )
m a a a

w

a

T c T c T T
a

R T T R

   
                              (5) 

where Ta represents the freezing temperature of pure bulk water, i.e. Ta=273.15K, ΔmH1 (Ta) is the molar latent heat 

at the freezing temperature, and Δcp stands for the difference in specific heat capacity between water and ice: 

p p ,liq p ,s o lid
c c c                                         (6) 

It can be seen from Eq. (5) that the water activity of pure bulk water equals 1 (aw=1) when the temperature T=Ta, 

at which ice and water coexist in equilibrium. However, under the influence of capillar ity, the water activity in pore 

water is different from that in pure bulk water. 

The surface tension at internal surfaces of the matrix increases when the ice is generated. With decreasing pore 

radius, the freezing temperature of condensed water is increasingly depressed. Accordingly, the freezing point for a 

crystal formed in porous media differs from that of a large flat crystal (Scherer, 1999): 

*
σ

iw iw

f

fv

T
S


 


                                        (7) 

where σiw represents the energy of the ice-water interface, and σiw is estimated to be 0.04 J/m2; and ∆Sfv is the 

entropy of fusion per unit volume of crystal, ∆Sfv=1.2 J/(cm3K). Ice penetrates into pores of the fine-grained granular  

media when the curvature of the ice-water interface κiw is greater than the 2/rp, where rp is the characteristic radius 

of the pore throats between pores. In this paper, we consider that the curvature of the ice-water interface κiw, is close to 

the curvature of the soil grain surface since the liquid film around the soil grain is thin. Thus the interval average is 

applied to approximately determine the curvature: 

0

( )d /
iw

m r r r


                                        (8) 

where m(r) is the mass fraction of the soil grain with the radius in (r, r+dr). This indicates that smaller particles and 

pore sizes result in high curvature and further lead to depression of the phase change temperature. 

Consequently, the phase transition temperature Tf can be expressed by considering the effect of pore structure on 

the freezing point: 

*
+

f a f
T T T                                           (9) 
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It can be found from Eq. (9) that the phase transition temperature is affected by matrix particles.  Moreover, with 

considering the capillarity effect, when ice and water coexist in equilibrium in granular media, aw<1, Tf<Ta. 

Based on the definition of the water activity criterion, the chemical potential of the water under a given 

temperature can be determined as follows: 

, 0
ln

w w w
R T a                                       (10) 

where μ
w,0

 represents the chemical potential of pure water at the temperature T, and R stands for the universal gas 

constant. 

The liquid motion is driven by a thermal gradient which results in a chemical potential gradient, driving water 

from the place with high chemical potential to the place with low chemical potential (from high temperature to low 

temperature). Wu et al. (2015) deduced and defined a new concept for water flow velocity in unit volume in granular  

media based on the thermodynamic theory: 

,

1

w w

m w

V n S M
V

                                       (11) 

where n is porosity, Sw stands for the saturation degree of water, M represents the migration rate under unit driving 

force, and Vm, w is the molar volume of water. 

In the active zone, the water flow can still be considered as Darcy flow dominated by equivalent water pressure 

(negative pressure), and the pressure gradient determined water flow velocity can be presented by (Zhou and Zhou, 

2012; Ji et al., 2018): 

f
V k P                                           (12) 

Moreover, the driving forces induced by the pressure gradient ∇P and chemical potential gradient ∇μ
w

/Vm, w are 

equal for the unit volume water. Therefore, the coefficient nSwM in Eq. (11) and the coefficient kf in Eq. (12) are 

equal. Importantly, it should be noted that an upward flow occurs only when the driving force in liquid water exceeds 

the gravity. Consequently, considering the effect of gravity, the average water flow velocity in granular media can be 

written as: 

,

1
( )

f w w

m w

V k g x
V

                                       (13) 

3.2 Estimation of hydraulic permeability 

3.2.1 Hydraulic permeability for a given soil 

The hydraulic permeability is a critical parameter governing water flux and fluid flow in the active zone, and a key 
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aspect to predict ice lens growth in freezing soil. Hydraulic permeability appears to vary in different soil types due to 

the different specific area, grain size distribution, particle shape etc. A good estimation of hydraulic permeability in 

different soil types is necessary for numerical simulation of frost heave, and numerous researchers have reported 

different expressions for hydraulic permeability in soils (Kozeny, 1927; Carman, 1937; Tarnawski and Wagner, 1996; 

Roque and Didier, 2006; Sante et al., 2015). The most accepted equation is the classical Kozeny-Carman relation 

(Kozeny, 1927; Carman, 1937), which is known for its accurate prediction to describe the hydraulic permeability in 

coarse-grained granular media such as sands: 

3

1

e
k C

e



                                         (14) 

where C stands for a coefficient of soil fineness, type, and shape; e is the void ratio of soil. 

In order to overcome the limitation of Eq. (14) for application to f ine-grained soil, Ren et al. (2016) reported a 

modified Kozeny-Carman equation with consideration of the Poiseuille’s law and the concept of effective void ratio. 

This latter method describes more accurately the observed hydraulic permeability in a wide range of soils, from 

fine-grained to coarse-grained soil. The mathematical description of the modified Kozeny-Carman is expressed by Eq. 

(15), which establishes the relationship between k and specific surface area S. In the special case where m=0, the 

equation transforms to Kozeny-Carman relation in Eq. (14). The best fitted parameters m for sand, silt and clay are 

0±0.1, 1.0±0.2 and 1.5±0.5. 

3 3

5 4
1

1 13 3(1 ) [(1 ) ]

m

m
m m

e
k C

e e e




 



  

                              (15) 

4 1 .4 5
2 .9 4 1 0C S

 
                                     (16) 

Based on the modeling of Eq. (15), it can be found that the hydraulic permeability decreases as specific surface 

area increases (Fig. 2). Soil particles with the smaller specific surface area are more favorable for water to flow. In 

addition, hydraulic permeability is largest in sand, followed by silt and then clay, considering the same specific surface 

area. 
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Fig. 2. The relationship between hydraulic permeability and specific surface area (void ratio=0.4). 

In order to completely describe the hydraulic permeability for a given soil, the mathematics expression of specific 

surface area should be provided. The specific surface area is related to the shape and the size of soil grains,  Sun (2014) 

proposed a relationship between specific surface area S and geometric mean diameter dg (Tarnawski and Wagner, 

1996): 

0 .9 0 1
1 .0 7

g
S d


                                       (17) 

e x p ( ln ln ln )
g s a s a s i s i c l c l

d m d m d m d                              (18) 

where msa, msi, and m𝑐𝑙  are sand, silt, and clay mass fractions, respectively; dsa, dsi, and dcl  are the particle size 

limits separating sand, silt, and clay respectively. 

The specific surface area is small in soils where the mass fraction of clay in the soil is less than 0.25 (Fig. 3). 

However, the specific surface area increases signif icantly with increasing mass fraction of clay in the soil, and thus it 

decreases the hydraulic permeability. Similarly, the specific surface area of the soil increases as silt increases when 

similar mass fractions of clay are considered. 
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Fig. 3. The specific surface area of different soil types. 

The soil in nature can be regarded as a mixture of sand, silt, and clay. By combining the different hydraulic 

permeability of different soil types with the same specific surface area, the hydraulic permeability can thus be 

determined for a given soil. 

3.2.2 Unfrozen water content influenced hydraulic permeability in the frozen fringe 

Eqs. (15) to (18) constitute the governing equations for the calculation of the hydraulic permeability of a given soil.  

However, the permeability in the frozen fringe is completely different from that in the unfrozen soil. Loch and Miller  

(1975) estimated that the frozen fringe thickness is about 4~4.5 mm, whereas Konrad and Morgenstern (1981) reported 

the measurements of about 1.5~2.7 mm. Unfrozen pore water and ice coexist in the frozen fringe (Fig. 4). Due to the 

existence of pore ice, the interconnected unfrozen pore water provides the fluid conduits for the water flow from the 

unfrozen zone to the warmest ice lens. Importantly, the decrease of unfrozen pore water (i.e. increase of pore ice) 

decreases the seepage pathways, blocking the migration of water and affecting the hydraulic permeability in the frozen 

fringe. 

F
r
o

z
e

n
 f

r
in

g
e

F
r
o

z
e

n

  
s

o
il

U
n

f
r
o

z
e

n
 s

o
il

ic e

 p o re

w a te r

s o il

 

Fig. 4. Schematic diagram of the frozen fringe. 

As a consequence, the hydraulic permeability is affected mainly by the unfrozen water in the frozen fringe. 

Anderson and Tice (1972) proposed a well-established power function to describe the relationship between the 

unfrozen water and temperature: 

( )
B

u
w A T  , ( )

Bd

u

w

A T





                                 (19) 

where wu is the gravimetric unfrozen water content, θu is the volumetric unfrozen water content; A and B are the 

soil parameters, and Nixon (1991) suggested that A=0.0038S
0.851

, B=-3.0S
-0.515

; ρ
d
 and ρ

w
 represent the dry density 

and the density of liquid water, respectively. 
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However, the unfrozen water in the frozen fringe is not only affected by the temperature, the equivalent water 

pressure also plays an important role in determining the unfrozen water content in the frozen fringe. A theory reported 

by Gilpin (1979) describes the characteristic behavior of water at an ice-water interface, and proposes a pressure near 

the surface of a solid substrate for driving fluid flow: 

0

( )

L h a tm

w

g h
P P P P

v
                                      (20) 

where the reference pressure P0 represents the pressure of the reference state in Gilpin’s theory (Gilpin, 1979) and 

denotes the pressure of local bulk water in the unfrozen zone, whereas for the frozen zone, the reference pressure is 1 

atm; PLh represents the disjoining pressure at the ice-water interface; g(∙) stands for the effect of the solid surface; h 

is the thickness of the liquid layer; vw is specific volume of the liquid. Patm=1 atm is chosen for both the frozen zone 

and the unfrozen zone. In the unfrozen zone, the equivalent water pressure P is the relative pressure of local bulk 

water, and in the frozen zone the pressure P is determined by PLh and h. If the water at a specific place is directly 

connected to the bulk water with the same temperature and reaches an equilibrium state, then the equivalent water 

pressure at this place equals the pressure of bulk water. 

Equating the solid and liquid free energies at the interface, the expression of g(h) can then be obtained. The 

pressure, interface, and temperature controlled local thickness of the unfrozen water film is given by the following 

equation: 

( ) σ
L h i iw iw

a

T
g h vP v L

T
                                     (21) 

where ∆v=vi − vw, vi is the specific volume of the ice, and L is the latent heat. 

Substitution of Eq. (20) into Eq. (21) yields: 

σ ( )
i

i iw iw

a w

vT
vP v L g h

T v
                                    (22) 

Both temperature and equivalent water pressure have a significant effect on the unfrozen water, as shown in Eq. 

(22). A variation of L/∆vTa in equivalent water pressure is equal to 1 
o
C variation in temperature for the effect on h 

and θu. This means that a pressure difference of 1 MPa is equivalent to a temperature difference of 0.91 
o
C as far as its 

potential for impact of unfrozen water. Considering of the equivalent water pressure, the volumetric unfrozen water 

content (soil freezing characteristic curve) can be rewritten as: 

( )
Bd a

u

w

vT
A T P

L







                                      (23) 

In addition, when Laplace equation is applied and the ice lens growth is regarded as a quasi-static process, the 
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boundary condition of P is determined by substitution of Eq. (21) into Eq. (20) and some transformations, P=LT/Tavw. 

Eq. (23) accounts explicitly for the equivalent water pressure P, which is different from Eq. (19). Taking into 

account both the equivalent water pressure and temperature effects on volumetric unfrozen water content, an equivalent 

temperature Teq is introduced in determining the volumetric unfrozen water content: 

a

eq

v T
T T P

L


                                       (24) 

Based on the modeling of Eq. (24), it can be found that if the initial temperature varies from -0.20 
o
C to -0.80 

o
C, 

the corresponding equivalent temperature varies from -0.21 
o
C to -0.83 

o
C with considering the effect of equivalent 

water pressure (-100 kPa to -300 kPa) (Fig. 5). Furthermore, the equivalent temperature slowly decreases with 

decreasing equivalent water pressure. This implies that the equivalent water pressure is necessary to estimate the 

unfrozen water in frozen fringe. Consequently, the freezing characteristic can be modified as shown in Eq. (25), which 

accounts explicitly for the equivalent water pressure: 

( )
Bd

u eq

w

A T





                                       (25) 
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Fig. 5. Influence of equivalent water pressure on the equivalent temperature. 

The effective porosity and permeability decrease due to the generation of pore ice and the reduction of unfrozen 

water. Hohenemser and Prager (1932) reported that permeability decreases as effective porosity decreases. 

Subsequently, He et al. (2018) examined the complete consideration of effective porosity and proved the validity of the 

equation for fluid flow in freezing soil. This equation is applied to calculate the hydraulic permeability in the frozen 

fringe, and can be determined as: 

5 2

0

0

1

1

e

f

e

n n
k k

n n

   
    

   

                                   (26) 
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where k is the initial value of hydraulic permeability; ne is the effective porosity which can be replaced by volumetric 

unfrozen water content θu; n0 is the initial porosity. 

3.3 Comparison between our new model and the segregation potential model 

Following on from the discussion above, Eq. (3) and Eq. (4) comprise the boundary conditions for the calculation 

of water flow velocity. In addition, Eq. (15), (25) and (26) constitute the primary equations to determine the hydraulic 

permeability in the frozen fringe. According to the difference of chemical potential along the frozen fringe, the average 

water permeation flux can then be written as follows: 

,

lnf s w

w

m w

k R T a
V g

V a


  
  

 

                                 (27) 

If the basic assumption (i) made in the segregation potential model was employed, the temperature field in the 

frozen fringe near the thermal steady state is linearly distributed, and can be presented as : 

g ra d
s f

T T
T

a


                                      (28) 

From these equations, it follows that: 

,

ln + 1

g ra d

s w w

f

m w s f

R T a g aV
k

T V T T






（ ）
                            (29) 

In Eq. (29), the first and third terms on the right-hand side are determined by the segregation temperature, and the 

second term on the right-hand side of Eq. (29) is the hydraulic permeability in the frozen fringe. If the basic assumption 

(ii) made in the segregation potential model is applied, then Eq. (29) can be considered as a constant. Also, the constant 

can be regarded as a mathematical description of segregation potential. 

The derivation above shows that the quasi-static model developed in this paper can be transformed to the 

segregation potential model if the two basic assumptions made in the segregation potential model are applied. Hence, 

our new model can be regarded as an extension of the segregation potential model. The segregation temperature in the 

segregation potential model is considered as a constant value during the calculation of water flow velocity. However, 

our new model enables the calculation of the ice lens growth under a slowly varying segregation temperature, and 

hence, it describes the quasi-static process for frost heave. 

4 Numerical simulation and model validation 

4.1 Test and calculation conditions 

Based on one-dimensional freezing experiments of saturated silty clay, we have conducted the numerical 

simulation applying the water activity based quasi-static model developed in this paper with calculations carried out 
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using MATLAB R2017a. Validation of the new model is demonstrated through comparison of the predicted results with 

the experimental measurements. Zhou et al. (2006) conducted the freezing tests with samples having a dry unit weight 

of 1.48 g/cm
3
 and size of 13 cm high and 10.1 cm in diameter. The mass fraction of clay in the soil is 32.45% and that 

of silt is 67.15%. The cold and warm end temperature is -12 
o
C and 6 

o
C, respectively. The saturated water content of 

the tested soil is 0.30. In the freezing tests, the infrared radiation method was applied to measure the temperature of the 

ice lens. The temperature of the warmest ice lens varied with time during freezing (Fig. 6), inducing corresponding 

variation of the driving force and the hydraulic permeability for the capillary flow in the frozen fringe. 
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Fig. 6. Result of the segregation temperature of the warmest ice lens. 

In addition, the main material parameters for numerical calculation are listed in Table 1. 

Table 1 The main parameters for the computational model. 

Parameters Unit Value 

ρ
w
 kg/ m3 1000 

ρ
i
 kg/ m3 900 

L kJ/kg 334.56 

ΔmH1(Tf) J/mol 6010 

ΔCp J/K mol 38.2 

R J/K mol 8.314 

Vm, w m3/mol 1.8×10
-5

 

The numerical simulation was conducted based on the experiment, and the same conditions were applied to verify 

the applicability of the new quasi-static model. 

4.2 Results and analyses 

By substituting the segregation temperature (shown in Fig. 6) into the boundary condition Eq. (4), the numerical 

simulations of hydraulic permeability, water activity, and ice lens growth (frost heave) can then be carried out. Ice 

crystals are gradually generated with decreasing water activity, inhibiting fluid flow in porous media. In order to 

analyze the effect of water activity on the hydraulic permeability, the temperature is generally distinguished into two 

stages, termed the Cooling Stage (I) and Warming Stage (II) (shown in Fig. 7). When the temperature T=Tf, and ice and 
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water coexist in equilibrium in the soil. When T<Tf, aw<1, water freezes to ice crystals. In the Cooling Stage (I), water 

activity decreases with temperature, favoring the formation of ice crystals. Ice crystals are gradually formed as the 

water activity decreases, resulting in the increase of the volumetric ice content and the decrease of fluid conduits 

(effective porosity). Hence, the hydraulic permeability in the frozen fringe significantly decreases with the decrease of 

water activity (Fig. 7). This correlation is a consequence of the formation of pore ice in the frozen fringe, leading to a 

decrease in hydraulic permeability due to pore blocking. In the Warming Stage (II), an opposite trend is observed, 

whereby the hydraulic permeability increases as the water activity increases. In this stage, some ice crystals melt 

gradually to water, providing more seepage pathways and facilitating fluid flow. Correspondingly, the hydraulic 

permeability increases. Hence, improvement in the theory of temperature- and equivalent water pressure-dependent 

hydraulic permeability in our model (section 3.2.2) does not only provide a calculation for flow challenges, but it also 

provides new insights into the physical mechanism that underlies pore blocking and related phenomena. 
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Fig. 7. Result of hydraulic permeability in the frozen fringe. 

Using the hydraulic permeability result, the water activity based numerical simulation of the ice lens growth is 

carried out, and we refer to this calculated result as ‘Frost heave-I’. There is a generally good agreement between the 

numerical model and the experimental result (Fig. 8). Moreover, the numerical result of the ice lens growth (Frost 

heave-I) is slightly larger than the experimentally measured result at the onset of test at Stage I (Fig. 8). It is interpreted 

that a relatively high temperature of the ice lens (as shown in Fig. 7) at the onset of the test causes a relatively high 

calculated permeability in the freezing soil. Similarly, the water flow velocity is larger under this condition, which in 

turn results in a rapid growth of the ice lens at this stage. Furthermore, the relatively low temperature of the ice lens in 

the Stage II signif icantly decreases the water flow velocity due to the relative ly low permeability caused by pore 
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blocking. Hence, the rate of the growth of the ice lens slows down at this stage. Such fast variation of temperature of 

the ice lens causes a slight difference between the measured and calculated ice lens growth in Stage I and II. However, 

the calculated result of the ice lens growth agrees very well with the measured result after 800 minutes. The disparity 

between the ultimate experimental observation (6.40 mm) and the Frost heave-I (6.12mm) is 4.38%. 

Moreover, using the same soil parameters, the conventional pressure potential gradient (Eq. 24) in Darcy’s law is 

introduced into our new model as the driving force to calculate the ice lens growth, and this result is referred to as 

‘Frost heave-II’. Both patterns of ice lens growth under the conditions of Frost heave-I and II present a similar trend 

(Fig. 8). The disparity between the ultimate experimental observation and the Frost heave-II (5.86 mm) is 8.46%. 

Comparison between the result of Frost heave-I and II shows that the Frost heave-I based on our new developed model 

matches the experimental results signif icantly better, especially for the data after 800 minutes (Fig. 8). Thus, although 

the pressure gradient based calculation offers a good prediction of the ice lens growth (Frost heave-II), the result of 

Frost heave-I is much closer to the experimental observation. 

In order to compare the results of frost heave under constant and variable segregation temperatures, the average 

value of the segregation temperature is substituted into the boundary condition Eq. (4), a water activity based 

simulation of the growth of the ice lens is then carried out, and we refer to this calculated result as ‘Frost heave-III’ (Fig. 

8). The pattern of ice lens growth (linear growth) under the condition of Frost heave-III presents a different trend to the 

experimental observation since the segregation temperature is a constant value. Furthermore, the disparity between 

Frost heave-III (5.26 mm) and the ultimate experimental observation increases to 17.83%. We can thus conclude that, 

the good agreement between the calculated result (Frost heave-I) and the experimental observation verifies the new 

model presented in this paper. 
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Fig. 8. Comparison of thickness of the ice lens between the observation and calculation. 

The analysis above showed that the water activity based model is capable of describing the growth of the ice lens, 
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and can be employed to simulate frost heave. In addition, this study improves our understanding of the physical 

mechanisms that underlie ice nucleation, fluid f low in partially frozen granular media and related phenomena, and 

provides a new method to predict frost heave at a quasi-static state. 

4 Conclusions 

(1) A quasi-static model for the growth of an ice lens is proposed in this paper by considering the limitation of the 

segregation potential model. A water activity based chemical potential gradient in this paper replaces the conventional 

pressure potential gradient in Darcy’s law for the calculation of water flow velocity. Moreover, a mathematical 

description of the empirical constant of the segregation potential is provided after the analysis of the new developed 

model. Our model enables the calculation of the ice lens growth under a slowly varying segregation temperature, which 

can be considered as an extension of the segregation potential model. 

(2) The modified Kozeny-Carman equation is used to describe the water permeability of a given soil. However, 

the presence of the pore ice in the frozen fringe results in the decrease of the hydraulic permeability due to pore 

blocking. In this paper, the effect of pore water pressure is taken into account to modify the freezing characteristic 

function, and to determine the unfrozen water content in the frozen fringe. Subsequently, the temperature- and pressure- 

dependent hydraulic permeability in the frozen fringe is then mathematically determined and improved. 

(3) The water activity based model provides a quantitative method to describe the state of water at a specific 

temperature, and offers a new method to predict frost heave after the active zone reaches a thermal steady state. The 

good agreement between the calculated result and experimental observation verifies our new model. In this paper, we 

focus on the description of the growth of the ice lens, whereas theoretical developments of the formation mechanism of 

ice lenses involve molecular scale chemical physics and still require further research studies. The theoretical study in 

this paper can be used as a foundation for further theoretical and experimental developments and to gain more insight 

into the intriguing geophysical phenomenon of frost heave. 
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Table 1 The main parameters for the computational model. 

Parameters  Unit Va lue 

ρw kg/m3 1000 
ρi  kg/m3 900 

L kJ/kg 334.56 
ΔmH1(Tf) J/mol 6010 

ΔCp J/K mol 38.2 

R J/K mol 8.314 

Vm, w m3/mol 1.8×10-5 
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Highlights 

A new quasi-static model for ice lens growth under a time varying temperature is established based on the water 

activity criterion. 

 

A mathematical description of the segregation potential is provided based on the analysis of the new developed model. 

 

The temperature- and pressure- dependent hydraulic permeability in the frozen fringe is mathematically determined and 

improved. 
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