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ABSTRACT: Two carboxyl-substituted iron(II) grids, one 
protonated, [Fe4(HL)4](BF4)4•4MeCN•AcOEt (1), and the 
other deprotonated, [Fe4(L)4]•DMSO•EtOH (2) (H2L = 4-[4,5-
bis{6-(3,5-dimethylpyrazol-1-yl)pyrid-2-yl}-1H-imidazol-2-
yl]benzoic acid), were synthesized.  Single crystal X-ray struc-
ture analyses reveal both complexes have a tetranuclear [2 × 
2] grid structure.  1 formed one-dimensional chains through 
intermolecular hydrogen bonds between the carboxylic acid 
units of neighboring grids, while 2 formed two-dimensional 
layers stabilized by p-p stacking interactions.  1 showed spin 
transition between 3HS-1LS and 1.5HS-2.5LS states around 200 
K, while 2 showed spin crossover between 4LS and 2LS-2HS 
states above 300 K.  A modified ITO electrode was fabricated 
by soaking the ITO in a solution of 1.  The resultant electrode 
showed reversible redox waves attributed to original redox 
processes of Fe(II)/Fe(III). 

The rational design of bistable molecules for use in molec-
ular devices is a key target in modern science.1  Such materials 
have been investigated both for their fundamental chemistry 
and as components in nanoscale molecular switching technol-
ogies.2  Spin-crossover (SCO) complexes are bistable mole-
cules, the spin-state of which can be switched upon the appli-
cation of external stimuli (temperature, light, pressure, etc.), 
rendering them desirable candidates as the active components 
of molecular-based devices.3  SCO complexes can be designed 
by tuning the nature of the ligand field, and transition metal 
clusters with a wide variety of sizes and topologies have been 
reported to exhibit the phenomenon.4  In order to develop 
new functional spin crossover materials, the supramolecular 
arrangement of the molecular species should be controlled.5  
Extension and functionalization of complex capping ligands 
can allow this, and simultaneously influence the electronic 
structure of the system, affecting the SCO properties of the 
molecular cluster.  The spatial assembly of SCO molecules in 

a bulk system can lead to cooperativity in their switching re-
sponse.  For example, large magnetic hysteresis loops have 
been observed in network systems in which strong intermo-
lecular interactions such as covalent-bonds, p-p stacking and 
hydrogen bonds mediate the cooperative SCO response. 6  
Such materials may have applications in future memory stor-
age technologies.  SCO complex ligand modification can ena-
ble a range of phenomena such as LISC (Ligand Induced Spin 
Crossover),7  and facilitate surface fixation and patterning.8  
The vast majority of research into SCO materials focusses on 
mononuclear complexes, however an increasing number of 
polynuclear SCO compounds have been reported, and found 
to exhibit complex switching behavior derived from intramo-
lecular metal-metal interactions.9  We recently reported two 
tetranuclear grid type SCO complexes, [FeII

4(L’)4](BF4)4 and 
[FeIII

2FeII
2(L’)4](BF4)6, stabilized by the multidentate ligand 

HL’ (= 2-phenyl-4,5-bis{6-(3,5-dimethylpyrazol-1-yl)pyrid-2-
yl}-1H-imidazole).  The clusters exhibited multistep thermal 
SCO and wavelength-selective Light-induced excited spin 
state trapping (LIESST) properties.10  In order to develop pol-
ynuclear SCO complexes for applications in future technolo-
gies there are two key areas that must be addressed: fine-tun-
ing the multi-step SCO behavior by molecular design, and or-
ganization of the molecular species into electronically ad-
dressable surface arrays.  To this end, functionalization of SCO 
complexes with carboxylate groups allows us to explore the 
effects of the ligands’ electronic state on the switching prop-
erties, allows us to generate extended hydrogen-bonded ar-
rays of clusters, and facilitates the fabrication of surface-mod-
ified electrodes.  Here we report the synthesis and characteri-
zation of carboxylic acid-modified [Fe4] grids, their SCO prop-
erties, and their use in the modification of ITO electrodes.  In 
order to evaluate possibilities of the molecules for molecular 
devices, electronic state in solid and solution states were in-
vestigated by magnetic and electrochemical measurements.  
Two carboxylic acid functionalized tetranuclear [Fe4] grid 
compounds, one protonated [Fe4(HL)4](BF4)4•4MeCN•AcOEt 
(1) and the other deprotonated [Fe4(L)4]•DMSO•EtOH (2) 
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(H2L = 4-[4,5-bis{6-(3,5-dimethylpyrazol-1-yl)pyrid-2-yl}-1H-
imidazol-2-yl]benzoic acid), were synthesized and structurally 
characterized by X-ray analyses.  Both compounds showed 
thermal and light-induced SCO behavior, and 1 shows pseudo 
reversible four step redox processes.  In addition ITO-[Fe4] 
composite electrodes were fabricated and electrochemically 
characterized. 
Chart 1.  Structure of ligand H2L 

 
The polypyridyl, carboxylic acid-bearing, multidentate lig-

and, H2L (4-[4,5-bis{6-(3,5-dimethylpyrazol-1-yl)pyrid-2-yl}-
1H-imidazol-2-yl]benzoic acid), was synthesized following a 
protocol adapted from our previous study.10  The tetranuclear 
iron grid, [Fe4(HL)4](BF4)4•4MeCN•AcOEt (1), was synthe-
sized by the reaction of H2L with Fe(BF4)2•6H2O in acetoni-
trile.  The deprotonated analogue, [Fe4(L)4]•DMSO•EtOH (2), 
was synthesized by reaction of 1 with 1,8-diazabicy-
clo[5.4.0]undec-7-ene (DBU).   

 
Figure 1.  Molecular structures of (a) 1 and (b) 2.  Side view for 
(c) 1 and (d) 2 at 100 K.  Colour code: C, grey; N, light blue; 
FeII(HS), pink; FeII(LS), green. 

Single crystal X-ray structural analyses for 1 and 2 revealed 
that both complexes have similar [2 × 2] type grid structure 
consisting of four iron(II) ions and four ligands (Figure 1).  The 
carboxyl groups of 1 are protonated, while those of 2 are depro-
tonated.  The valence states of all iron ions can be estimated 
as a divalent based on charge balance and coordination bond 
lengths (Table 1).  In addition, structural data at different tem-
peratures suggests spin transition behavior for both com-
plexes.  1 formed one-dimensional chain through intermolec-
ular hydrogen bonds between carboxylic acid units of neigh-
boring grids, while 2 formed two-dimensional layers stabilized 
by p-p stacking interactions (Figures S1 and S2). 

Temperature dependent magnetic susceptibilities were 
measured between 5 and 290 K (Figure 3).  For 1, the cmT value 
at 290 K was 8.96 emu mol-1 K, which corresponds to the sum 
of the spin-only values expected for three magnetically iso-
lated S = 2 spins (3HS-1LS state).  Lowering the temperature 
caused the cmT value to decrease, initially gradually, then 
more abruptly at around 175 K, before reaching a plateau be-
low 130 K with a cmT value around 4.5 emu mol-1 K, which is 
close to the value expected from 1.5 magnetically isolated 
Fe(II) ions suggesting a 1.5HS-2.5LS state.  For 2, the cmT val-
ues plateau below 230K reaching 0.12 emu mol-1 K at 5 K, in-
dicative of four low spin state Fe(II) ions.  Above 230 K, the 
cmT values increased, reaching 4.43 emu mol-1 K at 290 K, in-
dicating the occurrence of partial SCO behavior above 230 K.  
The gradual slope of the cmT values of 1 and 2 across the whole 
temperature range might arise from the presence of a para-
magnetic desolvated/annealed species, showing gradual SCO 
behavior (Figure S3). 

 
Figure 2.  Plots of cmT versus T for 1 (blue) and 2 (red).  cmT 
values in LIESST state for 1 and 2 were shown in blue-purple 
and red-purple, respectively. 

The electronic states accessed through the thermal spin 
crossover behavior were confirmed by variable temperature X-
ray structural analyses and Mössbauer spectra (Figures S4 and 
S5).  The average coordination bond lengths around the iron 
ions and the S values (corresponding to the sum of the devia-
tion of each of the 12 cis N-Fe-N angles from 90°)11 are summa-
rized in Table 1.  All measurement data supported one-step 
SCO behavior from 1.5HS-2.5LS to 3HS-1LS for 1 and from 4LS 
to 2HS-2LS for 2.  But 1.5HS-2.5LS state couldn’t be observed 
in structural data due to averaged structure.  Comparing the 
spin state of the previously reported grid molecule, 
[FeII

4(L’)4](BF4)4, which shows two-step SCO from 2HS-2LS to 
4HS through a 3HS-1LS state, the present compounds were 
both found to stabilize low spin states.  This difference is likely 
to arise from supramolecular packing effects derived from the 
existence of the pendant carboxyl groups. 

LIESST experiments for performed for both complexes at 20 
K.  Both complexes were excited by green light (532 nm), re-
sulting in an increase in cmT values.  As increasing tempera-
ture after light irradiation, the cmT value increased rapidly to 
a maximum of 6.74 emu mol-1 K for 1 at 38 K and 3.35 emu mol-



 

1 K for 2 at 28 K.  The relaxation temperatures were determined 
to be 82 K and 70 K for 1 and 2, respectively.  These light-in-
duced spin states were assigned as 3HS-1LS and 2HS-2LS for 1 
and 2 respectively, and were confirmed by X-ray structural 
analyses. 

Table 1.  Average bond lengths and S values (in paren-
theses) of comp. 1 and 2.   

 Fe1 Fe2 Fe3 Fe4 State 

1 (300 K) 2.169 1.972 2.158 2.171 3HS-1LS 
 (158.24) (91.37) (148.78) (154.60)  

1 (100 K) 2.175 1.963 1.974 2.016 1.5HS-2.5LS 
 (163.13) (91.58) (94.76) (106.71)  

1 (20 K) 2.153 1.964 2.140 2.137 3HS-1LS 
LIESST (157.90) (96.00) (149.90) (151.50)  

2 (250 K) 1.957 1.961 2.015 2.010 2HS-2LS 
 (82.18) (85.90) (105.79) (111.78)  

2 (100 K) 1.952 1.959 1.967 1.961 4LS 
 (81.67) (85.40) (85.34) (87.27)  

2 (20 K) 1.962 1.998 2.027 2.059 2HS-2LS 
LIESST (89.90) (97.30) (108.40) (119.40)  

 

Figure 3.  Cyclic voltammogram of 1 (top) and complex-sup-
ported ITO electrode (bottom).   

The electrochemical properties of 1 were investigated.  Four 
pseudo-reversible redox waves, attributed to stepwise 
Fe(II)/Fe(III) processes from 0.61 V to 1.10 V were observed, 
correlating well and falling in the same potential range as 
those of the previously reported [FeII

4(L’)4](BF4)4 grid.  These 
four redox processes can be assigned as [FeIII

4] / [FeIII
3FeII], 

[FeIII
3FeII] / [FeIII

2FeII
2], [FeIII

2FeII
2] / [FeIIIFeII

3], and [FeIIIFeII
3] / 

[FeII
4].  To probe the translation of the solution phase electro-

chemical properties to the solid state, an ITO electrode was 
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soaked in a solution of compound 1 to generate a supported 
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range of 0.71 – 1.09 V, which suggests that the surface of the 
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tetranuclear iron grid complexes.  Loading analysis based on 
the number of moles of adsorbed species and the coverage fac-
tor indicate that the [Fe4] molecules formed a monolayer 
(Supporting information). 
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external stimuli responsive molecular devices.  
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. 

Two carboxylic acid-substituted tetranuclear [2 × 2] iron(II) grids were synthesized and found to 
exhibit contrasting thermal photo-induced spin transition phenomena.  The carboxylic acid 
moieties facilitated the preparation of cluster-modified ITO electrodes solution phase redox pro-
cesses of the molecular species were effectively translated to the solid.  


