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ABSTRACT  
In this novel industrial scale case study, the bioenergy recovery based on 
sole and mixed cow-buffalo (CBM) and potato waste (PW) substrates has 
been analyzed in real time, i.e., on-site on a full-scale operational anaerobic 
digestion (AD) plant. The plant employed in this study is a novel design, 
consisting of tri-digesters connected via an underground UASB type lagoon 
allowing it to function as a continuous-flow reactor. The system has been 
further equipped with CSTR, microwave heating, gas scrubbers, compres-
sion, and storage systems. The highest energy recovery readings were 

123.9 m3/1,000 kg, 77 m 3/1,000 kg, and 151.6 kWh/1,000 kg in terms of 

biogas, bio-methane, and electricity generated, respectively, with 75:25 ratio 

of CBM:PW. Operating with 100% CBM, yields of 79.9 m3/1,000 kg, 47 m3/ 

1,000 kg, and 95 kWh/1,000 kg were obtained. The percentage of recovery 
in bio-methane production increased on using the mixed substrates, but it 
was the lowest with a 25:75 ratio of CBM:PW. The electrical power genera-
tion efficiency was found to be significantly increased, but not distinctively 
with the plant aggregate power rating that was probably associated with the 
variable quality of biogas which was fed to the power generator. A linear 
regression analysis had shown a significant and positive correlation between 
the rate of VS removal and biogas yield. 
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Introduction 
 

Anaerobic digestion (AD) has been proven to be an efficient and profitable technique for the  

treatment and conversion of organic wastes into energy; likewise, many lab-scale experiments  

have shown that co-digested organic substrates give more efficient comparative outputs of  

bioenergy (Esposito et al. 2012). However, the transition from laboratory experiments to pilot  

and industrial scale in the alternate energy sector is tedious and costly. The extrapolation of lab-  

scale results to a pilot scale and commercially operable AD plant often leads to deceiving results  

(Weiland 2010). The reasons for such failures are mostly the different operating conditions and  

the use of synthetic feedstock (Hosseini and Wahid 2013). These problems lead the authors to  

invest in a sophisticated medium industrial scale AD plant, which is more practical, convenient,  

and realistic R&D so to validate the results and advance more readily toward the commercial–  

industrial scale bioenergy generation (Song et al. 2014). In such a novel pilot scale, realistic  

operational conditions can be corrected on a daily basis (Hosseini et al. 2013), using online  

monitoring measurements (too expensive for labscale) and using real quantities and qualities of   
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feedstock substrates, by providing realistic design parameters (Budzianowski 2012). As far as the  
performance and energy recovery from various feedstock substrates for an AD bioenergy system  

are concerned, it had been observed that many substrates such as fruit–vegetable wastes were  

digested rapidly and easily, whereas animal manure takes a longer time. In fruit/vegetable feed-  

stock substrates, the lower TS, higher VS, and richer carbohydrate amounts present undergo a  

faster stage of hydrolysis which leads to an acidification stage, causing the inhibition of biogas  

generation (Baeyens et al. 2016; Gunaseelan 2004). Animal manures on the contrary, such as  

cow-buffalo dung, are abundant and easily and economically accessible. Moreover, they also  

provide other complementary advantages in terms of efficiency and effectiveness through their  

Supply chain, waste and odor management, etc. (Yang and Chen 2014). Many lab-scale studies  

had shown more efficiencies in terms of methane when animal manure was co-digested with other  

substrates such as food waste (Cuetos et al. 2011; Wang et al. 2013a, 2013b; Zhang et al. 2013;  

Kothari et al. 2014; Fitamo et al. 2016). In experimental studies, several tests were performed on  

various ratios of cattle manure (CM) to food waste (FW) so to verify the increased amount of  

methane with respect to various ratios, particle size, and rate of organics load. Where these had  

been evident that with a ratio of 2:1 of CM to FW, decreasing the FW particle size and  

controlling loading rate at 3 g VS/L/d, respectively; the methane recovery had been increased  

sufficiently (Agyeman and Tao 2014; Zhang et al. 2013a). Few other studies (Abouelenien et al.  

2014; Sawasdee and Pisutpaisal 2014; Sittijunda 2015) described that agricultural wastes such as  

Napier grass, cassava waste, coconut waste, coffee been grounds with semi-solid chicken manure,  

and Napier grass with slaughterhouse waste, respectively, were co-digested at thermophilic and  

mesophilic temperatures, while utilization of fresh chicken manure enhanced the bioenergy  

recovery efficiency up to 93% compared to the control, whereas in second process the treated  

chicken manure was used that increased the amount of methane production up to 42% than the  

control. Several studies have highlighted that there are many contributing factors for an effective  

yield of commercialindustrial scale bioenergy recovery efficiency and enrichment such as suitable  

and available feedstock, effective co-digestion, and hydraulic retention time. Whereas pretreat-  

ment of substrates, their composition, and operational conditions such as temperature, pH, and  

design and size of the digester employed also play a vital role in enhanced recovery of biogas   
(Alatriste-Mondragón et al. 2006; Astals, Nolla-Ardèvol, and Mata-Alvarez 2012; Callaghan et al.   
2002; Cavinato et al. 2010; Comino, Riggio, and Rosso 2012; Hinken et al. 2008; Nkemka and  

Murto 2010; Park and Li 2012; Pobeheim et al. 2010; Shah et al. 2015). Apart from these some  

researches, Akbulut (2012) and Gebrezgabher et al. (2010) also highlighted that the power  

proficiency of a bioenergy plant could be variable and reliant upon the power rating of the  

generation set. Walla and Schneeberger (2008) also showed similar facts based on their study of  

various 25–2,500 kW bioenergy plants; larger-scale bioenergy plants showed an increase in their  

relevant electrical-power efficiency. However, the major aspect that seems missing in all such  

earlier studies is the determination of energy productivity on a full-scale industrial plant in real  

time, i.e., on commercial–industrial scale plant, according to realistic operational conditions.  

Therefore, the objective of the current research was to monitor and investigate the energy  

recovery in terms of biogas and electric power based on a 150kVA generator from a medium–  

large-scale bioenergy plant (Figure 1) designed and installed at an industrial area near Lahore,  

Pakistan. Various mass ratios of feedstock substrates, i.e., cow and buffalo manure (CBM) versus  

potato waste (PW), were employed for this particular study.  

Methodology  
 
Determination of substrates and energy recovery 
 
The ultimate aim of a bioenergy plant design is to maximize the methane yield based on the feedstock 

and the size of the plant. At this specific medium–large-scale bioenergy plant, the typical 
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Figure 1. Novel industrial bioenergy plant installed at an industrial area near Lahore, Pakistan.  

experiments for bioenergy recovery analysis have been performed for about a year with conveniently  
and economically available substrates, i.e., CBM and its mixture with PW in various ratios.  

Substrate characterization  
The AD process energy analysis experiments at the plant were performed with five substrate ratios of  

CBM and PW i.e., 100:00; 50:50; 75:25; 25:75, and 00:100. To attain the best bioenergy productivity and  

recovery, the effective operational parameters such as pH, temperature, water content, and continuous  

stirring were monitored and maintained within the optimum ranges. The subsequent substrate slurry  

samples were collected and analyzed by the lab at SDSC, GC University Lahore for determining the TS,   

VS, and C/N ratio as per standard methodology (Apha 1998; ECOFYS 2005). Table 1 presents all the  

parameters of the experiments and analysis, as also presented in references (Deublein and Steinhauser  

2011; Moody et al. 2011). The COD of the relevant substrate slurries was also determined at the  

beginning and end of each month as per standard method-8000 using a spectrometer.  

 

Monitoring of energy output  
The capability of the plant for feedstock substrate handling was recorded as 24,000 kg. Firstly 20,000 kg of 

100% CBM substrate was employed and fed to the plant that was left for 30 days to acclimatize the 

system. Subsequently, a further feedstock at the rate of 4,000 kg/day has been applied. To assure anaerobic 
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Table 1. Feedstocksubstrates’ characteristics in various mixtures of cow-buffalo manure (CBM) and potato waste 
(PW) used in the experiments at a novel industrial scale bioenergy plant.   
CBM:PW    C/N Temperature (°C pH 

(ratios) Wet weight (kg:kg) TS wet basis (% avg.) VS dry basis. (% avg.) Ratio avg.) (avg.) 

100:00 24,000:00 12 84 11.80 35.2 7.3 
75:25 18,000:6000 11.25 86.75 15.54 35.8 6.9 
50:50 12,000:12,000 10.5 89.5 19.27 36.1 6.6 
25:75 6000:18,000 9.75 92.25 23.01 36.9 6.5 

00:100 00:24,000 9 95 26.75 35.3 6.9 

 
 

conditions at an optimal mesophilic temperature condition (35–37°C) and pH, microwave irradiations 105 

were employed in digestion well 1 for about 5–10 min intervals, i.e., after the induction of each 1,000 kg of 

fresh substrate against a total of 4,000 kg of substrate that was introduced daily into the reactor. To control  
the quality and stability of the AD reactor, the pH level of each treatment was measured after every 3 days 

by the installed pH probes. Similar practices were observed for all feedstock substrate ratios experimented.  
The cumulative energy output monitoring was performed over a period of 10 months from July 2015 till 
110 April 2016. The energy outputs have been examined and recorded in terms of mean biogas yields in 

m
3
/ month and then further converted to electrical power (kWh/month). Identical biogas bioenergy 

amounts had been generated by employing dairy manure, as previously used (Kryvoruchko et al. 2009; Li 
et al. 2015). The monitored results are tabulated in Table 2. 
 
 

Analysis of bioenergy yield  
 
The generated biogas was stored in the biogas storage tanks. The gas volumes and pressures were 

measured daily with the help of installed gauges at these storage tanks. The biogas amount generated 

 

Table 2. Energy outputrecovery of the novel bioenergy plant (mean energy amounts between July 2016 and April 2017).   
  Mean biogas     
 Feedstock-substrate recovery Mean biogas Total biogas Bioenergy Electrical energy 
Monitoring used (m3/1000 kg wet recovery (m3/ output (m3/ content (kJ/ efficiency (kWh/ 

months (x1000kgs) mass) 1000 kg of VS) month) Nm3)* month)** 

July 2016 100% CBM 120@4day 80.53 95.86 9,663 21,329.4 11,493 
August 2016 100% CBM 120 @4/ 79.33 94.44 9,520 21,329.5 11,322 

 day      

September2016 75%CBM:25%PW 122.97 141.75 14,756 21,951.8 18,060 
 90:30 @1 + 3 each/      

 day respectively      

October 2016 75%CBM:25%PW 124.82 143.90 14,978 21,951.8 18,334 
 90:30 @1 + 3 each/      

 day respectively      

November 50%CBM:50%PW 112.24 125.41 13,469 20,418.8 15,334 
2016 60:60 @2 + 2 each/      

 day respectively      

December 2016 50%CBM:50%PW 110.39 123.34 13,247 20,418.8 15,082 
 60:60 @2 + 2 each/      

 day respectively      

January 2017 25%CBM:75%PW 94.28 102.33 11,328 20,535.7 12,954 
 30:90 @1 + 3 each/      

 day respectively      

February 2017 25%CBM:75%PW 95.73 103.77 11,488 20,535.7 13,154 
 30:90 @1 + 3 each/      

 day respectively      

March 2017 100%PW 120 @4/day 92.81 97.70 11,138 20,303.2 13,154 

April 2017 100%PW 120 @4/day 91.08 95.87 10,930 20,303.2 12,908  
*The average energy content of the biogas generated was calculated relatively to 60%Vol. methane having a 

calorific value of 21,521.4 kJ/Nm3. 
**Based on a 150-kW power generator with 38% (avg.) efficiency. 
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Table 3. Recovery of specific biogas and bioenergy determined from the experimental results for various substrate 
ratios (all data are based on mean duplicates from two months each).   
  Methane recovery   

Feedstock 
Biogas recovery (m3/ 

 
m3/1000 kg 

  
description CBM:PW % % increase in Methane Electrical energy determined 

(% Ratio) 1000 kg wet mass) Content wet mass amount against 100% CBM (kWh/1000 kg wet mass) 

100:00 79.9* 59.1 47* - 95.0 
75:25 123.9* 62.0 77* 61.5 151.6 
50:50 111.3* 54.6 61* 29.8 126.7 
25:75 95.0 55.2 52 10.7 108.8 

00:100 91.9 58.4 53 12.8 108.6   
*Mean values which were found to be significantly different, i.e., P < 0.05; Tukey’s HSD test. 

 

was measured in m
3
 per 1,000 kg of wet mass (Table 2). The percentage composition of the produced 

biogas and its CH4 content was measured twice a week before and after the scrubbing process by using a 
gas analyzer GA 2000 (Geo Tech Incorporation, England). The gas analyzer had been 120 calibrated 
before every reading as per standard procedure. Table 3 depicts this analysis statistically. 

 

Statistical analysis of bioenergy recovery  
 Statistical analysis was performed by using the software package PASW Statistics 18. Firstly, the  

descriptive statistics had been executed to determine the mean values of data, standard deviations,  
and frequency distributions. The variances in the efficiencies of bioenergy based on various feedstock    
substrate compositions were tested relatively on a bimonthly pairwise data appraisal methodology.  
The t-test’  and Tukey’s HSD test were then employed by fixing the significance level, i.e., P= 0.05.  
MS Excel 2010 was further used for sifting and sorting of data and generating tables and charts. 

 

 

Results and discussion 
 

Bioenergy recovery from pure CBM  
 

Bioenergy recovery in terms of biogas and methane yields against 100% CBM is shown in Figs. 2 and 

3, respectively. Mean biogas, bio-methane, and electricity yields were calculated as 79.9 m
3
/1,000 kg,  

47 m
3
/1,000 kg, and 95.0 kWh/1,000 kg (wet mass basis) respectively, during July and August 2015, i.e., 

months of fermentation in the continuous flow multistage digestion system. The statistical analysis 
demonstrated that the productivity of biogas and bio-methane generation were significantly 135 different 

from other feedstock substrates experimented at the plant. The mean biogas productivity/ day (m
3
/1,000 kg 

wet mass) against 100% CBM is shown in Figure 2. On the 17th day of digestion,  
the peak biogas production rate was observed against 100% CBM, and this highest biogas recovery 

rate was 95 m
3
/1,000 kg wet mass. 

 

 

Bioenergy recovery from mixed ratios of CBM and PW  
 

Three sorts of mixed ratios of CBM and PW were applied: (i) 75% CBM+ 25% PW, (ii) 50% CBMS+  
50% PW, and (iii) 25% CBM+ 75% PW. The respective bioenergy productivities against these three  
mixed ratios are also portrayed in Figs. 2 and 3. After 2 months of continuous fermentation against  
each sort of these mixed ratios, i.e., during September–October 2016, November–December 2016,  
and January–February 2017, the respective mean yields of biogas were calculated as 123.9, 111.3, and  

95.0 m
3
/1,000 kg wet mass. Whereas the bio-methane generation recovery had been obtained as 77,  

61, and 52 m
3
/1,000 kg wet mass, respectively, and these calculated values significantly exceed the 

100% CBM results. Within 28 days of the digestion process, about 98.9, 96.7, and 91.5% of the final 
biogas efficiencies, respectively, had been generated. The mean electrical energy produced against all 
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Figure 2. Biogas recovery against various experimented substrate ratios on a novel industrial scale plant.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Cumulative bio-methane recovery against various digestion ratios of CBM and PW (on a novel industrial scale plant). 

 
 

three substrate mixes recorded during the stated months was 151.6, 126.7, and 108.8 kWh/1,000 kg wet 

mass, respectively.  
Furthermore, there was also a significant difference determined among biogas yields of all three 

substrates mix ratios of CBM+ PW. On the other hand, no significant difference was found among the 

biogas yields of 100% PW and the third mixed ratio of 25% CBM+ 75% PW. The biogas recovery/day 

against these three mixed substrates is depicted in Figure 2, where it was evident that 155 biogas 

production procedures were similar at all three mixed ratios. However, these went on at a lower rate until 

the 17th day. It was because of low bacterial concentration, and hence later the subsequent biogas 

production rates have risen with increased bacterial population and their meta-bolism progression. Between 

days 28 and 37 of digestion, several peaks of biogas generation rates can 
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be seen which are quite unsimilar to the digestion of CBM alone. Hence, it could be derived that co-  

digestion of CBM with PW may diminish the accrual of intermediaries. It leads to a stable  

performance of the continuous digestion reactor, and as a result better bioenergy generation rates  

and productivity could be achieved (El-Mashad and Zhang 2010; Rasheed et al. 2016a, 2016b). The  

results of statistical analysis are also tabulated in Table 3. There was considerably steady and highest  

biogas energy recovery for the substrate ratio of 75% CBM and 25% PW among all feedstock –  

substrates mixtures. Generally, there are larger amounts of bacteria in CBM that caused progressive  

impacts toward the digestion and infer the higher amounts of bioenergy. Lower CBM:PW ratios lead  

to lower recovery. It was, hence, established that a greater fraction of CBM substrate in combination  

with PW caused a synergetic performance with higher and stable yields of bioenergy (Figure 2).  

Figure 3 depicts that in all feedstock ratios there is complete substrate degradation. The energy  

system was continuous. With the daily addition of 4,000 kg of relevant substrates in the reactor, the  

energy recovery rate gradually stabilized and then remained consistent later on the 28th day of  

digestion. It was evident against almost all type of feedstock substrates, indicating that the process is  

reliable. These bioenergy efficiencies are analogous with the results reported earlier (Parawira et al.  

2005), where PWs were digested via an acidogenic reactor. Comparable results of a raised energy  

recovery were obtained by co-digestion of sugar-beet and PW in the initial 10 days, and average  

digestion period and output results are quite consistent with present study (Kryvoruchko et al. 2009).  

In the present study, the best results were obtained with 75:25 respective ratio and having C/N = 15.5  

(Table 3). These findings are correlated with other literature deliberations (Misi and Forster 2001a,  

2001b), whereas the digestion synergism when employing more than one substrate was also  

confirmed previously (Callaghan et al. 2002).   

The corresponding amounts of electrical energy generated in the ratios 100% CBM, 100% PW,  

25% CBM:75%, 50% CBM:50% PW, and 75% CBM:25% PW were calculated as 95.0, 108.6, 108.8,  

126.7, and 151.6 kWh/1,000 kg wet mass, respectively. It depicts the realization potential of the  

system based on the best available and accessible feedstock. Likewise, their ratios can be adjusted and  

managed keeping in view the best energy yielding and economically optimal conditions. Similar  

energy yields with a two-stage AD system for various ratios of sugar beet and PW as feedstock were  

demonstrated (Parawira et al. 2005).   

 

Bioenergy recovery from pure PW 
 

The bioenergy efficiencies (m
3
/1,000 kg wet mass) against 100% PW are presented in Figs. 2 and 3. 

Bioenergy generation from this substrate was also deliberated for a period of 2 months, i.e., MarchApril 

2017. A mean biogas, bio-methane, and electricity yields of 91.9 m
3
/1,000 kg wet mass, 53 m

3
/1,000 kg 

wet mass, and 108.6 kWh/m
3
/1,000 kg wet mass per month, respectively, were determined during this 

period. Two peak biogas generation rates were observed as 98.5 m
3
 and 100 m

3
 per 1,000 kg wet mass at 

28th and 38th days of digestion, respectively, whereas 94.5% of the bioenergy recovery had been 195 
achieved within 28 days of initial fermentation, against this typical feedstock substrate. Moreover, as 
compared to 100% CBM, 75% CBM:25% PW, and 50% CBM:50% PW, significant differences were 
found in respect of both biogas and methane generation recovery against 100% PW (Table 3). However,  
no significant difference was calculated in biogas and methane yields relative to the substrate mix of 25% 

CBM:75% PW. Liu et al. (2009), Sanaei-Moghadam et al. (2014), and Zhang et al. (2014) also 200 

deliberated the similar bioenergy yields based on the AD of various food waste substrates. 

 

Analytics of COD and VS reduction 
 
The efficiency of an AD bioenergy reactor can be ascertained via COD and VS measurements, and these 

were also measured for all the feedstock substrates experimented and employed at this mediumlarge 

industrial bioenergy plant. These were observed and analyzed twice, i.e., at the 205 commencement and at 

the culmination points during each 2-month period of utilization of each 
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type of feedstock substrate as per Table 1 and Figure 4. As such the calculated aggregates of COD  
reduction ranged from 56.9%, i.e., the lowest value measured for 25% CBM:75% PW, to 70.6% as the  

highest value for 100% CBM. The average COD reduction against all feedstock substrates was about  

60.3% although this percentage decreased with the decreased addition of co-substrate, i.e., potato  

waste. The highest COD reduction occurred for the 75% CBM:25% PW mix, where also the highest  

energy yield and energy productivity were obtained. Similar COD removal efficiencies of 53–70%  

were reported (Sanaei-Moghadam et al. 2014) for the co-digestion of press water and food waste.  

Other studies (Borui, Sun, and Wang 2013; Safari et al. 2011) regarding AD treatment of MSW  

leachate reported COD reductions in the range of 32–96% and the lower COD reductions were  

correlated to low organic matter loading rates. The average volatile solids eradication was deliberated  

as 53 and 55.6% for the substrates of 100% CBM and 100% PW, respectively. Whereas the average  

VS eradications in other feedstock mixtures having co-substrates were found increasing as 56.4, 62.6,  

and 69.5% against 25% CBM:75%, 50% CBM:50% PW, and 75% CBM:25% PW, respectively  

(Figure 4).  

Error and regression analysis  

Table 4 portrays the error analysis of the presented, i.e., bioenergy recovery efficiency versus the rate  
of eradication of VS on this typical industrial scale AD plant, where MAD was found as 1.12 which  

referred to be an adequate error value for such energy efficiency forecasts. Likewise, MSE was the  

calculated average of the squared forecast error and its value here, i.e., 1.5, shows that expected and  

predicted values have been quite close, as such data are reliable. Moreover, MAPE value, 0.02 as  

represented in Table 4, further strengthens the argument, as this value is easier to interpret and a  

smaller MAPE value indicates that the data depictions and analysis regarding bioenergy productivity  

have been accurate. Lay, Lee, and Noike (1999), Akkaya et al (2015), and Rahman et al. (2017) also  

presented similar data error analysis for their studies on hydrogen production from organic fraction  

of MSW; biogas generation from a UASB reactor via multiple regression model; and optimal ratio  

for anaerobic co-digestion of poultry droppings and lignocellulosic-rich substrates, respectively.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Destruction rates of COD and VS against various digestion ratios of CBM and PW (on a novel industrial scale plant). 
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Table 4. Error Analysis: Bioenergy recovery v/s eradication of VS on industrial scale plant.  
Month Biogas recovery (m3/1000 kg VS) % VS eradication Forecast Error ABS (Error) Squared Error Percent Error 

July 2016 94.4 54.0 53.52 0.58 0.58 0.33 0.01 
Aug. 2016 96.0 52.0 54.05 −2.05 2.05 4.21 0.04 
Sept. 2016 96.0 55.0 54.05 0.95 0.95 0.90 0.02 
Oct. 2016 98.0 56.0 54.71 1.29 1.29 1.66 0.02 
Nov. 2016 102.0 55.0 56.03 −1.43 1.43 2.05 0.03 
Dec. 2016 104.0 58.0 56.69 1.31 1.31 1.71 0.02 
Jan. 2017 123,0 61.0 62.97 −1.57 1.57 2.45 0.03 
Feb. 2017 125.0 64.0 63.63 0.37 0.37 0.14 0.01 
March 2017 142,0 69.0 69.24 −0.54 0.54 0.29 0.01 
April 2017 144.0 71.0 69.90 1.10 1.10 1.21 0.02 

     1.12 MAD* 1.50 MSE* 0.02 MAPE*   
*MAD = mean absolute deviation; MSE = mean squared error and MAPE = mean absolute percent error. 

 

 

The correlation of VS eradication and biogas yield was established using ‘linear regression  
analysis’ and had been plotted as shown in Figure 5. Subsequent linear regression equation and  

the enormous value of R
2
, correlation coefficient, directed about a significant and positive correla-  

tion among the rate of VS eradication and biogas yield (Figure 5), which established that higher  

biogas efficiencies were dependent upon higher OM degradation and VS eradication rates. In an  

identical investigation by Li, Chen, and Li (2010), authors also established a linear regression  

correlation among rates of biogas productivity, total solids, and volatile solids. In a similar regression  

analysis by Akkaya et al (2015), the best correlation coefficients had been established and the relevant   

study, therefore, could predict accurate biogas productivity.  
 

 

Conclusion 
 
This article presented and reviewed the consistent functioning of a novel medium industrial scale 

bioenergy plant, in terms of energy recovery and productivity. Biogas yield and subsequent electricity  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Correlation among bioenergy recovery and eradication of VS on an industrial scale plant. 
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efficiency could be optimally managed and enhanced based on available substrates in a typical   
regional scenario. The long-duration experimental results revealed that feedstock substrate consist- 

ing of 75% CBM plus 25% PW produced the best energy yields, i.e., 124 m
3
 biogas, 77 m

3
 bio- 

methane, and 152 kWh electricity per 1,000 kg of wet mass, respectively. The system performance 

and recovery can be further enhanced by a more direct corrective action if a rapid high-tech online 

quantitative monitoring system could be used.   
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