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Abstract

Multi-layered carbon nanomaterials can have an important role in modern nan-

otechnology. Raman spectroscopy is a widely used analytical technique that is used to

characterise the structure of these materials. In this work, an approach based upon an

empirical potential for the simulation of the Raman spectroscopy of carbon nanoma-

terials [Carbon, 113 (2017) 299] is extended through the addition of a term to describe

the Van der Waals interaction between layers of sp2 hybridised carbons. The resulting

model accurately describes the properties of the shearing modes of few layer graphene

and is used to characterise the low frequency modes of multi-walled carbon nanotubes

and carbon nanofibres.
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Introduction

Carbon nanomaterials, such as carbon nanotubes (CNTs)1 and graphene,2 can have remark-

able structural, mechanical, magnetic and electronic properties, and these properties can be

exploited in modern nanotechnology.3,4 Carbon nanomaterials that contain several layers,

for example multi-walled carbon nanotubes or bi-layer graphene, add a further dimension to

carbon nanoscience. These materials can exhibit different properties compared with their

single layer counterparts with lower aspect ratios, as well as bypassing limitations in the

processing and assembly of single layer systems.3

The high level of interest in the processing, modification, and customisation of these

materials has led to a demand for techniques that can accurately characterise carbon nano-

materials. Raman spectroscopy is a fast and non-destructive technique that is well suited

to characterise key elements of these materials, and is routinely used to provide information

on the structure, bonding and environment of CNTs5 and graphene,6 including details on

CNT diameter, chirality and defects. The most intense mode in the Raman spectroscopy

of graphene and carbon nanotubes is the G band which arises from planar vibrations of the

carbon atoms. For CNTs this band can be split into the G+ and G− bands, which corre-

spond to in-plane movements along and perpendicular to the CNT axis, respectively. The

G band can be used to determine whether a CNT is metallic or semi-conducting, and allows

for the qualitative assignment of the chiral indices of a CNT. A further key mode in the

Raman spectroscopy of CNTs is the radial breathing mode (RBM) which corresponds to a

coherent expansion and contraction of the carbon atoms in the radial direction and is known

to depend on the diameter of the CNT. A further weak band is the disorder-induced D band,

which is associated with sp3 defects in CNTs,7 and the ratio of the intensities of the G and

D bands can be used to probe the degree of covalent functionalization of CNTs.8

Recent reviews summarise the key experimental measurements on the Raman spec-

troscopy of few-layer graphene (FLG).9,10 Ferrari and co-workers11 have reported Raman

measurements of FLG of up to 10-layers revealing the Raman active interlayer shear mode
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which involves the relative motion of adjacent planes of carbon as illustrated in figure 1.

The bulk shear mode of graphite lies between 43 and 44 cm−1, and it was shown that the

highest frequency Raman active interlayer shear mode has a frequency that is dependent on

the number of layers (NL) according to

ωN =
1√
2πc

√
α

µ

√
1 + cos

( π

NL

)
(1)

where µ is the mass per unit area of single layer graphene and has a value of 7.6 × 10−27

kg Å−2 and c is the speed of light. Through fitting to experimental data the parameter α

which represents the interlayer coupling strength was estimated to be 12.8× 1018 Nm−1. It

was noted that this shear mode will be present in all layered materials and can be used to

probe interlayer interactions. In contrast to the shearing mode, the frequency of the G band

was not dependent on NL. The Raman spectra for the shearing modes was reported to be

dependent on the stacking pattern in tri-layer graphene.12 Lui and Heinz have studied the

evolution of the layer breathing modes of FLG using electronically resonant overtone Raman

bands.13

Figure 1: The normal mode displacement of the doubly degnerate E2g shear mode (31 cm−1)
in bilayer graphene.

A number of studies have measured the Raman spectroscopy of multi-walled carbon

nanotubes (MWCNTs) which reveal low frequency Raman modes which are associated with

RBMs.14–16 These modes are of interest owing to their dependence on the diameters of the

concentric tubes, and a relationship between the RBM frequency and the inner-diameter of a
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double-walled carbon nanotube has been developed.17 However, the situation for MWCNTs

is more complex since the RBMs of the concentric tubes will not act as independent oscillators

because the Van der Waals interaction between the tubes can be sufficiently large that the

individual vibrations couple together. The interpretation of the Raman spectra of MWCNTs

is more complex than for single-walled nanotubes, and a lack of theoretical studies means

that the interpretation of the experimental spectra is usually based on established results

obtained for single-walled tubes.18

Accurate simulations of the Raman spectroscopy of carbon nanomaterials have the poten-

tial to assist with the interpretation of experimental measurements since they can establish

the relationship between the structure and the observed Raman features. This is partic-

ularly important for materials with structural defects or disorder.19 A number of groups

have studied the infrared and Raman spectroscopy of carbon nanomaterials based upon

density functional theory (DFT) based harmonic frequency calculations. These studies in-

clude C60 and C70,
20–25 [n]cycloparaphenylenes26,27 and a nanotorus.28 Performing a DFT

based harmonic frequency analysis for CNTs is challenging owing to the computational cost.

In general, two approaches to the study of nanotubes are adopted. In the first of these

approaches, a finite model of the nanotube is used, which can be capped using a fullerene

fragment or with hydrogen atoms.29,30 Examples of this approach include calculations of the

diameter dependence of the RBM of zigzag nanotubes,31 studies of vibrational spectroscopy

of ultra-small nanotubes32 and larger nanotubes consisting of up to 120 carbon atoms.33 The

Raman spectroscopy of larger nanotubes have been studied exploiting a cartesian coordinate

transfer technique.34 Alternatively, a periodic formalism can be adopted and the effect of

SW and di-vacancy defects on Raman spectra has been studied35 using plane-wave based

periodic DFT.

Other computationally less expensive methods including tight-binding DFT have been ap-

plied to study the vibrational spectroscopy of fullerenes36,37 and CNTs.38,39 The vibrational

density of states of carbon nanotubes have been simulated based upon a semi-empirical
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potential.40,41 Recently, we introduced an empirical model for the simulation of the Ra-

man spectroscopy of carbon nanomaterials in which the Murrell-Mottram potential was re-

parameterised to reproduce the DFT structure and Hessian matrix of C60.
42 The harmonic

frequencies calculated using this potential are combined with Raman intensities computed

using the bond polarisation model (BPM)43 and allowed the Raman spectra of carbon ma-

terials consisting of several thousand carbon atoms to be simulated. Subsequently, the role

of defects on the Raman spectroscopy of CNTs and graphene, and the Raman spectroscopy

of carbon nanotube junctions were studied.

The shearing and breathing modes of FLG have been studied using a generalized force

constant model.44 An inter-layer interaction term has been included in a tight-binding DFT

approach and used to study the low frequency phonons of FLG, MWCNTs and carbon

onions.45 The RBMs of MWCNTs have been studied using a range of approaches including

treating the nanotubes as a set of concentric cylindrical shells with an inter-tube interaction

based upon the Lennard-Jones potential,46 addition of a Lennard-Jones Van der Waals term

to an intra-layer force constant model47 and valence force field model.48 In this paper we

describe the extension of our Murrell-Mottram based potential to treat multi-layered carbon

materials by the addition of a dispersion term. This term is adapted from the dispersion

correction of Grimme49 that is routinely included in DFT calculations. Raman spectra are

computed using the BPM, and subsequently the low frequency Raman active modes of FLG,

MWCNTs and nanofibres are studied.

Computational Details

The Murrell-Mottram (MM) potential50 represents the interaction between atoms through

a sum of two-body and three-body contributions. For a system of N atoms, the potential
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takes the following form:

E =
N∑
i

N∑
j=i+1

V
(2)
ij +

N∑
i

N∑
j=i+1

N∑
k=j+1

V
(3)
ijk (2)

where

V
(2)
ij = −D(1 + a2ρij) exp(−a2ρij) (3)

V
(3)
ijk = DP (Q1, Q2, Q3) exp(−a3Q1) (4)

ρij = (rij − re)/re. (5)

The two-body potential V
(2)
ij is represented by a Rydberg function, where rij is the distance

between atoms i and j. D and re are parameters that are chosen such that the energy and

structure are described accurately. The terms exp(−a2ρij) and exp(−a3Q1) are damping

functions which depend on the parameters a2 and a3, and they ensure the potential converges

to zero energy at infinite interatomic separation. P (Q1, Q2, Q3) is a quartic polynomial

P (Q1, Q2, Q3) = c0 + c1Q1 + c2Q
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2
2 +Q2
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2
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4
1 + c8Q
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3
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where Qi are symmetrical coordinates

Q1 =
1√
3

(ρij + ρik + ρjk) (7)

Q2 =
1√
2

(ρij + ρik) (8)

Q3 =
1√
6

(2ρij − ρik − ρjk). (9)
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The term Q1 describes the perimeter of the interaction triangles, while Q2 and Q3 describe

the distortions of the triangles from being equilateral and c0 to c10 are parameters that need

to be determined.

Parameters for the MM potential have been developed for a wide range of elements for

the study of metal clusters,51–58 and also for non-metallic elements including carbon, silicon

and germanium.58–60 In an earlier parameterisation for carbon reported by Eggen et al.,60 the

potential was fitted to the phonon frequencies and elastic constants of diamond and to the

cohesive energy and intralayer spacing of graphite in addition to other structural data. It was

noted that small carbon clusters and fullerenes will both have π-bonding electronic effects,

which are missing in diamond which has only sp3 carbons. Consequently, the potential

will not be well suited to describe CNTs and graphene-based materials. Recently, we re-

parameterised the MM potential to describe the structure and vibrational frequencies of

carbon nanomaterials using a Monte-Carlo hessian-matching approach to reproduce data

from DFT calculations.42 This potential was applied to study the vibrational spectroscopy

of single-walled carbon nanotubes and graphene.

In order to model multi-layer carbon materials, the potential needs to be extended to

include the Van der Waals interactions between the layers. A dispersion term has been added

to the MM potential, so the potential now has the form

E =
N∑
i

N∑
j=i+1

V
(2)
ij +

N∑
i

N∑
j=i+1

N∑
k=j+1

V
(3)
ijk +

N∑
i

N∑
j=i+1

V
(Disp)
ij . (10)

The dispersion term introduced by Grimme49 for including dispersion interactions into DFT

calculations is used.

V
(Disp)
ij = −s6

N−1∑
i

N∑
j=i+1

Cij
6

R6
ij

fdmp(Rij) (11)

where Cij
6 is the dispersion coefficient for atom pair ij, s6 is a global scaling factor to

account for the different behaviour of the intermolecular potential especially at intermediate

distances, and Rij is the inter-atomic distance between atoms ij. The damping function
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fdmp(Rij) is given by

fdmp(Rij) =
1

1 + e
−α(

Rij
R0
−1)

(12)

where R0 is the sum of atomic Van der Waals radii and α is a damping parameter. This

function removes the singularity at Rij = 0 and ensures that the dispersion contribution

becomes insignificant below the Van der Waals separation and, consequently, the covalent

bonds described by the MM potential are not significantly affected.
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Figure 2: The variation of the Grimme dispersion correction with atomic distance for B3LYP
(solid black line) and MMV ib+D (broken red line) parameters.

The dispersion term has been optimized such that it predicts the interlayer spacing (3.35

Å) and the frequency of the shear mode (31 cm−1) of bilayer graphene correctly. Using the

existing parameters for the widely used B3LYP exchange-correlation functional gave values

of 3.16 Å and 11 cm−1 for the interlayer spacing and shear mode frequency, respectively. The

value for R0 of 1.452 Å used for B3LYP is significantly lower than the sum of the experimental

Van der Waals radii, and we use a value of 1.75 Å which is more consistent with experiment.

The value for Cij
6 is not changed from the B3LYP parameterisation, and the values of s6 and

α have been modified such that the experimental values for bilayer graphene are predicted

correctly. For systems that contain a single atom type, such as the ones considered here, the

separate consideration of the Cij
6 and s6 parameters is not necessary but for systems with
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different atom types, separate consideration of these parameters might be required. The full

parameters for the potential are given in Table 1 and the variation of the dispersion term

with interatomic distance is shown in Figure 2. We note that the choice of the parameters

for the dispersion term are not unique and several different parameterisations have been

explored, but we find the parameters used give results consistent with known data for larger

systems (see later).

Table 1: Parameters for the Murrell-Mottram potential with dispersion

Parameter MMV ib+D

D / eV 6.298
re / Å 1.313
a2 7.428
a3 8.072
c0 7.788
c1 3.917
c2 -17.503
c3 -51.427
c4 99.263
c5 -39.772
c6 70.505
c7 73.262
c8 3.831
c9 65.696
c10 -85.307
s6 2.06

Cij6 / J nm6 mol−1 1.75
R0 / Å 1.75
α 28.00

In order to simulate Raman spectra it is necessary to compute the Raman intensities

associated with the normal modes. This is achieved using the empirical bond polarisabilty

model (BPM).61,62 In this approach the bond polarisability for a pair of atoms is given as

Πµν =
1

3

(
α|| + 2α⊥

)
δµν +

(
α|| − α⊥

)(RµRν

R2
− 1

3
δµν

)
(13)

where µ and ν are Cartesian coordinates and R is the vector connecting the two atoms linked

by the bond. Raman intensities can be calculated from derivatives of equation 13 with re-

10



spect to the normal modes, and equations for these derivatives can be found elsewhere.43,63(
α|| + 2α⊥

)
and

(
α‖ − α⊥

)
and the associated derivatives

(
α′‖ + 2α′⊥

)
,
(
α′‖ − α′⊥

)
are em-

pirical parameters. Here we adopt the parameters used by Saito et al., for modelling CNTs62

and graphene.61 For CNT
(
α′‖ + 2α′⊥

)
= 4.7 Å2,

(
α′‖ − α′⊥

)
= 4.0 Å2 and

(
α‖ − α⊥

)
= 0.04

Å3 and for graphene
(
α′‖ + 2α′⊥

)
= 7.55 Å2,

(
α′‖ − α′⊥

)
= 2.60 Å2 and

(
α‖ − α⊥

)
= 0.32

Å3. The BPM needs to be modified to account for the interlayer interactions. We use the

approach of Luo et al.,64 wherein Van der Waals interactions are treated as weak covalent

bonds between layers, and that the BPM includes these bonds as well. With this treat-

ment the Raman spectrum can be decomposed to purely Van der Waals interlayer modes

or covalent vibrational mode contributions. The parameters used in the BPM have not be

re-optimized for the interlayer modes since we are primarily concerned with identifying the

Raman active modes rather than a quantitative prediction of the Raman intensities and the

sparsity of experimental data makes such a parametrisation difficult.

Within the framework of this empirical model it is possible to perform calculations for

very large systems containing thousands of atoms. Calculations can also be performed with

periodic boundary conditions, opening the possibility to have large unit cells. Structures

were optimized using the conjugate gradient method with a gradient convergence criterion

of 10−8 Eh Å−1, and a spherical cut-off was applied to the potential with a radius of 8 Å.

The value for the cut-off was chosen such that the root mean squared error in the computed

frequencies for model systems was less than 0.1 cm−1. Harmonic vibrational frequencies and

normal modes were calculated through diagonalisation of the mass-weighted hessian matrix,

and in this work the frequencies of the inter-layer vibrational modes are not scaled. The

vibrational modes were visualized using IQMOL, and Raman spectra were generated by con-

volution with Lorentzian functions.
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Results and Discussion
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Figure 3: A comparison of a typical experimental Raman spectrum of a (6,6) carbon nan-
otube65 (red) with the simulated spectrum using MMV ib and the BPM (blue). The computed
spectrum generated using a FWHM=20 cm−1.

Figure 3 shows a comparison between Raman spectra for a (6,6) single-walled nanotube

computed with the MMvib potential for a carbon nanotube of 8 nm length and experiment.

The computed spectrum shows the G− (1524 cm−1) and G+ (1611 cm−1) bands and the RBM

(300 cm−1) in excellent agreement with experiment with respect to the frequency and relative

intensity. The intermediate frequency band is also evident in the computed spectrum at 622

cm−1. The additional intensity observed in experiment in the mid-frequency range that is

not present in the calculation is likely to be associated with the fact that the calculations

consider a single pristine nanotube while the experiment will measure an imperfect nanotube

bundle. This demonstrates that the MMvib potential does provide a good description of the

vibrational modes of single-layer sp2 based carbon materials.

FLG is the simplest and most extensively characterised multi-layered carbon material to

assess the MMV ib+D potential. Figure 4 shows the relationship of the calculated shear mode

frequency for FLG with the number of graphene layers NL for up to 8 layers. The shearing

mode reported in these calculations are the highest frequency Raman active modes and are
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Figure 4: The variation in the shear mode frequency as a function of the number of layers,
N , of graphene computed using MMV ib+D (triangles) and its fitting to equation 1 (red) and
experimental fitting (blue).11

computed using periodic boundary conditions with a unit cell of dimensions 51.22 x 51.75

Å in the plane of graphene and the AB stacking pattern. The calculations reproduce the

trend observed in experiment and predict the frequencies to within about a 1 cm−1 error.

Fitting the theoretical data to equation 1 gives an interlayer coupling value of 13.1 × 1018

Nm−1, which is in excellent agreement with the experimental value of 12.8 × 1018 Nm−1.11

The calculations also showed the frequency of the G band to be independent of the number

of layers.

FLG with NL layers will have NL − 1 shear modes. These additional shearing modes

will have different displacement patterns and frequencies. These modes can be either Ra-

man active, IR active or both, however, experiments have not yet been able to probe these

modes in detail owing to their low intensities. Figure 5 shows the range of shearing modes

and the computed frequencies for 2LG to 5LG and bulk graphite. Also included are the

DFT-LDA computed frequencies from earlier studies.9,11 The use of LDA to study layered

carbon materials is counter-intuitive since this exchange-correlation functional does not ex-

plicitly describe dispersion. However, LDA is widely used to study these materials and has

been shown to give excellent results for the in-plane and c-axis lattice constants, as well
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43.50 (44) cm-1

Figure 5: The normal mode displacements and frequencies for in-plane shear modes of NLG
for N = 2−5 and bulk graphite computed using MMV ib+D. Ab initio DFT-LDA frequencies
from Ferrari et al.11 are given in the parenthesis. *Value taken from Ping-Heng et al.9

as interlayer binding energies of graphite.66–70 This success is likely to be predicated on a

fortuitous cancellation of errors. There is a very close agreement between the frequencies

from the MMV ib+D potential and DFT-LDA. We note that the method used here is much

less computationally expensive than DFT, and calculations presented have a small fraction

of the computational cost of comparable DFT-LDA calculations.

The computed Raman spectra for 3-layer graphene are shown in Figure 6. In these calcu-

lations the graphene layers lie in the xy-plane. The shearing modes appear in the spectrum

with xy-polarisation since these vibrational modes comprise of in-plane displacements. Both

of these modes are known to be Raman active.11 We note that the intensities are derived

from the BPM using parameters that were developed for the intralayer vibrational modes.

Consequently, the predicted intensities should be regarded a qualitative. In the z-polarised

spectrum the inter-layer breathing mode is observed. The predicted frequency of the this

mode is higher than the experimental value of 90 cm−1 derived from the overtone band.9

The consistency between the predictions of the MMV ib+D potential and the established

data for FLG provides a foundation to apply the potential to study some less well un-

derstood systems. Here we investigate a set of prototypical multi-walled armchair nan-

otubes: (10,10)@(15,15), (15,15)@(20,20), (20,20)@(25,25), (10,10)@(15,15)@(20,20) and

(10,10)@(15,15)@(20,20)@(25,25), where the notation (10,10)@(15,15) denotes a nanotube
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Figure 6: The calculated Raman spectra of 3-layer graphene with xy and z-polarisation.
The spectra are generated using a FWHM=5 cm−1.

DWCNT

20.3 cm-1

Frequency cm-1

 24.5 cm-1

 11.9 cm-1  20.8  cm-1  27.04 cm-1

4WCNT

 14.5 cm-1

TWCNT

Figure 7: The normal mode displacements and frequencies for the linear shear modes
of MWCNTs computed using MMV ib+D for (10,10)@(15,15), (10,10)@(15,15)@(20,20) and
(10,10)@(15,15)@(20,20)@(25,25).
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with chiral indices (10,10) inside one with chiral indices (15,15). The interlayer separation for

these nanotubes lies between 3.37-3.45 Å, consistent with experimentally observed tubes,71

and with a unit cell of length 48.2 Å along the axis of the nanotube. Similar to FLG, for a

given number of tubes, NT , there will be NT − 1 shearing modes. In MWCNTs two types of

shearing modes emerge, a set of linear modes that involve displacement along the tube axis

and a set of rotational modes that involve displacement around the tube axis. These modes

along with the calculated frequencies are shown in figures 7 and 8. The calculations show

the frequencies of the linear shearing modes to be larger, with an analogous progression to

the modes seen in FLG. The same can be said for the rotational modes, but the frequencies

are much lower for these modes. The lower frequencies of the rotational modes indicates

a lower energy of rotation compared with linear displacement. Double-walled tubes have

one rotational and one linear shear mode. Figure 9 shows the variation of the frequency of

these modes with the diameter of the inner tube. The linear shear mode shows no strong

dependence on the diameter and is approximately constant at 20.5 cm−1. In contrast, the ro-

tational shear mode decreases significantly in frequency with increasing diameter, converging

very close to zero.

DWCNT

Frequency cm-1

4.5 cm-1

 0.3 cm-1  4.5 cm-1

 0.4 cm-1  5.8 cm-1  9.2 cm-1

TWCNT

4WCNT

Figure 8: The normal mode displacements and frequencies for the rotational shearing modes
of MWCNTs computed using MMV ib+D for (10,10)@(15,15), (10,10)@(15,15)@(20,20) and
(10,10)@(15,15)@(20,20)@(25,25).

Popov and Henrard employed a fixed force constant model with a Lennard-Jones po-
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Figure 9: Variation of the frequencies of the rotational (red) and linear (black) shear modes
with the diameter of the inner tube in a DWCNT. The dimensions of the tube at 0.68 (1.36),
1.36 (2.03), 2.03 (2.71) and 2.71 (3.39), where the outer tube diameter is in parenthesis.

tential between the concentric tubes to study the RBMs of MWCNTs.48 It was established

that RBMs in MWCNTs with similar frequencies interact, leading to vibrational modes of

strongly mixed character. These modes can be referred to as coupled radial breathing modes

(CRBMs). Figure 10 shows the CRBMs computed using MMV ib+D for a series of armchair

MWCNTS with the corresponding SWCNT RBMs and contributing tubes to the normal

mode shown with arrows. The data shows that as the number of walls in the tube increases,

the degree of mixing of the RBMs tends to increase. In all cases the totally in-phase mode has

the lowest frequency, while the out-of-phase mode has the highest frequency. The CRBMs

in between comprise a mixture of in-phase and out of phase motions. This is physically

intuitive since it suggests that the energy barrier for the in-phase motions is lower. It is also

possible to compare the vibrational frequencies of the coupled modes with the frequencies of

the respective isolated nanotubes. For the double-walled (10,10)@(15,15) nanotube there is

a significant shift in the frequencies of the RBMs, despite there only being a small degree of

mixing of the modes. There is a shift to higher frequency of 16.9 cm−1 for the (15,15) and

an even larger shift of 38.7 cm−1 for the inner (10,10) tube. For the triple-walled nanotube

the low frequency mode associated with the outer tube is shifted by 19.4 cm−1, while the
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modes arising from the inner tubes are shifted by over 45 cm−1, in particular the (15,15)

tube is now restrained from the inner direction by the (10,10) tube and from the outer by

the (20,20) tube. There is also a further increase in the highest frequency mode, and this

trend continues for the four nanotube system. When there is a large difference in RBM

frequencies, for example in the (5,5)@(10,10) double-walled nanotube, there is no, or very

little, coupling between the RBMs. The computed Raman spectra for the low frequency

region of the MWCNTs are shown in figure 11. The spectra in this region are dominated

by the CRBMs and the shearing modes are too weak to feature. The calculations predict

that the most intense mode is one with the lowest frequency and corresponds to the in-phase

CRBM.

 154.5 cm-1 

In phase

 243.6 cm-1 

Out of phase

 204.0 cm-1

249.2 cm-1 
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200.6 cm-1 

Mixed 

 121.6 cm-1 
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Figure 10: RBMs and CRBMs of the SWNTs (10,10), (15,15) and (20,20)
and their MWCNT counterparts (10,10)@(15,15), (10,10)@(15,15)@(20,20) and
(10,10)@(15,15)@(20,20)@(25,25) with the contributing SWNTs to the CRBMs shown with
arrows.

A more recent class of carbon nanomaterials are graphitic nanofibres which comprise
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Figure 11: Computed Raman spectra for the MWCNTs with the frequencies of the CRBMs
shown.

layers of nanocones stacked parallel or at an angle from the fibre axis. Nanofibres have

been observed in transmission electron microscopy and can have either a solid or hollow

core. These structures have a large number of reactive edges making them versatile materi-

als.72,73 Here we consider hat stacked carbon nanofibres which are the multi-layer analogues

of nanocones. These materials have a separation of 0.34 nm, which is comparable to FLG.

The attraction of these materials arise from applications in polymer conductive composites

which are materials that exhibit superior electrical and thermal properties compared to con-

ventional conductive polymer composites.74 The Raman spectroscopy of nanocones and the

associated nanofibres is not well characterised, and here we explore the relationship between

structure and Raman spectra for these materials.

Before considering nanofibres, we will consider the Raman spectroscopy of nanocones.

Carbon nanocones are conical carbon nanostructures, which can be viewed as curved graphite

sheets formed as open cones. These cones are constructed by removing sections of graphene
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(a) n=1, c=112.9o (b) n=2, c=83.6o

(c) n=3, c=60.0o (d) n=4, c=38.9o

(e) n=5, c=19.2o

Figure 12: Carbon nanocone structures with apex pentagon number, n and apex angle, χ.
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Figure 13: Computed Raman spectra for the carbon nanocone χ=60◦. Inset the CBMs for
χ = 19.2 - 112.9◦.
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at n × 60◦ (n = 1 - 5) intervals and connecting the resultant edges (shown in figure 12).

The strain at the cone apex results in n pentagons with apex angles (χ) of 112.9◦, 83.6◦,

60.0◦, 38.9◦ and 19.2◦.75 There are currently few studies into the Raman spectroscopy of

these systems, however, a study by Campos et al.76 utilised the shift in G band of these

systems to map out the strain over a nanocone through Raman imaging. Figure 13, shows the

computed Raman spectra for the carbon nanocone with χ=60◦. The highest intensity mode

lies at 1639 cm−1 and corresponds to the G band for these materials. In the lower frequency

region (0 - 400 cm−1) region lies the conical breathing mode (CBM). The spectra show that

the frequency of this mode increases with the apex angle, and this increase is linear in the

region studied and fits the equation ωCBM(cm−1) = −1.41χ + 289.54. Such a relationship

could facilitate the assignment of carbon nanocones in experiment and determination of

distributions. The frequency of the G band also depends on the apex angle, with it varying

between 1613 cm−1 for χ = 19.2◦ and quickly converging to 1648 cm−1 for χ = 19.2◦. This is

not surprising since MMV ib predicts a G band frequency of 1610 cm−1 for a typical nanotube

and small angle cones will have structures closer to a cylinder, while those with wider angles

tend to have much flatter structure have a value closer graphene.

In order to explore the potential of Raman spectroscopy as a tool for characterising the

structure of nanofibres we study a nanofibre constructed from a n = 3, χ = 60.0◦ nanocone

with either 3 or 4 units. As discussed previously, these nanofibres can have either a solid

or hollow core. The hollow core is elliptical in shape and its size is defined as dt, where dt

is the length of the major axis of the ellipse. These structures are illustrated in figure 14.

The simulation of the Raman spectra for the hollow core structures reveal two Raman active

modes in the low frequency region. These two modes have the characteristics of a bending

mode and RBM, and are referred to as a distorted bending mode (d-BM) and distorted radial

breathing mode (d-RBM), respectively. The frequency of the both of these modes increases

with increasing diameter of the cone. This is in contrast to the well established behaviour of

the RBM in CNTs and is a consequence of the the mass decreasing with increasing diameter.
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(a)

(b)

dt

Figure 14: Representation of the structure of a solid (a) and hollow (b) cup stacked graphitic
nanofiber built from a n = 4, χ = 60.0◦.

Conclusions

An empirical potential for carbon that has been designed for the calculation of the vibrational

frequencies of carbon nanomaterials has been extended to include a dispersion term. This

term has been parameterised to predict the inter-layer spacing and shear mode frequency of

bi-layer graphene correctly. When combined with the BPM for Raman intensities it provides

a computationally inexpensive approach for the simulation of the Raman spectroscopy of

layered carbon nanomaterials. This approach can accurately describe the variation in the

shearing mode frequencies of FLG, and has been applied to study the Raman active low

frequency modes in MWCNTs and a carbon based nanofibre. The RBMs in MWCNTs can

couple together, and the shift to higher frequency compared with the isolated nanotubes

can be quantified. The resulting mode with the lowest frequency corresponds to an in-phase

vibration and is predicted to have the greatest intensity. The low frequency Raman active
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modes identified for the nanofibre are sensitive to the core diameter of the fibre and have the

potential to be used to characterise these materials. This approach provides a platform for

investigating the effect of structural defects on the low frequency modes, and these studies

are currently underway.
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