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Charge-carriermobility is a fundamental material parameter, which plays an important role in determining
solar-cell efficiency. The higher the mobility, the less time a charge carrier will spend in a device and the less
likely it is that it will be lost to recombination. Despite the importance of this physical property, it is
notoriously difficult tomeasure accurately in disordered thin-film solar cells under operating conditions.We,
therefore, investigate a method previously proposed in the literature for the determination of mobility as a
function of current density. The method is based on a simple analytical model that relates the mobility to
carrier density and transport resistance. By revising the theoretical background of the method, we clearly
demonstrate what type of mobility can be extracted (constant mobility or effective mobility of electrons and
holes). We generalize the method to any combination of measurements that is able to determine the mean
electron and hole carrier density, and the transport resistance at a given current density. We explore the
robustness of the method by simulating typical organic solar-cell structures with a variety of physical
properties, including unbalancedmobilities, unbalanced carrier densities, and for high or low carrier trapping
rates. The simulations reveal that near VOC and JSC, the method fails due to the limitation of determining the
transport resistance. However, away from these regions (and, importantly, around the maximum power
point), the method can accurately determine charge-carrier mobility. In the presence of strong carrier
trapping, the method overestimates the effective mobility due to an underestimation of the carrier density.
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I. INTRODUCTION

Thin-film solar cells based on disordered materials
such as organic carbon-based conducting molecules or
amorphous inorganic semiconductors have great potential
as a low-cost, low-carbon source of electricity. For
such devices to be efficient, the photoabsorber must be
able to efficiently transport charge to enable low resistive
losses and reduced current loss via recombination. The
figure of merit for charge transport is charge-carrier
mobility. In traditional inorganic semiconductors, this
mobility can be as high as 4 × 103 cm2=ðV sÞ, while in
disordered materials, it is typically in the range of
10−5–10−4 cm2=ðV sÞ. A low mobility will reduce the fill
factor (FF), short-circuit currents, and open-circuit volt-
age [1,2]. Unfortunately, even for nominally identical
disordered materials, there exists a large variation of
reported charge-carrier mobility values, with the reported
values depending strongly upon the measurement tech-
nique employed [3,4]. Part of the reason for this variation
is that carrier mobility is a strong function of carrier
density in these disordered material systems. This is

because at low carrier densities, proportionally more deep
trap states will be occupied, and, thus, on average it will
be energetically difficult for charge carriers to move.
As the charge density is increased due to the Pauli
exclusion principle, higher states will be filled where
transport is energetically easier [5–11]. However, many
measurement techniques inherently neglect this depend-
ence. Furthermore, the measurement conditions (such as
applied-bias voltage, light intensity, or device geometry)
vary from method to method. This also means that charge-
carrier density varies from method to method, making it
difficult to compare mobility values between material
systems. This creates the need for a reproducible meas-
urement technique, which can consistently measure
charge-carrier mobility as a function of charge-carrier
density. Furthermore, it should be noted that for mobility
to be a useful figure of merit for a light-harvesting device,
values should be compared at the maximum power point
under steady-state operating conditions; hence, there is a
need to be able to reliably evaluate mobility as a function
of current. Finally, before going further, it should be noted
that measuring mobility in disordered semiconductors is
a difficult problem to solve due to the charge-carrier
mobility being a function of carrier density and the fact*helmut.maeckel@gmail.com
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that often in disordered materials, any change in device
structure (even a change in bottom contact) can change the
morphology or electrical properties of the subsequently
deposited layers. Thus, it is difficult to use techniques
from inorganic semiconductor physics, such as Hall probe
measurements, which require special device structures to
be fabricated. Consequently, experimentalists have had to
come up with ingenious methods to tease mobility out of
working devices.
The most common methods to determine mobility are

steady-state space-charge-limited current (SCLC) [12],
time of flight (TOF) [13], dark-injection transient current
(DITC) [14], and charge extraction by linearly increasing
voltage (CELIV) [15]. TOF, DITC, and CELIV assume a
mobility independent of carrier density and suffer from
several drawbacks: For TOF, the dielectric relaxation time
must be larger than the transit time. Moreover, the experi-
ment has to be performed at high negative-bias voltage,
meaning the background charge density will be lower than
is found in an operating device. Finally, photogenerated
charges have to be produced close to one electrode.
Therefore, the device must be optically thick (around
1 μm), and as material microstructure is often a function
of thickness, this makes it difficult to measure functioning
solar cells which are typically only 100 nm thin [15]. For
the DITC method, pulse parameters such as pulse on and
off times have the potential to significantly affect the value
of measured mobility due to charge trapping and detrap-
ping effects [16,17]. Furthermore, the models commonly
used to interpret the results do not take these trapping
effects into account. For CELIV, simulations of organic
solar cells have shown that the technique is only able to
determine an apparent mobility, which can be up to 2 orders
of magnitude different from the actual mobility of the faster
carriers [18]. The reason is rooted in the basic assumptions
made for the theory behind CELIV. Most important, it
requires that the carrier distribution inside the photoactive
layer is given by a uniform sheet of charge carriers, which
is neatly swept out of the device by the applied voltage.
However, due to disorder, most charges in disordered
materials reside in trap states. Hence, the extraction of
charge carriers is altered by trapping and detrapping of
charge carriers. As a result, the shape of the CELIV curve is
affected by the density and distribution of these trap states
and the average carrier mobility changes during the CELIV
measurement.
Unlike the above techniques, with SCLC, the carrier

dependence of mobilities can be determined [5,6,8].
However, the great disadvantage of SCLC is that a hole-
only or electron-only diode structure is required. Very often,
in thin-film devices the electrical properties of the layer will
depend on how the material is deposited (or even on which
layer it is being deposited), and even nominally identical
devices can have differing mobilities. Furthermore, many
organic solar cells rely on a bulk heterojunction absorber
with a closely intermixed network of donor and acceptor

components. In these devices, charge transport is by defi-
nition ambipolar [4]. Additionally, the built-in voltage and
dielectric constantmust be known to apply this technique, the
former being especially difficult to measure in disordered
devices [19]. Finally, another drawback of SCLC is the
difficulty of distinguishing between injection-limited and
space-charge-limited currents.
In 2010, Shuttle et al. [7] proposed a method to determine

the mobility as a function of carrier density. It is based on
the charge-extraction (CE) measurement [20] in which the
solar cell is first held at short circuit under illumination. The
light source is then switched off and the device simulta-
neously short circuited. Provided that recombination losses
are negligible, the integral of the current leaving the device is
ameasure of the excess charge in the cell.Byvarying thebias-
light intensity, one can explore a range of carrier densities,
and with the aid of an analytical model, carrier-density-
dependent mobility can be extracted. Even though the
method is attractive because of its simplicity, it suffers from
several drawbacks: the mobility is accessible only at short-
circuit condition, the analytical model assumes that transport
is driven only by one type of carrier, it requires knowledge of
the built-in potential, and it does not account for diffusion.
Albrecht et al. [21] extended Shuttle’s method so that

any forward-bias condition could be used. Errors due to
recombination between the steady-state illumination and
the transient charge extraction were minimized by rapidly
applying a high reverse bias after switching off the light.
The method is based on the following relationship among
mobility, carrier density, and transport resistance:

μeff ¼
d

2qn̄Rtr
: ð1Þ

Here, μeff is an effective mobility of electrons and holes, J
the current density, d the device thickness, q the elemental
charge, and n̄ the average carrier density extracted from the
measurement.Rtr is the resistance caused by the transport of
electron and holes through the device. In the technique by
Albrecht et al., charge-extraction measurements are per-
formed at two different measurement conditions. Under the
first condition, a forward bias is applied to the device under a
given light intensity before performing charge extraction.
Under the second, the device is held at open circuit before
performing charge extraction. For this condition, the light
intensity is varied until the extracted carrier density matches
the one of the first condition. From the voltage differences of
these two measurements, Rtr is estimated. Together with n̄,
this allows the determination of the mobility as a function of
current density. Albeit, the method requires about twice as
many measurement steps as the one by Shuttle et al., but it
is not hampered by the assumptions made therein. Hence,
neither the built-in voltage has to be known nor has one to
assume that transport is dominated by one type of carrier or
only by drift.
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However, the underlying analytical model proposed by
Albrecht is afflicted by several assumptions, which limit the
general applicability of the method. First, in Eq. (1) it is
assumed that the electron and hole current densities are
equal throughout the device. However, this assumption is
generally not true. Second, the theoretical n̄ in their formula
is equal to the geometrical mean of the electron and hole
densities, while the measurement extracts the arithmetic
mean. This leads to an underestimation of the effective
mobility. Next, it neglects the voltage drop across the outer
circuitry. Finally, Eq. (1) is only valid for the simplification
n̄eðhÞ ¼ neðhÞ ¼ const. This assumes that the carrier density
across the device is uniform, when in fact, in many cases it
exponentially decays away from the contacts.
Equation (1) was also independently established by

Schiefer et al. using another approach [22]. They assumed
a constant and equal mobility for electrons and holes,
which they determined via CELIV. Rtr was extracted from a
combination of a light J-V curve and Suns-VOC curve. With
the help of Eq. (1), they were then able to determine the
average carrier density. The approach by Schiefer et al.
extracts the transport resistance correctly, but it assumes
that the average electron and hole current densities are
equal and contribute equally to the total current.
Furthermore, their approach is limited to the case μ̄h ¼
μ̄e ¼ const and n̄h ¼ n̄e ¼ n̄; however, mobility is known
to be a strong function of carrier density, and as we state
above, the carrier density decreases exponentially as the
distance from the contact is increased.
In this work, we present a simulation study that critically

investigates the work of Albrecht et al. and Schiefer et al.
Revising the derivation of Eq. (1), we demonstrate that the
effective mobility is, in general, a function of the spatially
dependent carrier densities. The method is generalized to
any combination of measurements that is able to determine
the arithmetic mean of the average carrier density of
electron and holes, and the transport resistance at a given
current density. Drift-diffusion simulations of typical
organic solar-cell structures are used to critically assess
the advantages and limitations of the method.
This paper is organized as follows: First, we investigate

reliability of measuring charge density using the transient
photovoltage (TPV) and transient photocurrent (TPC).
Then, for a combination of J-V and transient measurements,
we revisit and generalize the theory behind Eq. (1) for the
extraction of the mobility. Thereafter, we examine the
conditions under which Eq. (1) is valid and where it is not.

II. MEASURING CHARGE-CARRIER DENSITY

For the measurement of the charge-carrier density, two
widely employed techniques are equally appropriate:
charge extraction as presented by Albrecht et al. or a
combination of TPV and TPC measurements [23]. Charge
extraction has the advantage that only one measurement has

to be performed at each current density. However, a general
drawback of charge extraction is the practical aspect of
turning off a 1-sun light source and shorting a steady-state
solar cell quickly enough as not to influence the measured
current transient. Furthermore, the more quickly the cell
and light source are switched, the more pronounced
inductive ringing and rf effects become in the charge-
extraction transients. By using a method called differential
charging [23], where TPV and TPC are used together to
determine charge density, one needs two measurements at
each current density. However, the method is a small-signal
method, so one avoids the parasitic effects associated with
large-signal measurements. Furthermore, TPV will also
provide carrier-lifetime information at the same time, which
can be used to calculate diffusion lengths, another impor-
tant figure of merit. For the above reasons, for this work we
choose the combination of TPV and TPC.
The use of transient voltage and current techniques to

measure the carrier lifetime of minority charge carriers in
p-n junctions has a long history [24]. They are generally
called open-circuit voltage decay (OCVD) and short-circuit
current decay (SCCD). When applied to dye-sensitized
solar cells (DSSCs), the techniques were more recently
dubbed transient photovoltage and transient photocurrent,
respectively. These terms now prevail throughout the
DSSC, organic photovoltaic, and other novel thin-film
solar-cell literature. TPV is mainly used to determine the
carrier lifetime [25–27], while TPC is chiefly applied to
study trapping and detrapping effects [28–30].
In this work, we make use of both the transient voltage

and current techniques, where a steady-state bias light is
used in conjunction with a small perturbation light source
[23,30]. The steady-state bias light is a white-light source,
while the small excitation light source may be a laser or a
single-wavelength LED. Its wavelength range should be
selected in a way so that the generation profile is as uniform
as possible in the device. For this investigation, we opt for a
laser of wavelength 370 nmwith a short pulse width of 5 ns.
In the following, we denote quantities related to the small
perturbation pulse, for example, a small change in carrier
density, with the term “excess” or “Δ.” This is to distin-
guish these quantities from their steady-state counterparts.
Figure 1 illustrates a typical simulation of TPVand TPC

experiments and the information extracted from them. The
upper left panel depicts a TPVexperiment, while the lower
left panel depicts a TPC experiment. The illumination
induces the generation of charge carriers in the device,
which is plotted as a red line in Figs. 1(a) and 1(b). At the
start of the experiment, the device is illuminated with a
steady-state bias light until an equilibrium between gen-
eration, recombination, and in the case of TPC, extraction is
reached. Thereafter, an additional small light pulse is
applied to the device, which is discernible by the vertical
red line in Figs. 1(a) and 1(b). When the device is held
under open circuit, the bias light produces a bias voltage
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Vbias; under short-circuit conditions, a bias current Jbias is
established. The small perturbation light generates excess
charge carriers, which is manifested by an excess voltage
ΔV or excess current density ΔJ. After switching off the
small light source, the voltage and current density decay
exponentially until they reach their bias values. In the case
of TPV, the voltage decay is caused by recombination and
trapping. In the case of TPC, the current decays since the
majority of the excess charge carriers are extracted out of
the device. The intensity of the small excitation light is
attenuated so that the perturbation is small compared to the
bias-light intensity. For TPV, this is to ensure that the
voltage transient takes the form of a single exponential
[23]. Its decay time can be interpreted as the carrier lifetime
of the small excitation carriers [23,31]. The data are usually
read out by an oscilloscope using the 1-MΩ input terminal
for TPV and the 50-Ω input terminal for TPC.

By varying the intensity of the steady-state light source
Ilight, the bias-light-dependent parameters can be deter-
mined. When Ilight is independently measured by a cali-
brated photodetector, Vbias or Jbias can be plotted against the
intensity. This is illustrated in Fig. 1(c) for a simulation of
bias-light-dependent TPV and TPC measurements. The
Vbias-intensity curve shows the typical shape of a diode’s
J-V curve in the dark. It is also known as Suns-VOC curve
[32], and we later use it to construct a JSC-VOC curve,
which is needed for the determination of the mobility. The
Jbias-intensity curve, in turn, reveals a linear dependence
between light intensity and bias-current density.
By a combination of TPV and TPC measurements, the

excess carrier density can be deduced employing a method
known as differential charging [23]. During a current
transient of a TPC measurement, an excess charge ΔQ
or average excess carrier density Δn̄TPC is extracted from
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FIG. 1. Illustration of typical TPV and TPC simulations and the parameters extracted from them. (a) TPV simulation: The red line
depicts the generation rate consisting of a steady-state generation and a small-signal pulse. The blue line is the photovoltage response,
which is composed of the steady-state bias voltage Vbias, a small excitation voltage ΔV, and the monoexponential decay after the small-
signal excitation has been switched off. (b) TPC simulation: The red line shows the same generation rate as in (a). The green line exhibits
the TPC response, which is also made up of the steady-state bias-current density Jbias, a small-signal current density ΔJ, and an
exponential decay after switching off the small-signal excitation. The light blue area under the current transient is the excess charge ΔQ
extracted during the small-signal perturbation. (c) Vbias and Jbias as a function of bias-light intensity Ilight. They are extracted from bias-
light-dependent TPVand TPC simulations, respectively. (d) Excess charge ΔQ and differential capacitance C ¼ ΔQ=ΔV as a function
of bias voltage. ΔQ is determined from a bias-light-dependent TPC simulation; see (b). ΔV is computed from an adjoined TPV
simulation; see (a). The light orange area under the capacitance-voltage curve is proportional to the total photoinduced carrier density at
the upper limit of the integration V.
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the device. In a first approximation, it can be obtained by
integrating the area under the short-circuit current transient
[shown by the light blue area in Fig. 1(b)],

ΔQ ¼ AdqΔn̄TPC ≈ A
Z

tf

t0

ΔJdt; ð2Þ

where A is the device area, d the device thickness, q the
elemental charge, and t0 and tf are the start and finish of the
current transient, respectively [Fig. 1(b)]. In a TPV meas-
urement performed under the same illumination conditions,
the small-signal perturbation induces a photovoltage peak
ΔV [Fig. 1(a)]. We can, therefore, define a capacitance for
the device at any given measurement condition as
C ¼ ΔQ=ΔV; ΔQ and C are depicted in Fig. 1(d) as a
function of bias voltage. It can be seen that both ΔQ and C
exhibit a strong dependence upon Vbias. Now, differential
charging assumes that, starting from dark conditions, the
average excess carrier density can be calculated by sum-
ming CdV while increasing the light bias in small steps. dV
signifies here the increase of Vbias between successive
measurement steps. Integrating C with respect to the
voltage gives the expression for the average carrier density
n̄TPV;TPC as a function of voltage:

n̄TPV;TPCðVÞ ¼
1

Aqd

Z
V

0

CðV 0ÞdV 0: ð3Þ

This integration is depicted in Fig. 1(d) by the light orange
area. It is clear from this derivation that n̄TPV;TPC is only
composed of photoinduced charge carriers and does not
include the dark carrier density. When the bias-light
intensity is varied, the dependence of the carrier lifetime
on excess carrier density can be determined [23]. From this
dependence, other recombination parameters such as the
recombination rate, coefficient, or order can be revealed.
Here, we use bias-light-dependent TPV and TPC measure-
ments as a means of determining the carrier density
n̄TPV;TPC, and from there, the mobility, as we explain in
the next section.
The determination of Δn̄TPC is only valid under certain

conditions. A theoretical derivation reveals the following
relationship between the integrated area under the current
transient and the charge-carrier dynamics [33]:

1

Aqd

Z
tf

t0

ΔISCdt ¼
1

2
ðΔn̄e;init þ Δn̄h;initÞ − ΔσEL

2qd

−
Z

tf

t0

�
ΔJsurf
qd

þ ΔR
�
dt: ð4Þ

Here, Δn̄eðhÞ;init ¼ Δn̄eðhÞjt0 − Δn̄eðhÞjtf denotes the average
excess carrier density, which is initially generated due to
the small-signal pulse. ΔσEL is defined as the change in
charge on the contacts

ΔσEL ¼ ðσd − σ0Þjt0 − ðσd − σ0Þjtf ; ð5Þ

where σd and σ0 are the charge densities (in cm2) on the
left and right metal electrodes, respectively. ΔJsurf ¼
ΔJnð0Þ þ ΔJpðdÞ is the total excess surface recombination
current density due to net electron extraction at the hole-
selective contact ΔJnð0Þ and net hole extraction at the
electron-selective contact ΔJnðdÞ. ΔR is the total excess
recombination rate due to trapping and Shockley-Read-
Hall recombination [33]. With device simulations, we
analyze the contribution of each component of the right-
hand side of Eq. (4) to the integral under the current
transient. For the later discussion, we, therefore, express
Eq. (4) in terms of excess carrier densities:

ΔnTPC ¼ Δninit − ΔnEL − Δnsurf − ΔnR; ð6Þ

where we combine the initially generated excess carrier
density of electrons and holes in the term Δninit. ΔnEL
corresponds to the change in the carrier densities on the
contacts. Δnsurf and ΔnR stand for the excess carrier
densities lost due to surface and bulk recombination,
respectively. Thus, ΔnTPC is equal to Δninit if surface
and bulk recombination, and the change in charge on the
contacts can be ignored. We like to stress the fact that
ΔnTPC is then equal to half the sum of the initial electron
and hole carrier density. This result is derived for any kind
of current transient [33] and is, thus, also applicable to the
charge-extraction method.

III. DETERMINATION OF THE MOBILITY

The concept of mobility in disordered materials is less
straightforward than in crystalline semiconductors.
Crystalline semiconductors possess a highly ordered regu-
lar arrangement of atoms, and Bloch’s theory tells us that
this will produce well-defined transport bands with a
forbidden region separating them (the band gap).
Disordered materials, on the other hand, have no long-
range order, which results in a quasicontinuous distribution
of transport states with no well-defined bands. In these
materials, one can distinguish only between extended and
localized states. The dense bands of delocalized states are
located above and below the band gap. An exponential or
Gaussian tail of localized trap states extends from the
delocalized bands into the band gap. The energy that
separates the extended states from the localized ones is
called the mobility edge. The charge-carrier mobility in the
extended states above the mobility edge is much higher
than that in the localized states below the mobility edge. At
low carrier densities or low temperatures, all carriers reside
in deep traps, meaning that the mobility will be very low.
However, when the temperature is high or there are many
charge carriers, the higher energetic states will be filled, and
carriers will be able to move. A common approach is to
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express mobility, which is dependent upon the filling of
trap states in terms of the ratio of the carrier density located
in extended states versus the total carrier density [18]:

μ̄eðhÞ ¼
1

d

Z
d

0

μ0eðhÞ
nfreeeðhÞðxÞ

nfreeeðhÞðxÞ þ ntrappedeðhÞ ðxÞ dx; ð7Þ

where μ0eðhÞ is the mobility of free electrons or holes
traveling via extended states beyond the mobility edge,
nfreeeðhÞ is the density of free carriers, ntrappedeðhÞ is the density of

trapped carriers in localized states within the exponential
band tail, and d is the device thickness. Hence, if no carriers
are trapped within the band gap, the mobility is constant
and equal to the average mobility of carriers moving
through the extended states. Otherwise, the presence of
the term ntrappedeðhÞ will impinge a carrier dependence on the

mobility μeðhÞ, as trapping and detrapping are strongly
affected by a change of operation conditions. We intend to
determine exactly this carrier-dependent mobility. It is
important to note that in measurements, only the spatially
averaged mobility is accessible.
For this purpose, we revisit and generalize the methods

of Schiefer et al. [22] and Albrecht et al. [21]. The core of
their methods is Eq. (1), which has been independently
established by the two research groups using different
approaches. Both have in common that constant and equal
gradients of quasi-Fermi-levels of electrons and holes were
assumed. We follow mainly the approach of Schiefer et al.
[22], while the one by Albrecht et al. [21] is discussed in
the Supplemental Material [34].
We assume a solar cell with active layer thickness d and

selective Ohmic contacts. Figure 2 depicts a schematic
view of the energy diagram of a solar cell under illumi-
nation and an applied forward voltage VðJÞ. The majority
hole contact is located at x ¼ 0, and the majority electron
contact at x ¼ d. The transport of charges through the

photoactive layer brings about a voltage drop. At a location
x in the device, it is composed of the voltage drop ΔV tr;h

due to hole transport from x to the hole contact and ΔV tr;e

due to electron transport from x to the electron contact.
These voltage drops can be described in terms of the
gradient of the quasi-Fermi-levels of electrons and holes
∇EF;eðhÞ, the driving force for their transport:

ΔV tr;hðxÞ þ ΔV tr;eðxÞ ¼
Z

x

0

∇EF;hðx0Þdx0

þ
Z

d

x
∇EF;eðx0Þdx0: ð8Þ

The assumption of constant and equal gradients of the
quasi-Fermi-levels ∇EF;e ¼ ∇EF;h ¼ ∇EF leads to

∇EF;hðxÞ
Z

x

0

dx0 þ∇EF;eðxÞ
Z

d

x
dx0

¼ ∇EFd ¼ const ¼ V tr: ð9Þ

As can be deduced from Fig. 2, the constant gradient of the
Fermi level times the thickness d equals the total voltage
drop V tr. ∇EF;eðhÞ can be expressed in terms of the current,
the mobility, and carrier density as

∇EF;eðhÞ ¼
JeðhÞ
σeðhÞ

: ð10Þ

For any x inside the photoactive layer, the total current J is
the sum of the electron and hole current densities:

J ¼ JeðxÞ þ JhðxÞ ¼ q(μeðxÞneðxÞ þ μhðxÞnhðxÞ)∇EF:

ð11Þ

Combining Eqs. (9) and (11), we obtain

μeðxÞneðxÞ þ μhðxÞnhðxÞ ¼
Jd

qV trðJÞ
: ð12Þ

The transport voltage V tr can be associated to a transport
resistance via V tr ¼ J Rtr. This leads us to the following
general relationship:

μeðxÞneðxÞ þ μhðxÞnhðxÞ ¼
d

qRtrðJÞ
: ð13Þ

To get from here to Eq. (1), Schiefer et al. and Albrecht
et al. made further simplifications already mentioned in the
Introduction. Schiefer et al. [22] made two more assump-
tions: (1) the spatially averaged electron and hole current
densities are equal and half the total current density
J̄e ¼ J̄h ¼ J=2, and (2) the electron and hole mobilities
are equal and constant μh ¼ μe ¼ const. Both assumptions

+

EF,e

EF,h

q(V(J)−Vcirc(J))

q Vtr,h

q Vtr,e

0 dx

EF,e−EF,h

E

+

F,e

EF,h

( ( ) circ(J))

q Vtr,h

q Vtr,e

x

EF,e−EF,h

FIG. 2. Schematic sketch of the energy diagram of a solar cell
with selective hole and electron contacts under illumination and
forward-bias voltage (adapted from Refs. [21,22]). The majority
hole contact is located at x ¼ 0 and the majority electron contact
at x ¼ d.
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lead to the following simplification for the spatially
averaged carrier density: n̄h ¼ n̄e ¼ n̄. In Fig. S2 in the
Supplemental Material [34], we demonstrate that all three
currents in assumption (1) agree only at VOC if both the
carrier densities and mobilities are fairly balanced.
Assumption (2) is a strong limitation for the method
and, in general, rarely the case in disordered solar cells [35].
Albrecht et al. [21], in turn, made three further assump-

tions: (1) the electron and hole current densities are equal
everywhere in the photoactive layer: JeðxÞ ¼ JhðxÞ so that
μeðxÞneðxÞ ¼ μhðxÞnhðxÞ, (2) the extracted charge from the
integral of the CE transient is half the sum of the electrons
and holes, and (3) the electron and hole carrier densities are
constant throughout the device so that n̄eðhÞ ¼ neðhÞ. These
assumptions result in an effective mobility μ̄eff ¼
ð2μeμhÞ=ðμe þ μhÞ. The first assumption is generally not
valid: As soon as a current flows in forward direction, the
electron current density increases steadily from Jeð0Þ ≈ 0 at
the hole contact to JeðdÞ ≈ J at the electron contact (see
Fig. S2 in the Supplemental Material [34]). The opposite is
true for the hole current density, which means that
assumption (1) is wrong for J > 0. At VOC, we have by
definition J ¼ 0 so that JeðxÞ ¼ −JhðxÞ. As shown in
Eq. (4), assumption (2) is valid as long as recombination
and the difference between surface charges on the contacts
can be neglected. Finally, assumption (3) puts a strong
limitation on the method. Würfel et al. [1] established a
different relationship using the geometrical mean of the
electron and hole carrier density. However, it was also
based on the additional assumption that JeðxÞ ¼ JhðxÞ
everywhere in the bulk.
If the total carrier density n̄ is measured in experiment,

we show in the Supplemental Material [34] that Eq. (13)
can be transformed without any further presumptions into

μeffðJÞ ¼
 
1

��
μ� Δμ

Δn
n

�!−1
¼ d

2qn̄ðJÞRtrðJÞ
: ð14Þ

μ is the arithmetic mean of the electron and hole mobilities:
μðxÞ ¼ (μeðxÞ þ μhðxÞ)=2, and Δμ is the difference
between the mobilities and the arithmetic mean:
μeðhÞðxÞ ¼ μðxÞ � ΔμðxÞ. The same holds for n and Δn;
the bars denote spatial averages. The plus sign in Eq. (14)
corresponds to the case where both the mobility and carrier
density of one carrier type are higher than their counterparts
[e.g., μeðxÞ > μhðxÞ and neðxÞ > nhðxÞ]. The minus sign
stands for the case where the mobility and carrier density
of the same carrier type show opposite behavior [e.g.,
μeðxÞ > μhðxÞ and neðxÞ < nhðxÞ]. Note that, in general,
one cannot assume that because the mobility of one carrier
type is higher than the other that its carrier density must be
also higher, as this also depends on the density of trap
states.

We already indicate above that the TPV and TPC
measure the photogenerated carrier density n̄ph instead
of n̄. Instead of expressing carrier densities by their mean
and differences, we divide them into an equilibrium carrier
density in the dark n0eðhÞ and photogenerated carrier density
nph;eðhÞ: neðhÞðxÞ ¼ n0eðhÞðxÞ þ nph;eðhÞðxÞ. The relationship
between n̄ph and nph;eðhÞ is given by n̄ph ¼ 1

2
ðnph;e þ nph;hÞ.

Then, we can find a similar definition of μeff (see the
Supplemental Material [34]):

μeffðJÞ ¼
 
1

��
μþ μðn0e þ n0hÞ � Δμðne − nhÞ

ðnph;e þ nph;hÞ
�!−1

¼ d
qn̄phðJÞRtrðJÞ

: ð15Þ

We find that in most cases the second term under
the overbar in Eq. (15) can be neglected so that

μeffðJÞ ¼
�
1=ðμÞ

�−1
.

IV. DETERMINATION OF THE
TRANSPORT RESISTANCE

The key to using Eqs. (14) and (15) is also being able to
determine the transport resistance Rtr, which is caused by
the transport of electrons and holes through the device. For
this purpose, any method that is able to measure the series
resistance as a function of voltage or current is suitable.
This is because the series resistance is composed of Rtr and
the circuit resistance Rcirc. Prominent ways to calculate the
series resistance are the comparison of the dark and light
J-V curves [36], the comparison of two J-V curves at
different light intensities [37], or the combination of the
J-V measurement under illumination with a Suns-VOC or
JSC-VOC curve [38]. The latter two curves are pseudo-J-V
curves, which are equivalent to a standard J-V curve for a
solar cell that has no series resistance. In the approach by
Schiefer et al. [22], a JSC-VOC curve was taken for the
simulation, while the Suns-VOC method was used in the
measurement.
Here, we compile a JSC-VOC curve from the steady-state

region of the TPVand TPC measurements at different bias-
light intensities Ilight. VOC corresponds to the bias voltage
Vbias [see Figs. 1(a) and 1(c)]. JSC is obtained using the
superposition of the short-circuit current density at 1 sun,
JSCj1sun, and the current-density curve proportional to Ilight,
−JSCj1sunIlight [32,39]:

JSCðVOCÞ ¼ JSCj1sun(1 − IlightðVOCÞ): ð16Þ

JSCj1sun is determined from the light J-V curve, while Ilight
should ideally be measured independently during the TPV
and TPC measurements. Alternatively, it may also be
computed from the ratio of the bias-current density Jbias
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and JSCj1sun. However, this is only valid if the relationship
between Jbias and light intensity is linear, as is the case for
the simulation shown in Fig. 1(c). Instead, the relationship
is generally given by a power law Jbias ∝ Iαlight, where the
exponent α has been found to vary between 0.7 and 1
depending on the photoactive material [39,40].
Figure 3 depicts the comparison of simulated J-V and

JSC-VOC curves of a typical organic solar cell. The cell
characteristics are described in the Simulation section. The
J-V curve is affected by a significant amount of trapping,
which manifests itself in a high series resistance (due to the
relationship between carrier density and mobility) and,
thus, low fill factor. The JSC-VOC curve, on the contrary, is
impervious to this effect. As indicated by Fig. 3, the series
resistance at current density J is given by the difference
between the corresponding voltages of the two curves
divided by J:

RsðJÞ ¼
VJSC-VOC

ðJÞ − VJ-VðJÞ
J

¼Rtr þ Rcirc: ð17Þ

In order to determine Rs of a solar cell, the current at the
maximum power point is chosen [38]. For our purposes, we
extend the method to all current densities except J ¼ 0 and
J ¼ JSC. At the latter current, Eq. (17) suggests zero series
resistance, which, of course, is not true, as at this operation
point the highest current is extracted from the device. Rcirc
can be estimated from Rs at high current in forward
direction, where transport resistance is minimal [22].
Even though not stated explicitly, the approach of

Albrecht et al. [21] also relies on extracting the series
resistance from a combination of the J-V and Suns-VOC
curves. The charge extraction under the first measurement
condition, where a forward-bias voltage is applied under
illumination, corresponds to the J-V measurement. The

charge extraction under the second condition, where the
device is held at open circuit at a lower light intensity,
corresponds to the Suns-VOC measurement in this work.
However, instead of subtracting two voltage points at the
same current as we do, they compared two voltage points at
the same measured carrier density. This is generally not
valid and is discussed in the Supplemental Material [34].

V. SIMULATION

To investigate the accuracy of the investigated method,
we use an open-source Shockley-Read-Hall-based [41]
drift-diffusion-device model, the general-purpose photo-
voltaic device model (gpvdm) [30,42–45], which is adapted
for this work to simulate the steady-state J-V curve, and
transient photovoltage and photocurrent. The model can be
downloaded from Ref. [45], along with example simula-
tions from this paper. We then use the above method to
extract the mobility from the simulated results just as one
would do from experimental results. The advantage of this
approach is that it enables us to compare the mobility one
obtains from our proposed method to the mobility value
present within the device model. The device model solves
Poisson’s equation between the front and back contact of
the device to account for electrostatic effects,

d
dx

ε0εr
d
dx

φ ¼ qðnf þ nt − pf − ptÞ; ð18Þ

where ε0 is the permittivity of free space, εr is the relative
permittivity of the photoactive layer, φ is the electrostatic
potential, and q is the elementary charge on an electron. nf
(nt) and pf (pt) are the densities of free (trapped) electrons
and free (trapped) holes respectively. To describe charge
transport in the device, the drift-diffusion equations are
solved for electrons

Jn ¼ qμenf
∂ELUMO

∂x þ qDn
∂nf
∂x ð19Þ

and for holes

Jp ¼ qμhpf
∂EHOMO

∂x − qDp
∂pf

∂x ; ð20Þ

where Jn and Jp are the current densities of electrons and
holes, μe and μh are the electron and hole mobilities, Dn,
Dp are diffusion coefficients, and ELUMO and EHOMO

represent the free-carrier mobility edges. For both electrons
and holes, we assume an exponential distribution of trap
states of form

ρðEÞ¼ N expðE=EuÞ; ð21Þ

where ρ represents the energetic distribution of trap
states, N is the maximum density of trap states, E is

FIG. 3. Simulated J-V and JSC-VOC curves obtained from the
steady-state part of the TPC and TPV simulations. The dotted
lines indicate how the series resistance is computed from the
difference of both curves.
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the energy, and Eu is the characteristic tail slope energy
representing the degree of energetic disorder in the
material system. Under each mesh point in position
space, the distribution of trap states in energy space
(for both electrons and holes) is divided into ten regions
of width ΔE. For each of these regions, the Shockley-
Read-Hall capture or escape

dnt
dt

¼ rEC − rEE − rHC þ rHE ð22Þ

is solved, where nt is the electron trap density, rEC is the
rate of electron capture into a trap, rEE is the rate of
electron escape from a trap, rHC is the rate of hole capture
into an electron trap, and rHE is the rate of hole escape
from an electron trap. Light propagation is modeled using
the transfer-matrix method; for computational efficiency,
the equations are projected onto a 1D finite-difference
grid [46]. Some further details are given in the
Supplemental Material [34].
The material parameters are taken from Ref. [30], which

are obtained via calibration of the model to multiple data
sets including TPV, TPC, charge extraction, and light and
dark current-voltage curves (see Table I and Table SI in the
Supplemental Material [34]). The parameters represent the
standard set of parameters for a P3HT:PCBM organic
solar cell.
We model the J-V curve at 300 K and 1 sun using the

AM1.5g spectrum. For the TPV and TPC simulations, we
assume a typical measurement setup with bias light, small
perturbation light, and data acquisition via an oscilloscope.
The bias light has the same spectrum as above, and its
intensity is changed between 0 and 1.26 suns. A cw laser
with wavelength 309 nm and a pulse width of 5 ns is used

for the small-signal perturbation. The ratio of laser versus
bias-light intensity is adjusted in a way so that the ratio of
excess photovoltage peak versus bias voltage ΔV=V is
always in the range of 1%–2%. The resulting voltage
transients can be almost exactly approximated by a single
exponential decay function. In the case of TPV, the voltage
is measured across an open circuit, and in the case of TPC,
the short-circuit current is measured across a 50-Ω resistor.
We simulate the entire transients using 500 evenly spaced
time-domain steps. Only for the analysis of the excess
carrier density [Eq. (4)], do we use a logarithmically
increasing step size to reduce computational time. It is
important to use a small step size as the trapping and
detrapping of charge carriers happens at a much faster scale
as the decay time of the laser pulse.
We simulate five different cases of an organic solar cell

(see Table I for the main simulation parameters):
(1) equal electron and hole carrier densities, equal

electron and hole mobilities, and no trapping;
(2) equal electron and hole carrier densities, much

higher electron than hole mobilities, and no
trapping;

(3) much higher hole than electron carrier densities,
equal electron and hole mobilities, and no trapping;

(4) equal electron and hole carrier densities, equal
electron and hole mobilities, and strong trapping;

(5) a realistic organic solar cell whose measured
characteristics have been previously simulated in
Ref. [30].

Case 1 is the ideal case and serves to demonstrate the
validity of the theory behind the analytical model for
extracting charge-carrier mobility. As in this case the
mobilities of electrons and holes are equal and no trapping
occurs, the spatially averaged mobility is independent of

TABLE I. Main simulation parameters as defined in Ref. [30]. Changes to case 1 are shown in bold.

Parameter Unit Case 1 Case 2 Case 3 Case 4 Case 5

Electron density on right contact cm−3 1020 1020 1019 1020 2.65×1019

Hole density on left contact cm−3 1020 1020 1020 1020 5.80×1020

DOS distribution Exponential Exponential Exponential Exponential Exponential
Effective electron trap density cm−3 eV−1 0 0 0 1020 3.80×1020

Effective hole trap density cm−3 eV−1 0 0 0 1020 1.45×1019

Characteristic energy for electron tail meV 60 60 60 60 40
Characteristic energy for hole tail meV 60 60 60 60 60
Free-electron mobility cm2=ðV sÞ 2.48 × 10−03 2.48 × 10−03 2.48 × 10−03 2.48 × 10−03 2.48 × 10−03
Free-hole mobility cm2=ðV sÞ 2.48 × 10−03 2.48×10−04 2.48 × 10−03 2.48 × 10−03 2.48 × 10−03
Number of traps 0 0 0 20 20
LUMO electron-capture cross section cm−2 10−29 10−29 10−29 10−26 2.50×10−24
LUMO hole-capture cross section cm−2 10−29 10−29 10−29 10−26 1.32×10−26
HOMO electron-capture cross section cm−2 10−29 10−29 10−29 10−26 4.67×10−32
HOMO hole-capture cross section cm−2 10−29 10−29 10−29 10−26 4.86×10−26
Effective density of free-electron states cm−3 5 × 1020 5 × 1020 5 × 1020 5 × 1020 1.28×1021

Effective density of free-hole states cm−3 5 × 1020 5 × 1020 5 × 1020 5 × 1020 2.86×1019
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current. The same should happen for the one extracted
from the method, as long as the condition of constant
gradients of quasi-Fermi-levels are met. Cases 2–4 dem-
onstrate step by step the resilience of the method as we
move away from the case of a symmetric device with no
trapping to an asymmetric device with considerable charge-
carrier trapping.
Figure 3 shows the J-V and JSC-VOC curves of case 5.

The remaining curves and the characteristic parameters
VOC, JSC, FF, and solar-cell efficiency are included in the
Supplemental Material [34]. Most interesting for our
method is the difference between the J-V and JSC-VOC
curves at the same current density, as this is proportional to
the transport resistance Rtr according to Eq. (17). Cases 1
and 2 lead to a higher FF than for case 5, so that the
difference between the J-V and JSC-VOC curves is smaller
than seen in Fig. 3. Case 3 has a lower VOC compared to
cases 1 and 2 but a similar FF to cases 1 and 2. Therefore,
Rtr for those cases is lower, and the mobility is likely to be
higher than for case 5, since μ is inversely proportional to
Rtr. For case 4, the large trapping strongly affects all J-V
characteristic parameters but above all FF. As a result, it
shows a very high transport resistance and, thus, a very low
mobility.

VI. RESULTS AND DISCUSSION

At the core of the investigated method is Eq. (15),
which states that the effective mobility is inversely
proportional to the average carrier density and the
transport resistance. Hence, the accuracy of the effec-
tive mobility crucially depends on how accurately we
can determine these two parameters. The assumptions
made in the derivation of Eq. (15) certainly play a role
also. We notice that the determination of the carrier
density and transport resistance have the highest impact
on the shape of the extracted mobility. The spatial
variation of the quasi-Fermi-levels, however, plays a
minor role, as it is practically constant at VOC and
varies only gradually at JSC. We choose to outline its
contribution in the Supplemental Material (see Sec. III.
C in the Supplemental Material [34]).

A. Extraction of the excess carrier density

We first investigate the extraction of the excess carrier
density ΔnTPC from the TPC signal. As we delineate in the
theory part,ΔnTPC can be computed from the area under the
current transient. We see that if the difference between
carrier densities on the contacts, surface recombination, and
trapping are neglected,ΔnTPC is proportional to this area. In
Fig. 4, the excess carrier density calculated from the TPC
simulation ΔnTPC is compared to the components of the
right-hand side of Eq. (6) for case 1. Instead of plotting the
excess carrier densities against Jbias, we convert the latter to

JSC (VOC) using Eq. (16) to better compare it to later
results. In Fig. 4, a current density of 0 then corresponds to
VOC and the asymptotic limit at high current densities
to JSC.
For case 1, it can be seen that excess carrier densities

are fairly constant throughout the current-density range
but drop rapidly towards JSC. ΔnEL is around 2 orders of
magnitude lower than Δninit for almost the entire current-
density range. The number of carriers lost to surface
recombination is negligible, since Δnsurf is more than
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FIG. 4. (a) Excess carrier density as a function of current
density for case 1 (equal carrier densities, equal free-carrier
mobilities, no trapping). (b) Excess carrier density as a function
of current density for case 4 (equal carrier densities, equal free-
carrier mobilities, and trapping). ΔnTPC denotes the excess carrier
density obtained from the area under the current transient. The
other excess carrier densities correspond to the components of
the right-hand side of Eq. (6): Δninit ¼ 1=2 (Δne;init þ Δnh;init) is
the excess carrier density present right after the small-signal light
pulse is switched off. ΔnEL represents the change in the differ-
ence between the carrier densities on the contacts.Δnsurf andΔnR
stand for the excess carrier densities lost due to surface and bulk
recombination, respectively.
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5 orders of magnitude lower than Δninit. As trapping is
suppressed, bulk recombination does not influence the
result. Consequently, we can say that ΔnTPC indeed equals
the initial excess carrier density at every current density for
the case of an ideal solar cell. A similar scenario is found
for cases 2 and 3 (see the Supplemental Material [34]).
In Fig. 4(b), the recombination via trap states is added

(case 4). The absolute level of Δninit is smaller by about
1 order of magnitude compared to the case without trapping.
This is rooted in the fact that the intensity of the small-signal
light pulse has to be lowered so that the ratio of the peak
excess voltage to the steady-state voltage ΔV=V is below
2%. As explained earlier, this is to ensure that the excess
voltage decays monoexponentially.
The inclusion of trapping leads to a smaller difference

between Δninit andΔnEL of about 1 order of magnitude and
a much lower Δnsurf compared to case 1. However, the bulk
recombination via trap levels now plays a major role. At
VOC, the bulk recombination is the strongest, where ΔnR is
only a factor of 2 lower than Δninit. For higher current
densities, ΔnR decreases much more strongly than Δninit.
According to Eq. (6), ΔnTPC is, thus, slightly lower than
Δninit because of the impact of ΔnR. Nevertheless, we can
state that ΔnTPC is still a good measure of Δninit.
Case 5 contains the effect of very unbalanced charge-

carrier densities, unbalanced mobilities, and trapping.
Despite this, ΔnTPC is only slightly lower than Δninit, since
the former is decreased by recombination and the change
in carrier density on the contacts because of trapping and
detrapping (see the Supplemental Material [34]). These
findings show that the area under the small-signal current
transient is indeed a good measure of the initial excess
carrier density despite very unbalanced carrier properties or
large trapping.
We now compare the average carrier density obtained

from the TPV and TPC simulation, n̄TPV;TPC, with the
theoretical n̄ extracted at each point of the J-V and JSC-VOC
curves. Figure 5(a) depicts the carrier density as a function
of bias-light intensity (upper x axis) and bias voltage V
(lower x axis) of case 1. Here, we deal with equal electron
and hole carrier densities and equal mobilities. The
triangles show the theoretical carrier density n̄ extracted
from the steady-state part of the TPV signal. This carrier
density corresponds to the total carrier density at the bias-
light intensity or, alternatively, bias voltage. The diamonds
stand for the photogenerated carrier density n̄ph, which is
obtained from the former by subtracting the carrier density
in the dark. n̄TPV;TPC is the carrier density deduced from the
combination of the TPV and TPC simulations by means of
the differential capacitance method.
For very small light intensities, n̄ remains nearly constant

and equals the carrier density in the dark, since n̄ph is
minuscule in comparison. Only when the light intensity
increases considerably, n̄ph augments and approaches n̄.
In the description of the differential capacitance method

above, we imply that n̄TPV;TPCðVÞ includes only the photo-
generated carrier density. This is corroborated by the
findings of Fig. 5(a), as n̄TPV;TPCðVÞ follows the shape of
n̄ph. Albeit that, n̄TPV;TPCðVÞ overestimates n̄ph. The gap
closes only for light intensities above 0.5 suns, or in terms of
voltage, close to VOC ¼ 0.646 V [vertical line in Fig. 5(a)].
The representation of Fig. 5(a) is very suitable to focus

on the small intensity range of the TPVmeasurement due to
the exponential relationship between intensity and VOC.
Yet, the mobility is defined as a function of current density
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FIG. 5. (a) Carrier densities as a function of bias-light intensity
(upper x axis) and bias voltage (lower x axis) of the TPV
simulation for case 1. The triangles and diamonds stand for the
average carrier density n̄ and the photoinduced carrier density
n̄ph, respectively, determined from the steady-state part of the
TPV signal. The circles correspond to the carrier density n̄TPV;TPC
obtained from the differential capacitance method. (b) Carrier
densities as a function of current density for case 1. The symbols
stand for the same parameters as in part (a). The bias intensity is
converted to current density via Eq. (16). In addition, n̄ and n̄ph as
determined from the J-V curve are shown (continuous and
dashed line, respectively).
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in Eq. (15). For this purpose, we convert the bias-light
intensity to current densities using the superposition
principle as described by Eq. (16). Instead of plotting n̄
versus the bias-light intensity or bias voltage as in Fig. 5(a),
we now plot it versus the corresponding current density
JSC. Figure 5(b) depicts the so-deduced n̄ as a function of
JSC together with n̄ computed at each point of the J-V
curve. By converting from intensity to current densities, the
trend in the curves is reversed, as VOC is now situated on the
left-hand side of Fig. 5(b) (at zero current density). Instead
of the small intensity range, the current-density range
corresponding to VOC and the maximum power point is
now stretched out.
The carrier densities n̄ obtained from the J-V and

JSC-VOC curves stay nearly constant for increasing current
density and fall off only slightly when approaching JSC.
Both curves match perfectly over the entire current range.
The carrier densities n̄ph deduced from the J-V curve and

JSC-VOC curves are also in perfect agreement but lie
clearly below and exhibit a strong decrease for increasing
current densities. As already seen in Fig. 5(a), n̄TPV;TPC
follows the same shape as n̄ph but with slightly higher
values.
We now shift the focus to Fig. 6, where we add

deviations from the ideal case 1 in the form of unequal
carrier densities, unbalanced mobilities, or trapping.
Figure 6 displays the same meaning for the lines and
symbols as in Fig. 5(b). On the left-hand side of Fig. 6, the
cases 2 and 4 with equal electron and hole carrier densities
are shown. The right-hand side depicts cases 3 and 5 with
unbalanced carrier densities. The corresponding figures of
the carrier densities as a function of bias voltage are
included in the Supplemental Material [34].
For cases 2–5, it can be seen that n̄ obtained from the

current-voltage curves displays the same behavior as case
1: Both carrier density curves perfectly overlap and are
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FIG. 6. Spatially averaged carrier densities as a function of current density for cases 2–5. (a) Case 2, (b) case 3, (c) case 4, and (d) case
5. The continuous line corresponds to the average carrier density n̄ obtained from the J-V curve. Triangles stand for n̄ deduced from the
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much higher than n̄ph. The perfect agreement between both
n̄ph curves, on the contrary, is only true for the cases with
equal mobilities (cases 3 and 5). For the cases with
unbalanced mobilities, the curves coincide only for low
current densities. The strongest difference between all cases
and the most important one regarding the determination of
the mobility is the offset between n̄ph from the JSC-VOC

curve and n̄TPV;TPC.
Now let us turn to each case in detail. For case 2, the hole

mobility is lowered by 1 order of magnitude. This has the
effect that n̄TPV;TPC lies about 20% below n̄ph for the main
current-density range. For case 3, the electron carrier
density on the left contact is lowered by 1 order of
magnitude compared to case 1 [Fig. 6(b)]. In practice, this
means that the left contact is changed to a less Ohmic
contact. As a result, all carrier densities are lowered by
about 30% over the entire current-density range compared
to case 1. Furthermore, n̄TPV;TPC overestimates n̄ph by about
40% for the entire current-density range.
Figure 6(c) plots the carrier densities for case 4, where

trapping via electron and hole traps is added in comparison to
case 1. The trapping does not impact on the total carrier
density n̄ and n̄ph determined from the JSC-VOC curve.
However, it causes amuch stronger decrease of n̄TPV;TPC than
for cases 1 and 2. Thus, this decrease is clearly related to
trapping, whose impact is expected to be more severe for
higher light intensities, which translate to lower current
densities via the superposition principle of Eq. (16). The
simulationof the excess densities inFig. 4(b) indeed unearths
that ΔnTPC is slightly lower than Δninit due to trapping.
Finally, case 5 incorporates all deviations from case 1

into one [Fig. 6(d)]. Regarding n̄TPV;TPC, two opposing
trends come into play: Unbalanced mobilities and, above
all, trapping entail that n̄TPV;TPC is lowered compared to
n̄ph, while unequal carrier densities at the contacts have the
opposite effect. In sum, these affects cancel each other out,
so that n̄TPV;TPC matches n̄ph.

B. Determination of transport resistance

In Fig. 7, we plot Rtr as a function of current density for
all cases. Rtr is obtained from the difference between the
J-V and JSC-VOC curves [Eq. (17)]. For all cases, Rtr
exhibits an increase near VOC and a sharp peak near JSC.
The increase near VOC stems from the fact that the current
density becomes very small. At VOC itself, Rtr is not
defined owing to the definition of Eq. (17). The sharp peak
at JSC is rooted in the fact that for voltages below the
maximum power point, the voltage difference between
the J-V and JSC-VOC curves increases strongly, while the
current density remains fairly constant. The curve suggests
that Rtr is close to zero at JSC; however, this originates from
the particular definition of the series resistance as a function
of current density [Eq. (17)]. Converse to the peaked Rtr
observed in Fig. 7, Eq. (13) predicts that Rtr should vary

only slightly with current density. This is due to the fact that
n̄ is nearly constant except for a slight decrease towards JSC
[Fig. 5(b)]. As a consequence, since μ̄TPV;TPC is inversely
proportional to Rtr, the features near VOC and JSC will be
directly imprinted on μ̄TPV;TPC via Eq. (15).
In Sec. IV, we assume that the transport resistance

dominates the series resistance. In our simulations, a contact
resistance of 2.34 Ω cm2 is assumed; see the Supplemental
Material, Table SI [34]. This contact resistance is taken from
the measurement of a typical organic solar cell (case 5) [30].
Only for cases 1 and 3 (no trapping), Rtr is as low as the
contact resistance for low current densities. Case 5 exhibits
Rtr as low as 2.5 Ω cm2 for very low current densities. For
case 4, which includes trapping, the lowest Rtr is about
7 Ω cm2. For current densities close to JSC, the transport
resistance increases strongly and reaches values of
15–25 Ω cm2 for all cases. Schiefer et al. [22] measured
the circuit and transport resistances of an organic solar cell
with P3HT:PCBM as active layer using the combination of
J-V and Suns-VOC measurements. They found a circuit
resistance of 2 Ω cm2, while the transport resistance varied
with the current density between 6 and 23 Ω cm2 from VOC
to JSC. It is clear from these examples that the transport
resistance is comparable to the circuit resistance for solar
cells for current densities below JSC and devices without
trapping. When trapping occurs or the current densities are
close to JSC, the series resistance is dominated by the
transport resistance.

C. Determination of mobility

In Fig. 8, the mobility is depicted as a function of
current density for all cases. For cases with equal electron
and hole carrier densities at the contacts, μ̄ represents the
spatially averaged mobility as defined in Eq. (7). For cases
with unbalanced carrier densities, the spatially averaged
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FIG. 7. Transport resistance Rtr as a function of current density
for all cases.

DETERMINATION OF CHARGE-CARRIER MOBILITY IN … PHYS. REV. APPLIED 9, 034020 (2018)

034020-13



mobilities μ̄e;h of electrons and holes are shown sepa-
rately. We include only μ̄ and μ̄e;h determined at each point
of the J-V curve, as they generally agree very well with
the one from the JSC-VOC curve. μeff is the effective
mobility as defined in the center of Eq. (15), that is, the
theoretical mobility that can be extracted by the inves-
tigated method. μ̄TPV;TPC stands for the mobility deter-
mined from the right-hand side of Eq. (15); this is the
mobility that is measured in experiment.
The first thing that comes to our attention is that μ̄TPV;TPC

has a strong current-density dependence near VOC and JSC,
a fact that is observed for all cases. The current depend-
ences are exactly inverse to the one observed for the
transport resistance in Fig. 7. This demonstrates that
μ̄TPV;TPC cannot be determined near VOC and JSC due to
the limitation of extracting the transport resistance.
Figure 8(a) exhibits cases 1 and 3 with equal electron and

hole mobilities. The theoretical mobility, therefore, equals

the constant, predefined mobility of free carriers shown as a
blue line. The theoretical μeff predicts a slightly higher
mobility over almost the entire current range before experi-
encing a sharp increase at JSC. Apart from the regions near
VOC and JSC, μ̄TPV;TPC is in good accordance with the
theoretical one for both cases. The slightly lower mobilities
as μeff can be explained by the fact that for both cases,
n̄TPV;TPC slightly overestimates n̄ph [Figs. 5(b) and 6(b)]. The
differences of μeff and μ̄TPV;TPC at JSC stems from the strong
impact of the curvature of the transport resistance.
Figure 8(b) depicts case 2, where the hole mobility is

lowered by 1 order of magnitude compared to case 1. Here,
the theoretical mobilities of electrons and holes also equal
the constant, predefined mobilities of the free electron and
holes. For the main current-density range, μ̄TPV;TPC is
nearly flat and very close to μeff . It is slightly higher than
the arithmetic average of 1.4 × 10−4 cm2=ðVsÞ and clearly
higher than the geometric average of 7.8×10−4 cm2=ðVsÞ.
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FIG. 8. Spatially averaged mobilities as a function of current density. (a) Cases 1 and 3, (b) case 2, (c) case 4, and (d) case 5. The left
panel shows the cases with equal electron and hole mobilities. Here, the continuous line corresponds to the average mobility μ̄ as defined
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As n̄TPV;TPC slightly underestimates n̄ph [Fig. 6(a)],
μ̄TPV;TPC is slightly higher than μeff .
Now we wish to discuss the impact of trapping on the

mobility. For balanced carrier densities and mobilities, the
effect of trapping can be best appreciated by comparing
case 1 and case 4 in the left panel of Fig. 8. There are two
changes that affect both the theoretical mobility μ̄ and
μ̄TPV;TPC: First, the carriers become less mobile by about 1
order of magnitude. Second, the mobility becomes depen-
dent on current densitywith a negative slope.The first change
is rooted in the fact that the trapped carrier density exceeds
the free-carrier density by more than 1 order of magnitude
(see Fig. S6(a) in the Supplemental Material [34]). This
strongly decreases the ratio of free- to total carrier density
and, therefore, μ̄ [Eq. (7)]. The second change stems from the
fact that trapping is the strongest at JSC and diminishes with
decreasing current density (Fig. S6(b) in the Supplemental
Material [34]). Even though μeff is very close to μ̄, μ̄TPV;TPC is
higher than μ̄ by about a factor of 2 in the main current-
density range. This is a direct cause of the fact that n̄TPV;TPC
strongly underestimates n̄.
Now coming to the last case, Fig. 8(d) plots the results

for a typical organic solar cell that combines all the
influences of cases 2–4 into one. On the one hand, μeff
and μ̄TPV;TPC exhibit the same current-density dependence
as observed in Fig. 8(c). On the other hand, the vertical
position of μ̄TPV;TPC is due to the combined impact of the
unbalanced mobilities [Fig. 8(b)] and trapping [Fig. 8(c)].
Hence, owing to the fact that n̄TPV;TPC agrees well with n̄ph,
μ̄TPV;TPC is in good accordance with μeff in the main
current-density range.
In the Supplemental Material [34], we add simulation of

further cases. They are variations of cases 2 and 3 for
which we increase the unbalance between mobilities and
carrier densities. In the variations of case 2 (cases 2b and
c), we decrease the hole mobility by 2 and 4 orders of
magnitude, respectively, compared to the electron mobil-
ity. In the variations of case 3 (cases 3b and c), we reduce
the electron charge on the right contact to 1018 and
1010 cm−3, respectively, so that the ratio of hole to
electron charge on the contacts is increased to 2 and 10
orders of magnitudes, respectively. In many thin-film solar
cells, highly unbalanced mobilities and charge-carrier
densities are a stark reality, for example, caused by a
very poor electron-selective contact. Furthermore, many
organic materials suffer from a much lower electron than
hole mobility [35]. When the hole mobility is decreased
by 2 orders of magnitude, μ̄TPV;TPC is fairly constant and
agrees well with μeff for the main current-density range
(case 2b). Even for a further decrease of hole mobility, a
good agreement between μ̄TPV;TPC and μeff is found for
lower current densities (case 2c). For larger current
densities, μeff predicts a much lower mobility as deter-
mined by μ̄TPV;TPC. The mobilities are much closer to μeff
than to

ffiffiffiffiffiffiffiffiffi
μ̄eμ̄h

p
, in contrast to what has been postulated in

Refs. [1,22]. For the variation of case 3, the following
results are obtained: For an electron charge on the right
contact to 1018 cm−3, μ̄TPV;TPC exhibits a very similar
agreement as that shown for the two cases in Fig. 8(a).
When the electron charge is further decreased to
1010 cm−3, however, μ̄TPV;TPC becomes strongly depen-
dent on current density and agrees only with the theoretical
mobility in a small-current-density range. Nevertheless,
μ̄TPV;TPC determined at mid-current densities remains a
good estimate of the theoretical mobility.

VII. CONCLUSIONS

A method previously proposed by Albrecht et al. and
Schiefer et al. that is capable of determining the charge-
carrier mobility in disordered thin-film solar cells is
revisited and generalized. Revising the theory unveils that
only an effective mobility can be determined, which, in
general, is composed of a mix of mobility and carrier
density terms. This mix depends on the exact nature of the
carrier density measured by the method, that is, the total
carrier density or the photoinduced one. Drift-diffusion
simulation of organic solar cells shows that in the case of
equal mobilities and carrier densities, the extracted mobility
is in excellent agreement with the theoretical one. In the
case of unequal electron and hole mobilities, the techniques
determine a mobility close to μeff . In the case of unequal
carrier densities up to a ratio of 2 orders of magnitude, the
mobility agrees very well with the theoretical one. When
trapping is present in the device, the method is able to
measure the trapping-induced current-density dependence
of the mobility. The accuracy of determining the mobility
depends inversely on the one of the experimentally deter-
mined average carrier density.
However, the accurate extraction of mobility is restricted

to current-density ranges away from VOC and JSC. Near
VOC and JSC, the limitation is rooted in the fact that the
transport resistance cannot be correctly determined. It is
important to add that this can be circumvented for VOC if
the transport resistance is extracted from the J-V and
JSC-VOC curves measured at considerably higher intensities
than 1 sun. Then, VOC at 1 sun will correspond to a point on
the higher-intensity J-V curve, which has the same voltage
but a nonzero current. The intensity should be chosen in a
manner so that the 1-sun-VOC point moves to the flatter part
of the mobility versus the current-density curve.
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