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a b s t r a c t 

In this work, we propose to enable the angular re-orientation of a projector within a fringe projection system in real-time without the need for re-calibrating the 

system. The estimation of the extrinsic orientation parameters of the projector is performed using a convolutional neural network and images acquired from the 

camera in the setup. The convolutional neural network was trained to classify the azimuth and elevation angles of the projector approximated by a point source 

through shadow images of the measured object. The images used to train the neural network were generated through the use of CAD rendering, by simulating the 

illumination of the object model from different directions and then rendering an image of its shadow. The accuracy to which the azimuth and elevation angles 

are estimated is within 1 classification bin, where 1 bin is designated as a ± 10° patch of the illumination dome. To evaluate use of the proposed system in fringe 

projection, a pyramidal additively manufactured object was measured. The point clouds generated using the proposed method were compared to those obtained 

by an established fringe projection calibration method. The maximum dimensional error in the point cloud generated when using the convolutional network as 

compared to the established calibration method for the object measured was found to be 1.05 mm on average. 
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. Introduction 

Estimating scene illumination from a single image is useful in

any computer vision applications, such as shape-from-shading [1–

] . Coarsely estimating the light source direction relaxes the reliance

f shading algorithms [4] on exact a priori information regarding the

ight source configuration and the surface reflectance properties [1–3] .

nother application, which requires photometric registration of scenes

rom images, is augmented reality [5,6] . In augmented reality appli-

ations, a virtual object is overlaid onto a real scene, and, in order to

ake the object blend with the scene realistically, the illumination of the

cene needs to be estimated and applied onto the virtual object whilst

t is being rendered. The system should, therefore, be able to estimate

n real-time, both the photometric and geometric characteristics of the

irtual object in the scene [7] . 

Because cameras use the same theoretical framework for calibration

s projectors, it is worth mentioning that machine learning and in par-

icular neural networks have been used to calibrate camera calibration

arameters (both intrinsic and extrinsic) either by directly training a

etwork to perform the numerical parameter extraction [8] or indi-

ectly by using the a neural network to identify checkerboard cross-

ections commonly used in camera calibration techniques to identify

he correct correspondences between images [9] . Other machine learn-

ng techniques used for photogrammetry bundle the camera calibration
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nd 2D to 3D pixel to world coordinate mapping into one procedure

10,11] with the disadvantage of the model being useful only for the

articular camera configuration after it has been trained. Even though

he calibration model between camera and projector are theoretically

imilar, these techniques cannot be directly applied to projector cal-

bration as the projector itself cannot capture images. The procedure

roposed here for extrinsic projector parameter calibration in a fringe

rojection system infers the projector location and orientation in the

articular setup by use of a camera which records the shadow image

ast by the object onto the measurement surface. 

In this work, therefore, near real-time coarse estimation of the light

ource orientation using shadow cues is shown for additively manufac-

ured (AM) objects and realised through machine learning. The algo-

ithm proposed can run on cost-effective hardware and be used for ob-

ects without specular reflection cues, reference objects of known geom-

try or light probes. The proposed CNN algorithm is implemented in a

ringe projection system and used to continuously estimate the position

nd orientation difference between a projector and camera during mea-

urement process, thus allowing for the camera and the light source to

ecome completely decoupled during the measurement procedure. De-

oupling the camera and the projector has been shown to have benefits

hen measuring objects with high aspect ratio occlusions [12] . With-

ut the ability to continuously estimate the position between a cam-

ra and a projector in a decoupled fringe projection system, the system

ould need to be re-calibrated after each change in relative position
ust 2018 
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etween the camera and projector using one of the established tech-

iques [13,14] . Using the established techniques usually involves stop-

ing the measurement, removing the measurement object and inserting

 calibration plane textured with a circular or checkerboard pattern,

nd the acquisition of multiple test measurements, which would make

he measurement procedure impractical and time-consuming. Repeti-

ive pre-calibration is currently required in semi-decoupled fringe pro-

ection systems (for example, SIDIO XR by NUB3D), where the position

nd orientation between the camera and projector are allowed to vary

n a collection of pre-set positions, in order to allow for multiple scan

olumes and scan resolutions. With the ability for continuous position

stimation between the camera and projector, these semi-decoupled sys-

ems can become fully decoupled and allow for changes in configuration

uring the measurement without the need to pause for recalibration. 

. Background 

One of the earliest methods of performing photometric estimation

s described by Pentland [15] , who statistically computed the illumina-

ion direction of the environment using a maximum-likelihood estima-

or. Improving upon Pentland’s solution, the method of Chojnacki et al.

16] provides better performance at higher resolutions and with higher

ccuracy. For light source estimation from images in augmented reality

pplications, three general methods can be identified [6] , namely: (1)

sing a light probe in the scene in the field of view of the camera, ( 2 )

etecting the environmental illumination directly using a fish eye lens,

nd ( 3 ) using shadows cast by known objects. Out of the three aforemen-

ioned methods, the most efficient one in fringe projection applications

s shadow cue estimation [6] . The methods shown elsewhere [6,17,18] ,

owever, either require an object of known geometry to perform the

stimation or are too slow to run in real-time. 

Recent approaches, initially thought impractical for real-time light

ource estimation, such as methods using specular illumination cues

19] and light probes in the scene [5] , have been shown to work in real-

ime with modern hardware. Using specular reflection cues would not

e efficient for AM objects as their surfaces are optically rough [20–22] ,

hus reflect light diffusely and do not provide obvious light source cues

or calculating the scene illumination. Light probes are also a hindrance

n general because they either require a separate camera pointing at the

ight probe, or a specific pixel real-estate on the measurement camera

o monitor the probe [5] . Using some pixels of the measurement camera

or this purpose reduces the number of pixels available to perform the

easurement and, therefore, reduces the system’s resolution. 

In this work, we propose a method which avoids the need to use

eflectance cues on the object and the need for a light probe, by training

 convolutional neural network (CNN) [23] to recognise the position of

he light source from the shadowed version of the measured object. We

lso evaluate and discuss the method’s accuracy and applicability. 

. Projector calibration 

To calibrate the camera and the projector in a fringe projection

ystem, the correspondence between both the projector’s and camera’s

ixel arrays and the 3D projected points in space needs to be calculated.

q. (1) is used to describe the relationship between a pixel array and

ts corresponding 3D world coordinates using the pinhole model, which

oes not consider optical distortion: 

 𝒙 𝒚 1 ] 𝒘 = [ 𝑿 𝒀 𝒁 1 ] 𝑷 (1)

here w is the scale factor, x and y are the coordinates of the image along

he horizontal and vertical directions respectively, X, Y and Z are the

patial coordinates of the corresponding pixel in the world coordinate

ystem and P is known as the projection matrix. 

The projection matrix P contains the intrinsic and extrinsic calibra-

ion parameters of the system which are determined during the calibra-

ion procedure. The intrinsic parameters refer to the optical system used
8 
o project the image onto the pixel array (optical centre, focal distance,

ixel size, etc.), and the extrinsic parameters relate to the position and

rientation of the optical system with respect to the world coordinate

ystem. 

To account for optical distortion of the lens, in a similar manner to

hat used for camera calibration, an additional non-linear radial and tan-

ential calibration step is required to enhance the accuracy of the pixel

ocations. In projectors and cameras with poor optical lenses and align-

ent, this step is important as the distortions can be relatively large.

he equations which are used to describe the non-linear distortions in

he projector ( Eqs. (2 )–( 6 ) from [13] ) are the following: 

̃ = 

( 

𝒖̃ 𝒙 
𝒖̃ 𝒚 

) 

, 𝒖 = 

( 

𝒖 𝒙 
𝒖 𝒚 

) 

. (2)

 

2 = 𝒖̃ 2 
𝒙 
+ ̃𝒖 2 

𝒚 
. (3)

 ( ̃𝒖 ) = 

[ 
𝒖̃ ⋅

(
1 + 𝒌 1 𝒓 

2 + 𝒌 2 𝒓 
4 ) + Δ𝒕 ( ̃𝒖 ) 

1 

] 
(4)

𝒕 ( ̃𝒖 ) = 

⎡ ⎢ ⎢ ⎣ 
2 𝒌 3 ̃𝒖 𝒙 ̃𝒖 𝒚 + 𝒌 4 

(
𝒓 2 + 2 ̃𝒖 2 

𝒙 

)
𝒌 3 

(
𝒓 2 + 2 ̃𝒖 2 

𝒚 

)
+ 2 𝒌 4 ̃𝒖 𝒙 ̃𝒖 𝒚 

⎤ ⎥ ⎥ ⎦ (5)

 = 𝑲 c ⋅𝑳 ( ̃𝒖 ) (6)

here k 1 , k 2 are the radial distortion calibration coefficients, k 3 , k 4 are

he tangential distortion calibration coefficients, ̃𝑢 𝑥 and ̃𝑢 𝑦 are the undis-

orted x, y pixel coordinates of point 𝑢̃ , K c is the intrinsic calibration co-

fficient matrix, u x , u y are the distorted image x, y pixel coordinates of

oint 𝑢̃ (which define the observed position u on the projected image), r

s the radial distance of the undistorted point 𝑢̃ , 𝐿 ( ̃𝑢 ) is the overall effect

f the radial and tangential error on the x, y pixel positions and Δ𝑡 ( ̃𝑢 ) is
he effect of the tangential error on the x, y pixel positions. 

Out of all of the calibration parameters required for projector cal-

bration described above, the only ones that vary when a projector is

oved around physically are the extrinsic parameters which are in-

luded in matrix P ( Eq. (1 )). By initially calibrating the projector using

ne of the established techniques [13] , we can ascertain the intrinsic

nd distortion-related parameters of the projector, which do not change

uring the measurement. To complete the calibration, whilst allowing

or independent projector movement during the measurement proce-

ure, we simply need to update the extrinsic parameters relating to the

osition and orientation of the projector in real time as the projector

oves around the object. 

. Methodology 

Machine learning is a subset of artificial intelligence which employs

tatistical techniques to iteratively ‘learn’ the relationship between a

arge number of known and labelled input-output data without explicit

nowledge of the specific underlying function. One of the learning tech-

iques available in machine learning is what is called an artificial neu-

al network (ANN) or usually simply called neural network (NN). An

N models the way biological neural networks operate and excels at

scertaining non-linear input-output relationships in a statistical sense

hen trained on a large amount of data, and they are widely used for

lassification problems. A type of NN which is widely used in computer

ision, because of its ability to work well with image inputs, is what is

alled a convolutional neural network (CNN). As previously mentioned,

e will be using a CNN in this work in order to classify the projector’s

zimuth and elevation angle in real time from a collection of labelled

hadow images trained on a specific object. 

There are various methods which can be used to initially calibrate

he projector and set the intrinsic and extrinsic parameters of the sys-

em [18,19] . In our case, we used the calibration procedure developed
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Fig. 1. (a) Schema of the setup denoting the azimuth ( 𝜑 ) and elevation ( 𝜃) angles for the camera in the setup shown on the photo on the right; (b) photograph of 

the setup. 
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Fig. 2. Depiction of a single ‘class’ of the classification procedure, a 10°×10°

patch of the illumination dome. 
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y Moreno [13] . In particular, a checkerboard pattern in different ori-

ntations is used in combination with a projected binary pattern to both

alibrate the camera and associate the corresponding pixels of the pro-

ector. The projector is then calibrated as an ‘inverse camera’. 

After the system is initially calibrated, as was discussed in the pre-

ious section, if the projector is moved, the calibration would normally

eed to be repeated. However, we propose to track the projector’s az-

muth and elevation angles, so that the calibration does not need to be

epeated, by using a CNN which has been trained to classify the pro-

ector’s azimuth and elevation by an input image of the shadow of an

bject. It is worth noting that inferring all extrinsic parameters relat-

ng to the position and orientation of a projector by simply tracking it’s

zimuth and elevation angles is only possible in systems where the pro-

ector’s movement is constrained so that the distance of the projector

rom the object is either stationary or can be calculated in some way

rom the azimuth and elevation angles, and the projector’s centre of

rojection is fixed to a particular point in space, which in our case is

he centre of rotation of the object mount. To test the CNN, the relative

zimuthal angular position of a projector is changed by rotating a rig

olding the camera and the measured object, as shown in Fig. 1 . To test

he elevation angle, the projector was simultaneously tilted and moved

n a vertical rail ( Fig. 1 b); in both cases the centre of projection was

lways centred on the centre of rotation of the rotation stage on which

he object was mounted, and the position and orientation of the projec-

or could, therefore, be calculated by simply tracking the azimuth and

levation projector angles. After each projector movement, a new im-

ge of the object is taken and sent to the CNN, which responds with the

ew projector azimuth and elevation position, thus making it possible

o calculate the new projection matrix, and recalibrating the system on

he fly. 

To train our CNN classifier, we propose the following method: 

1) Use a rendered CAD model of the object to generate a complete li-

brary of images of the object illuminated at different elevations and

azimuth (for more details see below in Section 4.1 ). 

2) Convert the images into binary to extract the shadow from the sim-

ulated images. 

3) Train a CNN to classify images in the illumination dome (for more

details see below in Section 4.3 ). 

Then, during the estimation operation cycle, the system: 

1) Acquires live images from the setup, segments and thresholds the

image to extract the object shadow. 

2) Sends the image to the CNN classifier to extract the light source po-

sition. 

One of the novelties of our approach is in the use of simulated data

o train the CNN. As the CAD model was available in advance, we used
9 
t to render a large number of synthetically-generated training images

ith known illumination. However, training a model on synthetic data

nd then using it on real data typically results in poor performance (this

s known as domain shift [24] ). To this end, we propose to binarise the

ynthetic images prior to training the CNN, and to do the same for the

eal images during test time. The produced binary images look (visu-

lly) quite similar, thus greatly reducing the domain shift, and enabling

obust estimation during test time. 

.1. Rendering the images 

The simulated illumination region was set such that there was an

80° azimuth angle illumination span ( ± 90° in relation to the camera

zimuth) and a 65° elevation span (5° to 70° from the stage). The region

as segmented in 10° horizontal and vertical bins, each of which defines

 different class with regards to the training of the CNN ( Fig. 2 ). Each

lass contained 100 rendered samples within the same area, out of which

0 were used for training and 20 for validation. 

The images were rendered by illuminating a CAD model of the object

sing a projector which was modelled as a point source ( Fig. 3 ). 

The generation of the images was performed in an open source ren-

ering software package called Blender. The CAD model of the pyramid

as loaded as an STL file which is readily supported by Blender (shown

n Fig. A.1 ). Blender also supports automation through the use of Python

cripts. A Python script was then written to automate the movement of

he point light source (representing the projector); the rendering and

xtraction of the images which followed the pipeline is presented in

ppendix A . 
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Fig. 3. Examples of simulated camera images created by changing the light source to nine different locations in azimuth and rotation. 

Fig. 4. Example of pre-processing the images in Fig. 3 to isolate the shadow. 
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.2. Image pre-processing 

For each simulated image, the object’s shadow was extracted through

mage thresholding. The binary images with the shadows extracted from

he images of Fig. 3 are shown in Fig. 4 . 

.3. Network training 

The illumination direction prediction network was trained for 6370

terations and achieved an accuracy of greater than 90% in approxi-

ately 45 min. The hardware used for this purpose was an NVidia Ti-

an X graphics card and the deep learning framework used was Caffe

23] network. It is worth noting that the training time was not the ac-

ual bottleneck of the process; the most time-consuming part of the pro-

edure was the image generation process used to create the training

ataset of the approximately 20,000 images ( Section 4.1 ), which took

round 6 h to complete. Appendix B lists the settings, network architec-

ure and other details used in the CNN training process. 

.4. Acquire image from setup 

The images were acquired by a Raspberry Pi camera and saved at in-

ervals of 2 s. The automation of the process was enabled by using Linux
10 
cripting and was generally slow as the acquisition and processing of the

mages could not be carried out synchronously. Hence, a second script

as run on the Linux server that hosted the CNN, which would perform

llumination direction predictions every 5 s. Due to all the bottlenecks

nvolved in later stages of processing the images, the estimation interval

as approximately 5 s. 

.5. Send image to classifier to extract light source position 

The images after thresholding were sent to the CNN classifier. As

reviously discussed, this whole process took around 5 s to complete as

inux automation scripts were used to pass command line options to

rograms and Python scripts used in the process. 

. Experiment 

.1. Testing accuracy of point source angle prediction 

To test the accuracy of our system, an experimental rig was built,

hereby the relative position of the light source is altered in relation

o both the camera and object, in azimuth and elevation. The change

n the azimuth rotation was verified using the markings on the rotation

tage, whereas the elevation was verified using a digital inclinometer
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Fig. 5. Azimuth angle against CNN prediction as the relative light source is 

rotated in azimuth between − 90° and 90° relative to the camera’s azimuth. The 

error bars are set to ± 15° from the reported class median point. 

Fig. 6. Elevation angle against CNN prediction and the relative light source 

angle is tilted in elevation between 14° and 65° with respect to the measurement 

surface (and adjusting height as necessary). The error bars are set to ± 15° from 

the reported class median point. 
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Fig. 7. Difference between point clouds generated via the Moreno [13] calibra- 

tion routine and the CNN software estimation. 
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laced on the top surface of the projector. The projector light source

as selected to be static and the camera and the measured object were

oved simultaneously by mounting them on a rotation frame to create

he relative effect of the light source changing position ( Fig. 1 ). 

Fig. 5 shows the results of testing the prediction accuracy of the CNN

y rotating the camera-object frame in set intervals of 10° from − 90° to

 90° with respect to the camera azimuth. There is a gap between mea-

urements eight and twelve because the structure on which the camera

as mounted would completely shadow the object between ± 20°, so no

easurements could be taken in that range. The straight line depicts

he true rotation measured by the markings on a rotation stage and the

oints show the predictions made by the CNN. It can be seen that the

redictions follow the true rotation trend and the maximum deviation

etween the true and estimated prediction is ± 15°. 

A similar trend can be seen when altering the elevation angle on

he sample. When increasing elevation angle direction, the predictions

ollow the trend. For the elevation results, a more accurate prediction

s shown, with most of the results being within ± 10° from the median

rediction ( Fig. 6 ). 
11 
.2. Ascertaining point cloud accuracy 

Our measuring system, comprising a Raspberry Pi camera and

 TI DLP ® LightCrafter TM 4500 projector, was initially calibrated

sing a method described elsewhere [13] . A pyramidal 3D object

50 mm ×50 mm ×30 mm) was measured from a single point of view

sing the structured light method described in [13] and a point cloud

as generated. To investigate the effect of CNN projector–camera an-

le estimation error on the point cloud accuracy ( ± 15°), a study into

he point cloud error observed by incrementally injecting angular er-

ors of 0° to 20° into the measurement process. When adding erroneous

rojector–camera angular values to the calibration file, the two point

louds are displaced when they are superimposed onto the same frame

f reference ( Fig. 7 ). 

To measure the effect of the error in estimating the angle between

he camera and projector on the actual accuracy of the measured struc-

ure, the two point clouds were first aligned using an iterative closest

oint (ICP) algorithm (CloudCompare [25] ) and the average distance

etween the two point clouds was calculated ( Fig. 8 ). Initially aligning

he point clouds was required, as we are not concerned about the offset

f the object in space but rather by the effect on the actual measurement

ccuracy of the measured object. 

The measurement of the average point cloud distance to that of

he calibrated point cloud was performed for error values in projector–

amera angle between 0° to 20° in 1° increments. The resulting effect of

rojector–camera angle estimation error to the average distance of the

enerated point cloud to that of the reference point cloud taken after

alibration is shown in Fig. 9 . 

. Discussion 

The illumination direction prediction method described can be used

o infer all extrinsic parameters of the projector’s position and orienta-

ion in a fringe projection application for setups where the distance of

he projector to the object is stationary and the projector’s centre of pro-

ection is fixed to a particular point in space, whilst rotated around the

bject (which in our case is the centre of rotation of the object mount). It

s, therefore, not advised to use the technique described to calibrate the

xtrinsic parameters of a projector in a generic fringe projection mea-

urement scenario where the distance of the projector to the object is

ot stationary during the measurement and the centre of projection is

ot fixed to a specific point in space. 

The experimental results show that the accuracy of the illumination

irection prediction achieved using the trained CNN network in azimuth

nd elevation is within ± 1 bin of the angle reported by the rotation stage

nd inclinometer. The trend of predictions closely follows the real po-

itioning of the light source. Each class trained is a 10°×10° bin of the

llumination dome ( Fig. 2 ) hence, in angular terms, the maximum er-

or is ± 10° from the correct class area or ± 15° from the class median.

 study into the actual point cloud error incurred from this angle es-

imation error is of the order of 1 mm. The advantages of using CNN-

stimated illumination directions to calibrate the measurement are that,
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Fig. 8. Image of the two point clouds after aligning (a) and after measuring the distances between them on the points acquired from the pyramid structure (b). 

Fig. 9. Average point cloud distance against projector– camera angle estimation 

error. We can observe that for the maximum error achieved by the CNN network 

of 15°, the pyramid object measured has approximately 1 mm average point 

cloud error compared to that calibrated by the method presented elsewhere 

[13] . 
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hen CNN-specific hardware is used (for example, the Movidius USB

tick [26] ), the network can provide estimates of the true illumination

irection very quickly (less than 1 s) without large computational over-

eads and, therefore, can operate on cost-effective hardware such as

aspberry Pi in near real time. Additionally, the quality of the angular

stimation is irrelevant of the calibration procedure, unlike the classi-

al method, whereby a checkerboard pattern must be placed in various

rientations in the measurement volume and often does not complete

uccessfully or completes with variable re-projection errors. 

The disadvantages of the method are that it is sensitive to the thresh-

ld used in isolating the shadow for it to operate with high accuracy.

his could be easily alleviated by training on binary images produced by

ifferent amounts of thresholding. Another weak point in our approach

s that it is object-specific: because the model is trained on the shadow
12 
rofile of a specific object, when applied on a different object the sys-

em has to be re-trained. As discussed previously, the estimation of the

lluminated direction of a trained network can be fast, but the genera-

ion of the images required for network training takes approximately 6 h

nd the actual network training takes another thirty to 45 min. Finally,

he number of classes used was relatively low, resulting in a class size

f 10°×10°, which limits the resolution of the predicted illumination

ngle. 

Future work will address the aforementioned drawbacks, such as

he model’s specificity to a particular object, which can be overcome

y training the model including different objects and hence generat-

ng a generalised illumination direction prediction network. Training on

ultiple objects would also mean that the CAD data to train the object-

pecific network will no longer be required, so it would apply for objects

or which no CAD data is available. Furthermore, the need for shadow

solation and image thresholding can be circumvented by directly train-

ng the network on realistic simulated images by using a model-based

pproximation [24] . CNN-specific hardware, such as the Movidius USB

tick [26] , will be used to reduce estimation intervals from 5 s to less

han 1 s and hence allow faster real-time operation. Finally, increasing

he number of classes by reducing the class size or switching to a regres-

ion model for predicting continuous values can lead to higher estima-

ion precision and higher accuracy, and consequently lower the average

rror of the point clouds generated using this technique. 
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upplementary materials 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.optlaseng.2018.08.018 . 

ppendix A 

An example of the rendering environment in the software package

lender with the CAD model of the pyramid used is shown in Fig. A.1 : 

The pipeline followed in generating the simulated images in Blender

s as follows: 

1) Load pyramid STL file in Blender 

2) Rotate the object to sit flat on the X –Y plane, this is done because

some STL files have different axes parameters or the object’s native

world coordinates are not similar to the X –Y axes in Blender. 

3) Scale the model to the correct size 

4) Create a camera with the following characteristics: 

a. Camera distance to object: 400 mm (this was the actual distance

of the camera in our setup) 

b. Camera focal length: 200 mm 

c. Camera clip (start = 1 mm, end 5000 mm) bring all objects into

view 

d. Camera sensor (width = 36 mm, height = 24 mm) modelled for

full frame camera but this is not essential as image can be

cropped later on. 

5) Create a point source with the following characteristics: 

a. Type = point source 

b. Distance = 700 mm – we found that the projector behaved essen-

tially as a point source since moving it closer or further away to

the object did not change its shadow projection significantly so

this number is not very important but it has to be relatively far

away as to not distort the shadow. 

c. Lamp energy = 5 (this number had to do with the source intensity

and needs to be adjusted according to the source distance from

the object in order to give a proper image intensity) 

6) Create a background thin background plane (for the shadow to be

cast on) this was selected to be 50 times that of the object but can

be any size as long as it fills the camera scene. 
Fig. A.1. Blender software rendering environment showin

13 
7) The rendering specifications were set as follows: 

a. Output file type: JPEG 

b. Image size: 227 pixels (horizontal) × 227 pixels (vertical) – this

size had to match up with the input of the CNN used in the train-

ing phase. 

ppendix B 

The network used for training the CNN on the model images was

he popular CaffeNet network. A diagram of the network layers used is

hown below ( Fig. B.1 ): 

The pipeline followed for training the CNN using the CaffeNet net-

ork was as follows: 

1) Compile all the binary images created in an (Lightning Memory-

Mapped Database) LMDB database. 

2) Next calculate the mean image by averaging the average intensity

value for each pixel across the training set. 

3) Subtract the mean image from all the images in the dataset to obtain

a normalised dataset. 

4) Reset only layer fc8 ( Fig. B.1 ) to employ transfer learning as the

rest of the layers will not be trained from scratch but will begin

optimisation from the default CaffeNet weights. 

5) Train the network on the GPU and monitor its training curve to

observe training progress. The maximum allowed number of itera-

tions were set to 10,000. That is, after 10,000 iterations the network

training would stop no matter how much accuracy was achieved.

The maximum number of iterations was set out of experience as the

maximum number of iterations was increased incrementally whilst

monitoring the training curve progress. 

6) After allowing the network to train for some time it was deemed that

6370 iterations were enough as the training accuracy rose to above

90%. If the training accuracy is too high there is danger that the

network will fit ‘too well’ or overfit to the training data and therefore

would not work with high prediction accuracy when presented with

real data which would be inevitably a bit different to the training
g pyramid CAD structure loaded from and STL file. 

https://doi.org/10.1016/j.optlaseng.2018.08.018
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Fig. B.1. Convolutional neural network layers in CaffeNet (created using the neural network visualizer Ethereon Netscope [27] ). 
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