
ADVANCED REV I EW

Transforming big data into smart data: An insight on the use
of the k-nearest neighbors algorithm to obtain quality data

Isaac Triguero1 | Diego García-Gil2 | Jesús Maillo2 | Julián Luengo2 | Salvador García2 |

Francisco Herrera2

1School of Computer Science, University of
Nottingham, Nottingham, UK
2Department of Computer Science and Artificial
Intelligence, University of Granada, Granada,
Spain

Correspondence
Isaac Triguero, School of Computer Science,
University of Nottingham, Nottingham, UK.
Email: isaac.triguero@nottingham.ac.uk

This article is published with the permission of the
Controller of HMSO and the Queen's Printer for
Scotland.

The k-nearest neighbors algorithm is characterized as a simple yet effective data min-
ing technique. The main drawback of this technique appears when massive amounts
of data—likely to contain noise and imperfections—are involved, turning this algo-
rithm into an imprecise and especially inefficient technique. These disadvantages
have been subject of research for many years, and among others approaches, data
preprocessing techniques such as instance reduction or missing values imputation
have targeted these weaknesses. As a result, these issues have turned out as strengths
and the k-nearest neighbors rule has become a core algorithm to identify and correct
imperfect data, removing noisy and redundant samples, or imputing missing values,
transforming Big Data into Smart Data—which is data of sufficient quality to expect
a good outcome from any data mining algorithm. The role of this smart data gleaning
algorithm in a supervised learning context are investigated. This includes a brief
overview of Smart Data, current and future trends for the k-nearest neighbor algo-
rithm in the Big Data context, and the existing data preprocessing techniques based
on this algorithm. We present the emerging big data-ready versions of these algo-
rithms and develop some new methods to cope with Big Data. We carry out a thor-
ough experimental analysis in a series of big datasets that provide guidelines as to
how to use the k-nearest neighbor algorithm to obtain Smart/Quality Data for a high-
quality data mining process. Moreover, multiple Spark Packages have been devel-
oped including all the Smart Data algorithms analyzed.

This article is categorized under:
Technologies > Data Preprocessing
Fundamental Concepts of Data and Knowledge > Big Data Mining
Technologies > Classification

KEYWORDS

big data, data preprocessing, instance reduction, K nearest neighbours, imperfect
data, smart data, instance reduction, spark

1 | INTRODUCTION

Big Data analytics is nowadays sitting at the forefront of many disciplines that are not directly related to computer science, sta-
tistics or maths. The advent of the Internet of Things, the Web 2.0, and the great advances in technology are transforming
many areas such as medicine, business, transportation or energy by collecting massive amounts of information (Chen, Chiang,
and Storey 2012; Al-Fuqaha, Guizani, Mohammadi, Aledhari, and Ayyash 2015; Figueredo et al. 2017; Ramírez-Gallego,

Received: 2 May 2018 Revised and accepted: 26 September 2018

DOI: 10.1002/widm.1289

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2018 Crown copyright. WIREs Data Mining and Knowledge Discovery published by Wiley Periodicals, Inc.

WIREs Data Mining Knowl Discov. 2018;e1289. wires.wiley.com/dmkd 1 of 24
https://doi.org/10.1002/widm.1289

https://orcid.org/0000-0002-0150-0651
https://orcid.org/0000-0002-1927-8673
https://orcid.org/0000-0003-3952-3629
https://orcid.org/0000-0003-4494-7565
https://orcid.org/0000-0002-7283-312X
http://creativecommons.org/licenses/by-nc/4.0/
http://wires.wiley.com/dmkd
https://doi.org/10.1002/widm.1289

Fernández, García, Chen, and Herrera 2018). However, the real benefit of Big Data is not on the data itself, but in the ability
to uncover (unexpected) patterns and glean knowledge from it with appropriate Data Science techniques. The impact of
exploiting this data may reflect on competitive advantages for companies or unprecedented discoveries in multiple science
fields Marx (2013). Nevertheless, both companies and researchers are facing major challenges to cope with the Volume,
Velocity, Veracity, and Variety (among others V's) that characterize this flood of data. These V's define the main issues of the
Big Data problem Fernández et al. (2014).

The premise of Big Data is that having a world rich in data may enable machine learning and data mining techniques Aha,
Kibler, and Albert (1991) to obtain more accurate models than ever before, but classical methods fail to handle the new data
space requirements. With the leverage of distributed technologies such as the MapReduce programming paradigm and the
Apache Spark platform Dean and Ghemawat (2010); Zaharia et al. (2012), some classical data mining algorithms are being
adapted to this new data-intensive scenario Philip-Chen and Zhang (2014); Gupta, Sharma, and Jindal (2016). However, Big
Data mining techniques are not only confronted with scalability or speed issues (volume/velocity) and they will also have to han-
dle inaccurate data (noisy or incomplete) and massive amounts of redundancy. In addition, a key question for many companies
and research institutions remains unanswered: Do we really need to keep stored big amounts of raw data that may be inaccurate
just for the sake of it? Storing data does not come for free and a way of finding sustainable storage is becoming imperative.

The term of Smart Data Iafrate (2014) refers to the challenge of transforming raw data into quality data that can be appro-
priately exploited to obtain valuable insights Lenk, Bonorden, Hellmanns, Rödder, and Jähnichen (2015). Gartner, Inc in
20151 defined Smart Data discovery as “a next-generation data discovery capability that provides business users or citizen data
scientists with insights from advanced analytics”. Therefore, Smart Data discovery is tasked to extract useful information from
data, in the form of a subset (big or not), which poses enough quality for a successful data mining process. The impact of
Smart Data discovery in industry and academia is twofold: higher quality data mining and reduction of data storage costs.

Data preprocessing García, Luengo, and Herrera (2015) clearly resembles the concept of Smart Data as one of the most
important stages of a data mining process. Its goal is to clean and correct input data, so that, a machine learning process may
be later applied faster and with a greater accuracy. With this definition, data preprocessing techniques should enable data min-
ing algorithms to cope with Big Data problems more easily. Unfortunately, these methods are also heavily affected by the
increase in size and complexity of datasets and they may be unable to provide a preprocessed/smart dataset in a timely man-
ner, and therefore, need to be redesigned with Big Data technologies.

A simple yet powerful data mining technique is the k-nearest neighbor algorithm (k-NN) Cover and Hart (1967)
(Figure 1). This is based on the concept of similarity between samples, which in classification problems, for example, this
implies that patterns that are similar have to be assigned to the same class. As a lazy learning algorithm Garcia, Feldman,
Gupta, and Srivastava (2010), it does not carry out a training phase per se, and new unseen cases are classified looking at the
class labels of the closest samples to them according to a given similarity metric. The k-NN algorithm experiences a series of
difficulties to deal with big datasets, such as high-computational cost, high-storage requirements, sensitivity to noise and

Big data
Knowledge extraction

Unreliable

Im
p

e
rf

e
c
t

d
a

ta

M
is

s
in

g
 v

a
lu

e
s

im
p

u
ta

ti
o

n

N
o

is
e

 f
ilt

e
ri

n
g

D
a

ta
 r

e
d

u
c
ti
o

n
H

ig
h
 v

o
lu

m
e
 d

a
ta

O
th

e
rs

 b
ig

d
a

ta
 p

ro
b
le

m
s

Not scalable

Slow

Effective

Smart data Knowledge extraction

Robustness

k-NN based techniques

Scalability

Robustness

FIGURE 1 The k-nearest Neighbors algorithm plays a key role to cope with Big Data by transforming it into Smart data that is free of redundant
information, noise and/or missing values. Gleaning quality data is essential for a correct data mining process that will uncover valuable insights

2 of 24 TRIGUERO ET AL.

inability to work with incomplete information. Based on MapReduce, different distributed alternatives have recently emerged
to enable k-NN to handle Big Data Zhang, Li, and Jestes (2012); Sun, Kang, and Park (2015); Maillo, Luengo, García,
Herrera, and Triguero (2017), alleviating memory and computational cost limitations, but these do not reduce the storage
requirements or look at the quality of the data.

Another way to simultaneously approach several k-NN weaknesses in Big Data is based on data preprocessing strategies
such as data reduction or missing values imputation. The goal of data reduction techniques is to shrink the size of original data
in terms of the number of samples (instance reduction García, Derrac, Cano, and Herrera (2012); Triguero, Derrac, García,
and Herrera (2012); Triguero, Peralta, Bacardit, García, and Herrera (2015)) or attributes (feature selection Liu and Motoda
(2007); Peralta et al. (2016)) to mitigate the computational complexity, storage requirements and noise tolerance by eliminat-
ing redundant, irrelevant and noisy information. The idea of the k-NN itself takes on an important role within those data reduc-
tion algorithms (e.g., by finding discrepancies between nearest neighbors). Dealing with incomplete information such as
missing values is a big challenge for most data mining techniques Luengo, García, and Herrera (2012), and the k-NN is not an
exception as it may not be able to compute distances between examples containing missing values. However, the underlying
idea of the k-NN has been used to impute missing values (kNN-I, Batista and Monard (2003)) based on the k nearest neigh-
bors. To the best of our knowledge, data reduction approaches have been already proposed in the Big Data scenario, but the
imputation of missing values with k-NN in Big Data has not been explored so far.

Although most of these data preprocessing techniques were motivated by k-NN drawbacks, it turns out that the resulting
“smart” dataset provided by the above approaches can also be of use in many other learning algorithms Cano, Herrera, and
Lozano (2003); Luengo et al. (2012). This work reviews the current specialized literature that revolves around the idea of the
k-NN to come up with Smart Data, greatly extending our preliminary contribution in Triguero, Maillo, Luengo, García, and
Herrera (2016) around this topic. First, we will deepen into the concepts of big and Smart Data and how to extract value from
Big Data with existing technologies and Big Data preprocessing techniques (Section 2). Then, we will formally introduce the
k-NN algorithm and its main drawbacks to deal with Big Data (Section 3). Next, we will dig into how the k-NN algorithm can
be used as a core model for data preprocessing (Section 4), distinguishing between smart reduction of data, smart noise filter-
ing and smart imputation. To characterize the behavior of these reviewed techniques, we will carry out an extensive experi-
mental evaluation on a number of big datasets (Section 5). To do this, we have used existing Big Data designs of some data
preprocessing techniques and we have implemented these on Apache Spark. In addition, in this paper, we design Big Data
solutions for those data preprocessing algorithms that were not big data-ready to date (e.g., for missing values imputation). As
a result, we have developed a number of new Spark packages that contain big data preprocessing algorithms to perform Smart
Reduction2, Filtering3 and Imputation4 . To conclude this review, we discuss current and future trends for the k-NN algorithm
(Section 6) in the Big Data context and summarize the main conclusions (Section 7).

2 | SMART DATA: FOCUSING ON VALUE IN BIG DATA

This section is first devoted to introducing the main concepts of Big Data technologies as have been established nowadays
(Section 2.1). As such technologies are evolving how data is processed, the vast piles of data are being transformed in an
accessible form known as Smart Data, which is described in Section 2.2. Thus, thanks to Big Data preprocessing, which
includes a large selection of techniques, we are able to clean and transform raw Big Data into Smart Data.

2.1 | Big data technologies

As stated before, Big Data is typically characterized by a Volume, Velocity, Variety and Veracity (among other V's) that poses a
challenge for current technologies and algorithms. The problem of Big Data has many different faces such as data privacy/secu-
rity, storage infrastructure, visualization or analytics/mining. In this work, we are interested in Big Data analytics/mining to
extract hidden knowledge from Big Data by means of distributed analyses and algorithms. Tackling big datasets with data min-
ing and machine learning algorithms means moving from sequential to distributed systems that can make use of a network of
computers to operate faster. However, parallel computation has been around for many years, what is then new with Big Data?
“The principle of data locality”. Traditional High Performance Clusters (HPCs) have provided a way to accelerate computation
by means of parallel programming models such as MPI (Message Passing Interface) Snir and Otto (1998). Classical HPCs fail to
scale out when data-intensive applications are involved, as data will be moved across the network causing significant delays. In
a Big Data scenario, minimizing the movement of data across the network by keeping data locally in each computer node is key
to provide an efficient response. Thus, ideally, each computer node will operate only on data that is locally available.

The MapReduce functional programming paradigm Dean and Ghemawat (2010) and its open-source implementation in
Hadoop White (2012) were the precursors of parallel processing tools to tackle data intensive applications, by implementing

TRIGUERO ET AL. 3 of 24

the data locality principle. A MapReduce operation is defined in terms of two functions: map and reduce. These functions
work on key/value pairs, which are defined based on the data to be processed and the algorithm to be applied on that data.
The map phase applies a user-specified function to each input pair, the result of which is then emitted to the reduce function
(also user-specified), grouping those values with the same key. The reduce function merges the values assigned to a particu-
lar key together, usually returning a single value per key. Hadoop implements this MapReduce programming model
together with a distributed file systems that provides data locality across a network of computing nodes. As a result, the
end-user is able to design scalable/parallel algorithms in a transparent way, so that data partitioning, job communication and
fault-tolerance are automatically handled. Despite the great success of Hadoop, researchers in the field of data mining found
serious limitations when consecutive operations needed to be applied on the same (big) data, reporting a significant slow-
down. Many other frameworks have been made available to address these limitations of Hadoop, and one of the most popu-
lar platform nowadays is Apache Spark Zaharia et al. (2012). As a data processing engine, Spark operates with
MapReduce-like functions on a distributed dataset, known as Resilient Distributed Datasets (RDDs), which can be cached
in main memory to allow for multiple iterations. Spark is evolving very quickly and more efficient APIs such as Data-
Frames and Datasets are being developed.

Multiple MapReduce-like solutions have been designed to accommodate classical machine learning and data mining tech-
niques to the new Big Data scenario Ramírez-Gallego et al. (2018). Broadly speaking, we can find two main approaches: local
or global methods. Local approaches are approximations of the original algorithms in which the data is split into a number of
smaller subsets and the original algorithm is applied locally. Then, the results from each individual partition are (smartly) com-
bined. Global models, or sometimes known as exact approaches, aim to replicate the behavior of the sequential version by
looking at the data as a whole (and not as a combination of smaller parts). Local approaches typically require a simpler design
than global models, but they lose the full picture of the data. Global models could become more robust and precise (depending
on the data), but they will also tend to be slower.

2.2 | Smart data through big data preprocessing

Data is only as valuable as the knowledge and insights we can extract from it. Referring to the well-known “garbage in, gar-
bage out” principle, accumulating vast amounts of raw data will not guarantee quality results, but poor knowledge. Smart data
refers to the development of tools capable of dealing with massive and unstructured data to reveal its value Lenk et al. (2015).
Once Smart Data are obtained, real time interactions with other business intelligence or transactional applications are
affordable, evolving from data-centered to learning organizations, where knowledge is the core instead of data management
Iafrate (2014).

In the traditional knowledge discovery process in databases, extracting the value in the data was achieved by means of data
preprocessing García et al. (2015). Big Data preprocessing has now become an open, emergent topic that draws much atten-
tion nowadays García, Ramírez-Gallego, Luengo, Benítez, and Herrera (2016). Recent efforts are focusing on adapting data
preprocessing tasks to Big Data environments, enabling techniques such as feature selection, discretization or sampling algo-
rithms to deal with a high dimensionality and huge sample size. The application of this sort of techniques is the key to move
from “Big” to “Smart” Data Lenk et al. (2015) (Figure 2).

Among all data preprocessing approaches, data integration is the first step when transforming Big Data to Smart Data. It
aims to unify the semantics and domains from heterogeneous sources under a common structure. In order to support this

Big data

M
a
c
h
in

e
 l
e
a
rn

in
g

A
c
ti
o
n
a
b
le

 a
n
d
 q

u
q
lit

y
 d

a
ta

B
ig

 d
at

a
te

ch
n

o
lo

g
ie

s
an

d
st

o
ra

g
e

Big data
preprocessing

Smart data

Instance
selection

Imperfect data
Feature

selection

Discretization

Dimensionality
reduction

FIGURE 2 Big data preprocessing is the key to transform raw big data into quality and smart data

4 of 24 TRIGUERO ET AL.

process, the usage of ontologies has recently emerged as a popular option Fadili and Jouis (2016); Chen, Dosyn, Lytvyn, and
Sachenko (2017). Graph databases are also a common choice, storing the data in a relational schema, especially in health care
domains Raja, Sivasankar, and Pitchiah (2015).

Even when the integration phase ends, data may still be far from being “smart”. As data grows (especially in dimension-
ality), noise accumulates Fan and Fan (2008) and algorithmic instability appears Fan, Han, and Liu (2014). Thus, in order
to be “smart”, the data still needs to be cleaned even after its integration. Currently, there is a lack of proposals
for noise cleaning in Big Data environments as finding efficient solutions in this scenario is challenging Frénay and
Verleysen (2014).

To focus on the valuable data, the application of data reduction techniques aims to remove redundant or contradictory
examples. Fortunately, the most relevant reduction techniques already have Big Data solutions: feature selection algorithms
Peralta et al. (2016); Ramírez-Gallego et al. (2017); Tan, Tsang, and Wang (2014), instance selection techniques Triguero
et al. (2015) and discretization procedures Ramírez-Gallego et al. (2016).

We also acknowledge that class imbalance acquires a new dimension in Big Data, where the overwhelming amount of
majority examples mislead learning algorithms. While data resampling may work on Big Data frameworks del Río, López,
Benítez, and Herrera (2014); Rastogi, Narang, and Siddiqui (2018), the introduced artificial minority examples increment the
data size. For this reason, novel preprocessing approaches are being explored by researchers Fernández, del Río, Chawla, and
Herrera (2017).

The implementation of the aforementioned approaches is gathered in specialized packages of the main Big Data program-
ming frameworks (such as Spark's MLlib Meng et al. (2016)). Despite all these progresses, challenges are still present to fully
operate a transition between Big Data to Smart Data. The lack of a universal tool that can broadly be applied with robustness
and ease in different domains and problem typologies motivate the current paper. We postulate the usage of the k-NN algo-
rithm, a simple yet powerful technique, sits at the core of many preprocessing tasks that will help practitioners to achieve
Smart Data.

3 | THE K-NN ALGORITHM

A useful and well-known method for supervised learning is based on the computation of the k nearest neighbors to predict a
target output (i.e., a class label) that a queried object or sample should have by the principle of similarity Biau and Devroye
(2015). The k-NN algorithm infers the target output of new objects according to the result of the nearest samples or the out-
come of several nearest objects in the feature space of a training set. The k-NN algorithm is a non-parametric method that can
manage both classification and regression problems as one of the simplest of all machine learning algorithms Cover and Hart
(1967): a sample is classified by estimating the majority vote of its neighbors, with the new object assigned to the class that is
most common among its nearest neighbors (k being a positive integer, and typically small). A formal notation for k-NN in
classification is as follows:

Let TR be a training dataset and TS a test set, they are formed by a determined number n and t of samples, respectively.
Each sample xp is a vector (xp1, xp2, ..., xpD, ω), where, xpf is the value of the f-th feature of the p-th sample. Every sample of
TR belongs to a known class ω, while it is unknown for TS. For every sample included in the TS, the k-NN algorithm calcu-
lates the distance between this and all the samples of TR. The Euclidean distance is the most used distance function. Thus,
k-NN takes the k closest samples in TR by ranking in ascending order according to the distance. Then, the simplest approach
computes a majority voting with the class label of the k nearest neighbors.

The k-NN algorithm belongs to the family of lazy learning Garcia et al. (2010), which means that it does not carry out an
explicit training phase (i.e., it does not need to build a model) and new unseen cases are classified on-the-fly by comparing
them against the entire training set. In spite of its simplicity, the k-NN is known because it usually offers a good performance
in a wide variety of problems. However, this method becomes very sensitive to the local structure of the training data (that
needs to be kept stored on a drive). Thus, the classical k-NN algorithm suffers from a number of weaknesses that affect its
accuracy and efficiency.

Computing similarity between samples correctly is key for the k-NN to perform well. Its accuracy may be heavily affected
by the presence of noisy or irrelevant features. The nature and number of the input variables (i.e., numerical vs. categorical)
and their variety of ranges highly complicate distance computation. Therefore, as many other classifiers, the k-NN algorithm
is influenced by the so-called curse of dimensionality and plenty of research has been devoted to overcoming this Indyk and
Motwani (1998). More advanced versions of the k-NN algorithm that are capable of improving the performance could be
found by varying the voting weights, neighborhood sizes, similarity metrics, etc. Datta, Misra, and Das (2016); Zou, Wang,
Chen, and Chen (2016); Pan, Wang, and Ku (2017).

TRIGUERO ET AL. 5 of 24

In terms of efficiency, the k-NN algorithm also presents severed issues to handle large-scale datasets. The two main prob-
lems found are:

• Memory consumption: In addition to the data storage requirement (on secondary memory), it needs to have the training
raw dataset allocated in main memory for fast distance computations. Although preliminary distance computations can be
conducted and stored, when TR and TS sets are really big, they can easily exceed the available memory in the computer.
Furthermore, the preliminary distance computations do not work in dynamic environments when the training data is con-
tinually changing over time.

• Computational cost: The complexity to obtain the nearest neighbor samples of a single test instance in the training set is
O n�Dð Þð Þ, where n is the number of training instances and D the number of features. In order to find the k closest neigh-
bors, we typically need to maintain a priority queue with the top nearest neighbors, adding a complexity of O n� log kð Þð Þ
where the binary search needed for the queue update adds the log complexity while comparing against the n examples.
This computational cost is for every test sample we want to classify, so the classification time is linear with respect to the
size of the test dataset.

Multiple approaches have been proposed in the literature to accelerate the k-NN algorithm ranging from data reduction
(see Section 4.1) to approximate versions (see Section 6.2). In Big Data environments, Maillo, Ramírez, Triguero, and Herrera
(2017) proposed a technological solution based on Apache Spark Zaharia et al. (2012) for the standard k-NN algorithm to
partly alleviate some of problems stated above (memory consumption and computation cost) by means of a distributed compu-
tation of nearest neighbors. This exact (global) Big Data version of the k-NN algorithm does not tackle the sensitivity to noisy
data, and data storage requirements.

However, as stated before, a proper and aimed use of the k-NN algorithm can help us to achieve the so-called Smart Data.
This is because the k-NN algorithm can easily be integrated into more complex processes as simple local operations to make
decisions able to enhance and adapt the data to the actual requirements. Next, we will describe the k-NN algorithm as a useful
instrument to procure Smart Data.

4 | THE K-NN ALGORITHM AS A TOOL TO TRANSFORM BIG DATA INTO SMART DATA

The idea of computing k nearest neighbors has been extensively used to carry out data preprocessing. In most of the cases,
existing techniques were originally designed to tackle the weaknesses of the k-NN algorithm mentioned in the previous sec-
tion. However, these methods may act as general data preprocessing techniques that help us to get rid of unnecessary data and
refine imperfect raw data to obtain useful (smart) data. In what follows, we discuss two different scenarios in which the k-NN
algorithm has been applied to reduce data size (Section 4.1) and correct data imperfections (Section 4.2).

4.1 | Data reduction with the k-NN algorithm

Data reduction encompasses a set of techniques devoted to reducing the size of the original data while retaining as much infor-
mation as possible. These techniques are used to both obtain a representative sample of the original data, as well as to alleviate
data storage requirements. This process does not only obtain a relevant sample of the original data, but also aims at eliminating
noisy instances, and redundant or irrelevant data, improving the later data mining process.

In the literature, there are two main approaches to perform data reduction consisting of reducing the number of input
attributes or the instances. Focusing on reducing attributes, the most popular data reduction techniques are Feature
Selection (FS) and feature extraction Liu and Motoda (2007), which are designed to either select the most representative
features or construct a new whole set of them. Similarly, from the instances point of view, we can differentiate between
Instance Selection (IS) methods García et al. (2012), and Instance Generation (IG) methods Triguero et al. (2012). The
objective of an IS method is to obtain a subset SS � TR such that SS does not contain redundant or noisy examples and
Acc(SS) ’ Acc(TR), where Acc(SS) is the classification accuracy when using SS as the training set. Likewise, IG
methods may generate artificial data points if needed for a better representation of the training set. The purpose of an
IG method is to obtain a generated set IGS, which consists of p, p < n, instances, which can be either selected or gener-
ated from the examples of TR.

In this subsection, we focus on those data reduction methods that are inspired by the weaknesses of the k-NN algorithm.
Most existing instance reduction methods were actually conceived to address those shortcomings. Prototype Selection
(PS) methods are IS methods that use an instance-based classifier with a distance measure, commonly k-NN, for finding a
representing subset of the training set. One of the classic and most widely used algorithms for PS is the Fast Condensed

6 of 24 TRIGUERO ET AL.

Nearest Neighbor (FCNN), which is an order-independent algorithm to find a consistent subset of the training dataset using
the NN rule Angiulli (2007). Another simple yet powerful example is the Random Mutation Hill Climbing (RMHC) Skalak
(1994), it randomly selects a subset of the training data and performs RMHC iteratively to select the best subset using k-NN
as a classifier. The IS problem can be seen as a binary optimization problem which consists of whether or not to select a train-
ing example Eiben, Smith, et al. (2003). For this reason, evolutionary algorithms have been used for PS, with very promising
results. In these algorithms, the fitness function usually consists of classifying the whole training set using the k-NN algorithm
Cano et al. (2003). To date, one of the best performing algorithms for evolutionary PS is García, Cano, and Herrera (2008),
which is a steady-state memetic algorithm (SSMA) that achieves a good reduction rate and accuracy with respect to classical
PS schemes.

Another approach to perform instance reduction is IG, also called Prototype Generation (PG) in the case of instance-based
classifiers. In contradistinction to PS, these methods aim to overcome an addition limitation of the k-NN algorithm: it makes
predictions over existing training data assuming they perfectly delimit the decision boundaries between classes
(in classification problems). To overcome that limitation, these methods are not restricted to selecting examples of the training
data, but they can also modify the values of the instances based on nearest neighbors. The most popular strategy is to use
merging of nearest examples to set the new artificial samples Chang (1974). We can also find clustering based approaches
Bezdek and Kuncheva (2001) or evolutionary-based schemes Triguero, García, and Herrera (2010), but the vast majority of
them are based on the idea of computing nearest neighbors to reduce the training set. A complete survey on this topic can be
found in Triguero et al. (2012).

In terms of FS, a variety of strategies such as wrappers, filters and embedded methods have been proposed in the literature
Iguyon and Elisseeff (2003). Nevertheless, we can still find that the k-NN algorithm has also played an important role in many
existing FS proposals Navot, Shpigelman, Tishby, and Vaadia (2006). One of the classic and most relevant methods is ReliefF
Kononenko (1994) that ranks features according to how well an attribute allows us to distinguish the nearest neighbors within
the same class label from the nearest neighbors from each of the different class labels. Similarly to the instance reduction sce-
nario, evolutionary algorithms have also been employed to perform FS with good results. In Xue, Zhang, Browne, and Yao
(2016) we can find a complete survey on FS using evolutionary computation.

Hybrid approaches for data reduction have also been proposed in the literature. Instead of using IS and FS methods sepa-
rately, some research has been devoted to the combination of both IS and FS. In Derrac, García, and Herrera (2010), for
instance, a hybrid of IS and FS algorithm is presented, using an evolutionary model to perform FS and IS for k-NN classifica-
tion. Hybrid approaches of PS and PG have also been studied in the literature. In these methods, PS is used for selecting the
most representative subset of the training data, and PG is tasked to improve this subset by modifying the values of the
instances. In Triguero, García, and Herrera (2011) a hybrid combination of SSMA with a scale factor local search in differen-
tial evolution (SSMA-SFLSDE) is introduced.

As stated previously, data reduction methods are focused on reducing the size of the original data, facilitating the later data
mining processes or actually making them possible in the case of Big Data problems. However, these methods are not pre-
pared to work on Big Data environments, as they were not initially conceived for it. Several approaches have recently emerged
to tackle big datasets by means of distributed frameworks such as Hadoop MapReduce Dean and Ghemawat (2010). In partic-
ular, we can find approaches based on k-NN for Big Data such as Peralta et al. (2016) where FS is performed on huge datasets
using the k-NN algorithm within an evolutionary approach, or a distributed Spark-based version of the ReliefF algorithm
Palma-Mendoza, Rodriguez, and de-Marcos (2018). In Arnaiz-González, González-Rogel, Díez-Pastor, and López-Nozal
(2017) a parallel implementation of the Democratic IS algorithm (DIS) is presented, called MR-DIS. The idea of DIS algo-
rithm is to apply a classic IS algorithm over a number of equally sized partitions of the training data. Selected instances receive
a vote. This process is repeated a number of rounds, and at the end of it, the instances with most votes are removed. Addition-
ally, in Triguero et al. (2015) a distributed framework named MRPR is proposed to enable the practitioner to perform instance
reduction methods on big datasets. This method also splits the big training data into a number of chunks, using a MapReduce
process, and IS or IG approaches are locally applied to each chunk. Then, the resulting reduced sets from each split are merged
together following different strategies.

In the experimental section of this paper, we will analyze the behavior of some of the most representative instance reduc-
tion approaches based on k-NN when tackling big datasets. MR-DIS and SSMA-SFLSDE were already proposed for Big Data
as local models (apply IS and IG algorithms in different chunks of data). For our experiments, the FCNN has been adapted to
Big Data using the MRPR framework Triguero et al. (2015) (same framework used for SSMA-SFLSDE). MRPR and
MR-DIS follow a local approach, which means that these methods will operate on separated chunks of data. Due to its sim-
plicity, the RMHC algorithm has been implemented in a global manner based on the kNN-IS Maillo et al. (2017), so that, it
looks at the training data as a whole (although it looks at the data taking iteratively subsets of the whole dataset).

TRIGUERO ET AL. 7 of 24

4.2 | Handling imperfect data

Albeit most techniques and algorithms assume that the data is accurate, measurements in our analogic world are far from being
perfect Frénay and Verleysen (2014). The alterations of the measured values can be caused by noise, an external process that
generates corruption in the stored data, either by faults in data acquisition, transmission, storage, integration and categoriza-
tion. The impact of noise in data has drawn the attention of researchers in the specialized literature Garcia, de Carvalho, and
Lorena (2015). The presence of noise has a severe impact in learning problems: to cope with the noise bias, the generated
models are more complex, showing less generalization abilities, lower precision and higher computational cost Zhong,
Khoshgoftaar, and Seliya (2004); Zhu and Wu (2004).

Alleviating or removing the effects of noise implies that we need to identify the components in the data that are prone to
be affected. The specialized literature often distinguishes between noise in the input variables (namely attribute noise) and the
noise that affects the supervised features. Attribute noise may be caused by erroneous attribute values, missing attribute values
(MVs) and “do not care” values. Note that only in the case of supervised problems the noise in the output variables can exist.
In classification, this kind of noise is often known either as class or label noise. The latter refers to instances belonging to the
incorrect class either by contradictory examples Hernández and Stolfo (1998) or misclassifications Zhu and Wu (2004), due to
labelling process subjectivity, data entry errors, or inadequacy of the information used to label each instance. In regression
problems, noise in the output will appear as a bias added to the actual output value, resulting in a superposition of two differ-
ent functions that it is difficult to separate.

MVs, among all the corruptions in input attribute values, deserve special attention. In spite of being easily identifiable,
MVs pose a more severe impact in learning models, as most of the techniques assume that the training data provided is com-
plete García-Laencina, Sancho-Gómez, and Figueiras-Vidal (2010). Until recently, practitioners opted to discard the examples
containing MVs, but this praxis often leads to severe bias in the inference process Little and Rubin (2014). In fact, inappropri-
ate MVs handling will lead to model bias due to the distribution difference among complete and incomplete data unless the
MVs are appropriately treated. Statistical procedures have been developed to impute (fill-in) the MVs to generate a complete
dataset, obeying the underlying distributions in the data. The usage of machine learning approaches to perform imputation, as
regressors or classifiers, quickly followed in the specialized literature, resulting in a large set of techniques than can be applied
to cope with MVs in the data Luengo et al. (2012).

The applicability of noise filters or MVs imputations cannot be blindly carried out. The statistical dependencies among the
corrupted and clean data will dictate how the imperfect data can be handled. Originally, Little and Rubin Little and Rubin
(2014) described the three main mechanisms of MVs introduction. When the MV distribution is independent of any other vari-
able, we face Missing Completely at Random (MCAR) mechanism. A more general case is when the MV appearance is influ-
enced by other observed variables, constituting the Missing at Random (MAR) case. These two scenarios enable the
practitioner to utilize imputators to deal with MVs. Inspired by this classification, Frénay and Verleysen Frénay and Verleysen
(2014) extended this classification to noise data, analogously defining Noisy Completely at Random and Noisy at Random.
Thus, methods that correct noise, as noise filters, can only be safely applied with these two scenarios as well.

Alternatively, the value of the attribute itself can influence the probability of having a MV or a noisy value. These cases
were named as Missing Not at Random (MNAR) and Noisy Not at Random for MVs and noisy data, respectively. Blindly
applying imputators or noise correctors in this case will result in a data bias. In these scenarios, we need to model the probabil-
ity distribution of the noisy or missingness mechanism by using expert knowledge and introduce it in statistical techniques as
Multiple Imputation Royston et al. (2004). To avoid improperly application of correcting techniques, some test have been
developed to evaluate the underlying mechanisms Little (1988) but still careful data exploration must be carried out first.

The underlying idea of the k-NN algorithm has served of inspiration to tackle data imperfection. Here, we will distinguish
between two main kinds of data imperfection that need to be addressed: noisy data and incomplete data.

4.2.1 | Noisy data treatment with the k-NN algorithm

As we have mentioned, the presence of noise involves a negative impact in the model obtained. This effect is aggravated if
the learning technique is noise sensitive. In particular, the k-NN algorithm is very sensitive to noise, especially when the value
of k is low. The negative effects of noise will also increase as the data size does, since noise accumulates when the dimension-
ality and number of instances becomes lager Fan et al. (2014). Thus, models obtained from sensitive algorithms will become
even weaker in Big Data environments. The solution goes by transforming Big to Smart Data prior to the application of such
weak learners.

As we have indicated in Section 4.2, noise filtering is a popular option in these cases, which becomes even more helpful
in Big Data environments as noise filters reduce the size of the datasets. However, designing Big Data noise filters is a chal-
lenge and only some prior designs and methods can be found in the literature Zerhari (2016); García-Gil, Luengo, García, and
Herrera (2017). On the other hand, k-NN has been the seminal method to remove redundant and noisy instances in learning

8 of 24 TRIGUERO ET AL.

problems. The key idea of k-NN, distance-based similarity, has been recurrently used to detect and remove class noise. There-
fore, k-NN seems as a promising starting point to transform Big Data to Smart Data.

The literature in the usage of k-NN to clean datasets is very prolific and span over several categories or topics. For
instance, in García et al. (2012) and Triguero et al. (2012), the authors categorized noise filtering techniques based on k-NN
as sub-families of PS and PG methods: edition-based methods and class-relabeling methods, respectively. The objective of
edition-based methods is to only eliminate noisy instances (in contradistinction to more general PS methods that also remove
redundant samples), and class-relabeling methods do not always remove the noisy instances, but they may amend those labels
that the method found mistakenly assigned Sánchez, Barandela, Marqués, Alejo, and Badenas (2003).

Among all the previous categories, one of the most popular methods is the Edited Nearest Neighbor (ENN) Wilson
(1972), which removes all incorrectly labeled instances that do not agree with their k nearest neighbors. If the labels are differ-
ent, the instance is considered as noisy and removed. Other relevant examples of this family of methods are: All-kNN Tomek
(1976), NCN-Edit Sánchez et al. (2003) or RNG Sánchez, Pla, and Ferri (1997). A distributed version of the ENN algorithm
based on Apache Spark is proposed in García-Gil et al. (2017) for very large datasets. This distributed version of ENN per-
forms a global filtering of the instances, considering the whole dataset at once. The time complexity of this method is reduced
to the same time complexity of the k-NN.

In the experimental section of this work, we make the All-KNN global as ENN, as this algorithm basically consists of
applying multiple times ENN. However, for NCN-Edit and RNG, further investigation would be required to design them as
global approaches. Thus, these two methods will be considered within the MRPR framework proposed in Triguero
et al. (2015) to make them scalable to Big Data.

4.2.2 | Missing values imputation with the k-NN algorithm

There are different ways to approach the problem of MVs. For the sake of simplicity, we will focus on the MCAR and MAR
cases by using imputation techniques, as MNAR will imply a particular solution and modeling for each problem. When facing
MAR or MCAR scenarios, the simplest strategy is to discard those instances that contain MVs. However, these instances may
contain relevant information or the number of affected instances may also be extremely high, and therefore, the elimination of
these samples may not be practical or even bias the data.

Instead of eliminating the corrupted instances, the imputation of MVs is a popular option. The simplest and most popular
estimate used to impute is the average value of the whole dataset, or the mode in case of categorical variables. Mean imputa-
tion would constitute a perfect candidate to be applied in Big Data environments as the mean of each variable remains unal-
tered and can be performed in O nð Þ. However, this procedure presents drawbacks that discourage its usage: the relationship
among the variables is not preserved and that is the property that learning algorithms want to exploit. Additionally, the stan-
dard error of any procedure applied to the data is severely underestimated Little and Rubin (2014) leading to incorrect
conclusions.

Further developments in imputation are to solve the limitations of the two previous strategies. Statistical techniques such
as Expectation-Maximization Schneider (2001) or Local Least Squares Imputation Kim, Golub, and Park (2004) were applied
in bioinformatics or climatic fields. Note that imputing MVs can be described as a regression or classification problem,
depending on the nature of the missing attribute. Shortly after, computer scientists propose the usage of machine learning algo-
rithms to impute MVs Luengo et al. (2012).

One of the most popular imputation approaches is based on k-NN (denoted as kNN-I) Batista and Monard (2003). In this
algorithm, for each instance that contains one or more MVs, it calculates the k nearest neighbors and the gaps are imputed
based on the existing values of the selected neighbors. If the value is nominal or categorical, it is imputed by the statistical
mode. If the value is numeric, it will be imputed with the average of the nearest neighbors. A similarity function is used to
obtain the k nearest neighbors. The most commonly used similarity function for missing values imputation is a variation of the
Euclidean distance that accounts for those samples that contain MVs. The advantage of kNN-I is that is both simple and flexi-
ble, requiring few parameters to operate and being able to use incomplete instances as neighbors. Most imputation algorithms
only utilize complete instances to generate the imputation model, resulting in an approximate or biased estimation when the
number of instances affected by Mvs is high.

The proposal of imputation techniques in Big Data is still an open challenge, due to the difficulties associated to
adapt complex algorithms to deal with partial folds of the data without losing predictive power. At this point, MVs pose
an important pitfall in the transition from Big to Smart Data. To the best of our knowledge, there has not been proposed
a way of applying kNN-I on big datasets. Although further investigation is required, we propose a simple yet powerful
approach to handle MVs with the kNN-I algorithm on Big Data problems, which will be called k Nearest Neighbors
Local Imputation (kNN-LI). Figure 3 shows the workflow of the algorithm. Due to the scalability problems to tackle the
Euclidean distance with MVs, the proposed kNN-LI algorithm follows a divide and conquer scheme under the

TRIGUERO ET AL. 9 of 24

MapReduce paradigm and it is implemented under the Apache Spark platform. It begins by splitting and distributing the
dataset between the worker nodes. For each chunk of data, we compute the kNN-I method locally with the existing
instances. Once all MVs have been imputed for each chunk of the data, the results are simply grouped together to
obtain a whole dataset free of MVs. This local design is similar to the one followed in Triguero et al. (2015) for
instance reduction approaches, and allows us to impute MVs in very large datasets. Nevertheless, as a local model we
are aware that the quality of the imputation may vary depending on the number of partitions considered. A preliminary
global version of this imputator is also available on the provided Spark Package, but we have not included this in our
experiments because it does not cope well with the used datasets.

5 | EXPERIMENTAL STUDY AND ANALYSIS OF RESULTS

The effectiveness of k-NN-based algorithms to obtain smart data has been widely analyzed in small and medium datasets. This
section presents different case studies that show the potential of the k-NN algorithm as a unique and simple idea to obtain
Smart Data from big amounts of potentially imperfect data. After presenting the details associated to the experimental study in
Section 5.1, we conduct a series of experiments with relevant methods for smart instance reduction (IS and IG) in Section 5.2,
noise filtering in Section 5.3 and missing values imputation in Section 5.4. All the implementations of the techniques analyzed
in this section are available as Spark Packages for public use. Note that most of the used algorithms were already designed
under MapReduce, and we implemented them on Spark to improve their efficiency. For those algorithms for which there was
not a MapReduce-like design available, we proposed in the previous section a Big Data solution for them.

5.1 | Experimental set-up

In this section, we show all the details related to the experimental set-up, introducing the problems selected for the experimen-
tation, the performance measures and the parameters of the methods used. In addition, we detail the hardware and software
resources used to carry out the experiments.

We have selected 7 Big Data classification problems. The ECBDL’14 dataset is extracted from a Big Data competition
ECB (2014). This is a binary classification problem with a high-imbalance ratio (>45). As we are not focused on the imbal-
anced problem in this experimental study, we have randomly sampled the dataset to obtain a more balanced ratio of 2 (meaning
that there will be the double of examples from one class w.r.t the other). We selected this dataset because of its relatively high
number of features and to analyze how this characteristic affects to our experiments. The remaining 6 datasets are extracted
from the UCI machine learning and KEEL datasets repositories Lichman (2013); Triguero et al. (2017). Table 1 presents the
number of examples, number of features, and the number of classes (#ω) for each dataset. All datasets have been partitioned
using a fivefold cross-validation scheme. This means that each partition includes 80% of samples for training and 20% of them
are left out for test.

With N samples

Features Class

ft1 ? · · · ftn ω
ft1 ft2 · · · ? ω

· · ·

ft1 ft2 · · · ftn ω
Split1

Split2

SplitM

· · ·

· · ·
ft1 ft2 · · · ftn ω

Data

MapPartition (compute kNNI for every split)

(without
missing values)

Features Class

ft1 ft2 · · · ftn ω
? ft2 · · · ftn ω

· · ·

ft1 ft2 · · · ? ω

Features Class

ft1 ft2 · · · ftn ω
ft1 ? · · · ftn ω

· · ·

ft1 ft2 · · · ftn ω

Features Class

ft1 ft2 · · · ftn ω
ft1 ft2 · · · ftn ω

· · ·

ft1 ft2 · · · ftn ω

· · ·

Features Class

ft1 ft2 · · · ftn ω
ft1 ft2 · · · ftn ω

· · ·

ft1 ft2 · · · ftn ω

Features Class

ft1 ft2 · · · ftn ω
ft1 ft2 · · · ftn ω

· · ·

ft1 ft2 · · · ftn ω

Data

(with missing
values)

FIGURE 3 Flowchart of the kNN-LI algorithm. The dataset is split into M chunks (Map function) that are processed locally by a standard kNN-I algorithm.
The resulting amended partitions are then gathered together

10 of 24 TRIGUERO ET AL.

To assess the scalability and performance of the experimental study, we use the following measures:

• Accuracy: It represents the percentage of correctly classified instances with respect to the total of test samples.
• Reduction Rate: This shows the percentage of data w.r.t to the original training data that has been removed as it is consid-

ered redundant or noisy. It has a strong influence on the efficiency and efficacy of the latter classification step.
• Runtime: This measure collects the execution time invested by the algorithms. All analyzed algorithms have been run in

parallel on Spark, and the runtime includes reading and distributing the dataset across a cluster of computing nodes. The
runtime highly depends on the number of partitions established. In this work, we are not focused on performing a study of
the scalability of the methods, so that, we have set up a fixed number of partitions depending on the type of method and
datasets (see details in the following subsections).

As stated before, we test the performance of data reduction techniques, noise filters and missing value imputation methods
on a Big Data scenario following a variety of designs (i.e., local or global model). As a summary of the Spark packages pro-
vided in this paper, Table 2 briefly describe all the analyzed methods. The parameters used by these algorithms are summa-
rized in Table 3. As recommended by different authors, we have focused on a k = 1 for data reduction methods, k = 3 for
noise filtering, and we explore a number of k values for missing values imputation.

After the preprocessing stage, we need to apply a classifier to analyze the impact of removing noise, redundant data or
imputing missing values. In this work, we have focused most of the experiments on a distributed version of a Decision Tree
Quinlan (1993), which is available on the Machine Learning library of Apache Spark Zaharia et al. (2012). We have selected
this algorithm because it is able to learn a Decision Tree globally, meaning that all the data is used at once to build a Decision
Tree. In addition, its learning and classification runtimes are typically lower than other machine learning techniques.

TABLE 1 Summary description of the datasets

Dataset #Examples #Features #ω

ECBDL’14 2,063,187 631 2

Higgs 11,000,000 28 2

Ht-sensor 928,991 11 3

Skin 245,057 3 2

Susy 5,000,000 18 2

Watch-acc 3,540,962 20 7

Watch-gyr 3,205,431 20 7

TABLE 2 Spark packages for smart data gleaning: Brief description of the MapReduce-based methods included in these packages

Smart-reduction: https://spark-packages.org/package/djgarcia/SmartReduction

FCNN_MR Angiulli (2007) This method applies FCNN locally in separate chunks of the data, using the MRPR framework Triguero et al. (2015). FCNN
begins with the centroids of the different classes as initial subset. Then, each iteration, for every instance in the subset, it adds
the nearest enemy inside its Voronoi region. This process is repeated until no more instances are added to the subset. The
resulting reduced sets from each chunk is joined together.

MR-DIS Arnaiz-González
et al. (2017)

MR-DIS applies a condensed nearest neighbor algorithm Hart (1968) repeatedly to each partition of the data (locally). After each
round, selected instances receive a vote. The instances with the most votes are removed.

SSMA-SFLSDE Triguero
et al. (2011)

Following a local MRPR approach, this performs an IS phase to select the most representative instances per class. Then the
particular of positioning of prototypes is optimized with a differential evolution algorithm. The resulting partial reduced sets are
joined together.

RMHC_MR Skalak (1994) This is implemented as a global model. It starts from a random subset, and at each iteration, a random instance from the sample is
replaced by another from the rest of the data. If the classification accuracy is improved (using the global k-NN), the new sample
is maintained for the next iteration.

Smart-filtering: https://spark-packages.org/package/djgarcia/SmartFiltering

ENN_MR Wilson (1972) ENN_MR performs a global 1NN (based on Maillo et al. (2017) to the input data and removes examples whose nearest neighbor
does not agree with its class.

All-kNN_MR Tomek (1976) All-KNN performs ENN_MRrepeatedly with different values of k, removing instances whose class differ from its nearest
neighbors. Therefore, this is also a global model.

NCNEdit_MR Sánchez
et al. (2003)

It follows a local MRPR scheme, using the original NCNEdit algorithm to discard misclassified instances using the k nearest
centroid neighborhood classification rule with a leave-one-out error estimate for separate chunks of the data.

RNG_MR Sánchez
et al. (1997)

RNG_MR also follows a local MRPR approach, so that, the RNG_MR computes a proximity graph of the input data. Then, all the
graph neighbors of each sample give a vote for its class. Finally, mislabeled examples are removed.

Smart-imputation: https://spark-packages.org/package/JMailloH/Smart_Imputation

kNN-LI Batista and Monard
(2003)

This approach splits the data into different chunks, and applies the original kNN-I on each partition. This means that for each
instance containing a MV, the imputation is based on the values of its k nearest neighbors.

TRIGUERO ET AL. 11 of 24

Whenever possible we have also included the results of applying the k-NN algorithm using the resulting preprocessed data-
sets. Table 4 shows the parameters used for these classifiers.

The cluster used for all the experiments performed in this work is composed of 14 nodes managed by a master node. All
nodes have the same hardware and software configuration. Regarding the hardware, each node has 2 Intel Xeon CPU
E5-2620 processors, 6 cores (12 threads) per processor, 2 GHz and 64 GB of RAM. The network used is Infiniband 40Gb/s.
The operating system is Cent OS 6.5, with Apache Spark 2.2.0. and the maximum number of concurrent operations is equal to
256 and 2 GB for each task.

5.2 | Smart instance reduction

The aim of this section is to analyze the behavior of relevant instance reduction methods and characterize their capabilities in
Big Data classification in terms of accuracy performance, reduction rate and computing times obtained. We compare the four
data reduction algorithms described in Table 2, using both Decision Trees and k-NN as base algorithms. It is important to
recall at this point a few characteristics about the Big Data implementations used in this paper. MR-DIS, SSMA-SFLSDE,
and FCNN_MR will act as local models, handling the data in a divide-and-conquer fashion. The RHMC_MR implementation
is, however, a global approach capable of looking at the whole training data as a single piece. The number of partitions has
been set to a number that results in no less than 1,000 examples per partition. We acknowledge that local models may be
affected by the number of partitions considered as discussed in Triguero et al. (2015) and further investigation may be
required. Nevertheless, this has established a fair comparison framework for all the considered data reduction techniques.

Table 5 summarizes the results obtained with all the data reduction algorithms using a Decision Tree as a classifier. It
shows the accuracy and reduction rate obtained on test. For each dataset, we also include the result of applying the Decision
Tree algorithm without applying any preprocessing (denoted as Baseline). Decision trees are known to be very sensitive to
instance reduction techniques, as they have less instances to consider when splitting. Therefore, we may expect some accuracy
drops when instance reduction techniques are applied. As a way of quantifying the reduction rate impact, Figure 4 plots the
data storage reduction (in Gigabytes) for all tested instance reduction methods on the ECBDL’14 dataset. Looking in detail at
these results, we can draw the following conclusions from the results:

• The main goal of this type of techniques is to widely reduce the amount of data samples that we keep as training data.
However, the analyzed algorithms work quite differently and they lead to very different accuracy and reduction rates. As
we can see, for the same dataset, depending on the technique used, the reduction rate may vary from 22 to 96% of reduc-
tion. This shows the importance of choosing the right technique depending on whether our objective is to reduce data size
or our focus is on obtaining a high accuracy.

• On average, the SSMA-SFLSDE algorithm provides the highest reduction rates, achieving up to 98.6% reduction without
a significant loss in accuracy. For example, on the skin dataset, SSMA-SFLSDE is able to find a subset of roughly 2,700
instances that represents almost perfectly the 196,000 training instances. Figure 4 shows the great impact of SSMA-
SFLSDE on ECBLD’14 dataset, in which the training data is reduced from approximately 14GBs to 725MBs.

TABLE 3 Parameter settings for the data preprocessing algorithms utilized

Algorithm Parameters

FCNN_MR k = 1, ReducerType = join

MR-DIS k = 1, numRep = 10, alpha = 0.75, dataPerc = 1.0

SSMA-SFLSDE PopulationSFLSDE = 40, IterationsSFLSDE = 500, iterSFGSS = 8

iterSFHC = 20, Fl = 0.1, Fu = 0.9, ReducerType = join

RMHC_MR k = 1, iterations = 300, p = .1, ReducerType = join

ENN_MR k = 3

All-kNN_MR k = 3

NCNEdit_MR k = 3, ReducerType = join

RNG_MR graphOrder = first order, selType = edition, ReducerType = join

kNN-LI k = 3, 5 and 7

TABLE 4 Parameter settings for the base classifiers

Classifier Parameters

Decision tree Impurity = “gini”, maxDepth = 20 and maxBins = 32

k-NN k = 1

12 of 24 TRIGUERO ET AL.

TABLE 5 Impact of instance reduction on decision trees (test accuracy and reduction rate)

Dataset Method Accuracy (%) Reduction (%)

ECBDL’14 Baseline 75.85 —

FCNN_MR 72.59 45.81

SSMA-SFLSDE 69.63 96.76

MR-DIS 74.02 24.12

RMHC_MR 70.08 90.28

Higgs Baseline 69.94 —

FCNN_MR 69.37 34.95

SSMA-SFLSDE 63.89 95.50

MR-DIS 69.36 24.74

RMHC_MR 66.89 89.99

Ht_sensor Baseline 99.98 —

FCNN_MR 64.96 99.90

SSMA-SFLSDE 98.74 98.04

MR-DIS 87.96 99.86

RMHC_MR 99.76 89.99

Skin Baseline 99.86 —

FCNN_MR 99.78 93.23

SSMA-SFLSDE 99.24 98.62

MR-DIS 99.77 96.38

RMHC_MR 99.79 89.91

Susy Baseline 77.66 —

FCNN_MR 76.18 41.77

SSMA-SFLSDE 75.97 95.95

MR-DIS 76.70 22.65

RMHC_MR 74.64 89.98

Watch_acc Baseline 91.22 —

FCNN_MR 77.07 95.75

SSMA-SFLSDE 88.16 93.45

MR-DIS 79.44 97.20

RMHC_MR 89.51 89.98

Watch_gyr Baseline 90.35 —

FCNN_MR 70.92 96.87

SSMA-SFLSDE 86.54 93.52

MR-DIS 75.18 97.71

RMHC_MR 87.18 89.97

None

FCNN_MR

SSMA−SFLSDE

MR−DIS

RMHC_MR

 0 2 4 6 8 10 12 14 16

In
s
ta

n
c
e
 R

e
d
u
c
ti
o
n
 M

o
d
e
l

Size in GBytes

FIGURE 4 Storage requirements reduction on ECBDL’14 dataset

TRIGUERO ET AL. 13 of 24

• MR-DIS is the most conservative algorithm as far as the number of removed instances is concerned, followed by
FCNN_MR. These methods are also achieving less accuracy than RMHC_MR and SSMA-SFLSDE. The relatively high
accuracy of the RMHC_MR algorithm w.r.t more advanced methods such as MR-DIS and SSMA-SFLSDE may be
explained by the fact that the implementation is global, so that, it is able to find redundant data in a more global manner.
Nevertheless, we have to recall that RMHC_MR basically subsamples the entire dataset and apply k-NN. Regarding MR-
DIS and FCNN_MR, we can see that they have a close performance in accuracy and reduction rates, achieving MR-DIS
slightly better performance in some datasets. These similarities are given because MR-DIS uses a condensed nearest
neighbor algorithm as instance selection algorithm in the internal process of DIS, which is the cornerstone of FCNN.

• As expected, the application of a Decision Tree on the entire training dataset (raw data) is normally providing a higher
accuracy (of course, needing a higher learning time). However, in many of the cases, the drop in accuracy is so reduced
and the reduction provided is so high that we conclude that it is worth obtaining Smart Data before applying learning. In
particular, on those datasets in which the Baseline is able to obtain a very high accuracy, we can obtain high-reduction
rates without losing much accuracy.

Since all the tested data reduction algorithms are based on similarity between instances (rather than a comparison at a fea-
ture level as the Decision Tree does), they are expected to have a better performance when using a distance-based classifier. In
Table 6, we can find the test accuracy results and reduction rate using the k-NN algorithm as a classifier. Baseline now repre-
sents the results of the k-NN algorithm without any preprocessing. As we can see, data reduction techniques are performing
better in this scenario compared to the previous study with Decision Trees. None of the data reduction algorithms methods is
losing that much accuracy with respect to the baseline accuracy. In fact, in some cases they are able to improve the baseline
performance, as they remove redundant and also noisy examples. Analyzing further these results, we can conclude that:

• As happened before with Decision Trees, there is not a clear outperforming method overall. The choice of the right tech-
nique crucially depends on the particular problem, and the needs to reduce data storage requirements and precision.

• In Susy dataset, SSMA-SFLSDE is improving the baseline accuracy by 1.5% with close to 96% of reduction. This exem-
plifies the importance of using data reduction techniques, not only for reducing the size of the data, but also for removing
noisy and redundant instances. For datasets with high accuracy such as Skin and Ht_sensor, we can achieve up to 98.6%
of reduction without losing accuracy. This allows techniques that could not be applied due to the size of the data, to be
used in subsequent processes.

Finally, we analyze the runtime of the four data reduction algorithms to complete the smart reduction of the data size. In
Figure 5, we show a graphic representation of these runtimes. Due to the variances in computing times, we have used a loga-
rithmic scale to represent the results. The different working schemes of the algorithms are clearly reflected on these
differences.

Overall, the RMHC_MR method is the most time consuming algorithm as it performs k-NN repeatedly in a global fashion.
SSMA-SFLSDE is expected to be computationally expensive as it performs PS and PG with evolutionary computation to
select the best subset. The fastest method is FCNN_MR, however, the balance between performance and computational cost
does not make it the best choice. It is also worthwhile noticing that despite the very high runtime shown by most of these
smart reduction algorithms, they will also be applied once on the raw data, and multiple classifiers could later be applied and
studied on the resulting datasets (for example optimizing parameters, which is typically a very time consuming operation and
almost impossible on a Big Data scenario).

In this study, we have analyzed four relevant methods to perform data reduction. These algorithms have very different
properties between themselves. FCNN_MR is the fastest method with a decent performance for some datasets. The method

TABLE 6 Impact of instance reduction on k-NN (test accuracy)

Method

Dataset Baseline FCNN_MR SSMA-SFLSDE MR-DIS RMHC_MR

ECBDL’14 80.06 74.98 72.03 76.73 69.19

Higgs 58.36 57.64 57.03 57.41 56.57

Ht_sensor 99.99 68.97 99.71 95.85 99.97

Skin 99.95 99.87 99.76 99.86 99.90

Susy 69.35 66.70 70.80 67.24 67.59

Watch_acc 96.40 80.17 89.49 78.31 92.05

Watch_gyr 98.57 88.35 91.76 85.54 95.18

14 of 24 TRIGUERO ET AL.

that achieves the highest reduction rates without a significant drop in accuracy is SSMA-SFLSDE. It can even improve the
baseline performance in some cases with up to 95% of reduction. Data reduction techniques have shown to be a powerful solu-
tion when facing storage limits or dimensionality restrictions for subsequent data mining.

5.3 | Smart noise filtering

In this section, the goal is to analyze the performance of four significant smart noise filtering methods. We carry out experi-
ments modifying the original datasets to include five levels of label noise. For each noise level, a percentage of the training
instances are altered by randomly replacing their actual label by another label from the pool of available classes. The selected
noise levels are 0, 5, 10, 15, and 20%, where a 0% noise level indicates that the dataset was unaltered. Apart from the test
accuracy, we also analyze the reduction rate of the datasets after the filtering process, and the runtime of the different
methods.

For this study, we have compared four well-known smart noise filtering methods implemented on MapReduce: ENN_MR,
All-kNN_MR, NCN-Edit_MR and RNG_MR. It is important to recall here that ENN_MR and All-kNN_MR methods have
been implemented following a global approach, which means that they compute nearest neighbors against the entire datasets.
For the NCN-Edit_MR and the RNG_MR algorithms, we have used the MRPR framework Triguero et al. (2015), so that,
these methods are applied locally in different chunks of the data. The results from each partition are simply joined together
(following the join reducer offered in Triguero et al. (2015)). As before, the number of partitions has been established as a
number that results in no less than 1,000 examples per partition for a fairer comparison between noise filters.

Table 7 shows the test accuracy and reduction rate values obtained by the four noise filtering methods over the seven
tested datasets using a decision tree. We also include an extra column, named Original, in which no filtering has been per-
formed. This will help us characterize the influence of noise on these datasets and understand the effect of filtering methods.
The best results in each row are highlighted in bold face.

Looking at these results, we can make the following conclusions:

• The usage of a noise treatment techniques improves in most cases the accuracy obtained (w.r.t. the Original column) at
the same level of noise. This shows that avoiding noise treatment is not usually a good option, since using the appropriate
noise filtering method will provide an important improvement in accuracy. However, we can also see that the behavior of
all of the analyzed filters on the ECBDL’14 does not provide any improvement w.r.t to the Original. This may be due to
the high-dimensionality of this dataset (with more than 600 features) in which a k-NN-based filter may not be the most
suitable option.

• The Decision Tree has shown some intrinsic robustness against noise (looking at the Original column), and filters that are
too aggressive remove both noisy and clean instances and reduce its performance, since it is able to endure some noise
while exploring clean instances. The choice of the noise filtering technique is crucial not to penalize the performance of a
Decision Tree.

ECBDL’14

Higgs

Ht_sensor

Skin

Susy

Watch_acc

Watch_gyr

D
a
ta

s
e
t

0.1 1 10 100 1000 10000 100000

Log (Time(s))

FCNN_MR

SSMA–SFLSDE

MR–DIS

RMHC_MR

FIGURE 5 Runtime chart in logarithmic scale to perform smart reduction

TRIGUERO ET AL. 15 of 24

• The effect of noise is quite variable depending on the dataset, and as the noise level increases, the reduction rate is
increased. This means that the noise filtering methods are performing well and detecting the noisy instances. Removing
instances at 0% level of noise could mean that the dataset had some noise per se or the filtering algorithm is erroneously
removing good instances.

• There is no noise filtering technique that clearly stands out from the rest. NCN-Edit_MR shows a good accuracy perfor-
mance in five datasets while RNG_MR performs well in four of them. RNG_MR is achieving up to 3% more accuracy
than a no noise filtering strategy. ENN_MR, and All-kNN_MR have highlighted as very aggressive noise filters which
does not work well with a Decision Tree. Actually, the All-kNN_MR is the filter that removes more instances from the
datasets at any noise level. It filters out around 80% of the instances of the datasets. It is probably removing not only noisy
instances, but a lot of clean ones, affecting the posterior classification process.

• Looking at the Big Data implementation side of these noise filters. ENN_MR and All-kNN_MR are looking at the data as
a whole (global approach), while NCN-Edit_MR and RNG_MR are being applied independently in a number of partitions
of the data. It is remarkable that local implementations seem to perform well in this Big Data experiments, which means
that without a global view of the data they are able to effectively identify noise data. This could be due to some data redun-
dancy in these big datasets.

TABLE 7 Smart filtering: impact of noise filters on decision trees with different ratios of added noise ((%) test accuracy and (%) reduction rate)

ENN_MR All-kNN_MR NCN-Edit_MR RNG_MR
Dataset Noise(%) Original Accuracy Reduction Accuracy Reduction Accuracy Reduction Accuracy Reduction

ECBDL’14 0 75.85 74.12 46.25 72.33 69.37 74.85 34.65 74.16 33.37

5 69.26 68.48 46.52 67.66 70.12 67.82 37.06 67.87 35.03

10 68.51 67.56 47.14 67.65 71.05 67.14 39.66 67.18 37.45

15 67.66 67.42 47.69 66.70 71.96 66.67 41.95 66.87 39.84

20 66.43 66.13 48.20 66.11 72.68 65.17 43.95 66.30 41.98

Higgs 0 69.94 69.12 49.68 67.51 74.48 69.27 46.25 69.13 46.97

5 69.66 68.59 49.69 66.80 74.56 68.91 46.96 68.75 47.56

10 69.26 68.13 49.77 66.21 74.65 68.32 47.63 68.22 48.09

15 68.83 67.49 49.80 65.59 74.71 67.81 48.18 67.49 48.62

20 68.28 66.69 49.84 64.72 74.78 67.11 48.65 66.72 49.00

Ht_sensor 0 99.98 99.90 1.36 99.06 66.85 99.99 0.02 99.99 0.02

5 99.85 99.84 17.50 94.62 73.34 99.95 9.47 99.95 9.07

10 99.72 99.75 24.92 86.70 76.71 99.90 18.25 99.91 17.49

15 99.57 99.56 29.34 85.90 78.46 99.76 26.43 99.80 25.34

20 99.38 99.24 35.57 83.08 80.54 99.65 33.69 99.64 32.57

Skin 0 99.86 99.81 32.73 99.33 49.28 99.83 1.54 99.60 5.61

5 99.71 99.65 34.69 97.10 53.94 99.81 10.01 99.44 14.45

10 99.49 99.28 37.02 90.45 58.07 99.60 17.90 99.28 22.23

15 99.27 98.93 39.60 84.05 61.87 99.64 24.93 99.03 29.50

20 98.96 97.20 41.82 82.72 64.86 99.39 31.10 98.36 35.24

Susy 0 77.66 76.83 49.16 75.55 73.94 77.91 33.92 77.40 36.69

5 77.19 76.28 49.31 74.34 74.14 77.53 36.82 77.01 39.13

10 76.77 75.42 49.43 73.75 74.32 77.11 39.47 76.51 41.34

15 76.23 75.81 49.56 73.05 74.47 76.51 41.81 75.82 43.37

20 75.61 74.22 49.63 71.86 74.58 75.93 43.95 75.06 45.12

Watch_acc 0 91.22 90.70 10.37 84.47 87.05 90.53 0.01 91.42 0.02

5 90.97 90.29 24.30 81.25 89.44 91.06 9.62 91.10 9.43

10 90.49 90.68 32.01 76.85 90.91 91.22 18.64 90.83 18.34

15 90.30 90.60 36.67 71.80 91.73 90.78 27.17 90.35 26.71

20 89.90 90.17 41.53 69.29 92.65 90.41 35.04 90.63 34.52

Watch_gyr 0 90.35 89.45 10.60 84.97 87.15 90.34 0.02 90.21 0.02

5 89.62 89.10 28.60 81.45 90.13 89.94 9.63 90.34 9.53

10 89.37 88.97 32.72 77.98 90.96 90.21 18.68 90.13 18.50

15 89.46 88.54 36.61 75.39 91.79 89.81 27.18 89.81 26.98

20 88.39 88.30 42.13 72.38 92.62 89.72 35.16 88.93 34.85

16 of 24 TRIGUERO ET AL.

These results stress the importance of the use of noise filtering techniques, and how important is to choose the right noise
filter. NCN-Edit_MR and RNG_MR have shown to have good performance in accuracy and a more moderate reduction rate,
while ENN_MR and All-kNN_MR cannot match the performance of the previous ones.

Looking at the computational cost of these filters, Figure 6 presents a comparison across methods. As the percentage of
noise is not a factor that affects the computing times, we show the average result for the five executions per dataset and level
of noise. Due to the big differences in computation time between the noise filtering methods, we represent the times using a
logarithmic scale.

We can highlight that the NCN-Edit_MR is the most efficient method in terms of computing times. It is closely followed
by RNG_MR. Both of them are local Big Data solutions, which approximate the original filtering method. All-kNN_MR and
ENN_MR are the most time consuming methods as they have been implemented in a global manner.

In summary, we can conclude that applying a noise filtering technique is crucial in the presence of noise. NCN-Edit_MR
and RNG_MR have shown to be the most competitive noise filtering methods, not only in test accuracy and reduction rates,
but also in computing times. As big datasets tend to accumulate noise, these methods can be a solution to remove those noisy
instances in a reasonable amount of time.

5.4 | Smart imputation of missing values

This study is focused on the proposed kNN-LI algorithm to impute missing values in the Big Data context. As detailed previ-
ously in Section 4.2.2, we have followed a simple local approach to enable the original kNN-LI algorithm to be run on very
big datasets. This subsection is aimed to compare the results of kNN-LI against eliminating affected instances and imputing
missing values based on the average/mode value. To do this, we will study the scalability and accuracy with different values
of k equal to 3, 5, and 7 on the described datasets. The original training partitions are modified, introducing a 15% and a 30%
of instances affected with missing values, using a MCAR mechanism. We will compare the quality of the used techniques to
handle MVs using the Decision Tree algorithm as a classifier.

In this experiment, the number of partitions used has been set as follows: for very big datasets such as Susy, Higgs and
ECBDL’14 we use 1,024 maps; for the rest of datasets we use 256 maps. We set those values after some preliminary experi-
ments in which we determined that a lower number of maps did not really provide any better results in comparison with the
runtime needed to execute the algorithm.

We characterize the proposed local kNN-LI imputator in terms of runtime and precision. Table 8 focuses on studying the
quality of the imputation. It presents the accuracy obtained by the Decision Tree classifier in comparison with different tech-
niques to deal with the missing values (ImpTech). First, the column “Original” denotes the results obtained if the dataset were
not to have any missing values. Note that in a real situation, this comparison could not be made, but it serves as a reference of
(possibly) the maximum accuracy that could be achieved. “Clear” presents the result of eliminating those instances that con-
tain any missing value. “ImputedMean” deals with the missing values by imputing with the average value of a feature (if the
feature is continuous) or the mode (if the feature is categorical). Finally, for the proposed kNN-LI we indicate the value of k.

ECBDL’14

Higgs

Ht_sensor

Skin

Susy

Watch_acc

Watch_gyr

D
a
ta

s
e
t

0.1 1 10 100 1000 10000 100000

Log (Time(s))

ENN_MR

All–kNN_MR

NCN–Edit_MR

RNG_MR

FIGURE 6 Runtime chart in logarithmic scale to perform smart filtering

TRIGUERO ET AL. 17 of 24

The best result of each column is highlighted in bold-face, without taking the Original column into account, because it does
not contain MVs, so it should report the best result. To complement this table, Figure 7 shows the imputation runtime in sec-
onds for each dataset. Figure 7a presents the runtime depending on the number of neighbors with 15% of MVs. Figure 7b pre-
sents the runtime with k = 3 for MV s = 15 and 30%.

According to these tables and the figure, we can make the following analysis:

• Focusing on runtime, Figure 7a shows how the value of k does not have a drastic effect on the runtime of the kNN-LI
algorithm in any of the datasets. We can also observe in Figure 7b that the imputation time of 30% is, in most of the cases,
approximately double the runtime to impute 15%. This shows a linear scalability of the kNN-LI model with respect to the
number of samples to be imputed. In terms of precision, the imputation performed with different values of k does not pro-
vide very significant changes in the behavior of the Decision Tree classifier in these datasets.

• Analyzing the Table 8 we can appreciate that ignoring those instances that contain missing values in most cases reports
the worst results. This fact highlights the importance of addressing the problem of missing values in big datasets. Compar-
ing the imputation with the mean and the imputation with the kNN-LI algorithm, it can be seen that the kNN-LI method is
the majority of the times reporting the best solution. However, in datasets with very high-accuracy results (e.g., Skin and
Ht_sensor), accuracy is not recovered with imputation, which is probably due to the noise that may be introduced while
imputing. It is also important to note that the imputation performed with kNN-LI allows the Decision Tree to consistently
obtain very similar results to the ones provided without any missing value (“Original”). It sometimes happens that the

TABLE 8 Smart imputation: Imputation quality for decision trees (test accuracy)

Dataset MVs% Original Clear ImputedMean KNN-LI. K = 3 KNN-LI. K = 5 KNN-LI. K = 7

ECBDL’14 15 75.85 75.50 75.92 75.89 75.88 75.87

30 75.85 74.83 75.87 75.94 75.96 75.95

Higgs 15 69.94 69.79 69.93 69.97 69.99 69.95

30 69.94 69.62 69.94 69.95 69.97 70.00

Ht_sensor 15 99.98 99.98 99.94 99.98 99.98 99.96

30 99.98 99.98 9,994 99.97 99.96 99.95

Skin 15 99.86 99.86 99.80 99.67 99.64 99.70

30 99.86 99.85 99.78 99.54 99.50 99.54

Susy 15 77.66 77.55 77.79 78.03 78.03 78.03

30 77.66 77.32 77.89 78.16 78.16 78.18

Watch_acc 15 91.22 91.20 90.81 91.12 91.13 91.22

30 91.22 91.12 90.70 91.03 91.06 91.30

Watch_gyr 15 90.35 90.01 89.84 90.25 90.08 89.98

30 90.35 90.02 89.94 90.10 89.93 89.92

15% MVs. Different values of k 30% MVs. Different values of k

ECBDL’14

Higgs

Ht_sensor

Skin

Susy

Watch_acc

Watch_gyr

ECBDL’14

Higgs

Ht_sensor

Skin

Susy

Watch_acc

Watch_gyr

D
a
ta

s
e
t

D
a
ta

s
e
t

0 2500 5000 7500 10000 0 2500 5000 7500 10000

Runtime in seconds Runtime in seconds

k=3 k=5 k=7 k=3 k=5 k=7

(a) (b)

FIGURE 7 Runtime chart to perform kNN-LI

18 of 24 TRIGUERO ET AL.

imputation carried out with kNN-LI is even able to outperform that upper-threshold. This might be related to the intrinsic
noise of some datasets, which may be somehow alleviated by the imputation.

Although the results presented in the previous tables show that kNN-LI is typically the most appropriate way of handling
MVs, the differences in accuracy are however not very significant. To further investigate as to why the imputation is not pro-
viding greater advantages, Table 9 presents the accuracy obtained with a greater range of MV percentages, and simply elimi-
nating those instances that are affected (“Clear”). As can be expected, the accuracy obtained with the Decision Tree decreases
as the number of instances with MVs is increased. However, this table reveals that the differences between not having any
instance affected (0%) and having 70% of the instances affected is quite limited in most of the datasets. Especially, the results
on Skin or Ht_sensor datasets do not vary much, indicating that these datasets contain a great number of redundant instances.
In other datasets, more significant differences may be found, but still, we cannot expect that the imputation of values will pro-
vide a very drastic change in performance. In summary, we could conclude that the imputation of values in big datasets may
not be always necessary if the datasets contain too much redundancy. In these scenarios, a Smart Data reduction may be a
more suitable option.

6 | THE K-NN ALGORITHM IN BIG DATA: CURRENT AND FUTURE TRENDS

This section briefly presents novel trends that are being used to improve the k-NN algorithm in the Big Data context and may
serve as an inspiration to develop new Smart Data techniques. Only a few classical approaches to improve the effectiveness of
the k-NN algorithm have been explored so far for big amounts of data, and they typically end up adding some additional com-
putation that makes them even more computationally expensive. Similarly, classical approximate k-NN algorithms are under-
explored, but recently a few approaches have shown to massively improve the efficiency of this technique in Big Data. Here
we postulate that the integration of both trends - more effective and faster k-NN - within the analyzed data preprocessing tech-
niques may result in faster and more reliable models in Big Data. Section 6.1 is focused on different alternatives that have
already been proposed to boost the accuracy of the k-NN algorithm in the Big Data scenario, and Section 6.2 looks at the
acceleration of the search of neighbors.

6.1 | Enhancing the correctness of the k-NN

Many different approaches have been proposed to improve the effectiveness of the standard k-NN algorithm. One of the key
ideas to do this lies in the fact that the standard k-NN algorithm considers all neighbors equally important when making a final
classification. In the literature we can find a variety of strategies to tackle that issue including different similarity measures
Weinberger and Saul (2009); Nguyen, Morell, and Baets (2017), neighborhood sizes Pan et al. (2017) or weighting
approaches Wettschereck, Aha, and Mohri (1997); Datta et al. (2016).

A very successful way to jointly handle similarity, neighborhood sizes and weighting in a single idea is the use of Fuzzy
sets. Fuzzy-based k-NN approaches have been widely studied in the literature Derrac, García, and Herrera (2014) to account
for this issue, and in its easiest form - the Fuzzy k-NN algorithm Keller, Gray, and Givens (1985) - it computes a class mem-
bership degree for each single training sample, using that information to weigh the importance of the nearest neighbors. This
simple idea has empirically highlighted as one of the most powerful fuzzy-based approaches to improve the k-NN algorithm
Derrac et al. (2014).

To the best of our knowledge, the Fuzzy k-NN algorithm has been the first enhanced k-NN-based algorithm that has been
made available in the literature to handle the Big Data scenario. The approach presented in Maillo et al. (2017) is focused on
designing a Big Data version of the Fuzzy k-NN that resolves memory restrictions and allows us to apply the original

TABLE 9 Analysis of the performance of decision trees eliminating instances with MVs (“clear”)

Decision tree accuracy

Dataset 0% MVs 15% MVs 30% MVs 50% MVs 60% MVs 70% MVs

ECBDL’14 75.85 75.50 74.83 73.92 73.17 72.49

Higgs 69.94 69.79 69.62 69.27 68.94 68.60

Ht_sensor 99.98 99.98 99.98 99.96 99.95 99.94

Skin 99.86 99.86 99.85 99.84 99.86 99.83

Susy 77.66 77.55 77.32 76.91 76.60 76.31

Watch_acc 91.22 91.20 91.12 90.98 90.66 90.52

Watch_gyr 90.35 90.01 90.02 89.85 89.47 89.15

TRIGUERO ET AL. 19 of 24

algorithm in a timely manner by using Spark-based parallelization. This algorithm improves upon the exact parallel k-NN
algorithm Maillo et al. (2017) in terms of accuracy, but it significantly increases its computational costs, as Fuzzy k-NN adds
a preliminary stage to compute class memberships.

In summary, if the classic k-NN algorithm has served as a tool for obtaining Smart Data, the improvements in terms of
accuracy, such as the Fuzzy k-NN and derivatives, will be very useful to delve into this purpose and to obtain higher quality
data alternatives. However, these methods do not reduce the storage requirements, and they actually slow down the original k-
NN algorithm by adding some extra computations, which may be a handicap for their successful application in Big Data, and
accelerating these will be key for an effective approach.

6.2 | Accelerating the k-NN algorithm

Apart from reducing the size of the training data, the acceleration of the k-NN algorithm has also been approached by means
of approximate algorithms Arya, Mount, Netanyahu, Silverman, and Wu (1998). Typically focused on domains with a large
dimensionality Andoni and Indyk (2006), multiple methods have been proposed to perform a search that is approximate in
nature, and therefore, assume that the actual nearest neighbors may not be found but they should be sufficiently close. Relax-
ing the goal of finding exactly the nearest neighbors allows to significantly run faster a search of nearest neighbors. Many of
those methods are based on indexing Bertino et al. (1997), constructing a multi-dimensional index structure that provides a
mapping between a query sample and the ordering on the clustered index values, speeding up the search of neighbors.

When a Big Data problem is presented as a domain with a large number of characteristics, dimensionality reduction
approaches may be needed Dutta and Ghosh (2016) to accelerate distance compensations in nearest neighbors classification.
The Locality-sensitive hashing (LSH) Andoni and Indyk (2006) algorithm is a well-known example that reduces the dimen-
sionality of the data using hash functions with the particularity of looking for a collision between instances that are similar.
This adds an additional precomputing stage to the training set, transforming it before applying the hash functions to reduce the
dimension of the problem. This results in a reduced scalability of the LSH algorithm whenever a (high-dimensional) dataset
contains a high number of instances. An implementation of the LSH algorithm for Big Data is available within the MLlib
Meng et al. (2016), and another implementation can be found at https://github.com/marufaytekin/lsh-spark.

When the data are characterized by a high number of instances, tree indexing approaches may be more suitable than LSH.
Many tree-based variants have been designed to accelerate the k-NN algorithm ranging from k-dimensional trees Friedman,
Bentley, and Finkel (1977) that perform axis parallel partitions of the data, metric trees Uhlmann (1991), which split the data
with random hyperplanes, to spill-trees Liu, Moore, Yang, and Gray (2005)—a variant of metric trees where the children
nodes can share objects. In Liu, Rosenberg, and Rowley (2009), a hybrid spill tree is proposed to compute parallel k-NN,
hybridizing metric trees and spill trees to speed up the classification and maintain a good performance. This approximate
approach dramatically reduces the computational costs of the k-NN algorithm in a Big Data context with a high number of
instances. An open-source implementation of this hybrid spill tree is available at https://spark-packages.org/package/saurfang/
spark-knn.

As we have seen, the efficiency of k-NN as analytic technique is low and it will suffer from drawbacks when it is embed-
ded into data preprocessing tasks. The approaches based on approximations will be appealing solutions to address Big Data
scenarios, as computing exact nearest neighbors may not be that necessary in a domain composed of massive amount of data,
being approximations faster and performing at a similar level in terms of accuracy. In this sense, much work still needs to be
done in this field.

7 | CONCLUSIONS

In this work, we have discussed the role of one of the simplest data mining techniques—the k nearest neighbor algorithm—as
a powerful tool to obtain “Smart Data,” which are data of high quality to be mined. Initially focused on the own k-NN issues,
researchers have developed numerous data preprocessing algorithms to reduce the influence of noise, impute missing values
or eliminate redundant information to speed up the execution of this algorithm. Many of these data preprocessing techniques
have been based on the underlying working of the k-NN algorithm allowing for a simple but effective preprocessing process.
These processes have turned out to be useful not only for the k-NN algorithm for what many of them were initially designed,
but also for many other data mining techniques. We have reviewed the existing literature with a focus on the use of these tech-
niques on the Big Data scene, in which extracting Smart Data is essential for a sustainable storage and a fast mining process.
We have selected and implemented a number of relevant k-NN-based data preprocessing techniques under Apache Spark
(publicly available as Spark Packages), and have conducted an empirical analysis of the behavior of these techniques in a
series of big datasets, which will allow practitioners and non-experts in the field to determine what kind of Smart Data

20 of 24 TRIGUERO ET AL.

preprocessing techniques they should be using when dealing with big datasets. In addition to specific conclusions achieved in
the previous section, several remarks and guidelines can be suggested:

• Data redundancy seems to be a key issue in most of the investigated datasets. Transforming these big amounts of informa-
tion into smaller datasets heavily reduce the data storage requirements and the time needed to perform high-quality data
mining.

• The appearance of noisy data damages the performance of most data mining methods, and its cleaning in a Big Data scale
is possible by means of simple k-NN-based filters.

• Having missing values in a Big Data context may deteriorate the performance of any data mining process. However, in the
case of severe redundancy of data, our experiments have shown that, although the imputation will typically improve the
final accuracy, the absolute gain would not be extremely significant.

Finally, we have briefly covered some of the latest trends for the k-NN algorithm in Big Data, and discussed some of the
potential improvements in terms of accuracy and acceleration that may be useful to develop new Smart Data preprocessing
techniques.

As future work, we foresee that ad-hoc instance reduction algorithms may be needed for specific data mining algorithms
to do a more tailored smart data reduction. In terms of noise filtering and correction, fusion and ensemble-like techniques
Luengo, Shim, Alshomrani, Altalhi, and Herrera (2018) may be key to better handle noise in a Big Data scale. Also, we would
like to investigate the effect of missing values in more complex problems such imbalanced classification, in which data scar-
city may still happen for a particular class, and imputation methods may be even more needed.

ACKNOWLEDGMENTS

This work is supported by the Spanish National Research Project TIN2017-89517-P and the Foundation BBVA project
75/2016 BigDaP-TOOLS—“Ayudas Fundación BBVA a Equipos de Investigación Científica 2016”. J. Maillo holds a FPU
scholarship from the Spanish Ministry of Education.

CONFLICT OF INTEREST

The author has declared no conflicts of interest for this article.

NOTES
1Smart Data Discovery Will Enable a New Class of Citizen Data Scientist. https://www.gartner.com/doc/3084217/smart-data-
discovery-enable-new.
2https://spark-packages.org/package/djgarcia/SmartReduction.
3https://spark-packages.org/package/djgarcia/SmartFiltering.
4https://spark-packages.org/package/JMailloH/Smart_Imputation.

ORCID

Isaac Triguero https://orcid.org/0000-0002-0150-0651

Diego García-Gil https://orcid.org/0000-0002-1927-8673

Julián Luengo https://orcid.org/0000-0003-3952-3629

Salvador García https://orcid.org/0000-0003-4494-7565

Francisco Herrera https://orcid.org/0000-0002-7283-312X

REFERENCES

Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37–66.
Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications.

IEEE Communication Surveys and Tutorials, 17(4), 2347–2376.
Andoni, A., & Indyk, P. (2006). Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In 47th annual IEEE symposium on foundations

of computer science (FOCS’06) (pp. 459–468). Berkeley, CA, USA: IEEE.
Angiulli, F. (2007). Fast nearest neighbor condensation for large data sets classification. IEEE Transactions on Knowledge and Data Engineering, 19(11), 1450–1464.

TRIGUERO ET AL. 21 of 24

https://www.gartner.com/doc/3084217/smart-data-discovery-enable-new
https://www.gartner.com/doc/3084217/smart-data-discovery-enable-new
https://spark-packages.org/package/djgarcia/SmartReduction
https://spark-packages.org/package/djgarcia/SmartFiltering
https://spark-packages.org/package/JMailloH/Smart_Imputation
https://orcid.org/0000-0002-0150-0651
https://orcid.org/0000-0002-0150-0651
https://orcid.org/0000-0002-1927-8673
https://orcid.org/0000-0002-1927-8673
https://orcid.org/0000-0003-3952-3629
https://orcid.org/0000-0003-3952-3629
https://orcid.org/0000-0003-4494-7565
https://orcid.org/0000-0003-4494-7565
https://orcid.org/0000-0002-7283-312X
https://orcid.org/0000-0002-7283-312X

Arnaiz-González, �A., González-Rogel, A., Díez-Pastor, J.-F., & López-Nozal, C. (2017). MR-DIS: Democratic instance selection for big data by MapReduce. Progress
in Artificial Intelligence, 6(3), 211–219.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., & Wu, A. Y. (1998). An optimal algorithm for approximate nearest neighbor searching fixed dimensions.
Journal of the ACM, 45(6), 891–923.

Batista, G. E. A. P. A., & Monard, M. C. (2003). An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence, 17(5–6),
519–533.

Bertino, E. C., Tan, K.-L., Ooi, B. C., Sacks-Davis, R., Zobel, J., & Shidlovsky, B. (1997). Indexing techniques for advanced database systems. Norwell, MA: Kluwer
Academic Publishers.

Bezdek, J. C., & Kuncheva, L. I. (2001). Nearest prototype classifier designs: An experimental study. International Journal of Intelligent Systems, 16(12), 1445–1473.
Biau, G., & Devroye, L. (2015). Lectures on the nearest neighbor method. Switzerland: Springer Series in the data Sciences.
Cano, J. R., Herrera, F., & Lozano, M. (2003). Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study. IEEE Transac-

tions on Evolutionary Computation, 7(6), 561–575.
Chang, C. L. (1974). Finding prototypes for nearest neighbor classifiers. IEEE Transactions on Computers, 100(11), 1179–1184.
Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. Management Information Systems Quarterly,

36(4), 1165–1188.
Chen, J., Dosyn, D., Lytvyn, V., & Sachenko, A. (2017). Smart data integration by goal driven ontology learning. In Advances in intelligent systems and computing

(Vol. 529, pp. 283–292). Switzerland: Springer International Publishing.
Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27.
Datta, S., Misra, D., & Das, S. (2016). A feature weighted penalty based dissimilarity measure for k-nearest neighbor classification with missing features. Pattern Rec-

ognition Letters, 80, 231–237.
Dean, J., & Ghemawat, S. (2010). Map reduce: A flexible data processing tool. Communications of the ACM, 53(1), 72–77.
del Río, S., López, V., Benítez, J. M., & Herrera, F. (2014). On the use of mapreduce for imbalanced big data using random forest. Information Sciences, 285, 112–137.
Derrac, J., García, S., & Herrera, F. (2010). IFS-CoCo: Instance and feature selection based on cooperative coevolution with nearest neighbor rule. Pattern Recognition,

43(6), 2082–2105.
Derrac, J., García, S., & Herrera, F. (2014). Fuzzy nearest neighbor algorithms: Taxonomy, experimental analysis and prospects. Information Sciences, 260, 98–119.
Dutta, S., & Ghosh, A. K. (2016). On some transformations of high dimension, low sample size data for nearest neighbor classification. Machine Learning, 102(1),

57–83.
Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing (Vol. 53). Switzerland: Springer Verlag.
Fadili, H., & Jouis, C. (2016). Towards an automatic analyze and standardization of unstructured data in the context of big and linked data. In 8th international confer-

ence on Management of Digital EcoSystems, MEDES 2016 (pp. 223–230). New York, NY, USA: ACM.
Fan, J., & Fan, Y. (2008). High dimensional classification using features annealed independence rules. Annals of Statistics, 36(6), 2605–2637.
Fan, J., Han, F., & Liu, H. (2014). Challenges of big data analysis. National Science Review, 1(2), 293–314.
Fernández, A., del Río, S., Chawla, N. V., & Herrera, F. (2017). An insight into imbalanced big data classification: Outcomes and challenges. Complex & Intelligent

Systems, 3(2), 105–120.
Fernández, A., del Río, S., López, V., Bawakid, A., del Jesús, M. J., Benítez, J. M., & Herrera, F. (2014). Big data with cloud computing: An insight on the computing

environment, mapreduce, and programming frameworks. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(5), 380–409.
Figueredo, G. P., Triguero, I., Mesgarpour, M., Guerra, A. M., Garibaldi, J. M., & John, R. I. (2017). An immune-inspired technique to identify heavy goods vehicles

incident hot spots. IEEE Transactions on Emerging Topics in Computational Intelligence, 1(4), 248–258.
Frénay, B., & Verleysen, M. (2014). Classification in the presence of label noise: A survey. IEEE Transactions on Neural Networks and Learning Systems, 25(5),

845–869.
Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Soft-

ware, 3(3), 209–226.
Garcia, E. K., Feldman, S., Gupta, M. R., & Srivastava, S. (2010). Completely lazy learning. IEEE Transactions on Knowledge and Data Engineering, 22(9),

1274–1285.
Garcia, L. P. F., de Carvalho, A. C. P. L. F., & Lorena, A. C. (2015). Effect of label noise in the complexity of classification problems. Neurocomputing, 160, 108–119.
García, S., Cano, J., & Herrera, F. (2008). A memetic algorithm for evolutionary prototype selection: A scaling up approach. Pattern Recognition, 41(8), 2693–2709.
García, S., Derrac, J., Cano, J., & Herrera, F. (2012). Prototype selection for nearest neighbor classification: Taxonomy and empirical study. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 34(3), 417–435.
García, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining. Switzerland: Springer International Publishing.
García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J. M., & Herrera, F. (2016). Big data preprocessing: Methods and prospects. Big Data Analytics, 1(1), 9.
García-Gil, D., Luengo, J., García, S., & Herrera, F. (2017). Enabling smart data: Noise filtering in big data classification. CoRR, abs/1704.01770. Retrieved from http:

//arxiv.org/abs/1704.01770
García-Laencina, P. J., Sancho-Gómez, J.-L., & Figueiras-Vidal, A. R. (2010). Pattern classification with missing data: A review. Neural Computing and Applications,

19(2), 263–282.
Gupta, P., Sharma, A., & Jindal, R. (2016). Scalable machine learning algorithms for big data analytics: A comprehensive review. Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery, 6(6), 194–214.
Hart, P. E. (1968). The condensed nearest neighbor rule. IEEE Transactions on Information Theory, 18, 515–516.
Hernández, M. A., & Stolfo, S. J. (1998). Real-world data is dirty: Data cleansing and the merge/purge problem. Data Mining and Knowledge Discovery, 2, 9–37.
Iafrate, F. (2014). A journey from big data to smart data (pp. 25–33). Switzerland: Springer International Publishing.
Iguyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.
Indyk, P. & Motwani, R. (1998). : (pp. 604–613).
Keller, J. M., Gray, M. R., & Givens, J. A. (1985). A fuzzy k-nearest neighbor algorithm. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(4), 580–585.
Kim, H., Golub, G. H., & Park, H. (2004). Missing value estimation for DNA microarray gene expression data: Local least squares imputation. Bioinformatics, 21(2),

187–198.
Kononenko, I. (1994). Estimating attributes: Analysis and extensions of relief. In Machine learning: ECML-94 (pp. 171–182). Berlin, Heidelberg: Springer Verlag.
Lenk, A., Bonorden, L., Hellmanns, A., Rödder, N., & Jähnichen, S. (2015). Towards a taxonomy of standards in smart data. In Proceedings of the 2015 I.E. interna-

tional conference on big data (big data) (pp. 1749–1754). Santa Clara, CA, USA: IEEE.
Lichman, M. (2013). UCI machine learning repository. Retrieved from http://archive.ics.uci.edu/ml
Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83(404),

1198–1202.
Little, R. J. A., & Rubin, D. B. (2014). Statistical analysis with missing data (Vol. 333). Hoboken, NJ: John Wiley & Sons.

22 of 24 TRIGUERO ET AL.

Liu, H., & Motoda, H. (2007). Computational methods of feature selection. Boca Raton, Florida: Chapman and Hall/CRC Press.
Liu, T., Moore, A. W., Yang, K., & Gray, A. G. (2005). An investigation of practical approximate nearest neighbor algorithms. In Advances in neural information pro-

cessing systems (pp. 825–832). Cambridge, MA: MIT Press.
Liu, T., Rosenberg, C. J., & Rowley, H. A. (2009). Performing a parallel nearest-neighbor matching operation using a parallel hybrid spill tree. U.S. Patent No.

7,475,071.
Luengo, J., García, S., & Herrera, F. (2012). On the choice of the best imputation methods for missing values considering three groups of classification methods. Knowl-

edge and Information Systems, 32(1), 77–108.
Luengo, J., Shim, S.-O., Alshomrani, S., Altalhi, A., & Herrera, F. (2018). Cnc-nos: Class noise cleaning by ensemble filtering and noise scoring. Knowledge-Based

Systems, 140, 27–49.
Maillo, J., Luengo, J., García, S., Herrera, F., & Triguero, I. (2017). Exact fuzzy k-nearest neighbor classification for big datasets. In IEEE international conference on

fuzzy systems (FUZZ-IEEE) (pp. 1–6). Naples, Italy: IEEE.
Maillo, J., Ramírez, S., Triguero, I., & Herrera, F. (2017). kNN-IS: An iterative spark-based design of the k-nearest Neighbors classifier for big data. Knowledge-Based

Systems, 117, 3–15.
Marx, V. (2013). Biology: The big challenges of big data. Nature, 498(7453), 255–260.
Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., … Talwalkar, A. (2016). Mllib: Machine learning in apache spark. Journal of Machine Learn-

ing Research, 17(34), 1–7.
Navot, A., Shpigelman, L., Tishby, N., & Vaadia, E. (2006). Nearest neighbor based feature selection for regression and its application to neural activity. In Advances

in neural information processing systems (pp. 996–1002). Cambridge, MA: MIT Press.
Nguyen, B., Morell, C., & Baets, B. D. (2017). Supervised distance metric learning through maximization of the jeffrey divergence. Pattern Recognition, 64, 215–225.
Palma-Mendoza, R. J., Rodriguez, D., & de-Marcos, L. (2018). Distributed reliefF-based feature selection in spark. Knowledge and Information Systems, 57, 1–20.
Pan, Z., Wang, Y., & Ku, W. (2017). A new general nearest neighbor classification based on the mutual neighborhood information. Knowledge-Based Systems, 121,

142–152.
Peralta, D., del Río, S., Ramírez-Gallego, S., Triguero, I., Benitez, J. M., & Herrera, F. (2016). Evolutionary feature selection for big data classification: A mapreduce

approach. Mathematical Problems in Engineering, 2015.
Philip-Chen, C., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information Sciences, 275,

314–347.
Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Francisco, CA: Morgan Kaufmann Publishers.
Raja, P., Sivasankar, E., & Pitchiah, R. (2015). Framework for smart health: Toward connected data from big data. In Advances in intelligent systems and computing

(Vol. 343, pp. 423–433). Switzerland: Springer.
Ramírez-Gallego, S., Fernández, A., García, S., Chen, M., & Herrera, F. (2018). Big data: Tutorial and guidelines on information and process fusion for analytics algo-

rithms with mapreduce. Information Fusion, 42, 51–61.
Ramírez-Gallego, S., García, S., Mouriño-Talín, H., Martínez-Rego, D., Bolón-Canedo, V., Alonso-Betanzos, A., … Herrera, F. (2016). Data discretization: taxonomy

and big data challenge. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6(1), 5–21.
Ramírez-Gallego, S., Lastra, I., Martínez-Rego, D., Bolón-Canedo, V., Benítez, J. M., Herrera, F., & Alonso-Betanzos, A. (2017). Fast-mRMR: Fast minimum redun-

dancy maximum relevance algorithm for high-dimensional big data. International Journal of Intelligent Systems, 32(2), 134–152.
Rastogi, A. K., Narang, N., & Siddiqui, Z. A. (2018). Imbalanced big data classification: A distributed implementation of smote. In Proceedings of the workshop pro-

gram of the 19th international conference on distributed computing and networking, workshops ICDCN ’18 (pp. 14:1–14:6). New York, NY: ACM.
Royston, P. (2004). Multiple imputation of missing values. Stata Journal, 4(3), 227–241.
Sánchez, J., Pla, F., & Ferri, F. (1997). Prototype selection for the nearest neighbor rule through proximity graphs. Pattern Recognition Letters, 18, 507–513.
Sánchez, J. S., Barandela, R., Marqués, A. I., Alejo, R., & Badenas, J. (2003). Analysis of new techniques to obtain quality training sets. Pattern Recognition Letters,

24(7), 1015–1022.
Schneider, T. (2001). Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values. Journal of Climate,

14(5), 853–871.
Skalak, D. (1994). Prototype and feature selection by sampling and random mutation hill climbing algorithms. In 11th international conference on machine learning

(ML’94) (pp. 293–301). New Brunswick, NJ: Rutgers University.
Snir, M., & Otto, S. (1998). MPI-the complete reference: The MPI Core. Cambridge, MA: MIT Press.
Sun, K., Kang, H., & Park, H.-H. (2015). Tagging and classifying facial images in cloud environments based on kNN using mapreduce. Optik—International Journal

for Light and Electron Optics, 126(21), 3227–3233.
Tan, M., Tsang, I. W., & Wang, L. (2014). Towards ultrahigh dimensional feature selection for big data. Journal of Machine Learning Research, 15, 1371–1429.
Tomek, I. (1976). An experiment with the edited nearest-neighbor rule. IEEE Transactions on Systems, Man, and Cybernetics, 6(6), 448–452.
Triguero, I., Derrac, J., García, S., & Herrera, F. (2012). A taxonomy and experimental study on prototype generation for nearest neighbor classification. IEEE Transac-

tions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 42(1), 86–100.
Triguero, I., García, S., & Herrera, F. (2010). IPADE: Iterative prototype adjustment for nearest neighbor classification. IEEE Transactions on Neural Networks, 21(12),

1984–1990.
Triguero, I., García, S., & Herrera, F. (2011). Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition,

44(4), 901–916.
Triguero, I., Gonzalez, S., Moyano, J., García, S., Alcala-Fdez, J., Luengo, J., … Herrera, F. (2017). Keel 3.0: An open source software for multi-stage analysis in data

mining. International Journal of Computational Intelligence Systems, 10, 1238–1249.
Triguero, I., Maillo, J., Luengo, J., García, S., & Herrera, F. (2016). From big data to smart data with the k-nearest neighbours algorithm. In 2016 I.E. international con-

ference on smart data (pp. 859–864). Chengdu, China: IEEE.
Triguero, I., Peralta, D., Bacardit, J., García, S., & Herrera, F. (2015). MRPR: A mapreduce solution for prototype reduction in big data classification. Neurocomputing,

150, 331–345.
Uhlmann, J. K. (1991). Satisfying general proximity / similarity queries with metric trees. Information Processing Letters, 40(4), 175–179.
Weinberger, K., & Saul, L. (2009). Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research, 10, 207–244.
Wettschereck, D., Aha, D. W., & Mohri, T. (1997). A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artificial

Intelligence Review, 11(1), 273–314.
White, T. (2012). Hadoop: The definitive guide (3rd ed.). Sebastopol, CA: O'Reilly Media, Inc.
Wilson, D. (1972). Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics, 2(3), 408–421.
Xue, B., Zhang, M., Browne, W. N., & Yao, X. (2016). A survey on evolutionary computation approaches to feature selection. IEEE Transactions on Evolutionary

Computation, 20(4), 606–626.

TRIGUERO ET AL. 23 of 24

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., … Stoica, I. (2012). Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX conference on networked systems design and implementation (pp. 1–14). Berkeley, CA: USENIX
Association.

Zerhari, B. (2016). Class noise elimination approach for large datasets based on a combination of classifiers. In 2nd International conference on cloud computing tech-
nologies and applications (CloudTech) (pp. 125–130). Marrakech, Morocco: IEEE.

Zhang, C., Li, F., & Jestes, J. (2012). Efficient parallel knn joins for large data in mapreduce. In Proceedings of the 15th international conference on extending database
technology, EDBT ’12 (pp. 38–49). New York, NY: ACM.

Zhong, S., Khoshgoftaar, T. M., & Seliya, N. (2004). Analyzing software measurement data with clustering techniques. IEEE Intelligent Systems, 19(2), 20–27.
Zhu, X., & Wu, X. (2004). Class noise vs. attribute noise: A quantitative study. Artificial Intelligence Review, 22, 177–210.
Zou, P.-C., Wang, J., Chen, S., & Chen, H. (2016). Margin distribution explanation on metric learning for nearest neighbor classification. Neurocomputing, 177,

168–178.

How to cite this article: Triguero I, García-Gil D, Maillo J, Luengo J, García S, Herrera F. Transforming big data into
smart data: An insight on the use of the k-nearest neighbors algorithm to obtain quality data. WIREs Data Mining
Knowl Discov. 2018;e1289. https://doi.org/10.1002/widm.1289

24 of 24 TRIGUERO ET AL.

https://doi.org/10.1002/widm.1289

	 Transforming big data into smart data: An insight on the use of the k-nearest neighbors algorithm to obtain quality data
	1 INTRODUCTION
	2 SMART DATA: FOCUSING ON VALUE IN BIG DATA
	2.1 Big data technologies
	2.2 Smart data through big data preprocessing

	3 THE K-NN ALGORITHM
	4 THE K-NN ALGORITHM AS A TOOL TO TRANSFORM BIG DATA INTO SMART DATA
	4.1 Data reduction with the k-NN algorithm
	4.2 Handling imperfect data
	4.2.1 Noisy data treatment with the k-NN algorithm
	4.2.2 Missing values imputation with the k-NN algorithm

	5 EXPERIMENTAL STUDY AND ANALYSIS OF RESULTS
	5.1 Experimental set-up
	5.2 Smart instance reduction
	5.3 Smart noise filtering
	5.4 Smart imputation of missing values

	6 THE K-NN ALGORITHM IN BIG DATA: CURRENT AND FUTURE TRENDS
	6.1 Enhancing the correctness of the k-NN
	6.2 Accelerating the k-NN algorithm

	7 CONCLUSIONS
	7 CONFLICT OF INTEREST
	 REFERENCES

