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We study the impact of the zero mode of a quantum field on the evolution of a particle detector.
For a massless scalar field in a periodic cavity, we show that the impact of the zero mode on
the Unruh-DeWitt detector and its derivative-coupling generalisation is necessarily nonvanishing
but can be made negligible in some limits, including those commonly occurring in non-relativistic
quantum optics. For the derivative-coupling detector this can be accomplished by just tuning the
zero mode’s initial state, but the standard Unruh-DeWitt detector requires a more subtle and careful
tuning. Applications include an inertial detector with arbitrary velocity, where we demonstrate the
regularity of the ultrarelativistic limit, and a detector with uniform acceleration.

I. INTRODUCTION

The response of a particle detector coupled to a quan-
tum field has been subject of extensive research since the
70s to the present. While protocols that would directly
measure the state of a quantum field are difficult to en-
visage, it is conceptually straightforward to make a mea-
surement on a detector that has been allowed to interact
with a quantum field. A spatially pointlike detector has
a particular advantage in that it can be identified with
an ‘observer’ who is moving through the spacetime: such
detectors have been used to quantify the particle content
in a given state of a quantum field as seen by a local
observer [1–5], to analyze the entanglement contained in
the vacuum state of a quantum field [6], to study metrol-
ogy settings [7], to analyze the decoherence effects of rela-
tivistic trajectories [8, 9], to propose schemes of universal
quantum computing via relativistic motion [10] and to set
up scenarios of quantum communication in the relativis-
tic limit [11, 12]. The question ‘How many times does a
particle detector click for a given field state and a given
trajectory in spacetime?’ is relevant from quantum op-
tics [13] to the study of very fundamental problems as the
quantum effects associated with the presence of horizons
[14], or to serve as a witness of primordial quantum fluc-
tuations which may give information about the nature of
the gravitational interaction [15].

To model the field-detector interaction it is common-
place to use the so-called Unruh-DeWitt (UDW) detector
[1, 2], which is a two-level quantum system that couples
in a pointlike manner to a scalar field along its world-
line. This model encompasses all the fundamental fea-
tures of the light-matter interaction when there is no
orbital angular momentum exchange involved [16, 17],
and it is a useful tool for addressing a range of issues,
from fundamental studies of the particle content in a
given field state to quantum gravity, and from fundamen-
tal quantum optics to relativistic quantum information.
A limit of the UDW detector model yields the Jaynes-
Cummings model, which is ubiquitous in quantum optics

as a phenomenological model of light-matter interaction
[13]. Additionally, the UDW detector is a powerful effec-
tive model to describe the way in which superconducting
qubits couple to microwave guides [18, 19].

In this paper we address the response of an UDW de-
tector when the scalar field has a mode of vanishing fre-
quency, known as a zero mode. Zero modes occur for a
massless field in static cavities in Minkowski spacetime
with Neumann or periodic boundary conditions, and they
also occur in spatially compact cosmological spacetimes
when the field is massless and couples conformally to the
curvature [15]. Since the zero mode has a vanishing fre-
quency, it cannot be treated as a harmonic oscillator, and
it has no distinguished Fock vacuum. In this paper we
tackle the following question: How does the zero mode,
and particularly the inherent ambiguity in its quantum
state, affect the response of an UDW detector?

Eliminating the zero mode by hand from the field mode
expansion would lead to an ill-defined quantum field the-
ory, with nonvanishing commutators for the field oper-
ator at spacelike-separated events. Dropping the zero
mode by hand from the coupling between the detector
and the field would give a detector model that is as such
mathematically consistent; however, as seen in [17], the
full linear coupling is necessary to model the p·A term by
which an atomic electron couples to the quantized elec-
tromagnetic field. In quantum optics, these zero-mode is-
sues arise with the common UDW and Jaynes-Cummings
models with periodic and Neumann boundary conditions,
and there it is usual to assume at the outset that any zero
modes will have negligible effect and to drop them by
hand. Our aim is to examine under which circumstances
such dropping can be justified.

We will see that a non-careful treatment of the zero
mode is dangerous: the zero mode is able to produce im-
portant effects on the detector’s dynamics (both its click
counting statistics and its quantum coherence). We will
quantitatively study when these effects are maximized
and minimized. In particular, we find that, by suitably
choosing the initial state of the quantum field, it is indeed
possible to minimize zero-mode effects on the detector
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dynamics under the UDW interaction. We will analyze
both the direct effects on the detector coming from the
choice of the zero mode and the possible cross-talk effects
coming from the effective coupling of the zero mode and
the rest of the field modes through their backreaction on
the detector.

We work in a periodic cavity in (1 + 1)-dimensional
Minkowski spacetime. We consider both the usual UDW
detector [1, 2], which couples linearly to the scalar field,
and its modification that couples linearly to the proper
time derivative of the field [20–23].

We start in Section II by reviewing the quantisation of
a massless scalar field in a (1 + 1)-dimensional periodic
cavity, paying special attention to the zero mode and to
its contribution to the two-point function. Section III
analyses the density matrix of a conventional UDW de-
tector and Section IV the transition probability of UDW-
type detector with a derivative coupling. The results are
summarised and discussed in Section V.

Throughout this paper, we use units in which ~ = c =
1. The spacetime signature is (−+) where the minus
direction is timelike.

II. PRELIMINARIES: MASSLESS SCALAR
FIELD IN A PERIODIC CAVITY

In this section we review the quantisation of a real,
massless scalar field on a (1 + 1)-dimensonal flat, static
spacetime with the spatial topology of a circle. In quan-
tum optics terminology, this may be described as quanti-
sation in a periodic cavity, or as quantisation in (1 + 1)-
dimensonal Minkowski spacetime with periodic bound-
ary conditions. We shall establish the notation in a way
that includes explicitly the zero-mode contributions to
the mode expansion of the field and its two-point func-
tion.

A. Spacetime and quantum field

The spacetime is a flat static cylinder with spatial cir-
cumference L > 0. We work in standard Minkowski co-
ordinates (t, x) in which the metric reads

ds2 = −dt2 + dx2 , (II.1)

with the periodic identification (t, x) ∼ (t, x+ L).
The quantum field is a free real massless scalar field φ,

with the action

S =
1

2

∫
dtdx

[
(∂tφ)2 − (∂xφ)2

]
, (II.2)

and the field equation is �φ = 0. The (indefinite) Klein-
Gordon inner product reads

(φ, φ′) = i

∫
dx (φ∗ ∂tφ

′ − φ′ ∂tφ∗ ) , (II.3)

where the star denotes complex conjugation.

We expand the Heisenberg picture field operator in the
spatial Fourier modes in the usual fashion. We split the
expansion as

φ(t, x) = φosc(t, x) + φzm(t) , (II.4)

where the oscillator-mode contribution φosc(t, x) con-
tains the Fourier components that are not spatially con-
stant and the zero-mode contribution φzm(t) contains the
Fourier component that is spatially constant. We con-
sider each contribution in turn.

B. Oscillator modes

The positive frequency oscillator modes of the classical
field are

φn(t, x) =
1√

4π|n|
exp

(
−i

2π|n|
L

t+ i
2πn

L
x

)
, (II.5)

where n ∈ Z \ {0}. The normalisation is such that
(φm, φn) = δmn. We thus have

φosc(t, x) =
∑
n 6=0

[
anφn(t, x) + a†nφ

∗
n(t, x)

]
, (II.6)

where the nonvanishing commutators of the annihilation
and creation operators are

[an, a
†
m] = δnm . (II.7)

The oscillator modes have a Fock vacuum |0〉, satisfy-
ing an|0〉 = 0. The oscillator-mode contribution to the
Fock vacuum Wightman function is

〈0|φosc(t, x)φosc(t′, x′)|0〉 =
∑
n 6=0

φn(t, x)φ∗n(t′, x′)

=

∞∑
n=1

1

4πn

{
exp

[
−i

2πn

L
(∆u− iε)

]
+ exp

[
−i

2πn

L
(∆v − iε)

]}
, (II.8)

where u = t − x, v = t + x, ∆u = u − u′, ∆v = v − v′,
and ε→ 0+. The sum in (II.8) can be evaluated in closed
form, with the result

〈0|φosc(t, x)φosc(t′, x′)|0〉

= − 1

4π
ln

{
1− exp

[
−i

2π

L
(∆u− iε)

]}
− 1

4π
ln

{
1− exp

[
−i

2π

L
(∆v − iε)

]}
. (II.9)
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C. Zero mode

We denote the spatially constant Fourier component
of the classical field by Q. From (II.2), the Lagrangian
for Q is

Lzm =
L

2
Q̇2 . (II.10)

Q has hence the dynamics of a nonrelativistic free particle
on the real line, with L taking the role of the mass. The
Hamiltonian reads

Hzm =
1

2L
P 2 , (II.11)

where P is the momentum conjugate to Q.
To quantise, let QS and PS be the Schrödinger picture

position and momentum operators corresponding to Q
and P . QS and PS are time-independent, they satisfy
[QS , PS ] = i, and they commute with all an and a†n. The
Heisenberg picture position operator reads

QH(t) = QS + L−1PSt . (II.12)

It follows that the zero-mode contribution to the
Heisenberg picture field operator (II.4) is given by

φzm(t) = QH(t) , (II.13)

and φzm commutes with φosc. While the zero mode does
not have a Fock vacuum, its contribution to the Wight-
man function is nevertheless well defined: denoting the
Heisenberg picture quantum state of the zero mode by
|ψ〉, the zero-mode contribution to the Wightman func-
tion is

〈ψ|φzm(t)φzm(t′)|ψ〉 = 〈ψ|Q2
S |ψ〉+ 〈ψ|PSQS |ψ〉L−1t

+ 〈ψ|QSPS |ψ〉L−1t′ + 〈ψ|P 2
S |ψ〉L−2tt′ . (II.14)

We emphasise that while the oscillator-mode contribu-
tion (II.8) to the Wightman function depends on t and t′

only though the combination t−t′, the same does not hold
for the zero-mode contribution (II.14): the Fock vacuum
for the oscillator modes is time translation invariant, but
the zero mode has no time translation invariant states.
This will be significant in Sections III and IV below.

D. Stress-energy tensor

The renormalised stress-energy tensor of the quantum
field may be computed from the Wightman function by
point-splitting [3], using as the short distance subtraction
term the Minkowski vacuum Wightman function [3, 24],

〈φ(t, x)φ(t′, x′)〉Mink = − 1

4π
ln [(ε+ i∆u)(ε+ i∆v)] .

(II.15)

We assume the field to be minimally coupled to curva-
ture. When the oscillator modes are in the Fock vacuum,
their contribution is [3]

T osc
tt = T osc

xx = − π

6L2
, T osc

tx = 0 . (II.16)

The zero-mode contribution is

T zm
tt = T zm

xx =
〈ψ|P 2

S |ψ〉
2L2

, T zm
tx = 0 . (II.17)

Note that the zero-mode contribution (II.17) is time
translation invariant, even though the Wightman func-
tion (II.14) is not. Note also that both T zm

tt and T zm
xx are

strictly positive.

III. DENSITY MATRIX OF THE UDW
DETECTOR IN SECOND ORDER

PERTURBATION THEORY

In this section we consider the evolution of the UDW
detector’s reduced density matrix in second order per-
turbation theory in the coupling constant, identifying
explicitly the contributions from the zero mode of the
field. The full reduced density matrix, rather than just
the transition probabilities, is required for examining for
example how the detector suffers decoherence when in-
teracting with an arbitrary state of the field.

We would in particular like to identify situations where
the effects of the zero mode on the detector’s time evo-
lution is negligible. This task consists of two steps:

1. Identify those zero mode initial states (‘safe’ initial
states) for which the zero mode has a negligible
effect on the detector’s evolution, assuming that
back-reaction of the detector on the zero mode is
neglected.

2. Identify conditions under which a ‘safe’ zero mode
initial state remains ‘safe’ under back-reaction from
the detector.

We will see that guaranteeing the first condition is a
very difficult endeavour. It will not be enough to demand
that the zero mode initial state have vanishing energy, as
one could have naively suspected.

On the other hand, we will see that the second condi-
tion can be satisfied by imposing constraints exclusively
on the oscillator modes. If the oscillator modes are ini-
tialized in any ensemble of Fock states (Fock states or
any diagonal density matrix in the Fock basis, such as
a thermal state), a ‘safe’ zero-mode state does remain
‘safe’.

A. Coupled dynamics

We consider a pointlike detector whose worldline x(τ)
is parametrised by the proper time τ . The detector is a
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two-level quantum system, with a Hilbert space spanned
by the orthonormal energy eigenstates |g〉 and |e〉 whose
respective energies are 0 and Ω. If Ω > 0, |g〉 is the
ground state and |e〉 is the excited state; if Ω < 0, the
roles are reversed. We employ a notation that is adapted
to the case Ω > 0, but all the formulas remain valid
also for Ω < 0, except in subsection III E where we take
Ω > 0.

The standard UDW interaction Hamiltonian is [1–4]

H = λχ(τ)µ(τ)φ
(
x(τ)

)
, (III.1)

where µ(τ) is the monopole moment operator, given by

µ(τ) = σ+eiΩτ + σ−e−iΩτ , (III.2)

and σ± are the usual raising and lowering operators,
with the nonvanishing matrix elements 〈e|σ+ |g〉 =
〈g|σ− |e〉 = 1. The switching function χ specifies how the
interaction is switched on and off. We assume that χ is
smooth. We also assume either that χ has compact sup-
port, in which case the system is strictly uncoupled both
before and after the interaction, or that χ has sufficiently
strong falloff properties for the system to be treated as
asymptotically uncoupled in the distant past and future.

Working perturbatively to second order in λ, the in-
teraction picture time evolution operator U for the full
system is

U = U (0) + U (1) + U (2) +O(λ3) , (III.3)

where

U (0) = 11 , (III.4a)

U (1) = −i

∫ ∞
−∞

dτ H(τ) , (III.4b)

U (2) = −
∫ ∞
−∞

dτ

∫ τ

−∞
dτ ′H(τ)H(τ ′) . (III.4c)

Given an initial density matrix ρ0, the final density ma-
trix ρT is hence given by

ρT = [11+U (1)+U (2)+O(λ3)]ρ0[11+U (1)+U (2)+O(λ3)]† .
(III.5)

Writing ρT = ρ0 + ρ
(1)
T + ρ

(2)
T +O(λ3), this gives

ρ
(1)
T = U (1)ρ0 + ρ0U

(1)† , (III.6a)

ρ
(2)
T = U (1)ρ0U

(1)† + U (2)ρ0 + ρ0U
(2)† . (III.6b)

B. Detector state: Evolution equations

We take the detector’s initial state to be an arbitrary
density matrix, denoted by ρd,0. For the initial state
of the field, we assume that the zero mode is in a pure
state |ψ〉, and the oscillator modes are in a Fock state |F 〉,
that is, in a pure state in which each of the modes is in

a number operator eigenstate. The initial density matrix
for the full coupled system is hence

ρ0 = ρd,0 ⊗ |F 〉〈F | ⊗ |ψ〉〈ψ| . (III.7)

The time evolution of the detector’s density matrix is
given by

ρd,T = Trosc,zm

(
Uρ0U

†) , (III.8)

where the subscripts osc and zm indicate that the trace
is over all the field degrees of freedom, including both the
oscillator modes and the zero mode. We wish to analyse
under what circumstances the contributions to ρd,T can
be separated into two decoupled parts, one accounting
for the oscillator mode effects and the other for the zero
mode effects.

Recall first that the interaction Hamiltonian (III.1)
splits into the oscillator-mode contribution Hosc and the
zero-mode contribution Hzm as

H = Hosc +Hzm , (III.9a)

Hosc = λχ(τ)µ(τ)
∑
n 6=0

[
anφn(x, t) + a†nφ

∗
n(x, t)

]
,

(III.9b)

Hzm = λχ(τ)µ(τ)

(
QS +

PS
L
t

)
, (III.9c)

φn is given by (II.5), and t and x are understood as func-
tions of τ since the field couples to the detector at the
detector’s location. It follows that

U (1) = U (1)
osc + U (1)

zm , (III.10a)

U (1)
osc = −iλ

∫ ∞
−∞

dτ Hosc(τ) , (III.10b)

U (1)
zm = −iλ

∫ ∞
−∞

dτ Hzm(τ) . (III.10c)

Writing

ρ0,zm = Trosc ρ0 , ρ0,d,osc = Trzm ρ0 , (III.11)

we thus have

Trosc,zm

(
U (1)ρ0

)
= Trosc

(
U (1)

oscρ0,d,osc

)
+ Trzm

(
U (1)

zm ρ0,d,zm

)
= Trzm

(
U (1)

zm ρ0,d,zm

)
, (III.12)

where the last equality holds because Hosc is off-diagonal
in the Fock basis. From (III.6a) and (III.12) we see that
the order λ contribution to ρd,T comes entirely from the
zero mode of the field.

In order λ2, the first term in (III.6b) gives

Trosc,zm

(
U (1)ρ0U

(1)†
)

= Trosc,zm

(
U (1)

oscρ0U
(1)
osc

†)
+ Trosc,zm

(
U (1)

zm ρ0U
(1)
zm

†)
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= Trosc

(
U (1)

oscρ0,d,oscU
(1)
osc

†)
+ Trzm

(
U (1)

zm ρ0,d,zmU
(1)
zm

†)
, (III.13)

where the cross terms that would involve both U
(1)
osc and

U
(1)
zm are absent because Hosc is off-diagonal in the Fock

basis. For the last two terms in (III.6b), using (III.4c),
(III.9) and (III.10) gives

Trosc,zm

(
U (2)ρ0

)
= Trosc

(
U (2)

oscρ0,d,osc

)
+ Trzm

(
U (2)

zm ρ0,d,zm

)
, (III.14)

where

U (2)
osc = −

∫ ∞
−∞

dτ

∫ τ

−∞
dτ ′Hosc(τ)Hosc(τ ′) , (III.15a)

U (2)
zm = −

∫ ∞
−∞

dτ

∫ τ

−∞
dτ ′Hzm(τ)Hzm(τ ′) , (III.15b)

and terms involving Hosc(τ)Hzm(τ ′) and Hzm(τ)Hosc(τ ′)
have vanished because Hosc is off-diagonal in the Fock
basis.

Collecting, we see from (III.12), (III.13) and (III.14)
that the detector’s density matrix after the time evolu-
tion is given to order λ2 by

ρT,d = ρ0,d + ρosc
T,d

(2) + ρzm
T,d

(1) + ρzm
T,d

(2) +O(λ3) ,

(III.16a)

ρosc
T,d

(2) = Trosc

(
U (1)

oscρ0,d,oscU
(1)
osc

†)
+ Trosc

(
U (2)

oscρ0,d,osc + H.c.
)
, (III.16b)

ρzm
T,d

(1) = Trzm

(
U (1)

zm ρ0,d,zm + H.c.
)
, (III.16c)

ρzm
T,d

(2) = Trzm

(
U (1)

zm ρ0,d,zmU
(1)
zm

†)
+ Trzm

(
U (2)

zm ρ0,d,zm + H.c.
)
. (III.16d)

The oscillator-mode contribution and the zero mode con-
tribution to the detector’s evolution are hence decoupled
to order λ2: there is no ‘back-reaction’ of the zero mode
on the oscillator modes and vice versa through the inter-
action with the detector (the oscillator modes depositing
energy in the detector and the detector transferring that
energy into the zero mode).

We emphasise that this decoupling relies on the as-
sumption that the oscillator modes are initially in a Fock
state. The decoupling would continue to hold if the os-
cillator mode initial state were generalised to a diagonal
density matrix in the Fock basis, such as for example a
thermal state, but it would not hold for arbitrary initial
states, such as, for instance, a coherent state.

C. Detector state: Solution

We now specialise to the case where the oscillator-
mode initial state |F 〉 is the Fock vacuum |0〉.

We employ a matrix representation in which

|g〉 =

(
1
0

)
, |e〉 =

(
0
1

)
, (III.17)

so that the monopole moment operator (III.2) has the
form

µ(τ) =

(
0 e−iΩτ

eiΩτ 0

)
. (III.18)

We parametrise the detector’s initial density matrix as

ρ0,d = a |g〉〈g|+ b |g〉〈e|+ b∗ |e〉〈g|+ (1− a) |e〉〈e| ,
(III.19)

where a ∈ R, b ∈ C, and (a− 1
2 )

2
+ |b|2 ≤ 1

4 . The matrix
representation is

ρ0,d =

(
a b
b∗ 1− a

)
. (III.20)

We address the oscillator-mode contribution and zero-
mode contribution in (III.16) in turn.

1. Oscillator-mode contribution (III.16b)

To analyse the oscillator-mode contribution (III.16b),
we introduce the quantities

un(τ) = φn
(
t(τ), x(τ)

)
, (III.21a)

In,± = −iλ

∫ ∞
−∞

dτ χ(τ) e±iΩτu∗n(τ) , (III.21b)

Gn,± = −λ2

∫ ∞
−∞

dτ

∫ τ

−∞
dτ ′ χ(τ)χ(τ ′) e±iΩ(τ−τ ′)

× un(τ)u∗n(τ ′) , (III.21c)

where n ∈ Z \ {0} and φn is the oscillator mode function
(II.5). In words, un is the pull-back of φn to the detector’s
worldline.

Consider the first term in (III.16b). With the notation
(III.21), we have

U (1)
oscρ0,d,osc =

∑
n6=0

(
In,+a

†
nσ

+ + In,−a
†
nσ
−) ρ0,d,osc

=
∑
n6=0

|1n〉〈0| ⊗
[
In,+

(
a |e〉〈g|+ b |e〉〈e|

)
+ In,−

(
b∗ |g〉〈g|+ (1− a) |g〉〈e|

)]
.

(III.22)

Multiplying from the right with U
(1)
osc

†
and tracing over

all the field modes, we find

Trosc

(
U (1)

oscρ0,d,oscU
(1)
osc

†)
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=
∑
n 6=0

(
(1− a)|In,−|2 b∗In,−I

∗
n,+

b I∗n,−In,+ a |In,+|2

)
. (III.23)

Consider then the second term in (III.16b). We observe
that

U (2)
oscρ0,d,osc = −λ2

∑
n 6=0

∫ ∞
−∞

dτ

∫ τ

−∞
dτ ′ χ(τ)χ(τ ′)

× un(τ)u∗n(τ ′)µ(τ)µ(τ ′) ana
†
n ρ0,d,osc

+ (traceless under Trosc) . (III.24)

Writing out the product µ(τ)µ(τ ′) using (III.18), adding
the Hermitian conjugate, and taking Trosc, we obtain

Trosc

(
U (2)

oscρ0,d,osc + H.c.
)

=
∑
n 6=0

(
2aReGn,− b

(
Gn,− +G∗n,+

)
b∗
(
Gn,+ +G∗n,−

)
2(1− a) ReGn,+

)
,

(III.25)

where Gn,± is given in (III.21).

ρosc
T,d

(2) is hence given by the sum of (III.23) and

(III.25). As ρosc
T,d

(2) must by construction be traceless
and a is a continuous parameter, setting the trace of this
sum to zero yields the identities

0 =
∑
n 6=0

(
|In,±|2 + 2 ReGn,∓

)
, (III.26)

which may be used to simplify ρosc
T,d

(2) to the final form

ρosc
T,d

(2) =
∑
n6=0

(
(1− a)|In,−|2 − a |In,+|2 b∗In,−I

∗
n,+ + b

(
Gn,− +G∗n,+

)
b I∗n,−In,+ + b∗

(
Gn,+ +G∗n,−

)
a |In,+|2 − (1− a)|In,−|2

)
. (III.27)

2. Zero-mode contributions (III.16c) and (III.16d)

To evaluate the order λ zero-mode contribution (III.16c), we note from (III.9c) that

U (1)
zm ρ0,d,zm = −iλ

∫ ∞
−∞

dτ χ(τ)

(
QS +

PS
L
t(τ)

)
|ψ〉〈ψ|

(
0 e−iΩτ

eiΩτ 0

)(
a b
b∗ 1− a

)
. (III.28)

Adding the Hermitian conjugate and taking Trzm, we find

ρzm
T,d

(1) = −λ
∫ ∞
−∞

dτ χ(τ)

(
〈QS〉ψ +

〈PS〉ψ
L

t(τ)

)(
2 Re(ib∗e−iΩτ ) i(1− 2a)e−iΩτ

i(2a− 1)eiΩτ 2 Re(ibeiΩτ )

)
. (III.29)

The order λ2 zero-mode contribution (III.16d) may be evaluated similarly, with the result

ρzm
T,d

(2) = −λ2

∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′ χ(τ)χ(τ ′)

(
〈Q2

S〉ψ +
〈P 2
S〉ψ
L2

t(τ)t(τ ′) +
〈QSPS〉ψ

L
t(τ ′) +

〈PSQS〉ψ
L

t(τ)

)

×
(

(1− a)e−iΩ(τ−τ ′) b∗e−iΩ(τ+τ ′)

b eiΩ(τ+τ ′) a eiΩ(τ−τ ′)

)

− λ2

∫ ∞
−∞

dτ

∫ τ

−∞
dτ ′ χ(τ)χ(τ ′)

(
〈Q2

S〉ψ +
〈P 2
S〉ψ
L2

t(τ)t(τ ′) +
〈QSPS〉ψ

L
t(τ ′) +

〈PSQS〉ψ
L

t(τ)

)

×
(
a e−iΩ(τ−τ ′) b e−iΩ(τ−τ ′)

b∗eiΩ(τ−τ ′) (1− a)eiΩ(τ−τ ′)

)

− λ2

∫ ∞
−∞

dτ

∫ τ

−∞
dτ ′ χ(τ)χ(τ ′)

(
〈Q2

S〉ψ +
〈P 2
S〉ψ
L2

t(τ)t(τ ′) +
〈PSQS〉ψ

L
t(τ ′) +

〈QSPS〉ψ
L

t(τ)

)

×
(
a eiΩ(τ−τ ′) b e−iΩ(τ−τ ′)

b∗eiΩ(τ−τ ′) (1− a)e−iΩ(τ−τ ′)

)
. (III.30)

D. When is the zero-mode contribution small?

With the explicit formulas at hand, we are ready to ad-
dress the central question: under what conditions are the

zero-mode contributions to the detector’s reduced density
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matrix small compared with the oscillator-mode contri-
butions?

We can make the following observations.
(i). Suppose the zero mode initial state |ψ〉 is ‘safe’, in

the sense of negligible zero-mode contributions to the de-
tector’s evolution. As the oscillator-mode contributions
and the zero-mode contributions to the detector’s den-
sity matrix are decoupled, the total state remains ‘safe’
throughout its evolution, to the order λ2 in which we
are working: the total state cannot become ‘unsafe’ via
interaction of the zero mode and the oscillator modes
through their mutual interaction with the detector. We
recall again that this conclusion relies on the oscillator
modes having been prepared in a Fock state, and the
conclusion would continue to hold also when the oscil-
lator modes are prepared in a noncoherent ensemble of
Fock states, such as a thermal state.

(ii). Suppose the zero mode initial state |ψ〉 has a
nonvanishing expectation value of QS or PS . Then the
contribution of the zero mode to the detector’s density
matrix is not only non-negligible but in fact dominant:
the zero mode gives a nonzero contribution already in
order λ while the oscillator-mode contributions appear
only in order λ2.

(iii). Suppose the zero mode initial state |ψ〉 has van-
ishing expectation values of QS and PS . This does not
suffice to guarantee that the zero-mode contribution to
the detector’s evolution would be negligible: the zero-
mode contributions occur then in the same λ2 order as
the oscillator-mode contributions, and they cannot be
identically vanishing for any |ψ〉 as they are linear com-
binations of the expectation values of Q2

S , P 2
S , QSPS and

PSQS .
(iv). Suppose the detector is initially in an incoherent

superposition of the ground state and the excited state,
so that b = 0 in (III.20). Then (III.29) shows that the
evolution of the diagonal elements in the detector’s re-
duced density matrix is of order λ2, regardless of the
initial state of the zero mode. The zero mode can there-
fore not give the dominant perturbative contribution to
the transition probabilities between the two eigenstates
of the detector, although it can give the dominant contri-
bution when the initial state is a coherent superposition
of the two energy eigenstates.

(v). The explicit appearance of t in (III.29) and
(III.30) shows that the zero mode contribution to the
detector’s evolution is explicitly time-dependent. This is
a consequence of the fact, noted in subsection II C, that
the zero mode does not have time translation invariant
states.

E. Example: Zero mode in a harmonic oscillator
ground state

As an explicit example, we consider the zero mode
state |ψ〉 whose wave function in the Q-representation is

the Gaussian 〈Q |ψ 〉 = (γ/π)
1/4

exp
(
− 1

2γQ
2
)

with γ > 0.

In words, |ψ〉 is a harmonic oscillator ground state with
a frequency proportional to γ. We emphasise that as |ψ〉
is in the Heisenberg picture and the zero mode Hamilto-
nian Hzm (II.11) is not that of a harmonic oscillator, the
Schrödinger picture time evolution of |ψ〉 is not a pure
phase but a spreading Gaussian. Nevertheless, in |ψ〉 we
have

〈QS〉 = 〈PS〉 = 0 , (III.31a)

〈Q2
S〉 =

1

2γ
, 〈P 2

S〉 =
γ

2
, (III.31b)

〈QSPS〉 = −〈PSQS〉 =
i

2
, (III.31c)

and from (II.11) we further see that 〈Hzm〉 = γ/(4L). It

follows from (III.29) that ρzm
T,d

(1) = 0, and we can use

(III.30) to estimate ρzm
T,d

(2). We can in particular ask
whether the limit of small γ, in which the zero mode
contribution to the stress-energy tensor (II.17) is small,

suffices to make also ρzm
T,d

(2) small.
We specialise to a detector that is static in the rest

frame of the cylinder, therefore t(τ) = τ .
To estimate the strength of the zero-mode contribution

to the detector’s dynamics, we introduce the following
estimator modelled on the U (1)ρ0U

(1) terms in (III.30):

E±zm =
λ2

2

∫ ∞
−∞

dτ

∫ ∞
−∞

dτ ′ χ(τ)χ(τ ′)

[
1

γ
+

γ

2L2
ττ ′

+
i

L
(τ ′ − τ)

]
e±iΩ(τ−τ ′) . (III.32)

For the Gaussian switching function

χ(τ) =
1

π1/4σ1/2
e−τ

2/(2σ2) , (III.33)

where the positive parameter σ is the effective duration
of the interaction, the integrals can be evaluated analyt-
ically, yielding

E±zm = λ2
√
πe−σ

2Ω2

(
γ

2L2
σ5Ω2 +

1

γ
σ ∓ 2σ3Ω

L

)
.

(III.34)

Here, inspired by the usual quantum optics convention
[13], we call E+

zm and E−zm the counterrotating-wave and
rotating-wave contributions respectively. Note that the
contributions from the zero mode of the counter-rotating
wave terms E+

zm can be exactly cancelled by choosing γ
suitably. Specifically, for a given interaction time, length
of the cavity and detector gap, we have two values of γ,

γ± =
(2±

√
2)L

σ2Ω
, (III.35)

which cancel the contribution to the detector dynamics
coming from the zero-mode counter-rotating wave terms.
The contribution of the zero-mode rotating-wave terms
E−zm cannot be cancelled for any value of γ, but we will
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discuss later that in this case its contribution to the de-
tector dynamics is not relevant for the long interaction
time regime.

To estimate the strength of the oscillator-mode contri-
bution to the detector’s dynamics, we introduce similar
estimators

E±osc =

∞∑
n=1

λ2

2nπ

∣∣∣∣∫ ∞
−∞

dτ χ(τ) ei(2πn/L±Ω)τ

∣∣∣∣2 , (III.36)

modelled on the diagonal components of ρosc
T,d

(2) (III.27).

For the Gaussian switching function (III.33), we obtain

E±osc =

∞∑
n=1

λ2σ

n
√
π

exp

[
−σ

2(2πn± LΩ)
2

L2

]
. (III.37)

Let us study the relative strength of the zero-mode
contribution as compared to the oscillator-mode contri-
bution as a function of the zero mode natural frequency
parameter γ and the effective total detection time σ. The
relevant relative strength estimator is

S±zm ≡
|E±zm|
|E±osc|

= πe−σ
2Ω2

∣∣∣∣∣∣
γ

2L2σ
5Ω2 + 1

γσ ∓
2σ3Ω
L∑∞

n=1
σ
n exp

[
−σ

2(2πn±LΩ)2

L2

]
∣∣∣∣∣∣ .
(III.38)

We may assume without loss of generality that Ω is posi-
tive, so that |g〉 is the ground state and |e〉 is the excited
state of the detector, as is the standard convention in
quantum optics. Then S−zm corresponds to the rotating-
wave terms and S+

zm corresponds to the counter-rotating
wave terms [13]. The behaviour for the two is markedly
different.

Let us begin with the rotating-wave terms S−zm. We
can see that if these terms contribute to the detector
dynamics, and in the case where the detector is resonant
with one of the field modes (i.e., if the gap of the atom
coincides with an integer multiple of 2π/L), the impact
of the resonant oscillator mode on the detector (III.36)
will not be exponentially suppressed with the effective
interaction duration σ. Instead, the contribution of the
resonant mode 2πn/L = Ω will grow linearly with σ,
whereas the contributions from the zero mode and from
all the non-resonant oscillator modes are exponentially
suppressed with σ.

Looking at (III.21b), one can see that the terms E−osc

are nonexponentially vanishing only when we consider a
detector which is excited and on resonance with one of
the field modes, this is, when ωn = Ω. It is very easy
to see that similar terms would appear if we consider a
detector initially in its ground state but it is resonant
with an excited field mode (see for instance [16]).

This is a relieving result which rescues the usual quan-
tum optical intuition behind the single-mode approxima-
tion [13]: In standard quantum optical setups, where we

consider a detector’s emission to or absorption from a res-
onant field mode, the zero mode-dynamics can be safely
neglected for large interaction times since it is exponen-
tially suppressed with the duration of the interaction,
whereas the contribution of the resonant mode increases
with time. By the same token, the contribution of the
non-resonant modes can also be neglected for the station-
ary detector at rest. On the other hand, from (III.34), we
also conclude that for a gapless detector Ω = 0, the zero-
mode contribution will not be exponentially suppressed
with the duration of the interaction. In this case, how-
ever, the effect of the zero mode can be made arbitrarily
small by choosing γ such that σ/γ is small, as shown
in (III.34).

The counter-rotating contribution S+
zm, however, is a

whole different story, as illustrated in Fig. 1. Notice
that in this case the impact estimators of the zero mode
and the oscillator modes on the detector state are both
small when the effective interaction time σ is long, but as
shown in Fig. 1, the contribution of the zero mode decays
with σ much slower than the contribution of the oscilla-
tor modes. Although it is indeed possible to pick a value
of γ that cancels the relative strength of the zero mode in
the detector’s response, this value would need to be large
if the detector’s energy gap is small. So the zero-mode
contribution can be exactly cancelled, provided the value
of γ is adapted to σ. As mentioned above, from (III.34),
we see that in the gapless detector limit Ω→ 0, the con-
tribution of the zero mode to the dynamics can be made
arbitrarily small by taking σ/γ sufficiently small, but this
will not be the case for non-zero detector gaps, where the
value of γ such that the contribution of the zero mode
exactly cancels is a function of σ.

Nevertheless, if the gap of the detector increases, we see
that the relative strength of the zero mode as compared
with the impact of the oscillator modes becomes non-
negligible if the interaction timescale is large enough, and
even gives the leading contribution in the limit of very
long interaction times.

This is hinting that the impact of the zero mode on the
detector dynamics, while minimizable by choosing appro-
priate initial states for the zero mode, may be highly non-
negligible for large gap detectors and for long interaction
times, provided that there are no resonance-effects of the
atom capturing or emitting quanta into a resonant mode,
as it is for example the case of a detector in the ground
state coupled to the field vacuum.

Additionally, one may argue that it could be challeng-
ing to ever experimentally acknowledge these effects by
probing the state of the detector: the zero mode becomes
more relevant for long times, but in absence of sponta-
neous emission or absorption, the vacuum response of the
detector for both the zero mode and the oscillator modes
is exponentially suppressed with time. Indeed, an iner-
tial UDW detector of positive gap in the ground state,
which remained on forever while interacting with the vac-
uum, has a vanishing probability of excitation, as it can
be checked from (III.27) considering Ω > 0. This means
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FIG. 1. (Color online): The plots show the quantity S+
zm (III.38), which characterises the relative strength of the zero mode

and oscillator mode contributions to the detector’s density matrix in the counterrotating case, as a function of γ for Ω = 1 and
Ω = 0.1 with selected values of the effective interaction duration σ. Solid circle is σ = 10−5, solid square is σ = 10−3, rhombus
is σ = 10−2, triangle is σ = 0.04, inverted triangle is σ = 0.07, hollow circle is σ = 0.1, and hollow square is σ = 0.2. S+

zm has
exact zeros at γ± = (2±

√
2)L/(σ2Ω), which is within the plotted range of γ only for the higher values of σ.

that even though the zero-mode contribution is relatively
large as compared to the oscillator-mode contribution, in
the regimes where this happens the overall action on the
detector would be negligible. Notice that this may be
amplified by choosing a more sudden switching than a
Gaussian smearing.

We also make the following hypothesis: Another sce-
nario where these effects may be non-trivial is in the in-
teraction of more than one detector with the same quan-
tum field, and in the extraction of correlations from the
background field [6, 25].

IV. TRANSITION PROBABILITY OF A
DERIVATIVE-COUPLING DETECTOR

A. Derivative-coupling detector

We have seen that the zero-mode contribution to the
evolution of the UDW detector is well defined, and in cer-
tain circumstances it can be arranged to be small com-
pared with the oscillator-mode contribution. One unap-
pealing property of the zero-mode contribution however
is that it is not invariant under time translations in any
state of the zero mode, not even when the detector is
stationary. Further, the terms involving t(τ) and t(τ ′) in
(III.29) and (III.30) show that the time dependence may
be significant, with potentially polynomial growth at late
times.

In this section we consider a modified UDW detector
for which the zero-mode contribution to the detector’s
transition probabilities is time translation invariant. In
the notation of Section III, the new interaction Hamilto-
nian is

H = λχ(τ)µ(τ)φ̇
(
x(τ)

)
, (IV.1)

where the overdot denotes derivative with respect to τ ,
and the assumptions on the switching function χ are as in

Section III. In words, the detector couples to the proper
time derivative of the field at the detector’s location,
rather than to the field itself. The derivative amelio-
rates the effects that stem from the infrared behaviour
of a massles field in (1 + 1) dimensions in a number of
contexts [20–23], and in our context it will restore time
translation invariance.

A price to pay for the derivative in (IV.1) is, however,
that the detector’s ultraviolet properties become similar
to those of the non-derivative UDW detector (III.1) in
(3+1) dimensions. If we try to proceed with (IV.1) as in
Section III, we find that the off-diagonal components in
the counterpart of ρosc

T,d
(2) (III.27) are ill-defined, due to a

divergence of the sums at large |n|. This ultraviolet prob-
lem occurs even in the simpler setting of a non-derivative
UDW detector (III.1) in (3 + 1) dimensional Minkowski
spacetime, as can be seen by expressing the time evo-
lution of the detector’s density matrix in terms of the
two-point function of the field as in [11] and consider-
ing the short-distance Hadamard form of the two-point
function [24, 26].

We shall therefore not consider the detector’s full den-
sity matrix but just the diagonal elements, which give
the transition probabilities. Adapting the standard treat-
ment of the non-derivative UDW detector [1–4] and work-
ing to leading order in λ, the probability of a transition
from |g〉 to |e〉 is equal to

P (Ω) = λ2F (Ω) , (IV.2)

where the response function F is given by

F (Ω) =

∫
dτ dτ ′ χ(τ)χ(τ ′) e−iΩ(τ−τ ′)∂τ∂τ ′W (τ, τ ′) ,

(IV.3)

and the correlation function W is obtained by pulling
back the field’s Wightman function, in the unperturbed
state of the field, to the detector’s worldline. Note that
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W is a distribution and must be given an appropriate iε
prescription. For us this prescription will be straightfor-
ward, but it would require more attention if one wished
to address the limit in which the interaction is switched
on and off sharply [23, 27–33].

From now on we drop the factor λ2 in (IV.2) and refer
to the response function (IV.3) as the probability.

We specialise to the situation in which the field is ini-
tially in the state discussed in Section II: in the free
field Heisenberg picture, the oscillator modes are in the
Fock vacuum |0〉 and the zero mode is in a state |ψ〉.
The Wightman function is then given by the sum of
the oscillator-mode contribution (II.8) and the zero-mode
contribution (II.14).

B. Zero-mode contribution to the response
function

By (II.14) and (IV.3), the zero-mode contribution to
the response function reads

Fzm(Ω) =
〈ψ|P 2

S |ψ〉
L2

∣∣∣∣∫ ∞
−∞

dτ χ(τ) e−iΩτ dt(τ)

dτ

∣∣∣∣2 .

(IV.4)

Two crucial observations are immediate.
First, since Fzm depends on t(τ) only through its

derivative, any additive constant in t(τ) will drop out.
Fzm is manifestly invariant under time translations.

Second, Fzm depends on |ψ〉 only in that it is propor-
tional to the single expectation value 〈ψ|P 2

S |ψ〉. As P 2
S

is a positive definite operator with a continuous spec-
trum, 〈ψ|P 2

S |ψ〉 is strictly positive for any |ψ〉; however,

〈ψ|P 2
S |ψ〉 can be made arbitrarily small by a suitable

choice of |ψ〉. In this sense, Fzm can always be made
as small as desired by a suitable choice of the state of the
zero mode.

We emphasise that both of these properties are in a
marked contrast with those of the non-derivative detec-
tor of Section III. In (III.30), additive constants in t(τ)
do not drop out, and the matrix elements involving |ψ〉
cannot all be simultaneously made arbitrarily small for
any choice of |ψ〉. We also note that the |ψ〉-dependent
overall coefficient 〈ψ|P 2

S |ψ〉/L2 in (IV.4) is, up to a nu-
merical factor, equal to the tt and xx components of the
zero-mode contribution to the field’s stress-energy ten-
sor (II.17).

C. Stationary detector

1. Response of a stationary detector

As a first example, we consider a detector on the iner-
tial worldline

t = τ coshβ , x = τ sinhβ , (IV.5)

where β ∈ R is the rapidity with respect to the cylinder’s
rest frame, so that the detector’s velocity with respect
to the cylinder’s rest frame is tanhβ. This is the most
general stationary trajectory on the cylinder.

Pulling back (II.8) and (II.14) to the worldline (IV.5),
we find that the correlation function is given by

W (τ, τ ′) = Wosc(τ, τ ′) +Wzm(τ, τ ′), (IV.6)

where

Wosc(τ, τ ′) = 〈0|φosc

(
t(τ), x(τ)

)
φosc

(
t(τ ′), x(τ ′)

)
|0〉=

∞∑
n=1

1

4πn

{
exp

[
2πne−β

iL
(∆τ − iε)

]
+ exp

[
2πneβ

iL
(∆τ − iε)

]}
,

(IV.7a)

Wzm(τ, τ ′) = 〈ψ|QH
(
t(τ)

)
QH
(
t(τ ′)

)
|ψ〉

= 〈ψ|Q2
S |ψ〉+ 〈ψ|PSQS |ψ〉L−1τ coshβ + 〈ψ|QSPS |ψ〉L−1τ ′ coshβ + 〈ψ|P 2

S |ψ〉L−2ττ ′ cosh2β , (IV.7b)

where ∆τ = τ − τ ′. Hence

∂τ∂τ ′Wosc(τ, τ ′) =
π

L2

∑
η=±1

∞∑
n=1

ne−2ηβ exp

[
−i

2πne−ηβ

L
(∆τ − iε)

]
, (IV.8a)

∂τ∂τ ′Wzm(τ, τ ′) =
cosh2β

L2
〈ψ|P 2

S |ψ〉 , (IV.8b)

where η = 1 indicates terms that come from the right-
movers (field modes with positive momentum) and η =
−1 indicates terms that come from the left-movers (field

modes with negative momentum). From (IV.3) we then
obtain

F (Ω) = Fosc(Ω) + Fzm(Ω) , (IV.9a)
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Fosc(Ω) =
∑
η=±1

∞∑
n=1

|Iηn|
2
, (IV.9b)

Iηn =

√
πn

L
e−ηβχ̂

(
Ω +

2πne−ηβ

L

)
, (IV.9c)

Fzm(Ω) =
cosh2β

L2
〈ψ|P 2

S |ψ〉 |χ̂(Ω)|2 , (IV.9d)

where χ̂ is the Fourier transform of χ,

χ̂(ω) =

∫ ∞
−∞

dτ e−iωτχ(τ) . (IV.10)

We note that the detector’s velocity enters Fosc

through a Doppler shift: the field modes with momen-
tum in (respectively opposite to) the detector’s velocity
contribute with a redshift (blueshift).

2. Limits of long detection and ultrarelativistic velocity

We wish to examine the response in the limit of long
detection and in the limit of ultrarelativistic velocity. We
choose the switching to be the Gaussian (III.33), nor-
malised so that

∫∞
−∞ χ2(τ) dτ = 1. Then

χ̂(ω) = π1/4(2σ)1/2 e−σ
2ω2/2 , (IV.11)

and from (IV.9) we have

Fosc(Ω) =
2π3/2 σ

L2

∑
η=±1

∞∑
n=1

e−2ηβn e−σ
2(Ω+2πne−ηβ/L)2 ,

(IV.12a)

Fzm(Ω) =
2π1/2 cosh2β

L2
〈ψ|P 2

S |ψ〉σe−σ
2Ω2

. (IV.12b)

Consider first the limit of long detection, σ →∞, with
β fixed. In this limit (IV.12) reduces to

Fosc(Ω) =
2π2

L2

∑
η=±1

∞∑
n=1

ne−2ηβ δ

(
Ω +

2πne−ηβ

L

)

= −π
L

∑
η=±1

∞∑
n=1

e−ηβΩ δ

(
Ω +

2πne−ηβ

L

)
,

(IV.13a)

Fzm(Ω) =
2π cosh2β

L2
〈ψ|P 2

S |ψ〉 δ(Ω) , (IV.13b)

where δ is Dirac’s delta-function. Fosc consists of strict
delta-peaks of de-excitation, at the Doppler-shifted fre-
quencies of the oscillator modes. Fzm is a strict delta-
peak at zero energy. Given that the detector’s energy
gap is assumed nonvanishing, the zero mode does not
contribute to the response in the long detection limit.

It can be verified that formulas (IV.13) also ensue if,
instead of working with a switching function, we appeal

to stationarity at the outset and consider the transition
rate,

Ḟ (Ω) =

∫ ∞
−∞

dτ e−iΩ(τ−τ ′)∂τ∂τ ′W (τ, τ ′) , (IV.14)

obtained from (IV.3) by setting χ(τ) = 1 and formally
factoring out the infinite total detection time [3]. This
shows that the normalisation of our switching function
(III.33) is well adapted for recovering a transition rate
per unit time in the σ →∞ limit.

Consider then the limit of ultrarelativistic velocity,
|β| → ∞, with σ fixed. Fzm (IV.12b) diverges propor-
tionally to e2|β|. In Fosc (IV.12a), the contribution from
the blueshifted modes goes to zero, but an integral es-
timate shows that the contribution from the redshifted
modes has a finite limit, given by

F |β|→∞osc (Ω) =
2π3/2 σ

L2

∫ ∞
0

dxx exp

[
−σ2

(
Ω +

2πx

L

)2
]

=
1

4σ

[
e−σ

2Ω2

π1/2
− σΩ erfc(σΩ)

]
. (IV.15)

It can be verified, using the Minkowski vacuum Wight-
man function (II.15) and (IV.3), that (IV.15) is ex-
actly half of the response of an inertial detector in the
Minkowski vacuum in full Minkowski space. The physical
picture of the ultrarelativistic motion is hence that the
redshifted oscillator modes contribute to the response as
if the spacetime were not periodic, while the contribu-
tion from the blueshifted oscillator modes is blueshifted
beyond the energies accessible to the detector.

We shall not attempt to take the limits of long detec-
tion and ultrarelativistic velocity simultaneously. How-
ever, if the zero-mode contribution is considered negli-
gible, we note that taking the two limits in succession
commutes: both the |β| → ∞ limit of (IV.13a) and the
σ →∞ limit of (IV.15) give

F (Ω) = − 1
2ΩΘ(−Ω) , (IV.16)

where Θ is the Heaviside function. This is exactly half
of the transition rate in inertial motion in Minkowski
space in Minkowski vacuum, obtained from (IV.14)
with (II.15).

It is remarkable, and perhaps surprising, that the
oscillator-mode contribution to the response exhibits no
pathology in the ultrarelativistic limit. We see this as
evidence that the periodic cavity provides a useful arena
for analysing detector-field interaction even at relativistic
velocities [34–36].

D. Uniformly accelerated detector

As a second example, we consider a detector on the
uniformly accelerated worldline

t = a−1 sinh(aτ) , x = a−1 cosh(aτ) , (IV.17)
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where τ is the proper time and the positive parameter
a is the proper acceleration. The detector accelerates
towards increasing x, and the detector is momentarily at
rest in the cylinder’s rest frame at the moment τ = 0.

The trajectory is locally stationary with respect to the
local Minkowski geometry in its neighbourhood, but it
is not stationary with respect to the global time trans-

lations that leave the cylinder invariant. In geometric
terms, the trajectory is invariant under the local boost-
generating Killing vector x∂t+t∂x, but this Killing vector
is not globally defined on the cylinder because of the spa-
tial periodicity.

Pulling back (II.8) and (II.14) to the detector’s world-
line, we find

∂τ∂τ ′Wosc(τ, τ ′) =
π

L2

∑
η=±1

∞∑
n=1

n e−ηa(τ+τ ′) exp

[
iη

2πn

aL
(e−ηaτ − e−ηaτ

′
+ iηε)

]
, (IV.18a)

∂τ∂τ ′Wzm(τ, τ ′) =
1

L2
〈ψ|P 2

S |ψ〉 cosh(aτ) cosh(aτ ′) , (IV.18b)

where again η = 1 comes from the right-movers and η = −1 comes from the left-movers. From (IV.3) we then obtain

Fosc(Ω) =
∑
η=±1

∞∑
n=1

|Jηn |
2
, (IV.19a)

Jηn =

√
πn

L

∫ ∞
−∞

dτ χ(τ) e−iΩτ−ηaτ

× exp

(
iη

2πn

aL
e−ηaτ

)
, (IV.19b)

Fzm(Ω) =
〈ψ|P 2

S |ψ〉
L2

∣∣∣∣∫ ∞
−∞

dτ χ(τ) e−iΩτ cosh(aτ)

∣∣∣∣2 .

(IV.19c)

As the trajectory is not stationary on the cylinder, we
now consider the Gaussian switching function

χτ0(τ) =
1

π1/4σ1/2
e−(τ−τ0)2/(2σ2) , (IV.20)

where σ > 0 as before but the new real-valued parameter
τ0 specifies the instant about which χτ0 is peaked. From
(IV.19), we then have

Fosc(Ω) =
∑
η=±1

∞∑
n=1

|Jηn |
2
, (IV.21a)

Jηn =
π1/4n1/2

Laσ1/2
e−(ηa+iΩ)τ0

∫ ∞
0

dxxiηΩ/a

× exp

[
− (lnx)2

2a2σ2
+ iηe−ηaτ0

2πn

aL
x

]
,

(IV.21b)

Fzm(Ω) =
2π1/2σ

L2
〈ψ|P 2

S |ψ〉 e−σ
2Ω2+σ2a2

×
[
cos2(σ2aΩ) + sinh2(aτ0)

]
. (IV.21c)

Both the oscillator-mode contribution and the zero-mode
contribution depend on τ0.

For the zero-mode contribution, we recall that Fzm can
be always made as small as desired by choosing |ψ〉 so
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FIG. 2. (Color online): The plot shows Zzm := Fzm/Fosc

evaluated from (IV.21) with L = 1, Ω = 1, τ0 = 0 and
〈ψ|P 2

S |ψ〉 = 10−6, as a function of a, with selected values
of σ: solid circle is σ = 0.15, solid square is σ = 0.25, rhom-
bus is σ = 0.35, triangle is σ = 0.45, and inverted triangle
is σ = 0.5. Zzm has exact zeroes at a = (σ2Ω)−1(π/2 + kπ),
k = 0, 1, . . ., of which only the first zero (k = 0) for the largest
two values of σ is in the range covered by the plot.

that the overall coefficient 〈ψ|P 2
S |ψ〉 is small. A more in-

teresting question however is how the relative magnitudes
of Fzm and Fosc depend on the other parameters when
〈ψ|P 2

S |ψ〉 is fixed. We illustrate this in Fig. 2, showing a
parameter range in which Fzm/Fosc tends to grow with
increasing interaction time and with increasing accelera-
tion.

For the oscillator-mode contribution, we expect that
Fosc should reduce to the response of the accelerating
detector (IV.17) in Minkowski space in the Minkowski
vacuum. The response in the Minkowski vacuum is given
by

FMink(Ω) =
ae−σ

2Ω2

4π

∫ ∞
−∞

dr

cosh2r
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FIG. 3. (Color online): The plot shows |FMink − Fosc|/FMink,
evaluated from (IV.21) and (IV.22), with a = σ = 1 and τ0 =
0, as a function of Ω, with selected values of L: solid circle
is L = 0.01, solid square is L = 0.15, rhombus is L = 0.2,
triangle is L = 0.25, and inverted triangle is L = 0.3. Fosc

and FMink get closer to each other when L increases. The
slow convergence of the sum in (IV.21a) limits our ability to
go to higher values of L.

× exp

{
− 1

a2σ2

[
r + i

(
σ2aΩ− π

2

)]2}
,

(IV.22)

as can be verified using (II.15), (IV.3) and (IV.17), and in
the long detection time limit FMink reduces to the familiar
Planckian result in the Unruh temperature a/(2π),

Fσ→∞Mink (Ω) =
Ω

e2πΩ/a − 1
, (IV.23)

as can be verified using formula 3.985.1 in [37]. Numerical
evidence for closeness of Fosc and FMink with increasing
L is given in Fig. 3. The slow convergence of the sum
in (IV.21a) has prevented us from seeking evidence in a
more extensive range of the parameter space.

A limit of particular interest for the oscillator modes
would be that of large |τ0| with all other parameters fixed.
In this limit the detector is moving through the cavity
with an ultrarelativistic velocity throughout the vast ma-
jority of the effective detection time. Our ultrarelativistic
inertial detector result (IV.15) suggests that in this limit
Fosc should tend to half of the Minkowski vacuum re-
sponse FMink (IV.22). If correct, this would be further
evidence that the periodic cavity provides a useful arena
for analysing detector-field interaction even at relativis-
tic velocities [34–36]. The slow convergence of the sum in
(IV.21a) has however not enabled us to obtain conclusive
evidence about this question.
Fosc can be written in a form that avoids a discrete

sum by using for the Fock vacuum Wightman function
the summed expression (II.9), and the ε-regulator can
then be eliminated by the techniques of [23, 29–33]. We
have not investigated whether this integral representa-
tion improves the stability of numerical evaluation in the
limits of interest.

V. CONCLUSIONS

We have assessed the impact of the zero mode of
a quantum field on the dynamics of particle detectors.
This mode is often neglected when considering the light-
matter interaction under periodic or Neumann boundary
conditions.

We worked with a massless scalar field in a periodic
cavity in (1 + 1)-dimensional Minkowski space. We con-
sidered the traditional Unruh-DeWitt (UDW) detector,
coupled linearly to the field, as well as a modified UDW
detector that couples linearly to the proper time deriva-
tive of the field. We treated the interaction perturba-
tively, to quadratic order in the coupling constant for
the detector’s transition probabilities.

For the UDW detector, we first showed that when the
oscillator modes of the field are initially in a Fock state, or
in an ensemble of Fock states, the zero mode of the field
is not affected by the backreaction of the non-zero modes
on the detector, or vice versa. To quadratic order in the
coupling constant, there is hence no danger that energy
in the oscillator modes of the field would get transferred
to the zero mode via the interaction through the detector,
regardless of the state of the detector. This conclusion
does however not need to hold if the oscillator modes
of the field are initially in a state with a non-diagonal
density matrix in the Fock basis, such as a coherent state.

We then showed that the zero mode does have a non-
vanishing direct effect on the evolution of the detec-
tor’s density matrix. This effect can be made negligible
in standard quantum optical settings, but situations in
which the effect can be significant, and even dominant,
can arise in other settings, including the Unruh effect
[1] or the harvesting of quantum entanglement from a
field [6].

For the derivative-coupling detector, we found that the
zero mode has again a nonvanishing direct effect on the
detector’s transition probabilities, but this effect can be
made as small as desired by just tuning the detector’s
initial state. The effect is invariant under time transla-
tions in the cavity, and it is directly proportional to the
contribution of the zero mode to the field’s renormalised
stress-energy tensor. As examples, we considered a de-
tector moving inertially but with an arbitrary velocity,
including the ultrarelativistic limit, and a detector in uni-
formly accelerated motion.

Our analysis provides the basic tools for studying
the Unruh effect in a periodic cavity for the derivative-
coupling detector. Exploiting these tools for a system-
atic survey of the parameter space, whether by analytic
or numerical techniques, is left to future work.

Systems where a zero mode arises as a consequence
of Neumann boundary conditions will have some quan-
titative differences because of the absence of spatial ho-
mogeneity, but we anticipate the qualitative conclusions
about the zero mode to be largely similar. We also an-
ticipate that both our analysis and our conclusions can
be generalised to cosmological spacetimes in which zero



14

modes arise [15].
It should be interesting to study in detail possible zero-

mode effects on relevant well-known results in relativis-
tic quantum information such as, for instance, vacuum
entanglement harvesting and farming [6, 25] and rela-
tivistic quantum communication [11, 12], when consid-
ered in the context of periodic and Neumann cavities.
Since we showed that in many relevant cases there is no
backreaction of the zero-mode on the oscillatory modes
through their interaction with the detector, it is doubtful
that the zero mode dynamics alone could destabilize the
process of entanglement harvesting or hinder relativistic
communication protocols. Nevertheless, as shown by the
full density matrix analysis carried over in Section III C,
there would be an impact on these phenomena coming
from the dynamics of the zero mode that might become
relevant in some regimes. Although outside of the scope
of this paper, it may be relevant to study the role of the
zero-mode dynamics in those scenarios in future work.

As a final comment, we note that while the focus of this
paper is theoretical, the conclusions are applicable in all
detector-field interaction settings where there are peri-

odic or Neumann boundary conditions. Among labora-
tory systems this includes closed optical cavities, such as
optical-fibre loops [38], and superconducting circuits cou-
pled to periodic [39] or Neumann microwave guides [40].
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