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Abstract 

Introduction: HER2 plays an important role in breast cancer progression and 

provides predictive and prognostic information. HER2 receptor family members 

function through dimerisation, which can lead to impact on cell function, growth and 

differentiation; however their value in breast cancer development remains to be 

defined. This study aims to examine the relationships of HER2 heterodimers to 

breast cancer characteristics in trastuzumab naïve and treated cases.  

Methods: HER2 protein (IHC), HER2 gene (chromogenic ISH) and HER2 

heterodimerisation status (chromogenic in situ proximity ligation assay; PLA) was 

assessed in two breast cancer series prepared in tissue microarray (TMA) format.  

Results:  

A range of signals/cell for each HER2 heterodimer was detected (0 – 34.6 signals/

cell). The vast majority of cases with HER2 heterodimers showed HER2 gene 

amplification and/or protein expression. There was an association between HER2 

dimerisation with HER3 and HER4 and their protein expression level but no such 

association was found in with HER1 (EGFR). Of the HER2+ cases, 74%, 66% and 

58% showed heterodimers with EGFR, HER3 and HER4 respectively.  51% of HER2+ 

tumours expressed all three heterodimers whereas 23% of the cases did not show 

expression of any of the three heterodimers. There was an inverse association 

between the presence and levels of HER2 heterodimers and hormone receptor 

expression in HER2+ tumours. Tumours exhibiting high levels of HER2 heterodimers 

demonstrated aggressive clinicopathological features and poor outcome. In the 

HER2+ cases, dimerisation with EGFR and HER3 but not with HER4 showed an 

association with aggressive features.  There was no association between HER2 

heterodimers with patient breast cancer specific survival or recurrence in HER2+ 

breast cancer in those patients receiving trastuzumab or not. 
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Conclusions: Our results demonstrate that HER2 dimerisation is a complex process 

that may underlie the biological heterogeneity of HER2 positive tumours and may 

identify patients suitable for a specific targeted therapy but does not predict patient 

outcome for those receiving trastuzumab.  PLA proved to be a useful tool for 

detecting, visualising and quantifying the frequency of protein-protein interactions in 

archival formalin fixed paraffin embedded tissue samples. 

Keywords: HER2, PLA, Heterodimer, Breast Cancer, Trastuzumab 

!  3



Introduction 

Breast carcinomas are heterogeneous in terms of different histological characteristics 

and genetic and molecular variations, which control patient prognosis and tumour 

performance [1,2]. Human Epidermal Growth Factor Receptor (HER)2 (neu or c-

erbB-2) overexpression is related with higher level of metastasis development and 

are amongst those with the worst prognosis [3] representing 10%-23% of breast 

tumours [4-6]. The HER family is composed of four different types: HER1 (EGFR or 

c-erbB-1), HER2, HER3 (c-erbB-3) and HER4 (c-erbB-4) [5]. These compile the type I 

group of the Receptor Tyrosine Kinases (RTKs) and regulate several cellular 

metabolic reactions [7,8]. RTKs can function as controllers of cellular progress, 

however they may influence the development and improvement of different types of 

carcinoma [9]. 

All members of the HER family, apart from HER2, are activated by a group of 

transmembrane precursor protein molecules, which possess a conserved epidermal 

growth factor (EGF)-like domain [10]. Each HER member has specific ligands that 

they interact with and this ligand-ectodomain interaction encourages either homo- or 

hetero-dimerisation [11]. HER2 does not interact with any ligand and therefore its 

conformation arm is constantly predisposed to exist in a competent form and ready 

to connect with any of the other monomers from the same family [12], HER2 the 

being preferred receptor for dimerisation incidence [13,14].  

HER2 positive breast cancer patients are submitted to targeted therapies that include 

trastuzumab (HerceptinTM; Genentech), which disrupts its signalling mechanisms. 

Only 35% of patients with HER2 metastatic breast cancer demonstrate a response 

when submitted to trastuzumab [15]. Nonetheless, when the therapeutic antibody is 
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applied with first-line chemotherapy, the levels of success can increase up to 84% 

[16,17]. Therefore alternative mechanisms that are not disturbed by trastuzumab 

might be implicated in carcinoma expansion [18]. Trastuzumab might be effective at 

initial treatments, however after a period of time acquired resistance increases 

substantially. Our understanding of these resistance mechanisms remain unclear 

although several have been proposed (reviewed in ref [19]). The semi-quantitative 

methods for determination of HER2, such as immunohistochemistry (IHC), might not 

be adequate and/or sufficient to predict high levels of therapy success.  

Moreover, the majority of preceding studies on the HER family in breast cancer have 

paid attention on either individual expression of the receptor monomers or their co-

expression, describing the association with the different clinicopathological 

parameters [20]. In breast cancer, both EGFR and HER2 expression are highly 

associated with poor outcome characteristics [21-24] and with negative oestrogen 

receptor (ER) status [21]. The co-expression of two or more receptors indicate an 

even more unfavourable outcome [23-26]. Accurate quantification of protein 

expression and other biological characteristics, such as HER heterodimerisation, 

could be important to elucidate and predict patient outcome, particularly with HER 

targeted therapies. The action of these molecules is controlled by a complex system 

that includes structures modifications or connections with other molecules such as 

ligands; the consequence heterodimer arrangements will trigger different pathways 

and consequently different outcomes [27,28]. Thus, quantification of HER 

heterodimerisation status might be important to elucidate their roles for detailed 

biological outcome. Therefore this study was aimed at investigating the co-

expression and dimerisation of the HER family in HER2+ breast cancer in order to 

understand their role in the disease.  
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Material and Methods 

Patient samples 

Primary breast cancer series (Unselected Series) 

The patient series comprised 1,858 unselected primary operable invasive breast 

carcinoma cases, presenting between 1986-1998, from the well-characterised 

Nottingham-Tenovus Primary Breast Carcinoma Series. [29-31]. Amongst all patients, 

1,256 (67.6%) were 50 years or over at presentation. A total of 354 (19.1%) 

tumours were grade I, 616 (33.3%) grade II and 880 (47.6%) grade III. A total of 

1,367 (73.9%) of patients had tumours of 1.5cm or larger in size. Additionally 1,187 

(64.1%) cases revealed tumour stage N0, 505 (27.3%) stage N1 and 159 (8.6%) 

stage N2. 

Biological characterisation, including immunoreactivity, marking and categorising of 

ER, progesterone receptor (PgR), and Triple Negative Phenotype (TN) were 

delineated in this series as previously described [25,26,32,33].  

HER2+ adjuvant trastuzumab series 

The HER2+ adjuvant trastuzumab series consisted of 143 primary operable breast 

tumours from patients presenting between 2003 and 2010 who received adjuvant 

trastuzumab. A total of 79 (56.4%) patients were aged over or equal to 50 years, 

and 61 (43.6%) were less than 50 years old. The age of patients at presentation 

ranged between 31-79 years (median and mean of 52 years). At primary diagnosis, 3 
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(2.1%) tumours were grade 1, 37 (25.9%) grade 2, and 103 (72.0%) cases were 

grade 3. A total of 120 (83.9%) patients had tumours 1.5cm or larger. Relapse 

occurred in 23 (16.1%) cases, distant metastasis in 17 (12.1%) cases, and 10 

(7.0%) patients died from breast cancer. Local recurrence occurred in 7 (4.9%) of 

cases and regional recurrence in 1 (0.8%) case.  

Immunohistochemistry and Chromogenic in situ Hybridisation  

TMAs were prepared as previously described [25].   Immunohistochemistry was 

performed using Novolink Polymer Detection Systems (Leica). The primary antibodies 

were used to detect HER2 (Dako, 1:400), EGFR (clone 31G7, Invitrogen, 1:30), HER3 

(clone RTJ1, Leica, 1:30), HER4 (Rabbit polyclonal, Thermo Scientific, 1:100), ER 

(clone SP1, Dako, 1:50) and PgR (clone PgR 636, Dako, 1:125) for 30 minutes 

incubation. TMA sections were counterstained with Mayer’s haematoxylin.  

Immunoreactivity of HER2 in TMA cores was scored using standard HercepTest 

guidelines (Dako). Chromogenic in situ Hybridisation (CISH) was used to quantify 

HER2 gene amplification using the HER2 FISH pharmDx™ plus HER2 CISH 

pharmDx™ kit (Dako) as previously described [26]. HER2 classification was assessed 

by using American Society of Clinical Oncology guidelines as previously described 

[26].  

The expression of ER, PgR, HER3, HER4 and EGFR were evaluated by assessing 

percentage staining [34]. Only invasive cancer cells localised within tissue cores were 

considered and only cores exhibiting at least 15% of tumour cells were scored. TMAs 

were scored using high-resolution digital images (NanoZoomer; Hamamatsu 

Photonics), at x20 magnification, using a web-based interface (Distiller; Slidepath 

Ltd).  

in situ Proximity Ligation Assay (PLA) 
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Quantification of HER heterodimers was measured using in situ PLA for brightfield 

microscope as per the manufacturer’s instructions (Duolink kit, Olink). 4 µm TMA 

sections were mounted on X-traTM adhesive micro slide (Surgipath, Leica). 

Deparaffinisation was performed and heat induced antigen retrieval was executed for 

20 min in citrate buffer (pH 6.0). Endogenous peroxidase was quenched using 0.3% 

hydrogen peroxide for 5 min and followed by a blocking solution for 30 min at 37˚C. 

To detect heterodimers, target antibodies from two different species were applied at 

previously determined optimal conditions. The anti-HER2 rabbit antibody (Dako, 

1:200) was used for all PLA detections. For HER2/HER3 heterodimer detection, anti-

HER3 mouse antibody (clone 2F12, Neomarkers, 1:40) was used, and incubated with 

the HER2 antibody for 30 min at room temperature (RT). For HER2/EGFR 

heterodimer detection, the anti-EGFR mouse antibody (clone EGFR-R2, Santa Cruz, 

1:10) and for HER2/HER4 interaction the anti-HER4 antibody mouse (clone HFR1, 

Abcam Ltd, 1:50) were used respectively. Both the HER2/EGFR and HER2/HER4 

antibodies were incubated for 60 min at RT. This was followed by incubation with the 

PLA-probe in a pre-heated humidity chamber for 90 min at 37˚C. Hybridisation/

ligation incubation took place for 30 min and amplification for 120 min at 37˚C. To 

detect hybridisation, Horse Radish Peroxidase was used and incubated for 30 min at 

RT followed by appliance of substrate solution for 10 min at RT. Counterstaining was 

performed using Duolink® nuclear staining for 2 min at RT followed by washing the 

slides under running tap water for 10 min. Slides were mounted with a coverslip 

after dehydration of the sections.  

Image Analysis  

To quantify the HER heterodimerisation, image analysis was employed using 

Duolink® ImageTool (Olink, Sweden). High-resolution images of TMA sections were 

acquired at x40 magnification (NanoZoomer). 
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One observer (FFTB) scored all IHC and PLA results, which were rescored arbitrarily 

revealing a high concordance between both occasions. Furthermore the PLA 

procedure was performed three times on HER2+ cases (n=143) revealing a good 

correlation amongst the three experiments (kappa value, 0.735).  

Statistical analysis 

All statistical analyses were performed using SPSS 19.0 (SPSS Inc., Chicago, Illinois). 

Pearson’s χ2 association analysis was employed in support of inter-relationships 

between dimerisation occurrence status with clinicopathological parameters, and 

biomarkers including HER2 gene amplification. For any relationship to be considered 

significant a p-value of <0.05 was used. 

Ethics 

Nottingham Research Ethics Committee 2 approved this research project under the 

title of “Development of a molecular genetics classification of breast cancer”.  

RESULTS 

HER2 status in the Unselected series 

Regarding HER2 protein expression, 1,604 (86.3%) of patients in the Unselected 

series were negative, 74 (4.0%) were 2+ equivocal faction and 180 (9.7%) were 3+ 

positive. HER2 gene amplification was observed in 160 (14.4%) patients resulting in 

a total of 224 (12.1%) HER2+ cases. 

HER heterodimer frequency in the Unselected series 

The unselected primary breast cancer cases revealed a range of signals/cell for each 

heterodimer which were predominantly detected on the membrane of tumour cells: 

HER2/EGFR (0–20.2 signals/cell), HER2/HER3 (0–34.6 signals/cell) and HER2/HER4 
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(0–17.2 signals/cell). The cut-off point to define the heterodimer status was 

determined using X-tile [35] which dichotomised data into low and high levels of 

heterodimerisation. It was therefore considered that low levels of dimers were in 

those cases showing less than 1.0 HER2/EGFR signals per cell, less than 4.5 HER2/

HER3 signals per cell and less than 3.4 HER2/HER4 signals per cell (Figure 1A, B and 

C, respectively). Any incidence above these limits were accepted as positive levels of 

heterodimerisation (Figure 1D, E and F respectively).  

The incidence of HER2/EGFR heterodimers in the Unselected series revealed positive 

levels of HER2/EGFR heterodimers in 104/812 (12.8%) cases (Table 1). Similar levels 

of the HER2/HER3 (97/743, 13.1%) and HER2/HER4 (96/891, 10.8%) heterodimers 

were observed. There were significant positive associations between the incidences 

of all HER heterodimers (Tables 2A-B, all p<0.001). 

Association of HER heterodimers and biomarkers expression in the 

Unselected series 

As predicted, there were strong positive correlations between all three HER 

heterodimers and HER2 status (all p<0.001, Table 3A). As a consequence, the 

heterodimers were associated with poor clinicopathological parameters such as high 

lymph node stage, tumour grade, NPI and a significantly higher risk of recurrence 

(Supplementary Table 1). A total of 81/96 (84.4%) breast cases showing HER2/EGFR 

heterodimers were HER2+. Of the 15 cases that showed HER2/EGFR dimers but not 

HER2 over-expression, the majority (11/15, 73%) had very low levels of 

heterodimers (<2.4 signals/cell). Two cases had HER2 protein expression, regarded 

as 2+ determined by IHC but did not show gene amplification in CISH. The 

remaining two cases had high levels of HER2/EGFR dimers but no over-expression of 

HER2. There were a proportion of HER2+ cases (27/108, 25%) that did not express 
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HER2/EGFR heterodimers. In terms of the presence of HER2/HER3 heterodimers, a 

significant proportion of cases showing HER2/HER3 heterodimers were HER2+ 

(79/89, 89%). Of those remaining, 7/10 cases had relatively low levels of 

heterodimers as detected by PLA (<8.9 signals/cell) and 2/10 cases had increased 

HER2 protein expression (2+) but showed no gene amplification by CISH. There 

were a number of HER2+ cases, 33/112 (30%) that did not show dimerisation of 

HER2/HER3. A similar observation was made with the HER2/HER4 heterodimers 

where 76/86 (88%) of cases with these heterodimers were HER2+. The majority of 

remaining cases had low levels of heterodimers (6/10 cases; <4.7 signals/cell) or 

showed overexpression of HER2 protein but not amplification of the gene. A total of 

62/138 (45%) HER2+ cases did not show HER2/HER4 heterodimers. 

Interestingly, 59/89 (66%) cases with HER2/EGFR heterodimers did not express 

EGFR protein (p=0.002). In contrast, the majority of tumours (71/78, 91%) showing 

HER2/HER3 heterodimers expressed HER3 protein. Likewise, all but 5 cases (6.3%) 

that were positive for HER2/HER4 heterodimers were positive for the HER4 protein 

(p=0.004). All HER heterodimers were significantly correlated with ER and PgR 

negativity and Triple Negative tumours (Table 3A, all p<0.001). 

Association of HER heterodimers and HER2 gene amplification in the 

Unselected series 

There was significant correlation between HER2 gene amplification with the number 

of detected signals of A) HER2/EGFR (r2=0.381, p<0.001), B) HER2/HER3 (r2=0.429, 

p<0.001) and C) HER2/HER4 (r2=0.377, p<0.001) as shown in Figures 2 A, B and C 

However some cases harbouring HER2 gene amplification did not reveal 

heterodimerisation of HERs.  

HER heterodimer frequency in HER2+ breast cancer  
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In HER2+ breast cancer, 168/229 (73.4%) of cases showed HER2/EGFR 

heterodimers, 149/226 (65.9%) had high levels of HER2/HER3 heterodimers and 

approximately half of the cases (131/243, 53.9%) had HER2/HER4 heterodimers 

(Table 1). Similar to the Unselected series, the presence of all three heterodimers 

were significantly associated with each other (Table 3B, p<0.001). A total of 73/142 

(51.4%) HER2+ tumours expressed all three heterodimers (Table 4) whereas only 

32/142 (22.5%) cases did not show expression of any of the heterodimers 

investigated. Expression of only one heterodimer or two heterodimers were less 

commonly observed. 

Association of HER heterodimers and clinicopathological parameters in 

HER2+ breast cancer  

Correlations between the different HER2 heterodimers and clinicopathological 

parameters are summarised in Table 5. Both HER2/EGFR and HER2/HER3 

heterodimers were associated with high tumour grade (p=0.006 and p=0.017, 

respectively). The presence of HER2/EGFR heterodimers was also significantly 

associated with a poor NPI score (p=0.048). The HER2/HER3 interaction was 

differentiated from the other HER family interactions by an association with 

development of distant metastases (p=0.039). Finally, HER2/HER4 dimerisation 

incidence was not associated with any of the clinicopathological parameters 

investigated. 

Association of HER heterodimers and biomarker expression in HER2+ 

breast cancer  

Table 3B summarises the association of the different HER family heterodimers 

against the protein expression of the HER family (EGFR, HER2, HER3 and HER4), as 

detected by IHC, and the hormone receptors ER and PgR. Similar to that observed in 
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the Unselected series, the expression of the HER2/EGFR heterodimer in the HER2+ 

series was independent of EGFR expression where approximately half of the HER2/

EGFR heterodimer positive cases were negative for EGFR protein. In contrast, only 

6/121 (5.0%) and 2/108 (1.9%) cases positive for the HER2/HER3 and HER2/HER4 

heterodimers showed negative expression of HER3 and HER4 respectively. 

There was a significant association of HER2/EGFR, HER2/HER3 and HER2/HER4 

heterodimers with negative ER (p=0.002, P<0.001 and p<0.001, respectively) and 

PgR status (p=0.016, P=0.001 and p<0.001, respectively). HER2/HER3 heterodimers 

were not associated with either ER or PgR.  

HER2/HER3 was the only heterodimerisation not highly correlated with Ki67 

expression, the nuclear protein severely correlated with ribosomal RNA transcription 

and is expressed mostly in proliferative cells [36,37].  

HER heterodimers and their association with patient outcome  

High levels of all three HER2 dimers showed a significantly worse outcome for both 

BCSS (Figures 3A,C,E) and DFI (Figures 3B,D,F) in the Unselected series. Multivariate 

Cox regression including tumour size, stage and grade, in the Unselected series 

demonstrated high levels of HER2 heterodimers were independent predictors for 

worse BCSS: HER2/EGFR (HR=0.64, 95% CI=0.45-0.89, p=0.009), HER2/HER3 

(HR=0.62, 95% CI=0.45-0.62, p=0.006), HER2/HER4 (HR=0.66, 95% 

CI=0.48-0.92, p=0.014), and worse DFI: HER2/EGFR (HR=0.64, 95% CI=0.47-0.88, 

p=0.005,) HER2/HER3 (HR=0.72, 95% CI=0.53-0.98, p=0.037), HER2/HER4 

(HR=0.69, 95% C =0.51-0.94, p=0.017). However, the association between HER2 

heterodimers with patient outcome was not significant in patients with HER2+ breast 

cancer only (trastuzumab naïve or trastuzumab treated, data not shown).  

!  13



!  14



Discussion 

This study has utilised chromogenic PLA as an innovative procedure for in situ 

exposure of HER2 heterodimers such as EGFR/HER2, HER2/HER3 and HER2/HER4, 

in a large series of paraffin embedded TMA breast tumours. This technique has 

demonstrated high levels of specificity, sensitivity and consistency with low levels of 

background. The quantification analysis demonstrated to be robust and with 

reproducible results amongst the different dimers here considered.  

Previously, IHC has been used as a semi-quantitative approach to detect the 

existence of distinct proteins being limited to single protein or co-expression 

recognition. Consequently it is not possible to observe protein-protein interactions 

using this limited technique. Moreover, co-expression of two proteins, such as the 

HER family, does not necessarily mean that heterodimerisation will occur, as the 

process is dependent on interaction with ligands to trigger this reaction. So methods, 

such as PLA, are a suitable solution to quantify protein interaction and visualise and 

quantify in situ heterodimerisation of the HER family.  

For all three HER heterodimers investigated in breast cancer, it is apparent that 

whilst HER2 over-expression is the dependent factor in dimerising with the other 

members of the HER family, the protein expression of EGFR, HER3 and HER4 in 

HER2+ breast cancer does not necessarily result in heterodimerisation. HER2 has 

previously been suggested as the dominant monomer for heterodimerisation 

comparing with any others from the same family [13]. HER2 does not include an 

ectodomain where a ligand can attach, however it is competent to perform as a co-

receptor with an extraordinary affinity to interact with the same family members 

forming heterodimers [9].  Within RTKs Type I group, HER2 is the most favourable 

!  15



molecule to interact with the others due to extend ligand/heterodimer linkage and 

therefore prolonging MAPK pathway [5,38,39] relating these cases with high 

biological activity. Additionally HER2 does not interact with any ligand and therefore 

its conformation arm is constantly predisposed to exist in a competent form and 

ready to connect with any of the other monomers from the same family [12]. 

Even though HER2/HER3 dimer has been reported as the most frequent dimer in 

breast cancer [20], it was found that all three HER heterodimers were expressed at a 

similar frequency. This might be explained by critical factors of the PLA such as the 

use of different antibodies, different cut-off points and/or the designation of the 

overexpression status. The results of brightfield versus fluorescent could also 

contribute to the evident discrepancies. However both these two techniques produce 

similar results in both cell culture or tissue samples where chromogenic PLA is as 

specific and sensitive on quantification analysis as fluorescent PLA [40]. Despite 

these variances, we similarly showed an association between HER2/HER3 

heterodimers and poor prognostic factors including high tumour grade and stage, ER 

negative tumours and HER2 over-expression/amplification. 

Although both EGFR and HER2 protein overexpression are correlated with worse 

outcome [22,21], HER2/EGFR dimerisation has not been well documented in breast 

cancer. We show for the first time, that HER2/EGFR heterodimers are highly 

prevalent in HER2+ breast cancer and are correlated with poor outcome. This is in 

contrast to a previous study which showed EGFR and HER2 co-expression had no 

significant association with survival [26].  

The number of HER heterodimer signals in tumours showing HER2 over-expression/

amplification revealed a significant association and therefore a directly relation 

between these two factors, suggesting and confirming the dependency of high levels 
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of heterodimerisation and HER2. However some cases did not reveal the presence of 

any heterodimers even though HER2 gene amplification or protein over-expression 

was apparent. Some occurrences, such as alternative splicing, modification of the 

transcription mechanism or even the lack of ligands might be the cause for the 

absence of the heterodimerisation signals detection in these cases [41].   

Within HER2+ breast cancer, it was difficult to discriminate between each of the 

interactions since such a high association between the three different HER2 

heterodimers occurred. However, HER2/HER3 is distinguished from the other 

heterodimers by being the only interaction with a significant association with high 

distant metastasis (p = 0.039). This is supported by the idea that HER3 is highly 

associated with the development of metastases [42]. Also HER2/HER3 was the only 

heterodimerisation not associated with ki67, suggesting that HER2/HER3 promotes 

high rates of cell proliferation, though not related with Ki67 pathway. EGFR/HER2 

heterodimer was correlated with high tumour grade and poor NPI. On the other hand 

HER2/HER4 was not highly associated with any of the clinicopathological parameters, 

revealing the least influence in the poor outcome features. Other studies have 

already revealed HER4 is associated with a better outcome compared with other 

members of the HER family [24], which is in concordance with our results. However 

in general, i.e. primary series, heterodimerisation HER2/HER4 was highly associated 

with all clinicopathological parameters excluding vascular invasion and regional 

recurrence.  

Despite levels of the three HER heterodimers were revealed to be associated with 

worse DFI and BCSS in breast cancer, we were not able to discriminate divergent 

outcomes based on HER2 dimerisation levels within the HER2+ population only 

whether treated by trastuzumab or not. However, the results for the trastuzumab 

adjuvant series have a limited number of cases and relatively short follow-up. Further 

!  17



studies are therefore required to determine the role of HER2 heterodimers in patients 

receiving trastuzumab. 

Conclusions 

We have observed that HER2 heterodimers are significantly correlated with poor 

outcome features in breast cancer and note that HER2 overexpression encourages 

heterodimerisation, in order to stimulate growth, malignant development [43] and 

migration [44], despite of being impossible to interact with any ligand. Furthermore, 

despite the interaction levels undoubtedly hold beneficial knowledge, it will be 

fundamental to discriminate the different ligand/receptor interactions and reveal their 

value on patient outcome. Protein or protein-protein interaction quantification, using 

PLA, could be used to investigate sub-cellular developments helping to divulge both 

upstream and downstream pathways in HER2+ breast cancer in order to identify 

possible targets for therapeutic interventions and avoid development of resistance 

which occurs in current treatment strategies.  However, our results strongly suggest 

there is no evidence to suggest that the identification of HER2 heterodimers will 

currently enhance the management of HER2+ patients receiving trastuzmab. 
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Figure Legends 

Figure 1. in situ Proximity Ligation Assay dimerisation detection in breast carcinomas showing: 
negative/low levels of (A) HER2/EGFR, (B) HER2/HER3, (C) HER2/HER4 and positive levels of (D) 
HER2/EGFR, (E) HER2/HER3 and (F) HER2/HER4 

Figure 2. Linear regression analysis between HER family heterodimerisations A) HER2/EGFR, B) 
HER2/HER3 and C) HER2/HER4 and HER2 gene amplification in the Unselected series. There was a 
positive correlation between HER2 gene amplification and the number of heterodimers signals 

Figure 3. Patient outcome according to HER2 dimer status in the Unselected series of breast cancer. 
(A) HER2/EGFR – BCSS, (B) HER2/EGFR - DFI, (C) HER2/HER3 – BCSS, (D) HER2/HER3, (E) 
HER2/HER4 – BCSS, (F) HER2/HER4 DFI 
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Table 1. Frequency of HER heterodimers in unselected and HER2+ breast tumours 

 

Heterodimer Unselected HER2+

Low (%) High (%) Total Low (%) High (%) Total

HER2/EGFR 708 (87.2) 104 
(12.8)

812 
(100)

61  
(26.6)

168  
(73.4)

229 
(100)

HER2/HER3 646 (86.9) 97 
(13.1)

743 
(100)

77  
(34.1)

149  
(65.9)

226 
(100)

HER2/HER4 795 (89.2) 96 
(10.8)

891 
(100)

112  
(46.1)

131  
(53.9)

243 
(100)
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Table 2A. Association between HER heterodimers in Unselected breast cancer series 

HER2/EGFR HER2/HER3

Variable Low (%) High (%) p Value 
(Chi- Square)

Low (%) High (%) p Value 
(Chi- Square)

   HER2/
HER3Low 387 (97.5) 11 (16.7) <0.001 

(306.265)
High 10 (2.5) 55 (83.3)
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Table 2B. Association between HER heterodimers in HER2+ breast cancer 

HER2/HER4

Low 432 (98.0) 24 (31.6) <0.001 
(274.489)

36 (63.2) 45 (38.8) <0.001  
(187.288)

High 9 (2.0) 101 (68.4) 21 (36.8) 71 (61.2)

HER2/EGFR HER2/HER3

Variable Low (%) High (%) p Value 
(Chi- Square)

Low (%) High (%) p Value 
(Chi- Square)

HER2/HER3

Low 38 (84.4) 18 (13.7) <0.001 
(77.182)

High 7 (15.6) 113 (86.3)

HER2/HER4

Low 41 (95.3) 36  (26.3) < 0.001   
(63.787)

46 (74.2) 38 (32.2) < 0.001   
(28.793)

High 2 (4.7) 101 (73.7) 16 (25.8) 80 (67.8)
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Table 3A. Relation of HER heterodimers with biomarkers in unselected breast cancer series 

EGFR/HER2 HER2/HER3 HER2/HER4

Variable Low (%) High (%)
p Value 

(Chi- Square) Low (%) High (%)
p Value 

(Chi- Square) Low (%) High (%)
p Value 

(Chi- Square)

ER

Negative 197 (29.4) 64 (66.0)
<0.001 
(50.658)

169 (28.3) 56 (60.2)
<0.001 
(37.424)

234 (30.9) 57 (64.8)
<0.001 
(40.035)

Positive 474 (70.6) 33 (34.0) 429 (71.7) 37 (39.8) 523 (69.1) 31 (35.2)

PgR

Negative 296 (44.6) 72 (75.8)
<0.001 
(32.266)

264 (44.2) 65 (70.7)
<0.001 
(22.321)

335 (44.5) 66 (75.9)
<0.001 
(30.769)

Positive 367 (55.4) 23 (24.2) 333 (55.8) 27 (29.3) 418 (55.5) 21 (24.1)

EGFR

Negative 476 (80.7) 59 (66.3)
0.002  (9.578)

430 (79.2) 60 (74.1)
0.296 (1.094)

527 (78.5) 57 (69.5)
0.064 (3.421)

Positive 114 (19.3) 30 (33.7) 113 (20.8) 21 (25.9) 144 (21.5) 25 (30.5)

HER2

Negative 655 (96.0) 15 (15.6)
<0.001 
(455.221)

599 (94.8) 10 (11.2)
<0.001 
(414.975)

709 (92.0) 10 (11.6)
<0.001 
(369.562)

Positive 27 (4.0) 81 (84.4) 33 (5.2) 79 (88.8) 62 (8.0) 76 (88.4)

HER3

Negative 48 (8.5) 3 (3.6)
<0.119 

(2.427)

47 (9.0) 7 (9.0)
0.999 (0.0)

74 (11.7) 1 (1.3)
0.006 (7.704)

Positive 519 (91.5) 81 (96.4) 477 (91.0) 71 (91.0) 560 (88.3) 75 (98.7)

HER4

Negative 97 (17.1) 6 (7.0)
0.017  (5.743)

82 (15.4) 5 (6.8)
0.048 (3.919)

125 (19.5) 5 (6.3)
0.004 (8.219)

Positive 471 (82.9) 80 (93.0) 452 (84.6) 69 (93.2) 517 (80.5) 74 (93.7)

TN

No 20 (10.6) 20 (80)
<0.001 
(69.600)

14 (8.6) 22 (100)
< 0.001 
(102.727)

30 (14.0) 18 (94.7)
< 0.001 
(69.871)

Yes 168 (89.4) 5 (20) 148 (91.4) 0 (0) 185 (86.0) 1 (5.3)

Ki67

Low 173 (30.6) 12 (14.1)

0.004 
(11.186)

172 (33.8) 21 (25.3)

0.062 (5.573)

197 (31.7) 12 (15.4)

0.004 (10.933Moderate 209 (37.0) 34 (40.0) 176 (34.6) 25 (30.1) 211 (34.0) 27 (34.6)

High 183 (32.4) 39 (45.9) 161 (31.6) 37 (44.6) 213 (34.3) 39 (50.0)

!  30



Table 3B. Relation of HER heterodimers with biomarkers in HER2+ breast cancer  

EGFR/HER2 HER2/HER3 HER2/HER4

Variable Low (%) High (%)
p Value 

(Chi- Square) Low (%) High (%)
p Value 

(Chi- Square) Low (%) High (%)
p Value 

(Chi- Square)

ER

Negative 23 (39.7) 102 (63.4)
0.002  
(9.775)

23 (31.1) 91 (62.8)
< 0.001 
(19.699)

47 (42.7) 81 (65.9)
< 0.001 
(12.545)

Positive 35 (60.3) 59 (36.6) 51 (68.9) 54 (37.2) 63 (57.3) 42 (34.1)

PgR

Negative 32 (54.2) 111 (71.6)
0.016  
(5.819)

36 (48.6) 100 (71.4)
0.001 
(10.845)

62 (56.9) 92 (76.7)
0.001 
(10.153)

Positive 27 (45.8) 44 (28.4) 38 (51.4) 40 (28.6) 47 (43.1) 28 (23.3)

EGFR

Negative 31 (59.6) 81 (53.6)
0.455  
(0.558)

45 (66.2) 73 (55.3)
0.139 
(2.194)

64 (66.0) 64 (54.7)
0.094 (2.807)

Positive 21 (40.4) 70 (46.4) 23 (33.8) 59 (44.7) 33 (34.0) 53 (45.3)

HER3

Negative 4 (8.3) 5 (3.6)
0.190  
(1.716)

5 (7.6) 6 (4.9)
0.450 
(0.570)

6 (6.8) 2 (1.9)
0.080 (3.055)

Positive 44 (91.7) 133 (96.4) 61 (92.4) 117 (95.1) 82 (93.2) 106 (98.1)

HER4

Negative 0 (0.0) 5 (3.6)
0.184  
(1.763)

1 (1.8) 3 (2.1)
0.618 
(0.249)

3 (3.5) 4 (3.7)
0.936 (0.006)

Positive 47 (100.0) 132 (96.4) 68 (98.2) 118 (97.5) 83 (96.5) 104 (96.3)

Ki67

Low 2  (11.1) 7 (10.6)

0.216  
(3.062)

4 (19.0) 14 (21.2)

0.400 
(1.831)

7 (15.9) 9 (14.3)

0.404 
(1.811)Moderate 11 (61.1) 26 (39.4) 10 (47.6) 21 (31.8) 21 (47.7) 23 (36.5)

High 5 (27.8) 33 (50.0) 7 (33.4) 31 (47.0) 16 (36.4) 31 (49.2)
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Table 4. Frequency of HER heterodimers in HER2+ breast cancer  

HER2/EGFR HER2/HER3 HER2/HER4 Frequency

+ - - 4

- + - 4

- - + 0

+ + - 24

+ - + 11

- + + 1

+ + + 73

- - - 32
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Table 5. Relation of HER heterodimers with clinicopathological features in the HER2+ breast 
cancer series 

EGFR/HER2 HER2/HER3 HER2/HER4
Variable Low (%) High (%) p Value 

(Chi- Square)
Low (%) High (%) p Value 

(Chi- Square)
Low (%) High (%) p Value 

(Chi- Square)

Lymph Node 
Stage
1 23 (39.0) 70 (41.7)

0.926  
(0.154)

35 (46.7) 66 (44.3)
0.334 
(2.191)

52 (47.3) 60 (45.8)
0.866 
(0.289)2 23 (39.0) 64 (38.1) 29 (38.7) 49 (32.9) 36 (32.7) 47 (35.9)

3 13 (22.0) 34 (20.2) 11 (14.7) 34 (22.8) 22 (20.0) 24 (18.3)

Tumour Size

<1.5 cm 10 (16.4) 26 (15.5) 0.866  
(0.028)

10 (13.0) 24 (16.1) 0.534 
(0.387)

17 (15.2) 21 (16.0) 0.855 
(0.033)

≥1.5 cm 51 (83.6) 142 (84.5) 67 (87.0) 125 (83.9) 95 (84.8) 110 (84.0)

Tumour Grade

I 1 (1.6) 6 (3.6)
0.006  
(9.3267)

1 (1.3) 6 (4.0)
0.017 
(8.159)

0 (0.0) 4 (3.1)
0.075 
(5.187)II 20 (32.8) 25 (14.9) 21 (27.3) 19 (12.8) 22 (19.6) 17 (13.0)

III 40 (65.6) 137 (81.5) 55 (71.4) 124 (83.2) 90 (80.4) 110 (84.0)

Tubule 

1 0 (0.0) 2 (1.2)
0.314  
(2.230)

0 (0.0) 1 (0.7)
0.455 
(1.576)

0 (0.0) 2 (1.6)
0.207 
(3.147)2 14 (23.3) 26 (15.9) 16 (21.3) 23 (15.6) 21 (19.1) 17 (13.2)

3 46 (76.7) 136 (82.9) 59 (78.7) 123 (83.7) 89 (80.9) 111 (85.3)

Pleomorphism

1 0 (0.0) 0 (0.0)
0.113  
(2.506)

0 (0.0) 0 (0.0)
0.137 
(2.209)

0 (0.0) 0 (0.0)
0.265 
(1.244)2 10 (16.7) 15 (9.1) 11 (14.7) 12 (8.2) 12 (12.0) 9 (7.0)

3 50 (83.3) 149 (90.1) 64 (85.3) 134 (91.8) 96 (88.9) 120 (93.0)

Distant 
Metastasis
No 47 (78.3) 118 (70.7) 0.252  

(1.310)
61 (79.2) 97 (66.0) 0.039 

(4.259)
81 (72.3) 86 (66.7) 0.343 

(0.901)Yes 13 (21.7) 49 (29.3) 16 (20.8) 50 (34.0) 31 (27.7) 43 (33.3)

Mitotic 
Frequency
1 11 (28.3) 23 (14.5)

0.490  
(1.426)

13 (17.3) 21 (14.3)
0.355 
(2.069)

10 (9.1) 18 (14.0)
0.281 
(2.538)2 18 (23.3) 42 (26.1) 22 (29.3) 33 (22.4) 31 (28.2) 27 (20.9)
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3 31 (48.3) 99 (59.4)

(1.426)

40 (53.3) 93 (63.3)

(2.069)

69 (62.7) 84 (65.1)

(2.538)

Vascular 
Invasion
No 34 (56.7) 90 (54.2) 0.744  

(0.1076)
36 (47.4) 81 (54.7) 0.296 

(1.091)
58 (54.5) 73 (56.3) 0.501 

(0.453)Yes 26 (43.3) 76 (45.8) 40 (52.6) 67 (45.3) 53 (45.5) 56 (43.4)

NPI

Good 15 (24.6) 21 (12.5)
0.048 
(11.152)

12 (15.6) 17 (11.5)
0.200 
(7.295)

14 (12.5) 21 (16.1)
0.259 
(6.516)Moderate 37 (60.7) 95 (56.2) 51 (66.3) 84 (56.4) 73 (65.2) 67 (51.1)

Poor 9 (14.7) 52 (30.9) 14 (18.2) 48 (32.2) 25 (22.3) 43 (32.9)

Death

No 47 (79.7) 114 (72.2) 0.261  
(1.265)

58 (79.5) 97 (69.8) 0.131 
(2.276)

78 (73.6) 81 (67.5) 0.318 
(0.999)Yes 12 (20.3) 44 (27.8) 15 (20.5) 42 (30.2) 28 (26.4) 39 (32.5)

Local 
Recurrence
No 49 (80.3) 117 (70.1) 0.123  

(2.379)
59 (76.6) 100 (67.6) 0.157 

(2.004)
83 (74.8) 85 (65.4) 0.114 

(2.500)Yes 12 (19.7) 50 (29.9) 18 (23.4) 48 (32.4) 28 (25.2) 45 (34.6)

Regional 
Recurrence
No 55 (93.2) 140 (90.9) 0.587  

(0.295)
71 (95.9) 127 (91.4) 0.214 

(1.547)
103 (94.5) 111 (91.7) 0.411 

(0.675)
Yes 4 (6.8) 14 (9.1) 3 (4.1) 12 (8.6) 4 (5.5) 10 (8.3)
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